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Abstract – Glyphs (also referred to as icons) are graphical entities that convey one or more

data values via attributes such as shape, size, color, and position. They have been widely used

in the visualization of data and information, and are especially well suited for displaying complex,

multivariate data sets. The placement or layout of glyphs on a display can communicate significant

information regarding the data values themselves as well as relationships between data points,

and a wide assortment of placement strategies have been developed to date. Methods range from

simply using data dimensions as positional attributes to basing placement on implicit or explicit

structure within the data set. This paper presents an overview of multivariate glyphs, a list of

issues regarding the layout of glyphs, and a comprehensive taxonomy of placement strategies to

assist the visualization designer in selecting the technique most suitable to his or her data and

task. Examples, strengths, weaknesses, and design considerations are given for each category of

technique. We conclude with some general guidelines for selecting a placement strategy, along with

a brief description of some of our future research directions.
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Index Terms – Multivariate data visualization, information visualization, glyphs, layout algo-

rithms.
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1 Introduction

It is well known that we are experiencing an explosion in the volume and complexity of data to

which we have ready access. Scientific measurements, business transactions, surveys, simulations,

and a host of other activities contribute to this growing mass, and our ability to effectively analyze

the data has become increasingly strained. Much of this data is multivariate in nature, whether it

be from tables, spreadsheets, multispectral sensors, or complex computations. Each row or data

entry may have anywhere from two to several thousand entries, and the larger the number and size

of the entries, the harder it is to detect, classify, and measure features and relations of interest.

Visualization has emerged as a powerful tool for the exploration of such large and complex data

sets. While algorithmic analysis can be used to quickly and accurately process data to identify

patterns and outliers, it is dependent on having a computational model of the phenomena of

interest. The problem is that one may not know what one is looking for, or may not be able to set

fixed parameters and thresholds to effectively guide the analysis. Visualization, on the other hand,

uses the human perceptual system to extract meaning from the data, focus attention, and reveal

structure and patterns. The author’s Visual Information Seeking Mantra, “I’ll Know it When I

See it (IKIWISI)” (a follow up to Shneiderman’s Mantra [72] “overview first, zoom and filter, then

details on demand”), is a reflection of the notion that we often don’t know what we are looking for

when presented with a data set, and we rely on our visual pattern recognition system to help us

in gaining knowledge of the data. It is also relevant to the concept that visualization is a powerful

mechanism for confirming hypotheses about data phenomena; quantitative analysis may indicate

that some relation exists, but a supporting visualization can improve our confidence in the results

and our ability to remember them.

Glyphs (also referred to as icons) are a popular method for conveying information visually.

Individual dimensions (variables) for a given data point are mapped to attributes of a particular

shape or symbol, and variations, clusterings, and anomalies among these graphical entities may be

readily perceived. Glyphs are a powerful communication mechanism in that a large number of data

4



dimensions can be incorporated into the attributes of a single shape or symbol. The particular

mappings may also be customized to reflect semantics relevant to specific domains, which can

greatly facilitate the interpretation process.

Once a glyph has been designed and generated from a data entry, it must be placed at a location

in display space (2-D or 3-D). The position attribute can be very effective in communicating data

attributes or improving the detection of similarities, differences, clustering, outliers, or relations in

the data. Many strategies exist for setting the position attribute; some are based on the raw data

(or information derived from the data), while others are based on the structure of the data set (e.g.,

ordered or hierarchical). Methods also vary as to whether they allow overlapping glyphs, whether

they are space-filling, or whether they employ empty space to highlight differences.

The goal of this paper is to present a comprehensive taxonomy of glyph placement strategies to

support the design of effective visualizations. We first present a formal definition of glyphs, how they

are formed, examples of glyphs which have been used in the past, and some limitations of glyphs

for visualizing multivariate data. We then describe a categorization of methods for positioning

glyphs, present several examples, and describe limitations and strengths of each. We conclude with

some general strategies for selecting a placement strategy, and point to some directions for future

research.

2 Glyph Fundamentals

Multivariate data (also called multidimensional or n-dimensional) consists of some number of points,

m, each of which is defined by an n-vector of values. Such data can be viewed as an mxn matrix,

where each row represents a data point and each column represents an observation (also called a

variable or dimension). An observation may be scalar or vector, nominal or ordinal, and may or

may not have a distance metric, ordering relation, or absolute zero. Each variable/dimension may

be independent or dependent. For this paper, we assume that each dimension is an independent

bounded numeric scalar value that we can normalize to the range [0. → 1.].

