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Abstract. Due to high data volumes and unpredictable arrival rates, continuous
query systems processing expensive queries in real-time may fail to keep up with
the input data streams - resulting in buffer overflow and uncontrolled data loss.
We explore join direction adaptation (JDA) to tackle CPU-limited processing of multi-
join stream queries. The existing JDA solutions allocate the scarce CPU resources
to the most productive half-way join within a single operator. We instead leverage
the operator interdependencies to optimize the overall query throughput. We identify
result staleness, typically ignored by most state-of-the-art techniques, as a critical is-
sue in CPU-limited processing. It gets further aggravated if throughput optimizing
techniques are employed. We establish the novel path-productivity model and the
Freshness predicate. Our proposed JAQPOT approach is the first integrated solution
to achieve near optimal query throughput while also guaranteeing freshness satisfi-
ability. JAQPOT runs in quadratic time of the number of streams irrespective of the
query plan shape. Our experimental study demonstrates the superiority of JAQPOT
in achieving higher throughput than the state-of-the-art JDA strategy while also
fulfilling freshness predicates.

1 Introduction

Motivation. Data Stream Management Systems (DSMS) [2, 5, 15] are in high demand for
real-time decision support as they transform huge amounts of streaming data into usable
knowledge. Due to rapid expansions in the diversity of data sources and the volume of
data these sources deliver, DSMS are faced with the challenge of processing user queries
demanding real-time responsiveness even under conditions of unpredictability, high and
bursty data volumes.

Windowed joins across streams, while among the most common queries in DSMS
applications, are more costly compared to other operations such as selection, aggregation
and projection [8,9,11]. When processing complex join queries, either the processor may
fail to keep up with the arrival rates of the streams (the CPU-limited case) or the available
main memory may become insufficient to hold all relevant tuples (the memory-limited
case). For queries composed of joins with large states across multiple high-speed data
streams, the system is even more prone to such resource deficiencies. Gedik et al. [8]
observe that with increasing stream arrival rates and large join states, the CPU typically
becomes strained before the memory does. Temporary data flushing [11] and compressed
data representations further counteract the chances of a memory-limited scenario. If
under duress complete results can no longer be produced at run-time, then the DSMS
must employ the available resources to ensure the production of maximal run-time
throughput (output rate). Therefore, in this work, we aim at optimizing the throughput
of multi-join queries in CPU-limited cases.

⋆ This work was supported by NSF grants IS-0812027, CCF-0811510, IIS-0917017 and IIS-1018443.



Q1: SELECT B.symbol, B.price

FROM stocksNYC A, stocksTokyo B

WHERE A.symbol = “GOOG” AND B.volume > A.volume

WINDOW 10 mins

Fig. 1. Example Query.

i j

…

… …

Maximizing the output of        ? j

Fig. 2. A pipeline of join operators.

When resources are limited, yet another pressing issue, namely, result staleness arises.
In Query Q1 (Fig. 1) a stock trader is interested in the companies whose stocks got traded
at Tokyo in higher volumes than Google stocks traded in NYC. He wants the comparable
transactions to happen within 10 minutes of each other. For real-time decision making,
the DSMS may be required to produce results continuously (say, once every minute).
However, if the system faces high workloads and backlogs in processing, result tuples
may get delayed. For example, the trader may receive results about transactions that took
place 15 minutes before the current time. Such results, despite satisfying the 10-minute
window predicate, would be considered stale and useless by the trader. Clearly, high
throughput results with no freshness guarantees are unacceptable in real-time applications as
they may be producing results already deemed useless.

In addition to the WINDOW predicate, the trader may want to specify a freshness
predicate to indicate his tolerance to staleness. A freshness predicate may be defined on
each stream, i.e., 12 mins for stocksNYC whereas 15 mins for stocksTokyo. To the best
of our knowledge, our work is the first to identify the result staleness problem in the
context of resource-limited execution of multi-join plans and tackles the dual problems
of achieving optimal throughput while satisfying freshness of the join results.

The State-of-the-art. Two directions for tackling join queries under computing lim-
itations are load shedding [4, 9, 16] and join direction adaptation (JDA) [8, 10]. The main
focus of load shedding is to reduce the input rates by directly dropping tuples from the
source streams [4]. This makes the plan incapable of recuperating with the production of
accurate results in moments of low workloads as data is permanently lost.

Unlike load shedding, JDA preserves in-memory tuples as per the join semantics
for opportunities of joining with future incoming tuples. Existing JDA techniques [8, 10]
exploit the asymmetry in the productivities of half-way join directions within a join
operator. However, JDA techniques have so far been explored only in the context of
a single join operator. We demonstrate in this work that new challenges arise in the
multi-join case. A detailed review of the related work is provided in Sec. 6.

Research Challenges. In general, the ability of multi-join queries to achieve high result
throughput and to maintain result freshness under heavy workloads relies on resolving
the following aspects of the problem:
• While operator scheduling [6, 7] tends to allocate resources at the coarse granularity of
query operators, adaptation at a finer granularity within the operators is required to
produce optimal throughput.
•The existing JDA technique [10] optimizes every join operator individually. In a pipeline
of join operators (Fig. 2), an uncoordinated attempt to optimize operators Zi and Z j

individually may jeopardize the real goal of optimizing the overall query throughput.
The join operators within a multi-join plan are interdependent, namely, an operator
depends on the output of its upstream1 operator(s) for input. Consideration of operator
interdependency is crucial for a successful plan-level join direction adaptation.
•We identify result staleness2 as a critical issue for CPU-limited processing of multi-join
queries. The biased resource allocation by JDA may potentially aggravate this problem.

