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ABSTRACT

When data analysts study time-series data, an importanigae discover how data patterns change over time. If the
dataset is very large, this task becomes challenging. Rewa have developed many visualization techniques o hel
address this problem. However, little work has been donardigg the changes of multivariate patterns, such as linear
trends and clusters, on time-series data. In this paper,eseritbe a set of history views to fill this gap. This technique
works under two modes: merge and non-merge. For the merge,muoetge algorithms were applied to selected time
windows to generate a change-based hierarchy. Contigimeastindows having similar patterns are merged first. Users
can choose different levels of merging with the tradeoffd@stn more details in the data and less visual clutter in the
visualizations. In the non-merge mode, the framework ca&nadgural hierarchical time units or one defined by domain
experts to represent timelines. This can help users navagaibss long time periods. Grid-based views were designed t
provide a compact overview for the history data. In additidiDS pattern starfields and distance maps were developed to
enable users to quickly investigate the degree of pattenilasity among different time periods. The usability ewation
demonstrated that most participants could understandaheepts of the history views correctly and finished assigned
tasks with a high accuracy and relatively fast response time

Keywords: Time-series data, multivariate data, visual analysisglime.

1. INTRODUCTION

Advances in hardware enable people to record massive détaaibytes or petabytes. Time-series data is an important
subtype of routinely collected dath? On these datasets, analysts often need to discovery dasansaand their changes
over time to explain existing phenomena and do approprigigtion. The data volume is a huge challenge to achieving
these analysis tasks.

In recent years, people have agreed that visualization zgnapcritical role in the processes of data analysis and
decision-making, since it allows analysts to use visuat@etion to uncover important patterns, such as clustesscas
ations, relationships, and trends. Moreover, visual ditalgan provide an interactive environment that combineadn
visual cognitive capabilities with high performance congtions, thus improving the speed and accuracy at whictystsal
discover data patterns. The visualization community hasldped many techniques to help uncover and monitor the data
patterns in large scale time-series data. However, thesdéan little work on visualizing the changes on multivariat
patterns for time-series data.

For the above task, we must develop visualization techsituespresent timelines for a relatively long time range and
convey the changes of multivariate patterns. For this, weolothe idea of distorted timelines that can be found in méce
literature 3-° In these techniques, multiple timelines are used to allasvsi® easily navigate to an arbitrary time period.

As a motivating example, we introduce a traffic dataset plediby Mn/DOT (Minnesota Department of Transporta-
tion).” Mn/DOT installed more than one thousand sensors on highwagrece/exit ramps and main lanes throughout the
Twin Cities Metro area. Each detector collects a value faheaf the following three measures with an interval of 30
seconds. (1) Volume: the number of vehicles passing thetet€2) Occupancy: the percentage of time that the detecto
sensed a vehicle; and (3) Speed: the average speed of allesepassing the detector. We chose the collected data in
2008 for sensor D722, and only focus on two dimensions toshiyate their correlations. One dimension is the average
vehicle speedSpeedl and the other is the percentage of time that the detectsesea vehicle@ccupancy. Figure 1
shows an example of hierarchical timelines having five kevelsers can specify two levels: perspective and pattern. On
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Figure 1. This figure shows a history view (top) with a hiehéezal time structure (bottom) defined by users. In time-Odserarchy,
all segments are rendered in two colors, blue and purplerraitively, to help users distinguish them. We focus on tlanges across
contiguous windows on the pattern level (days) in this figufbe selected quarter (March 30 - June 29) on the perspdetieéis
highlighted in red and indicates the time periods of inter&he red on the week and day level means all segments in kbetexs
quarter are chosen. Grey background is applied to all weekitathe history view (top) to help readers focus their dtten Note
that, in the history view, each glyph (plot) correspondsne day (pattern level) and contains a curve to represenidpe shange of
regression lines within 48 time windows for each day.

the perspective level, users can select a time range withinhathey can observe the data pattern changes. The time
window on the pattern level is the smallest time unit on whiskrs can uncover the data patterns. In Figure 1, the user
has specified a perspective level on quarters and a pattesiole days. It means that the user wanted to investigate how
the traffic patterns change across days within a selectedegu&igure 1 also shows a history view composed of glyphs
in a grid. Each glyph is a small plot corresponding to one dayé selected quarter and conveys the slope change of the
regression line QccupancyagainsiSpeeglvia a curve. Each row is a week, and the columns are the dahe efeek.