A glyph consists of a graphical entity with p components, each of which may have r geometric at-
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tributes and s appearance attributes. Typical geometric attributes include shape, size, orientation,

position, and direction/magnitude of motion, while appearance attributes include color, texture,

and transparency. Attributes can be discrete or continuous, scalar or vector, and may or may not

have a distance metric, ordering relation, or absolute zero.

The process of creating a glyph thus becomes one of mapping one or more data dimensions for

a data point to one or more geometric and/or appearance attributes of one or more components of

a graphical entity. A glyph may also contain components or attributes that are independent of the

data being used in its formation. For example, in a scatterplot the size and color of the plotting

symbol may be data-independent.

Figure 1 shows a variety of examples of glyphs that have been proposed and used in the past.

The list below describes these and other glyphs from the literature in terms of the graphical entities

and attributes controlled by the multivariate data point.

• profiles [25]: height and color of bars.

• stars [73]: length of evenly spaced rays emanating from center.

• Anderson/metroglyphs [2, 33]: length of rays.

• stick figure icons [61]: length, angle, color of limbs.

• trees [48]: length, thickness, angles of branches; branch structure derived from analyzing

relations between dimensions.

• autoglyph [8]: color of boxes.

• boxes [35]: height, width, depth of first box; height of successive boxes.

• hedgehogs [47] : spikes on a vector field, with variation in orientation, thickness, and taper.

• faces [15]: size and position of eyes, nose, mouth; curvature of mouth; angle of eyebrows.

• arrows[81]: length, width, taper, and color of base and head.
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• polygons [71] : conveying local deformation in a vector field via orientation and shape changes.

• dashtubes [30] : texture and opacity to convey vector field data.

• weathervanes [28]: level in bulb, length of flags.

• circular profiles [58]: distance from center to vertices at equal angles.

• color icons [54] : colored lines across a box.

• bugs [19]: wing shapes controlled by time series; length of head spikes (antennae); size and

color of tail; size of body markings.

• wheels [19]: time wheels create ring of time series plots, value controls distance from base

ring; 3D wheel maps time to height, variable value to radius.

• boids [49] : shape and orientation of primitives moving through a time-varying field.

• procedural shapes [66, 26] : blobby objects controlled by up to 14 dimensions.

• Glyphmaker [64]: user-controlled mappings.

• Icon Modeling Language [62] : attributes of a 2D contour and the parameters that extrude

it to 3D and further transform/deform it.

2.1 Glyph Limitations

Glyphs are not without limitations in the communication of multivariate data. Most, if not all,

mappings introduce biases in the process of interpreting relationships between dimensions. Some

relations are much easier to perceive (e.g., data dimensions mapped to adjacent components) than

others. Some recent research [4] has focused on clustering and reordering of data dimensions to

improve perception of relationships. The accuracy with which humans perceive different graphical

attributes varies tremendously as well [20]. For example, our ability to accurately measure length is

superior to attributes such as orientation and color. In addition, the accuracy can vary significantly
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between individuals and even for a single observer in different contexts. Color perception has been

shown to be extremely sensitive to context [55, 31]; background color as well as the color of adjacent

entities can modify our judgment of the color of a glyph.

There are also limitations based on the media being used to communicate the information. Screen

space and resolution are limited, and displaying too many glyphs at once can lead to either overlaps

(which can hinder accurate discernment of individual dimensions) or very small glyphs (though, as

we shall see, dense packing can form texture patterns for global analysis). Dynamic scaling control

for glyphs can thus be a critical component for an effective interface to glyph displays. Finally,

having too many data dimensions in the mapping can make it hard to discriminate or interpret the

individual dimensions.

2.2 Glyph Placement Issues

The first consideration when selecting a placement strategy is whether the placement will be data-

driven (e.g., based on two or more data dimensions) or structure-driven (e.g., based on an explicit

or implicit order or other relationship between data points).

A second consideration is whether overlaps between glyphs will be allowed. This can have a

significant impact on the size of the data set that can be displayed, the size of the glyphs used, and

the interpretability of the resulting images.

A third consideration is the trade-off between optimized screen utilization (e.g., space-filling

algorithms) versus the use of white space to reinforce distances between data points.

A fourth consideration is whether the glyph positions can be adjusted after initial placement to

improve visibility at the cost of distorting the computed position (how accurately must the position

reflect a value?).