1 Operators closer to the stream input are upstream and those closer to the query output are
downstream.

2 This challenge is not identified by prior work [4, 9, 16].



Proposed Approach. Unlike load shedding that discards data once the system is on
the verge of crashing from overload, we propose to preemptively allocate the available
CPU resources with the goal to achieve maximal throughput. We design, develop and
evaluate a synchronized join adaptation strategy at the plan level that tackles the result
staleness problem while maximizing the overall throughput of the query. We summarize
our contributions as follows:

1. We demonstrate that the state-of-the-art JDA [10] technique fails to achieve optimal
throughput for the CPU-limited processing of multi-join plans (Sec. 3).

2. We establish the path productivity metric as the plan-level throughput contribution
of each input stream (Sec. 4.1).

3. We formulate the query throughput maximization as a knapsack problem and pro-
pose a Greedy Path Productivity-based Adaptation (GrePP) to solve it (Sec. 4.2).

4. We identify result staleness as a key challenge under CPU-limited scenarios and
formulate the freshness satisfiability as a weighted set-cover problem (Sec. 4.3).

5. We integrated the above two strategies into the JAQPOT algorithm (Sec. 4.4). To
the best of our knowledge, this is the first solution that guarantees fulfillment of
result freshness predicates while achieving near optimal query throughput. We
further note that JAQPOT achieves this effective adaptation in quadratic time in the
number of input streams.

6. Our experimental study (Sec. 5) demonstrates the superiority of JAQPOT over the
state-of-the-art JDA solution in a large set of tested cases.

2 Preliminaries

2.1 Background
In this paper we focus on multi-join plans composed of sliding window binary join
operators. We assume standard semantics as in CQL [3]. We use the unit-time basis cost
model proposed by Kang et al. [10] that computes the join cost in terms of the three
sub-tasks, namely, probe, insert and purge operations. For simplicity, the model assumes
count-based windows. The key idea is that the cost of probe dominates the total join cost
while insert and purge operations are relatively inexpensive. For details on the model
and its extension to time-based windows refer to [10]. Fig. 3 lists the notation.

Symbol Meaning

tI Tuple of stream I
tI .ts Timestamp of tuple tI

λi Arrival rate of stream I
|SI | Window size of state I
σi Selectivity of join on state SI

λ′
i

Probe allowance of stream I, (≤ λi).

Fig. 3. List of notation.

Throughput. The run-time throughput (Eq. 1) of a join operator AZB (Fig. 4.a) consists
of two contributing half-way join components, namely, rX = (a X SB) and rY = (b X SA).
Throughput is also called the output rate and is defined as the number of joined tuples
produced per time unit. For tuple tA, SA is the own state whereas SB is the partner state.

rZ=rX + rY=λa × σB × |SB| + λb × σA × |SA| (1)

CPU Limitation in a Join. When CPU is limited, the throughput of AZB can be re-
written as in Eq. 2. The total available computing resources, denoted asµ, may be determined
from the system. Terms available resources and service rate are used interchangeably.

rZ=rX + rY=λ
′
a × σB × |SB| + λ

′
b × σA × |SA|, λ

′
a + λ

′
b ≤ µ. (2)
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Fig. 4. Join plans with parameter settings.
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Fig. 5. JDA over a 2-join plan.

In Eq. 2, the µ resources allocated to a join is divided between the two half-way joins.
Stream A is assigned a probe allowance, denoted by λ′a, which is a portion µa of µ not
exceeding the input rate λa, i.e., λ′a = min(µa, λa). Similarly, λ′

b
= min((µ-µa), λb). As the

probe cost dominates the total join cost, the resource restriction only affects the probe. All
input tuples undergo the insert and purge operations. In Fig. 4.a AZB have input rates
λa = 500 and λb = 700 tuples/sec. Assume µ = 300 tuples/sec as the available resources.
Therefore, a subset3 of 300 tuples out of the 1200 (= 500 + 700) tuples from either of the
input streams is used for the probe operation. However, all 1200 arriving tuples undergo
insert and purge operations every time unit. Thus, the µ resources (here 300 tuples/sec)
must be divided among the probe allowances (hereλ′a andλ′

b
) for throughput maximization.

2.2 Problem Definition
Now, we define our two target problems, namely, achieving optimal throughput and tack-
ling result staleness in CPU-limited execution of multi-join.

CPU-limited Execution of Multi-Join Plans. In the 2-join plan of Fig. 4.b4 composed of
Z1 andZ2, the throughput optimization problem is quite different from the single operator
case. Now, the goal is to maximize the throughput rZroot

of the root operator (here Z2).

rZ1
=λ′a × σB × |SB| + λ

′
b × σA × |SA|; rZ2

=λ′ab × σC × |SC| + λ
′
c × σAB × |SAB|,

λ′a + λ
′
b + λ

′
ab + λ

′
c ≤ µ.

(3)

Equation 3 depicts the CPU-limited case in a multi-join plan, where µ needs to be divided
among four half-way joins, namely, λ′a, λ′

b
, λ′

ab
andλ′c. In general, µ gets split at two levels.

First, among the n join operators (say µZ1
, µZ2

,. . .,µZ j
,. . .,µZn

). Then, for each join Z j, µZ j

is divided among each of its respective half-way joins µX j
and µY j

.
Freshness of Multi-Join Results. When the resources become limited, the produced

query results may no longer be perfectly fresh, as in Query Q1 (Fig. 1). The result freshness
is further compromised by throughput optimizing resource allocation to highly produc-
tive half-way joins. Consequently, little or no resources are left for the less productive
components of the plan. Therefore, under a throughput optimizing scheme, insufficient
scheduling of certain operators may lead to their starvation. Moreover, when a starved
upstream operator does not produce sufficient intermediate results, the dependent join
state in the downstream operator tends to become stale. The join results produced using
such stale states are also stale, thus further deteriorating the result freshness. In Fig. 4.b, if
(cX SAB) is most productive, the assignment of complete µ to λ′c would starveZ1, leading
to the staleness of the state SAB and eventually also to that of the final query results.