This technique makes it easy for users to discover cycliepathange phenomena on the time-series datasets having
hierarchical time structure. In addition, if we apply morisualization and interaction techniques to it, we can gasil
investigate the similarity among time windows. For exampietance measures can be used to represent the differences
among glyphs, which can be mapped to colors.

When users explore the traffic data, they may want to obsbevedtailed information within one day instead of pattern
abstractions. In other words, they want to observe the dattgpthemselves instead of pattern vectors. One intuitive
solution is to display one scatterplot for each time windber this, we need to draw 48 scatterplots for one day. Clearly
this needs too much canvas space. In this paper, we instedtaimerge algorithm developed by Xie ef ah reduce the
number of visualized windows in each day, generating a hgbreal structure to allow users to select an appropriatel le
to observe how data patterns change in one day.

The main contributions of this paper include:

e A framework was designed to convey how time-series pattegiaage over a relatively long time period. The main
idea is to generate a hierarchical structure for timelingth which users can easily navigate within the data.

e Dimensional reduction and similarity-based selectiohbégues were applied to the time-series data for simplifyin
the exploration on the similarity among time windows.



e A usability evaluation was performed to confirm that mostsigan correctly understand the concepts involved in
these new techniques and can learn to use the implementedsyth little difficulty.

2. FRAMEWORK
Definitions
Some terms used in this framework are given as follows:

Pattern level A level in the time hierarchy on which a window is a basic doitusers to observe data patterns during
pattern evolution. For example, if users want to investédeaw traffic patterns change from one day to another, the
“day” is the pattern level.

Pattern window: A time window on the pattern level.

Pattern range: The time range on the pattern level containing pattern mivelamong which users want to explore the
traffic pattern changes.

Perspective level The highest level on which users can select one or more timdaws to define the time range
containing pattern windows of interest. For example, ifrasge interested in the traffic pattern changes across days
within one quarter, the perspective level is “quarter”.

Perspective window A time window on the perspective level.

Perspective range The selected time range on the perspective level.

Figure 2 shows how to generate history views. This framewsskimes that the time-series data can be defined using a
hierarchical structure. On each level, users can defineeauiit, and then the time-series data is split into many seggne
One segment at a specific level could contain several segraettie lower level. We call such segmeritrae window
For example, traffic can be studied at five levels, includiegry quarter, week, day and half hour. One year contains 4
quarters, each of which has 13 weeks, and so on. This hiécafatructure is shown at the left side of Figure 2. It has
levels. For the traffic datay = 5. Each segment at levels), L1, L2, L3z and L4 corresponds to a half hour, day, week,
quarter, and year, respectively.
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Figure 2. The framework to generate history views usingatesimelines. The left side shows hierarchical time uni& ttontain two
levels, perspective and pattern. At both levels, users pacify time ranges, named perspective and pattern randesma windows
in the pattern range can be directly output to a non-mergeem@lv, or the merge algorithm can be used to generate a rheges
hierarchical structure. Users can select a specific levéhigrstructure. All time windows on this level will be outpiata merge mode
view.

On this user-defined hierarchical structure, users canifgpg@attern leveland a perspective level The former
indicates the time unit in which users want to observe tha gatterns. Similarly, an arbitrary time range on the latter
level, is called theerspective rangéhighlighted by a blue solid line rectangle at the perspedgvel). The blue dashed
line rectangle at the pattern level contains all time pevigahttern rangé over which users want to study pattern changes.
For instance, imagine that a user moves the perspectivetteweeek, and the pattern level to half hour, and then selects



a specific week. Thus the pattern range contains all time avisdhalf hours) within this week. Then, in this case, users
focus on investigating how data patterns change across times windows within this week.