2.3 Glyph Placement Strategies

Figure 2 shows a taxonomy of glyph placement strategies for multivariate data sets. In the next

two sections we describe each class of strategies and give examples of their use. To formalize the
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different algorithms we assume the following. Let V = (v1, v2, ..., vN ) correspond to the N variables

or dimensions of the data set, and D = (d1, d2, ..., dM ) correspond to the M data records. Each

record di = (oi1, oi2, ..., oiN ) contains N numeric observations normalized to the range [0.0→ 1.0].

Finally, the set L = (l1, l2, ..., lM ) contains the locations in normalized display space for the M

data points. For the examples and algorithms in this paper, we assume the display space to be

two dimensional, though many of the techniques and concepts readily extend to other display

dimensions.

3 Data-Driven Glyph Placement

In data-driven placement, the data are used to compute or specify the location parameters for the

glyph. The two categories of this strategy class are raw and derived. The placement algorithm

can be characterized as a function that maps D → L, and may involve either local knowledge (i.e.,

li is computed based solely on di) or global knowledge (li is computed using the entirety of D or

both D and L). Each category of data-driven placement strategies can be further divided based

on whether or not the computed positions are subjected to a modification/distortion process in

order to reduce visual clutter or overlap. Examples of strategies, both for original placement and

distortion, are described below.

3.1 Raw Data Strategies

In raw data placement strategies, one, two or three of the data dimensions are used as positional

components (these dimensions may also be redundantly represented in the glyph itself). Thus for

two dimensional display space, li = (oia, oib), where 0 < a, b ≤ N . This method conveys detailed

relationships between the dimensions selected, as our ability to detect positional (as opposed to

shape) patterns is quite strong. Many systems and techniques have been developed using this

strategy. IVEE (now known commercially as Spotfire), allows users to select the mappings of

data dimensions to both position and graphical attribute[1]. Becker et al [7] used geographically

located glyphs to convey communication network traffic attributes. Many researchers [17, 68] have
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employed the cityscape metaphor to place 3D box glyphs at data driven positions. Figure 3 shows

all pairwise mappings of the Iris data set, which consists of 150 points and 4 dimensions (petal and

sepal length and width). Note that while each view separates one iris family (sailboat shape) from

the other two (kite shape), varying degrees of separation can be seen within the large cluster. Also,

some views reveal a number of outliers.

Since for N -dimensional data and a 2-dimensional display there are N(N − 1)/2 possible map-

pings (we consider only orthogonal views in the N -dimensional space, and don’t include rotational

variations), it is critical that this mapping be done carefully. An ineffective mapping can result

in substantial cluttering and poor screen utilization. For example, if one of the dimensions used

for the mapping only takes on a small number of distinct values, a significant amount of overlap is

possible. Also, depending on the semantics of the data, some mappings may be more meaningful

than others to the person interpreting the display. Analytic techniques, such as the measures of

“interestingness” used in projection pursuit algorithms [29, 40], can be used to identify potentially

informative views, such as those exhibiting clustering or significant separation.

The major strengths of this placement strategy are its ease of interpretation, low computational

overhead, and effectiveness at uncovering correlations between the dimensions controlling the po-

sition (as in a scatterplot). Among the limitations of this approach is the fact that bias is given

to the dimensions involved in the mapping, and thus conveys only pairwise (or three-way, for 3-D)

relations between the selected dimensions. Structure that is not orthogonal to the viewing direc-

tion may be difficult to discern. The issue of occlusion is also a significant concern when using this

strategy (see the section below on distortion methods).

3.2 Derived Data Strategies

A derived data placement technique uses an analytic process to generate positions using the data

values, and perhaps other information, as input. Thus instead of a location reflecting only one,

two, or three of the data dimensions, it reflects some combination of all the dimensions in an

attempt to convey N -dimensional relational information in a smaller number of display dimensions.
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Some commonly used dimensionality reduction techniques include Principal Component Analysis

(PCA) [43], Multidimensional Scaling (MDS) [51, 9, 11, 82], Self-Organizing Maps (SOMs) [50, 69],

simulated annealing [5], spring-based models [34], and other optimization techniques[27]. PCA

attempts to find linear combinations of the dimensions that explain the largest variation in the

multivariate data set. The first two principal components can be used to specify the position of

a glyph. SOMs and MDS are iterative refinement/optimization processes that attempt to adjust

weights or positions until a certain criteria is met (in our case, the distances or similarities between

points in 2-D is a good approximation of the N-D distances/similarities). Variations in the starting

conditions and distance or similarity measure can have significant impact on the results of these

methods.