3 A fine-grained time correlation-awareness [9] can be used for subset selection in conjunction with
JDA.

4 For simplicity σi denotes overall selectivity of Zi; in reality each half-way join has an associated
selectivity as in Fig. 4.a.



Definition 1. The freshness predicate, namely, FI for a stream I, requires that joined tuples
produced beyond time T must not contain stream I tuples with arrival times older than |T - FI|.

Under CPU-limited execution, the user can supply a freshness predicateFI for each stream
I (Def. 1). The type of the freshness and the window predicate must be the same, i.e., time
or count-based. By default the freshness predicate FI equals the WINDOW predicate
when the users require the results to be 100 % fresh. Query results not fulfilling the
freshness predicate are considered stale and thus useless. In this work we focus on achieving
maximal throughput while satisfying the user-defined freshness specification.

3 The JDA Technique

The state-of-the-art JDA technique uses a half-way join productivity-based optimization.
We first define the half-way join productivity ρh metric (Def. 2) and then present the JDA
policy.

Definition 2. The productivity of the half-way join Xi ≡ (i X SJ), denoted by ρh(i X SJ), is the
throughput contribution (rXi

) of Xi per input tuple processed by Xi.

ρh(i X SJ)=
rXi

λ′
i

=(σJ× |SJ|) (4)

JDA Policy: Allocate available resources µ starting with the most productive half-way join until
µ gets exhausted.

In a single join operator (Fig. 4.a) the µ resources (= 300 tuples/sec) must be divided
among the probe allowances (here λ′a and λ′

b
). such that the throughput rZ of AZB is

maximized. By Equation 4, the ρh of half-way joins are: ρh(a X SB) = σB × |SB| = 0.005 ×
500 = 2.5 and ρh(b X SA) = σA × |SA| = 0.001 × 5000 = 5 joined tuples/input tuple/sec. For
µ = 300 tuples/sec, JDA achieves a throughput of rZ = 300 × 5 = 1500 by assigning all of
µ to λ′

b
and none to λ′a.

Applying JDA to a Multi-Join Plan. Now, we derive a variant of the JDA policy,
called JDAM, to make it applicable to the multi-join plans. It is defined as follows:

JDAM Policy: Allocate µ in two levels:

1. Divide µ equally among all the n join operators, so for each joinZ j (∀ j = 1,2,. . .,n), µZ j
=

µ

n .

2. Within each operator Z j, apply BestHJP to assign all µZ j
towards the most productive

half-way join component of Z j.

In Figure 5, JDAM first splits the µ equally among the two joins Z1 and Z2, i.e., 150
tuples per second are allocated to each join. In the next step, JDA is applied locally within
each operator. In Z1, ρh(b X SA) > ρh(a X Sb), so (b X SA) is assigned the 150 tuples per
second. Similarly, in Z2, ρh(ab X SC) > ρh(c X SAB), thus (ab X SC) is assigned the 150
tuples per second. An estimated query throughput of 750 joined tuples per second is
achieved (Equation 3). We observe here that while Z1 produces 750 tuples per second,
only 150 out of those can actually be used to probe the partner join state in Z2. Hence,
there is an over-utilization of resources in Z1.

The local nature of the JDA technique and its failure in producing optimal throughput
in a multi-join plan motivates us to explore operator interdependencies for solving the
identified problems as described next in Section 4. In our experiments (Section 5) we
compare the JDAM strategy against our proposed approach.



4 The Proposed JAQPOT Approach

4.1 Optimizing Throughput in Multi-Join Queries

Throughput optimization in a multi-join plan requires producer-consumer matches be-
tween every successive join pair where all intermediate tuples produced by a producer
join must get consumed by the downstream consumer join for probing the partner join
state. Based on this insight, we propose a synchronized plan level resource allocation
strategy.

Input Paths. We introduce the notion of input paths in Def. 3.

Definition 3. Given a multi-join plan Q with k input streams5 (I = 1, . . . , k); each pipeline of
half-way joins from the leaf to the root operator forms an input path denoted by PathI. A path
having n join operators between input stream I and the output of query is called an n-hop path.

In our example plan (Fig. 4.b), we identify three input paths, namely, PathA, PathB and
PathC. PathA, a 2-hop path, is composed of two sequential half-way joins, namely, (a X
SB) followed by (ab X SC), also written as (a X SB X SC). Along an n-hop PathI, every
input tuple joins and propagates through n half-way joins upto the root. Similar to the
half-way join productivity (ρh), we now define the cardinality of intermediate joined tuples,
denoted as φI

j
, produced by the jth half-way join along PathI. As in Eq. 5, φI

j
is computed

by multiplying the productivities (ρh) along PathI upto j. Here, superscript p denotes the
partner join state. φI

j
forms an important component of the core formulae that we define

next.

X1
X

X2 … Xj

…… … …

1 2 nj

… Xn
I I I I

I

Fig. 6. Division of XI resources within PathI.