A key task is to visually convey the pattern changes withaghttern range. To solve this problem, two approaches,
named non-merge and merge modes, were designed. For thmerge-mode, we generate the visualizations for each
time period and organize them on the history views callech“rmeerge mode views”, i.e., mapping one time window on the
pattern level to one glyph. This mode is applicable for cgivg how data patterns change across the entire perspective
range. However, if we want to study how data patterns chairiti@wvone pattern window, we need some other techniques.
Our solution is merged mode. In this mode, we apply the medpgeithm described ifito all time windows in one pattern
range. The basic idea is to compress multiple time windovemtif their data patterns are similar. Thus, we can use less
canvas space to visualize the changes of data patterns gntimarwindows. This algorithm works in a hierarchical way
via multiple rounds of merging. A threshodd is given in Round (0; < d2 < d3 < ...). In Roundl, we repeatedly scan
time windows, and merge two contiguous windows to one if tagon difference between them is less thian Now,
we can get a list.; having fewer windows than the original window list. Then vepeat this process but uég as the
threshold. Thus we can get another window list having fewiedaws thanL,. We repeatedly run the merge algorithm
until we get a list having only one window. For example, ind¥ig 3, we apply this merge algorithm to the time windows
on April 18, 2008, and repeat the merge algorithm 6 timesiltieg in a merge-based hierarchy (bottom right in Figure 3)
having 7 levels.
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Figure 3. A snapshot of history views showing merged modesi®ne day of data is selected in the left hierarchy, and #rgexmode
view show the result of the third round of merging.

Figure 3 shows a snapshot of the implemented visualizatistes based on the above proposed framework under the
merged mode. This system is composed of three views: a taseebhierarchy (bottom left), a merge-based hierarchy
(bottom right), and a history view (upper section). The fivgh views correspond to the time-based hierarchical siract
and the merge-based hierarchical view in Figure 2, resgdgti The history view can be non-merged views or merged-
views based on the user’s selection. A merged history viestné@svn in Figure 3. In the time-based hierarchy view, one
timeline is shown for each level in this dataset. Thus thesdrichy has five timelines, corresponding to year, quavksk,
day and half hour. Users can use the mouse to drag the pavepaetl pattern level tag to change them. Note that in this
case the perspective level is set to the day and the pattezhiseon the half hour. Since the data is only for one year,
the top level has only one segment that is always selectedhightighted in red. Four segments on the second level at
the bottom left part of Figure 3 correspond to four quartarthis year. For instance, the second segment is from April
1 to June 30. Users can click one segment to select this quartehighlight it in red. The timeline in the week level
contains the thirteen weeks in this quarter. That meansriessGgment is the week from April 1 to April 7, and the second
one corresponds to the following week ( April 8 - 14). Usens cantinue to select one week or more on the week level
timeline, and then do similar things on the following levalstil reaching the perspective level, the day timelineorié



day on this level is highlighted, all time windows on the pattlevel (half hour) will be highlighted. In the bottom left
part of Figure 3, April 18 is selected at the perspectivelleVken, the highlighted time windows (half hours, i.e.,tpat
level) in this day are highlighted and output to the merge@aigm for generating the merge-based hierarchy (the botto
right section of Figure 3). In this hierarchy, users canae@d highlight a whole level instead of one segment, whsch i
different from the time-based hierarchy. Then all mergeddsivs on the selected level will be visualized in the history
view at the upper section of Figure 3.

3. VISUALIZATION TECHNIQUES FOR MERGED MODE

To help users understand how time windows are merged frorfewakto the next, an approach, namedtile levels view

was designed to display the merged windows on two levelghegeAn example is shown in Figure 4. In this figure, two
levels, “L2” and “L3”", are selected in the merge-based higrg. The corresponding time windows in these two levels are
displayed in the history view simultaneously. The two levale both connected to the same time axis. From this figure,
one can clearly see how time windows are merged from one te\ke next.
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Figure 4. This figure shows the merged mode withtthe levels viewTwo levels (L2 and L3 in Figure 3) on April 20, 2008 are setekt
to show how windows are merged from L2 to L3.