As an example of this sort of derived placement, Figure 4 displays the iris and cars data sets

using PCA to determine glyph positions. One can see the first two principal components were

reasonably successful at separating the three classes of iris (depicted by the small ”sailboat” shapes

and large and medium size ”kite” shapes). Likewise, clusters of similar shapes can be seen in the

cars data set.

Another type of derived placement algorithm places objects in terms of their relationships with

one or more reference objects, which may or may not be part of the original set. These techniques,

often referred to as barycentric methods [38], start with B reference objects (r1, r2, ..., rB) located at

the vertices of a convex shape. All data points are then positioned within the shape based on their

relations to these reference points. The barycentric coordinates of point P form a linear combination

with the reference points, such that P = a1r1 + a2r2 + ... + aBrB , where a1 + a2 + ... + aB = 1.

The coordinates (a1, a2, ..., aB) define a unique location within the shape that can be derived from

a data set. Each choice regarding the size and content of the reference set generates a different

view; thus the setting of these parameters is crucial in creating an informative visualization. A

variation on this approach, described in [39], uses A equally spaced anchors around a circle, with

each data point attached to the anchors by springs with constants proportional to the data values
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corresponding to the dimensions/anchors. Another related technique, the bull’s eye display [59],

places objects in concentric rings relative to their distance from a selected node of interest. Yet

another technique based on relations to anchor positions was presented by Spoerri [74], where the

corners of a polygon represent concepts and distinct locations within the polygon represent all the

possible boolean relations among those concepts. The Sunflower metaphor presented by Rose [67]

has a similar goal, using overlapping circles to convey all possible relationships between one or more

documents and a set of domains.

In general, the techniques described above reinforce the perception of similar shapes by (often)

placing them close to each other. However, the techniques do have their limitations. The resulting

display coordinates, unlike in the raw data-driven techniques, have no semantic meaning. Instead

they can be viewed as supplemental dimensions to the original data set. PCA assumes that the

majority of the variation in a data set will be well embodied in the first few principal components,

which is not always the case. MDS and SOMs, like all iterative optimization procedures, are not

guaranteed to be optimal, and the results are generally not unique. Iterative strategies can also

be computationally demanding, although several efforts have been recently made to improve the

processing time [14, 9].

A category of data-driven placement strategies that can be perceived as a hybrid of raw and

derived techniques can be found in 2-D and 3-D field data, where uniform or non-uniform samples

are intended to represent a continuous field of scalar, vector, or tensor values. In these strategies,

positions are first computed, and then the data are resampled to generate the values corresponding

to the positions. These positions are often specified on a user-controlled regular grid, but significant

research has been performed on using the data to compute positions that are most effective for

conveying information. For example, while most flow visualizations place arrow glyphs on a regular

grid, Globus et al [32] and Helman and Hesselink [36] describe experiments in placing glyphs at

critical points in the flow field. This means that significant structures are less likely to be overlooked.

Another approach to placing glyphs on a vector field, described by Dovey [24], allows resampling
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either in physical or parameter space, thus enabling the technique to be applied to curvilinear and

unstructured grids. Finally, Fuhrmann and Groller [30] describe a method to place 3-D textured

streamlines (called dashtubes) to optimize uniformity in spacing. Because these methods compute

positions based on the data, we have grouped them with the data-driven, derived techniques.

However, one could argue that they are not so much placement strategies as filtering strategies, as

a continuum of possible glyphs is being filtered to select the subset to be shown.

3.3 Distortion Techniques for Data-Driven Placement

Once the positions for the glyphs have been computed, a possible post-processing step for data-

driven techniques would involve distorting these positions to reduce clutter and overlap. For ex-

ample, random jitter has been employed in statistical graphics when data-driven positioning is

being used with discrete (as opposed to continuous) dimensions [21]. Other approaches try to shift

positions to minimize or avoid overlaps. Keim and Hermann use a quadtree structure to relocate

points to maintain proximity to their original positions while eliminating overlaps [46]. One con-

cern of this approach is the level of distortion that is introduced. While a minor shifting probably

will not significantly change the interpretation of the display, in cases where the data density is

extremely high, a point’s final position may be far from its initially assigned location. Another

variation on position shifting was presented by Chuah et al [17], where elements of interest on a

planar city-scape could be elevated above the plane and brought closer to the viewer for inspection.