φI
j=

∏

j

g=1
(σ

p
g × |S

p
g |). (5)

XI
= XI

1
+ . . . + XI

j
+ . . . + XI

n=XI
1
×[1 +

∑ j−1

g=1
φI

g]−→ XI
j
= XI

1
×φI

j−1
=(

XI×φI
j−1

1+φI
1
+...+φI

n−1

). (6)

Division of Resources within an Input Path. XI of the total µ resources are allocated
to an n-hop path PathI. Figure 6 depicts the division of XI among the half-way joins of
PathI as probe allowances XI

1
, XI

2
, . . . , XI

j
, . . . , XI

n. For an effective division of XI producer-

consumer matches must be established between every pair of successive half-way joins,
such that the output of a producer equals the probe allowance of the consumer join. Each
such probe allowance for the jth half-way join, denoted as XI

j
, is expressed in terms of XI

as in Eq. 6. Here, φI
j−1

denotes the cardinality of the (j-1)th intermediate joined tuples. Path

Productivity. We now establish a novel metric that measures the contribution of an input
path to the overall query throughput (Def. 4).

Definition 4. The path productivity of PathI, denoted by ρp(PathI), is its contribution to the
query throughput per tuple t processed6 within PathI .

ρp(PathI) = (σ
p
n × |S

p
n|) × (

φI
n−1

1 + φI
1
+ . . . + φI

n−1

) = (
φI

n

1 + φI
1
+ . . . + φI

n−1

). (7)

5 If stream I is used multiple times as input to the plan (self-joins), then separate copies of I will
used as separate inputs.

6 Tuple t refers to either a leaf or an intermediate tuple in PathI .
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Fig. 7. Example 2-join plan.

PathI PathA PathB PathC

Resources used (XI) 15 16 10

Output rate rI
Zroot

4 5 1

Path Productivity ρp(PathI) 0.266 0.312 0.1

Fig. 8. Path productivity table.

If XI resources are assigned to PathI, the component XI
n assigned to the root half-

way join may be computed using Eq. 6. The throughput contribution by processing the
XI resources along PathI, denoted as (rI

Zroot
) = (σ

p
n × |S

p
n|) × XI

n. Therefore, by Def. 4, the

productivity of PathI can be computed as ρp(PathI) =
rI
Zroot

XI , as given in Eq. 7.

In our example plan (Fig. 4.b), XB resources allocated to PathB will be divided among
λ′

b
and λ′

ab
. By Eq. 6, an effective division of XB over PathB will be λ′

b
= (XB/6) and λ′

ab

= (5 × XB/6). Using Eq. 7, the total throughput contribution (rB
Zroot

) achieved is estimated
as (5 × XB/6) × (σC × |SC|). Thus, if XB = 600 tuples/sec, λ′

b
gets 100, then producing

rZ1
= 500 tuples/sec as intermediate output. λ′

ab
gets 500 tuples/sec (= XB - λ′

b
) and a

producer-consumer match is achieved between Z1 and Z2.
Discussion. The path productivity ρp metric defaults to the notion of half-way join

productivity ρh (Sec. 3) when applied to a single operator. ρh is a local operator level
metric whereas ρp metric establishes the contribution of a complete input path to the
query throughput rZroot

. The former takes only the tuples directly input into the half-way
join into consideration, whereas the ρp metric instead considers all the tuples processed
anywhere along the path, be it at the leaf, the intermediate and the root operators.

4.2 Path Productivity-based Join Adaptation.

Given plan Q with k input paths, namely, PathA, PathB, . . . , and Pathk, their path produc-
tivities can be computed using Formula 7. The 2-join plan in Fig. 7 may be translated into
a path productivity table (Fig. 8). This translation is based on the input rates, the selectivities
and the state sizes along each path within the plan. For each input path PathI, the path
productivity table lists (a.) the resources used (XI), (b.) the query output rate (rI

Zroot
) achieved

using XI resources, and (c.) the path productivity (ρp(PathI).

In Fig. 7.b) for PathA, the resources XA = 15 tuples/sec may be divided across the
two half-way joins such that λ′a = 11 and λ′

ab
= 4. The throughput contribution of PathA,

denoted as rA
Zroot
= 4 as σC = 1. Thus, for every 15 tuples consumed by PathA in a second, it

will produce 4 tABC joined tuples. The values in Fig. 8 may be fractional. Once a multi-join
plan has been translated into a productivity table, our join adaptation problem can be
formulated as a variant of the knapsack problem [14], as given below.

Problem 1. Join adaptation knapsack problem: Given a plan Q with k paths Path1, Path2,. . . ,
Pathk, when PathI is assigned resources in multiple MI of XI, then its throughput rI

Xroot
=MI ×

ρp(PathI). By defining aI to be 1 if PathI is chosen in a solution and 0 otherwise, we can formulate
this JDA-Knapsack problem as:

Maximize Σk
I=1

aI × rI
Zroot

(8)

subject to:
Σk

I=1
aI ×MI × XI ≤ µ. (9)



JAQPOT Policy: Allocate µ iteratively to the next most productive path until µ gets completely
consumed.

Assume µ = 30 tuples/sec. Using the JAQPOT Policy for the productivity table listed in
Fig. 8, the most productive path PathB will be assigned 16 tuples (out of 30). The remaining
14 resources fall short of XA=15, the minimum resources required by the second most
productive path PathA. Thus, PathC will be chosen and assigned 10 resources, wasting
the remaining 4 resources. The total throughput thus achieved is 6 tuples/cycle (assume
each cycle runs for 1 second). A more effective assignment would be to instead give
the complete 30 (=15 × 2) tuples/cycle to PathA and achieve 8 (=4 × 2) tuples/cycle as
throughput. This illustrates that a greedy application of the JAQPOT Policy fails to achieve
optimal throughput.