In conclusion, merged mode views can help users perfornollming data analysis tasks in the history data:

e Observe the data pattern changes at the pattern level. teedjust the number of displayed windows in terms of
canvas size and the degree of visual clutter.

e Investigate how time windows are merged from one level tdtzerovia thetwo levels view

4. VISUALIZATION TECHNIQUES FOR NON-MERGED MODE

Figure 1 shows a non-merged grid view. It can help analystdystow data patterns change across a relatively long time
range. However, It has some obvious disadvantages: (1)t&tisique cannot work for the case where the difference
between the perspective level and pattern level is biggan thsince it is a two dimensional grid-based visualization
technique; (2) It does not explicitly convey the patternra@from one day to the next. In this section, extensions will
be applied to the proposed approach for solving the abovaents. Section 4.1 focuses on issue 1; Section 4.2 proposes
visualization and interaction techniques for explicitypresenting the pattern changes.

4.1 Virtual Calendar View

In many cases, users may want to study the pattern changea osfatively long time range. For example, in the traffic
data, a common analysis task is to observe how patterns é¢brasy change across one year. Since the time hierarchy
has five levels (year, quarter, week, day and half hour), disgective level should be year, and the pattern level is day
The difference between these two levels is 3, so the nonemaoylel views described in Section 2 does not work unless
a certain extension is applied to it. For this data analgsik,tthe solution is to render one grid view for each quaaied,
then generate the final visualization by laying out four \8dwrizontally (Figure 5). Note that this is similar to a caler,

thus it can be called @rtual calendar view The reason why to call itirtual is that this approach can be used on the data



having a hierarchical structure which actually is not basecdhatural calendar units (year, quarter, week and so on). In
such a case, the view is not a real calendar.

The above approach was inspired by Wijk and Selow’s calevigar° and MulteeSurt® developed by Meyer et al.
Wijk and Selow used a real calendar to visualize the numtbfegmployees present at a research center that were encoded
by colors. Meyer et al. visually represented the gene eseprofiles of cells via a small-multiple matrix of line ¢ta
Each row corresponds to a cell while each column is a genen ®he line chart can convey the time series data for the
expression of one gene in a specific cell. Our non-merge mimdes\are very similar tdlulteeSumbut rows, columns,
and glyphs all are representing different time units in adrighical way.
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Figure 5. 2D grid view is extended to createidual calendar view

For our extension, we added a new level, called the caleedal, Ibetween perspective and pattern level in Figure 2.
It is two more layers higher than the pattern level. If useleced a range in the perspective level, it will contain gom
continuous segments on the calendar level, which can bedddlécalendar range For each segment in this range, a grid
view is generated. In Figure 5, each segment on the grid é®retsponds to one quarter. All grid views are then orgahize
horizontally and vertically in a bigger grid, or via otheytait strategies to obtain the final visualization. Theawsdly,
this approach can work regardless of the number of segnmetite calendar range. However, if this number is too big, the
quality of the final output will be dramatically reduced besa the plots become too small. Therefore, in real apphioati
users should select an appropriate number of segments gnidhevel so as to avoid low quality output.

4.2 Explicitly Conveying Pattern Changes

In all the above visualizations, the patterns for each seginethe pattern level were conveyed to the users. It is true
that data analysts can investigate how patterns changssatire selected time range by observing the entire figure and
comparing glyph shapes. However, this is time consumingaaly if there are hundreds of glyphs in the final output.
In this section, two visualization techniques that can ieikbf convey the pattern changes will be discusséS pattern
starfieldanddistance mapThen some interaction techniques based on them will bedoted.
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Figure 6. MDS algorithm is used to generate positions fdsc@&he distance between cells represents the distancedeworrespond-
ing curves.



MDS Pattern Starfield

Multidimensional scaling (or MDS$ is a commonly used approach in data visualization to corlveylistance among
multiple objects. For example, Yang et al. developed the MR display to visually represent the distances among
multiple dimensions in a large-scale multivariate datdg€ef Figure 6 shows an MDS pattern starfield to present a pattern
space for the first quarter in the traffic data. Similar to Fégll, each glyph corresponds to one day, i.e., one pattern
window. The proximity among glyph positions reflects pattdistances. Assume that users want to observe N pattern
windows, the procedure to get such a starfield is as follod:Calculate distances among these pattern windows and
record them in an N« N matrix. (2) Treat this matrix as the input to an MDS algarith' reducing the dimensionality to 2
to generate glyph positions. (3) Render each pattern wiredoavglyph in the position obtained from the MDS algorithm.