Woodruff et al [83] employ several strategies commonly used in map generalization to maintain a

constant density of glyphs on the screen. These strategies include aggregation (combining low-level

glyphs into high-level ones), deletion (removing glyphs based on proximity and similarity to their

neighbors), and replacement (using smaller, less informative glyphs in areas of high density).

Distortion techniques have also been used to selectively vary the level of detail shown in the

visualization [53]. In this way, regions of dense glyphs can be assigned a larger segment of the

display space, with either position or position and scaling modified to emphasize or de-emphasize

subsets of the data. These methods generally act on a local, rather than global, scale, requiring
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one or more focus points and the specification of a region of influence for the distortion process.

Thus it is critical to the effectiveness of these methods to provide users interactive control of the

transformation to facilitate variation of the focus and maintenance of context. Smooth animation

between the original and distorted views is also a powerful mechanism in this regard.

A simple distortion technique for reducing glyph overlap is outlined below. Note that no con-

straint is placed on how far a glyph can move from its original position. Also, if the maximum

distance a glyph can move per iteration is set too high, the procedure may increase, rather than

decrease, the number of overlaps. Finally, no provision is made for oscillating behaviors (a glyph

moving back and forth between two or more other glyphs). A small random perturbation to the

glyph offsets could solve this problem. Figure 5 shows the breakfast cereal data set with data-

driven positioning, without and with overlap reduction. Note that some data features that had

been occluded in the original placement strategy are now visible.

Let Tolerance = the maximum percentage of overlapping glyphs.
Thus MaxOverlaps = M * Tolerance.

Let Size = the maximum size for a glyph.
Let D(i,j) = the distance between the centers of glyphs i and j.
Thus NumberOverlaps = number of distinct glyph pairs for which D(i,j) < Size.

Let Speed = the maximum distance a glyph can move per iteration (we suggest this
be a fraction of Size).

Let Iterations = the maximum number of iterations of adjusting positions.

Main Loop:
For i = 0; i < Iterations AND NumberOverlaps < MaxOverlaps; i++ {

for j = 0;j < M;j++ {
for k = j+1;k < M;k++ {

Overlaps = 0;
PushVector = (0, 0)
if D(j, k) < Size { /* j and k overlap */

Direction = normalized vector from k to j
if Direction = (0, 0), set Direction to a random displacement
Magnitude = 1 - D(j,k)/Size
PushVector = PushVector + Magnitude * Direction
Overlaps = Overlaps + 1
}

}
if Overlaps > 0 {

if PushVector = (0, 0), set PushVector to a random displacement
PushVector = PushVector * Speed / Overlaps
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Offset for glyph j = PushVector
|

}
Offset all glyphs

}

Algorithm 1: distorting glyph positions in derived placement strategies to reduce overlaps.

Distortion techniques can be very effective at reducing the level of overlap while maintaining a

reasonable degree of data integrity, a quality metric based on the difference between the perceived

and actual data values and interrelationships. The permissible variation in glyph position is often

domain and context dependent. For example, the placement of a glyph representing a particular

city should reside on the appropriate side of a state border. Indeed, the more constraints placed

on the type and degree of distortion allowed, the more complex the algorithm becomes. The major

trade-off thus becomes one of ease-of-implementation (e.g., random jitter and lens techniques)

versus accuracy of the results (e.g., through constraint optimization).

4 Structure-Driven Glyph Placement

Structure-driven algorithms assume there exists some implicit or explicit connectivity or relationship

between data points, which may or may not be derivable from the data values. For example, there

might be a temporal ordering or hierarchical relationship which might not be included as one of

the data fields. We categorize strategies of this form as either ordered, hierarchical, or generalized

network/graph structures. While ordered and hierarchical structures can be considered special

cases of the generalized graph structure, it is possible to take advantage of the constraints imposed

on certain types of structure to derive layout strategies not applicable to the more general structure.

Algorithms for structure-driven placement are characterized as functions that map D → S, where S

is some generic structure space, followed by a mapping of S → L. Each category of structure-driven

technique can be further divided based on whether overlaps are permitted or not, and whether extra

space is added to emphasize relationships. Overlap reduction and space padding will be discussed

under distortion techniques for structure-driven methods.
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4.1 Ordered Structure

Ordered structure may be linear (1-D) or grid-based (N -D). By sorting the data on one or more

dimensions and using this ordering to specify the glyph placement, we facilitate the detection of

changes in the dimensions used in the sorting as well as provide clues into potential dependencies in

the other variables (detecting if the patterns of change coincide with those of the sorted dimensions).