Above, we find ourselves working under rigid constraints. First, each execution cycle
runs independently of its predecessor and successor execution cycles. Second, we assume a
discrete execution model where XI, rI

Zroot
and µmust be whole numbers. Under this model the

throughput optimization problem does not exhibit the greedy choice property ( [14]). Thus,
a dynamic programming knapsack solver must be employed to achieve an assignment
yielding optimal throughput which runs in©(k × µ), for k input streams and µ available
computing resources. For higher values of µ, this solver would be extremely compute-
intensive. Therefore, we now explore alternate greedy strategies for solving this problem.

The Greedy Knapsack Solver. We now relax the above restrictions. First, instead of
independent execution cycles, each being assigned distinct µ resources, we now consider the
coordinated execution across successive cycles. For example, two successive cycles producing
3 and 2 join tuples respectively will result in the overall path productivity ρp(PathI) to
be 2.5 tuples/cycle. As we will see shortly, this achieves even higher output rates than
produced under the discrete execution model. Once such a group of successive cycles is
identified, we can view their combination as a mega cycle. Secondly, XI, rI

Zroot
and µ values

can now be fractional. Thus, for PathB (Fig. 7), XB = 16 tuples/sec and rB
Zroot
= 5 tuples/sec

may be re-phrased as PathB using XB = 8 tuples/sec to produce rB
Zroot
= 2.5 tuples/sec.

While fractional tuples cannot be consumed (or produced) in a single cycle, over the span
of multiple successive cycles a virtual consumption (or production) of fractional tuples
per cycle may arise.

These relaxations are mutually complementary and their benefit is twofold. First, mul-
tiple cycles may be scheduled together. Second, as fractional resource assignment is
allowed, high productivity paths consuming resources XI greater than µ, that would
otherwise be eliminated in the discrete model, may now be assigned resources. Also in a
real-world CPU-limited scenario, the resources are more likely to be an estimated µ value
available over a duration spanning multiple cycles rather than being a distinct µ value
available to each cycle. Under this continuous execution model, our JDA-Knapsack Problem
1 now exhibits both the greedy choice property and the optimal substructure property [14].
This implies that we can now use a greedy knapsack solver, henceforth referred to as Greedy
Path Productivity-based Multi-Join Adaptation (GrePP), to tackle our problem.

For our running example in Fig. 7, GrePP selects the most productive path, PathB (Fig.
8), and allocates all of µ (=30 tuples/sec) such that λ′

b
gets 20.62 tuples/sec and λ′

ab
gets

9.38 tuples/sec. The estimated query throughput rGrePP
Zroot

is 9.38 tuples/sec and is greater
than that in the discrete model. It is guaranteed to be optimal [14]. GrePP runs in ©(k
log(k)) time [14] for a plan joining k streams and thus is independent of µ.



4.3 Satisfying Freshness in Multi-Join Queries

The throughput optimizing allocation by GrePP may still suffer from result staleness. We
allow users to supply the freshness predicates (Def. 1) for each input stream. Now, we
extend our path-productivity based model to incorporate this notion of freshness.

The key idea here is that the freshness predicates defined over streams are fulfilled
by translating them into refresh rates for the join states inside the plan. By Def. 1, tuple
tI from stream I must not be part of the joined results beyond time (tI.ts + FI), where tI.ts
denotes the arrival time of tI. To enforce this constraint, every tuple tI from stream I and
all its intermediate joined tuples must be purged from the plan by (tI.ts + FI) time (or
tuple for count-based freshness). In Fig. 9.a, stream C contributes the singleton tC, the
intermediate tCD and tCDE tuples, get stored in own states SC, SCD and SCDE, respectively.
State SC gets refreshed by incoming tuples at λc tuples/sec, whereas the intermediate
states intermediate states SCD and SCDE get refreshed with tuples tCD and tCDE at a rate
dependent on the portion of µ allocated to λ′

cd
and λ′

cde
, respectively. Such intermediate

states, such as SCD and SCDE, are called staleness susceptible states (highlighted in Fig. 9.a).

In a steady stream, SC

λc
, SCD

λ′
cd

and SCDE

λ′
cde

denote the time duration for which a singleton tC and

its corresponding tCD and tCDE tuples will remain in their respective own states SC, SCD,

SCDE. To satisfy the predicate FC for stream C, FC ≥ ( SC

λc
+

SCD

λ′
cd
+

SCDE

λ′
cde

).

Lemma 1. To fulfill the freshness predicate FI for stream I, FI ≥ Σn
j=1

So
j

λ′
j
, where λ′

j
and So

j
denote

the probe allowance and the own join state, respectively, at jth operator along PathI, storing
intermediate tuples having tI tuples.

Using Lemma 1, the freshness predicate FI on any stream I can only be fulfilled by
allocating sufficient resources λ′

j
to each operator j along PathI so that its own join states

get refreshed at sufficient rates. Our model of input paths enables us to gain further
insights into the result staleness problem. We observe that each input path contains one
or more of these staleness susceptible states. Moreover, each susceptible state, say SCD, may
receive input from multiple paths. For example, SCD gets input from (c X SD) and (d X
SC). Also SCDE gets input from (cd X SE) and (e X SCD). Thus, staleness susceptible states
may be refreshed synchronously by allocating resources to the paths covering those states.
The freshness predicates can be satisfied by fulfilling the corresponding refresh rates of a
half-way join (Def. 5) of each staleness susceptible state, i.e, if the input rate λ′

j
(λ j for leaf)

at each half-way join exceeds the desired RS j
.

Definition 5. The refresh rate RS j
of a state S j, denotes the minimum number of new tuples

required to be inserted per time unit into state S j to prevent it from becoming stale. A staleness
susceptible state S j is said to be covered if its refresh rate RS j

is fulfilled.