The advantage of this approach is obvious. First, users asify@bserve the distribution of pattern windows and
clusters in pattern space, since this layout conveys thardie among pattern windows. Then different actions, ssch a
manual clustering and outlier detection, can be easilyieppb pattern windows. For example, in Figure 6, one can see
that there are several outliers: the glyphs correspondinipe pattern windows on Jan. 1, Jan. 21, Feb. 14, Feb. 16
and March 7. In addition, one interesting phenomena is tlestkends mainly occupy the right part of the figure while
weekdays are in the middle and left sections. This is easyptaim because weekend traffic patterns are significantly
different from those in weekdays. In fact, it is expected tha clusters will form, one representing weekdays, and the
other being weekends. Due to some outliers, these two chuste not clearly separated.

To avoid the impact of outliers and observe whether two ehssfweekends and weekdays) exist in this dataset, we
introduced an interaction technique to allow data anakgstemove some glyphs from the figures. When users move the
mouse to a specific glyph, they can right click this glyph, il we removed from the input of the MDS algorithm. In
this case, it will not be rendered in the final output. Usersregeat this action multiple times to remove multiple glyph
Using this technique, two glyphs, March 7 and Jan. 1, wereowex from Figure 6. The results are shown in Figure 7.
Now, two clusters can be seen clearly.

i1l
P Dlers
I:l Weekdays

Figure 7. Two days, March 7 and Jan. 1, were removed from Eigusince they are obvious outliers. Now one can clearlywee t
clusters: weekdays and weekends, along with a small settlidisu

Distance Map

The main goal of the distance map is to convey the patteraristamong pattern windows. Assume users selected N
pattern windows in th@attern Ranggthere are XN possible distance measures that can be representedottisactical
to show all these measures in one figure. For example, ther&arx 364 = 132496 distance measures in Figure 5.
Actually, in most data analysis tasks, users often are oéyrésted in the distance between two specific pattern wiado
or between one target window and all others. A typical sdenaras follows: the data analyst finds one interesting
pattern window, and then wants to investigate how this winadifferent from others, or how patterns change aroursl thi
window. Thus what needs to be shown is the distance measet®@sdn this target window and its neighbors. Therefore,
we allow users to specify a target pattern window, and thentlus distance map to show the pattern distance measures
between this target window and others.

The other problem is how to visualize the distance meas&iase the color is a visual variable that has a high degree
of preattentive processing,'®an encoding technique is employed to map distance measugggh background colors.
The generated output is calleddestance mapAn example is shown in Figure 8. In this figure, Feb. 3 is delkas the
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Figure 8. This figure shows an example of tlistance map One day (Feb. 3) is selected as the target pattern window.digtance
measures between other pattern windows and this day arenghavach grid and explicitly represented by the backgrowidrc The
legend shows how the distance measures are mapped to colors.

target pattern window. The implemented visualizationeystalculates the distance measures between this targiiwsn
and all others, and then shows all measures via the glyphgbaigkd color. All distance measures are normalized before
visualizing via the following formula:

d - drnzn
dma:r - dmin
whered,,,.. andd,,;, are the maximal and minimal distanckis the real distance andl is the normalized value. For the
examples in this sectiod,,,;, = 0, because the distance between one pattern window andstSelAll distance measures
are positive values. Obviously, the biggest distance nreasill be normalized to 1. This distance is also shown in each
glyph. For example, in the glyph for Jan. 1, the number 0.hesormalized distance measure between Jan. 1 and Feb. 3.
One can also find that March 7 has a normalized distance egaghhaximal possible value), therefore, its glyph has the
darkest color.

d =

In Figure 8, one finding is that most glyphs in the fifth colun@afurdays) and the sixth column (Sundays) have a
smaller distance to Feb. 3 (Sunday) since their backgrootatsare brighter than other columns. In other words, the
weekday columns (the first to the fourth and the last) have alemsimilarity to Feb. 3 than the Sunday and Satur-
day columns. This observation is consistent with commoseehat normally the traffic patterns during weekends are
significantly different from those on weekdays.