Several placement algorithms have been developed in the past based on linear orderings, including

raster scan [76], circular [44, 56], and recursive space-filling patterns [45]. These are illustrated in

Figure 6.

Figure 7 shows a time series of economic data (Dow Jones index, Standard and Poors 500 index,

retail sales, and unemployment over a three year period) positioned in a circular pattern. Data for

December radiate straight up (the 12 o’clock orientation). Expected patterns include high sales and

low unemployment in January and the inverse in June. Abnormally high unemployment is visible

through much of the first year shown, which improves as other market indicators rise in value.

Figure 8 displays 5-dimensional remote sensing data (Spot, magnetics, and three channels of

radiometrics) using star glyphs and a 2-D raster ordering. Because of the number of glyphs involved,

individual data points are difficult to interpret. However, clearly discernable regions of uniform

texture are visible, including the region highlighted in the zoomed in image identifying an area with

particularly high uranium content (data courtesy of CSIRO Division of Exploration and Mining).

The algorithm for a raster-based placement of a 1-D sorted glyph set is as follows: Let C =
√

M + .5 be the number of glyphs one can fit into a row of the display canvas. Thus the maximum

size of a glyph is given by the equation Smax =W/C, whereW is the display canvas width. Finally

the location of the ith glyph (li) is computed as lix = Smax ∗ (i modulo C) and liy = Smax ∗ (i/C).

Note that if
√

M has a fractional component, the final row will contain some empty space.

The strengths of order-based positioning are its ease of implementation, ease of interpretation,

and effective utilization of screen space. It also provides a number of potentially revealing views of

the data, as significant clusterings and discontinuities within a given dimension can become visually
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apparent. The main limitation of the strategy is that it assumes significant features in N-D will

be perceptible in 1-D or 2-D snapshots, which often is not the case. It could be difficult, if not

impossible, to correlate the changes seen in one ordering with those seen in another to create a

composite description of an overall pattern.

4.2 Hierarchical Structure

Hierarchical structure in data sets can be explicit or implicit. Explicit hierarchies are those in

which each level of the hierarchy is associated with a single data dimension, and the branches

emanating from this level correspond to some number of distinct ranges for that data dimension.

For example, sales data may have dimensions associated with particular time periods, geographical

locations, sales personnel, and products. Different hierarchies are generated depending on the

order in which the dimensions are processed. Other examples of explicit hierarchies are file systems

and organizational charts. Implicit hierarchies are generated algorithmically using clustering or

partitioning algorithms in conjunction with some N -dimensional distance or similarity metric [25].

These methods differ from the derived data-driven techniques in that the goal is not to generate

screen positions, but a hierarchical relationship structure that then can be conveyed to a placement

algorithm customized to display this relational information.

Given a hierarchical structure, the task is to position glyphs on the display in such a way as

to convey the relationships inherent in the structure. In most methods proposed to date, these

relationships are reinforced through the use of additional graphics, using lines to connect parent

and child nodes and/or to separate generations. White space can also be used to support this

task. Many algorithms have been developed for drawing node-link graphs of trees (see [23] for

an excellent survey). These algorithms vary according to features such as where the root node is

relative to the rest of the tree (e.g., centered, top-most) and the relative direction between a node

and its children (e.g., radially outward, horizontal, vertical, or alternating horizontal and vertical).

Different criteria for layout can result in configurations that reveal different aspects of the data. For

example, Wilson and Bergeron [80] describe a system for visualizing hierarchies that implements
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four layout algorithms (leaf-based, subnode-based, range-based, and density-based). Tree layout

algorithms also vary depending on whether they are 2-D or 3-D (as in Cone Trees [65], Disc Trees

[41], and others [13]). Each of these methods can be augmented to display glyphs as opposed

to simple circles, boxes, or spheres. Since the multivariate data may only represent the terminal

nodes of the tree, one could either represent non-terminal nodes with aggregation-based glyphs

(e.g., the average of the values in the subgraph for each dimension) or simply use the original node

representations above.

A simple algorithm for placement and drawing of hierarchically structured glyphs is given below.