Given the foundation, in Problem 2 we translate the freshness satisfiability problem
into a weighted multiple set cover problem (WMSCP) [18] over the staleness susceptible
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Fig. 9. Multi-join plans.

Algorithm 1: The JAQPOT Algorithm
Input: Path productivity table τp[ ] [1,. . . ,k] for plan Q,

refresh rates RS1,..., j
∀ j states, available resources µ

Output: Assignment of µ to plan Q PathAssign[ ][ ]

1: PathAssign[ ][ ]← GH-WMSCP(τp [ ][1,. . . ,k], RS1,...,J
)

2: ∆µ←
∑k

i−>1 PathAssign[i][ ]

3: PathAssign[ ][ ]← GrePP(µ −∆µ, τp[ ][1,. . . ,k])

4: return PathAssign[ ][ ]



states. Given the set of all staleness susceptible states and the input paths that include those
states, the goal is to identify the set of paths, called the minimal coverage paths, that cover
all the staleness susceptible states utilizing the minimum computing resources∆µ out of the
total µ resources. The remaining (µ - ∆µ) resources are used by GrePP for throughput
optimization. In Fig. 9.a, PathA and PathC are such minimal coverage paths covering all
staleness susceptible states in Z3 and Z4.

Problem 2. Coverage of staleness susceptible states as a weighted multiple set cover
problem (WMSCP): The Universe U consists of m staleness susceptible states = S1, S2,. . . ,
Sm with required refresh rates = RS1

, RS2
,. . . , RSm

, respectively. The k input paths P = Path1,
Path2,. . . , Pathk cover all the staleness susceptible states where ∪k

I=1
PathI

= U such that each

path PathI has a positive real cost (resources used) XI. If a n-hop PathI contains state S j, then the
resources used for S j in PathI are denoted as XI

j
, such that for the n states of PathI Σn

j=1
XI

j
= XI.

A k-tuple M =M1, M2,. . . , Mk constitutes a multiple cover for U in which the number of times
state S j is covered is defined to be the sum of MI’s for those PathI’s which contain S j. Total weight

of the multiple cover is defined as Σk
I=1

XI ×MI . WMSCP seeks the minimum weight multiple

cover for U such that every state S j is covered for at least its refresh rate RS j
. By defining bI

j
to be

1 if S j ǫ PathI and 0 otherwise, we can now write our WMSCP problem as:

∆µ =Minimize Σk
I=1

XI ×MI (10)

subject to: Σk
I=1

bI
j
× XI

j
×MI ≥ RS j

∀ j = 1,2,. . . ,m. (11)

Complexity and Optimality Analysis. WMSCP is strongly NP-Hard and the cost of
an optimal solution may be too high for our dynamically scenario. Thus, we use a greedy
algorithm called GH-WMSCP [18]. We use GH-WMSCP to satisfy the refresh rates and
in turn to fulfil freshness predicates. The time complexity TC(GH-WMSCP) =©(m × k +
m2) for m staleness susceptible states and k input paths. The cover found by GH-WMSCP
will atmost differ from the optimal cover for WMSCP, denoted as OPT(WMSCP), by a
factor of ln(m) [18].

Lemma 2. For k input streams in a join query Q, there are exactly (k-2) staleness susceptible
states irrespective of the query shape, be it linear, semi-bushy or bushy.

Lemma 2 relates the counts of the input paths (k) and the susceptible states (m) in a
query. For example, in both the plans, namely, linear (Fig. 9.b) and bushy (Fig. 9.c), k=4
and m=2. Therefore, substituting m with (k-2) in the expression for the time complexity
of GH-WMSCP, TC(GH-WMSCP) =©(k2).

4.4 The Integrated JAQPOT Algorithm

We now present our algorithm called Join Adaptation at Query plan-level using Path-
productivity for Optimizing Throughput, in short, JAQPOT (Algorithm 1). JAQPOT first
assigns a fraction ∆µ7 out of µ available resources towards fulfilling the freshness re-
quirements using the GH-WMSCP. Further, the greedy knapsack solver GrePP achieves
an optimal query throughput using the remaining resources (µ - ∆µ). JAQPOT returns
the join adaptation assignment in PathAssign[ ][ ], where PathAssign[I][ j] denotes the

7 We chose to satisfy the freshness predicates while optimizing throughput as this adaptation is
sufficient for real world applications. We found in our experimental study (Sec. 5) that in practice
realistic freshness predicates are indeed fulfillable using only a small share of the resources.



resources assigned to the jth half-way join of PathI. The overall time complexity of our
solution TC(JAQPOT) = TC(GH-WMSCP) + TC(GrePP) = ©(k2 + k × log(k)) ≃ ©(k2).
Thus, JAQPOT runs in quadratic time of k irrespective of the plan shape.

Run-time Query Adaptation. An initially optimal resource allocation by JAQPOT
may become sub-optimal due to the dynamic nature of the streams. Thus, we adopt
a simple yet effective strategy for runtime adaptation (details in [13]). We measured
the runtime overheads of JAQPOT and found that GH-WMSCP incurs the highest cost.
Performance of GH-WMSCP for different parameters, such as sizes of input and sets,
has been thoroughly studied in [18]. Thus, we instead focus our experimental study on
throughput and freshness.

5 Experimental Evaluation

Parameter Value
Arrival rates (λi) 300 ∼ 1200 tuples/sec

Window sizes of states (|SI |) 200 ∼ 5000 tuples
Join selectivities (σi) 0.01 ∼ 0.1

Available Resources (µ) 0 ∼ 100 % of saturation
Freshness predicates (FI ) 1.5× ∼ 5× of |SI |

Fig. 10. Experimental parameters with values.