5. USABILITY EVALUATION

In the prior sections, we showed the proposed history viewdeumerged and non-merged modes along with their as-
sociated interaction techniques. Many examples have dstnraded that the proposed techniques can help data analysts
efficiently discover how data patterns change across patterdows in different hierarchical levels over a very longe
period. However, the discussion and examples in the priciicges are not sufficient to show the usability of the im-
plemented system based on the proposed framework. A pendiegfion is: can users understand concepts about the
proposed data model and visualization/interaction tephes and learn to use this system? To answer this question, we
designed a usability evaluation and invited some subjeaisé the implemented system for performing some specific dat
analysis tasks.

The basic idea to design this experiment is as follows: (I9ifesome data analysis tasks on time-series data related
to the above questions; (2) Invite participants to perfdmase tasks; (3) Record the average response time and respons
accuracy for each task.

In this experiment, we continue to use the traffic data inrpsections, since it has many features, such as cyclic
changes and outliers, which we wanted to ask participarttofor. Eleven software engineers from Microsoft atteshde
this experiment. All of them had experiences with simplaigligations, including line charts, bar charts and scplibés,



Response Time (Seconds) Response Accuracy
Task Type No Avg Std Dev Avg Std Dev
1 8.3 3.8 1.0 0.0
Timelines 2 11.3 3.6 1.0 0.0
Merge Mode 1 130.8 14.9 0.86 0.23
g 2 160.5 29.7 0.82 0.25
. 1 197.0 45.9 1.0 0.0
GridViews |\ —>—7¢g.0 54.2 0.95 0.15
1 21.7 10.1 0.95 0.15
MDS 2 33.0 15.7 0.91 0.20
1 113.0 41.0 0.73 0.34
Distance Map | 2 121.5 41.4 0.77 0.26

Table 1. The response times fro the usability experiment.

but had not worked with some advanced ones, such as the MD8tlaRarticipants first received training to familiarize
themselves with out system, and then performed 20 tasksdpelpto 10 categories as below:

Timelines (Navigating Timelines)

1. Find a specific day in the time-based hierarchy.

2. Find a specific half hour in the time-based hierarchy.
Merge Mode (Investigating Merge Mode Views)

1. Find where the biggest change of the regression line sdpea specific day.

2. Find up to three biggest changes between adjacent timdowin the regression line slope in a specific day.
Grid Views (Browsing Grid and Virtual Calendar Views):

1. Observe the traffic pattern trends within a specific quarseng the grid views and choose the correct description
from multiple choices.

2. Observe the traffic pattern trends within one year usieg/itiual calendar views and choose the correct description
from multiple choices.

MDS (Understanding MDS Pattern Starfield)

1. Look for the outliers or clusters, if any, in an MDS pattstarfield.

2. Remove one or more outliers until clusters can be cleadns
Distance Map (Mastering Distance Map)

1. Find the top 10 glyphs closest to a specific day regardiagrtffic pattern trends using the distance map. If users
can find more than 7 correct glyphs, the answer was treateoregect

2. Find the top 10 glyphs farthest from a specific day regarttie traffic pattern trends using the distance map. The
standard for correct answers was the same as the previdus tas

Table 1 lists the response time and response accuracy & flittasks.
From these experiments, the conclusions are:



e Users easily understood the time-based and merge-basacdchig

e The merge-based hierarchy is effective in helping usensde@ short time period with uneven pattern change rates.
Most users located the pattern changes correctly.

e Users retrieved pattern trends from the grid views and thtealicalendar views with relatively ease. Although the
tasks normally took them about three minutes on averageetiponse accuracy is very high.

e The MDS pattern starfield conveyed the clusters and ouiliepsittern windows very well. Users quickly learned
how to remove outliers from the view and make the clusterarsep.

e Two types of tasks in “Distance Map” have a low but acceptab#ponse accuracy. It shows that the distance
map achieved the goal to represent the pattern distancegatimoe windows, but needs improvement. Most users
complained that it is difficult to distinguish the backgraduolor for glyphs, so a better color scheme is necessary.