We now examine the effectiveness of JAQPOT compared against the state-of-the-art
JDA technique (described in Section 3). We implemented JAQPOT and JDAM within the
CAPE stream engine [15].

Objectives. The goal of our experimental study is to substantiate the observations of
our analytical study (Sec. 4) that JAQPOT is capable of producing near optimal throughput
together with maintaining result freshness. We evaluate JAQPOT and its competitor JDAM

policy by measuring their performance in (a) producing query throughput, and (b) fulfilling
the freshness predicates. We examine the following critical questions with focus on the two
performance measures:
•What is the impact of stream and query parameters, such as λi, σi, and SI as well as the query
shape on the throughput produced by the JDA techniques?
• How does the throughput produced by JAQPOT and JDAM techniques compare with the satu-
ration throughput8 with change in µ?
• In the absence of the set-coverage solver (GH-WMSCP), how badly do the throughput optimiza-
tion techniques perform in terms of the result freshness?
• In JAQPOT, what fraction of resources get assigned for fulfilling freshness as opposed to
achieving high throughput?

Experimental Setup. All experiments are run on a machine with Java 1.6 runtime,
Windows 7 with Intel(R) Core(TM)2 Duo CPU@2.13 GHz processor and 4 GB RAM.
All techniques are tested rigorously using synthetic streams and distinct query shapes
with arbitrary parameter settings (Table 10). Further, the applicability to a real-world
application is also verified using the Weatherboards data set [1]. The results for the
experiments with the real data set are not included in this paper. Please refer to technical
report [12] for details.

5.1 Throughput Production in Synthetic Data

The goal of our experiments is to compare the throughput produced by both the JDA
techniques under (a) fluctuating streams, and (b) changing resource availabilities. We

8 The minimum total resources required to process the full query workload with no CPU limitation
are called the saturation resources. The corresponding throughput produced is called the saturation
throughput.
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Fig. 11. Impact of fluctuations in streams.
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Fig. 12. Impact of resource availability.

measure throughput as the cumulative join output tuples produced over time. We use an equi-
join of 4 streams, namely, A, B, C and D with two different query shapes, namely, linear
(Fig. 9.b) and bushy (Fig. 9.c). While the join order of the linear plan is (((AZB)ZC)ZD),
that of the bushy plan is ((AZB)Z(CZD)). The data streams are generated according
to the Poisson distribution that models the arrival pattern of several real-world stream
applications. Overall, a variety of scenarios are evaluated by changing the λi, σi and SI

parameters for each query shape (Fig. 10).

Impact of Fluctuating Stream Parameters. The fluctuating input streams are simu-
lated by changing operator selectivities. The window sizes and arrival rates were observed to
have similar effects on the workload as that of the selectivities, thus we omit them here.
Query workloads can be adjusted by generating streams such that the join selectivities
become high (or low) as desired. Here, we fixed the µ to 30% of saturation whereas FI is
set to 1.5×WINDOW predicates on each stream I.

In Fig. 11, we measure the cumulative throughput (y-axis) as time progresses (x-axis)
for a total of 10 mins of steady state query execution. In the linear plan (Fig. 11.a), the
selectivities first change at 3 mins. from SEL1 (Z1 = 0.01 |Z2 = 0.01 |Z3 = 0.05) to SEL2 (Z1

= 0.03 | Z2 = 0.03 | Z3 = 0.05) and further at 7 minutes from SEL2 to SEL3 (Z1 = 0.03 | Z2 =

0.03 | Z3 = 0.1). From SEL1 to SEL2, the selectivities of Z1 and Z2 triple while keeping Z3

constant. From SEL2 to SEL3, the selectivity of the root Z3 doubles while the selectivities
of Z1 and Z2 remain unchanged. This change in the root operator Z3 improves the
throughput production by JAQPOT even more significantly than the change in non-root
operators. The performance of the JDAM strategy is significantly lower than JAQPOT.
Figure 11.b illustrates the results for the bushy plan with changes in the selectivities at
3 and 7 mins, just like the linear plan. Here JAQPOT again produces high throughput
while JDAM continues to produce output at a very low rate.

Impact of Changing Available Resources. These charts (Fig. 12) summarize the
performance of the techniques over the complete range of µ values from 0% to 100% of
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Fig. 13. Evaluation of freshness predicates.

saturation. A variety of parameter settings are used, as in Table 10. The charts depict µ
as a percentage of the saturation resources. On the y-axis, the throughput produced by
JAQPOT and JDAM strategies, averaged over several runs, is shown as a percentage of
the saturation throughput.

For the linear plan (Fig. 12.a) JAQPOT outperforms the JDAM strategy producing
more than 80% of the saturation throughput while using only 60% of the resources.
Averaged over the different µ values, JAQPOT consistently beats the JDAM strategy
by producing 3× as many tuples/min on average, with a maximum of 6.5× at 40% of
saturation resources.

For the bushy plan (Fig. 12.b), the trends are similar. Overall, JAQPOT performs much
better for the linear plan than the bushy plan. In the linear plan, all the staleness susceptible
states can be synchronously refreshed as they are covered by fewer (possibly single) path,
whereas, for the bushy plan, atleast two paths require resources for freshness fulfillment,
thus leaving fewer resources for throughput optimization.

5.2 Evaluating Result Freshness

The purpose of these experiments is twofold, namely, (a) to establish that result staleness
is aggravated by the JDA approaches, and (b) to analyse how much of the resources are
spent in satisfying freshness. The staleness of results is measured by counting the number
of tuples produced that violate a given freshness predicate FI as per Def. 1.