6. RELATED WORK

Time-series data has been identified as one of basic data'%yjipethe area of information visualization. Appropriate
timelines are necessary and important to visualize timese&ata. An intuitive approach to time-series data laysut
timelines!” which use the horizontal axis to represent time. Other timaalines, researchers have developed other layout
methods to facilitate specific analytic tasi@piral Graphd®-2 use a spirally shaped time axis to visualize temporal data
having seasonal cyclic characteristics.

In order to deal with large time-series datasets, some adiigin algorithms have been introduced into time-series
visualization for adapting large temporal datasets totéohdisplay space. These algorithms can be categorizetnto
approaches: data-driv&mand user-drivefi.> Miksch et al??> developed an abstraction algorithm for temporal univariat
data that aims to transform numerical values to qualitadiescriptions. It can smooth data oscillation near threthol
Hao et al' used a sampling technique to abstract time-series datanémodliced DOI (degree of interest) functions to
determine the sampling rate. Konyha et al. described a Msysis framework to help data analysts explore largdesc
time-series data containing hundreds of varialfesn order to use an abstraction algorithm, a distorted tingethight be
necessary to give important data more space. This techisiaqused in many research efforés®; 24

Some visualization techniques and systems have been ddsign implemented for particular types of time-series
data. Some researchers focus on univariate data. Hao ekeal variable resolution density displays to visualize ariate
data?® They designed circular overlay displays to avoid data shiftements after the display is fuBinX?® is a real-time
system to visualize time-series data on the fly. It uses areggtjon algorithm to adapt large datasets to a limited asnv
and supports online adjustment for the levels of aggregatio

Several research efforts involve the visualization of idiftensional correlations. Wong et#lpresent techniques for
handling a multidimensional data stream. They focused entbaeduce the time complexity for generating scatterplots
for visually conveying clusters in data streams. Hao et akduan importance-driven layout to represent the degree of
importance for different dimensions via assigning the intgat dimensions more spag&The Intelligent Visual Analytics
Query (IVQuery) is a visual analysis tool to help users pigeceelationships among multiple time-series data dinmmsi®
TimeWheeputs the time axis in the center and other data dimensioasged circularly. Each data item corresponds to a
group of lines from the time axis to the axes for data dimemsi®¥y Yu et al. developed a tool for the visual analysis of
multi-stream multimedia dat#. Users can highlight selected data portions, or zoom in oretien of interest to study the
data trends and the multivariate data patterns. Ward ance@ydoyed N-gram approach to map temporal data to multiple
glyphs, and then utilize the PCA algorithm to position thgls@hs. Thus various patterns can be recogniZegompared
to the above efforts, we focus on how to visualize changesta patterns in time-series data.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a set of history views to hedpsiexplore data pattern changes within a relatively liong t
period. Users can define a hierarchical structure to rept¢iseelines. The definition of the hierarchy can be from naitu
time units, such as year, quarter, and month, or domainfépeaaits. For a specific time range selected by a user, we can
generate the history view containing all time windows irsttime duration. In the non-merged mode, the abstraction of



data patterns is drawn in glyphs instead of the originalptzitas. All glyphs comprise a grid or virtual calendar. Qthe
approaches, such as an MDS pattern starfield, and distanzeamadesigned to assist users in studying the similarities
of time windows. Under the merge mode, time windows selebtedsers are sent to the merge algorithm and a merge-
based hierarchy is generated. Users can choose an appedeviel to study the pattern changes. The usability evialnat
demonstrated that most users could understand the conoehtshistory views and finish the assigned tasks, including
navigating timelines, finding significant pattern changas] investigating similarity among time windows. Some fatu
works include:

e \We plan to apply the proposed approaches to a variety of i@ahdhs, such as financial data analysis and video
monitoring. It may be necessary to modify the proposed fraonke and design more visualization and interaction
techniques for these applications.

e To improve the validation of our visualization techniques, plan to work with domain experts to assess the imple-
mented system using dataset from their areas.
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