Result Staleness in Join Adaptation. Next, we substantiate our hypothesis that the
throughput optimizing schemes aggravate the result staleness problem. We compare the JDAM

and the GrePP knapsack solver omitting the GH-WMSCP component such that GrePP
produces stale tuples in the absence of GH-WMSCP. We perform these experiments on
the linear and bushy plans (Figs. 9.b and c). For each plan, we create many scenarios
by varying the parameter settings (Table 10). Here, µ is fixed at 300. We evaluate three
distinct settings of the freshness predicate, namely, 1.5×, 3×, and 5× of the window size.
The higher the freshness predicate, the more tolerant the user query is to staleness. For
each freshness value, we count the number of stale tuples produced by each technique.
The three freshness predicate values (x-axis) are plotted against the average fraction of
stale tuples/min (y-axis).

For the linear plan (Fig. 13.a), as the freshness predicate is relaxed from 1.5× to 5×,
there is a marked drop in number of stale tuples. The JDAM strategy produces high
amounts of stale tuples. In absence of GH-WMSCP, even GrePP produces a substantial
amount of stale tuples. The trend is similar in the bushy plan (Fig. 13.b). However, an
even larger number of stale results are produced in the bushy plan as compared to the
linear plan.

Resource Utilization for Satisfying Freshness. We aim to evaluate the fraction of
the available resources allocated by JAQPOT towards freshness fulfillment. For these
experiments, we run JAQPOT (GH-WMSCP + GrePP) for several settings of the linear



and the bushy plans by changing the query parameters, including different µ values. We
again evaluate three distinct freshness settings, namely, 1.5×, 3×, and 5× of the window
predicates.

In Fig. 13.c, the freshness predicate (x-axis) is plotted against the fraction of resources
used for satisfying freshness. We find that as the freshness predicate is relaxed, the
demand for resources requirement also reduces drastically. For freshness tolerance of 5×,
the linear plan utilizes only 3% and 5% resources for freshness, respectively. Further, as the
bushy plan faces higher risk for staleness, the bushy plan uses significantly larger portions
of resources for freshness (35% for 1.5×). Thus, most reasonable freshness predicates may
be fulfilled by allocating less than 10% of µ on average. Moreover, our proposed solution
is guaranteed to find the best solution, if one exists. The proof can be easily implied from
optimality of the set-cover [18] and the knapsack [14] solvers.

Infeasible plans. Among the plans we evaluated, we periodically found some infeasi-
ble plans, i.e., whose freshness predicates were not achievable under existing conditions.
In particular, about 8% of the evaluated plans were infeasible, 85% of which were for the
rigid freshness predicate 1.5× and 65% were for the bushy plans.

Experimental Conclusions. The findings of our experimental study are:

1. JAQPOT continuously produces near-optimal throughput even in bursty streams.
2. JAQPOT consistently outperforms the state-of-the-art ρh-based JDAM policy by pro-

ducing 2∼6 times higher throughput for all tested cases.
3. JAQPOT performs better in linear plans compared to bushy plans, as bushy plans

utilize more resources for freshness fulfillment.
4. In CPU-limited processing, result staleness problem is further aggravated if through-

put optimizing techniques are employed.
5. For all satisfiable cases, JAQPOT guarantees a throughput optimizing allocation.

6 Related Work

Load shedding [4, 16] is popular in CPU-limited scenarios. Shedding directly drops the
tuples from the streams and the data is permanently lost. Shedding solutions, with an
exception of [4,16] focus on optimizing a single join operator or a single MJoin operator [9].
Tatbul et al. [16] first applied load shedding to streaming databases. As indicated in [16],
they do not address the additional issues related to processing windowed joins over
streams. Ayad et al. [4] propose static optimization and in the absence of a feasible plan
they pick a plan augmented with shedding operators placed on the input streams to make
it feasible. GrubJoin [9] targets the MJoin operator by leveraging time correlation-awareness.
It focuses on a single MJoin operator, whereas our work tackles an orthogonal problem
of operator interdependencies within a plan. Although MJoins utilize less memory, they
are typically computationally expensive [17] and are less likely to be selectd by the query
optimizer in a CPU-limited scenario.

Closest to our work, join direction adaptation (JDA) [8, 10] explores the half-way join
productivity to selectively allocate computing resources to maximize the output rate. They
focus on a single join operator only. In this work, we establish that such traditional JDA
technique becomes ineffective for multi-join queries. Further, all these approaches typi-
cally address a single optimizing function. None of these approaches focus on leveraging
the inter-operator dependency to adapt to run-time fluctuations nor do they consider
result staleness. Whenever a query with interconnected join operators is used, our solu-
tion leveraging operator interdependency can be applied in conjunction with the existing
approaches [9, 17].



While operator scheduling [6, 7] tends to allocate resources at the coarse granularity
of a query operators, we focus on adaptation at a finer granularity of half-way joins
within an operator for optimizing throughput. Our work utilizes an adaptive query
processing [13] framework for adjusting the join direction of the query plan at run-time.

7 Conclusion
This paper addresses the CPU-limited execution of multi-join queries using join direction
adaptation. We propose the path productivity metric that leverages the operator interdepen-
dencies instead of localized operator-centric optimization. We identify result staleness as a
pressing issue under CPU limitations, and throughput optimizing techniques further ag-
gravate it. Our key contribution is the integrated JAQPOT algorithm that tackles the result
staleness problem while producing optimal query throughput. We validate our analytical
findings using experimental studies with both synthetic and real data.
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