To create a more anesthetically pleasing graph, extra space on rows could be used to evenly separate

all nodes at a particular level. Additionally, as will be described later, free space can be used to

further separate non-sibling nodes at the same level. Finally, for unbalanced trees, space could be

used beneath branches that terminate prior to other branches to reduce edges crossing over glyphs.

Figure 10 shows the result of this technique on a hierarchical representation of the iris data, where

the non-terminal glyphs show the average values for the glyphs below them. Glyphs at a given

level have been evenly spaced.

Let H = the height of the tree.
Let W = the maximum number of nodes in one level of the hierarchy.
Let C = the canvas size (assumed a square)
Compute S = C / max(H, W) as the maximum size of a glyph

Assume glyph i is at position (l, j) of the hierarchy, where l is the level
number and j is the offspring number (i is the jth child of its parent)

For each node in the hierarchy
Set its y position (row) to be l * S
Compute its offset o in the row as the sum of the child counts for the nodes to

left of its parent
Set its x position (column) to be (j + o) * S
Draw the node
If it isn’t the root node, draw a link to its parent

Algorithm 2: Hierarchical glyph placement.

An alternative to node-link based visualizations are the filled region methods for conveying

(mostly univariate) data. One of the earliest of these, the Tree-Map [42], recursively divides the
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screen space (alternating horizontal and vertical) based on the number and populations of the

subtrees, filling the resulting rectangular region with a color based on the dependent variable. A

radial version, with aggregations also being depicted, was described in [18]. Wills [79] describes a

hierarchical clustering mechanism that allows varying levels of detail to be conveyed with a tree-

map structure, thus making it amenable to very large hierarchies. Ward and Keim proposed a

variant on tree-maps for positioning glyphs [77]. This method, instead of being space-filling as in

the original tree-map, allocates fixed size regions for each glyph, and thus may produce significant

amounts of white space. A high-level description of the placement algorithm is outlined below.

If we assume a unit-sized glyph, the space required for a 2-level hierarchy consisting of a root

node R0,0 with C0,0 children (all terminal nodes) is either (1 X C0,0) or (C0,0 X 1). The two element

subscript indicates the level of the hierarchy and the index of the node at the level specified. For a

3-level hierarchy, where the root has C0,0 non-terminal nodes (R1,0, R1,1, ..., R1,C0,0−1), each of which

has child counts given by (C1,0, C1,1, ..., C1,C0,0−1), the space required will be (C0,0 X max(C1,i)),

where 0 ≤ i < C0,0, or alternately the same dimensions rotated 90 degrees. Thus we can envision

the screen first being divided in one direction according to the number of branches off of the root,

followed by the terminal nodes laid out in the opposite direction. The space needed for the terminal

nodes, assuming we maintain a rectangular area, is the maximum of the number of children of the

level one nodes.

Continuing this process, we discover the width and height needed for an arbitrary hierarchy

can be computed by alternately multiplying the sum or the maximum of the children counts for

nodes as we recurse down the tree. At any given level, either the height or the width will use the

sum, while the other uses the maximum. To draw the glyphs then requires each node to be placed

relative to its parent’s base location (e.g., the lower left corner), using offsets based on its earlier

siblings’ space requirements. To visually emphasize the family relationships, we draw rectangles to

separate siblings, with the width of the rectangle sides decreasing as we get deeper into the tree.

Finally, glyphs are drawn as the terminal nodes, with their bounding rectangles encompassing their
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immediate siblings. An example using the iris data set is shown in Figure 10. From the figure it is

clear that the clustering algorithm performed relatively well, as most glyphs within a given block

have clear shape and size similarities. There are, however, a few misplaced glyphs, such as the

sibling pair in the third row from the bottom of the lower left region.

Another filled region method, called dimensional stacking [52], recursively divides the display

space based on binning two dimensions at a time, with inner subimages being divided by subsequent

pairs of dimensions until all dimensions are used. The final rectangle is colored according to the

dependent variable or an aggregation of all points mapping to the corresponding bin. Again, this

technique, in conjunction with the constraint of using a uniform-sized region, could be employed

to convey multivariate data with glyphs.

Placement strategies for hierarchical structures can be evaluated on a number of aspects, in-

cluding the limitations on the width and depth of trees that can be effectively accommodated, the

screen utilization, and the ease at which relationships between nodes can be perceived. This in

turn depends on the degree of clutter caused by the display of links and the amount of control

the user has on the view. Most of the techniques work best for balanced trees; however, most real

data does not behave in this fashion. Thus evaluation must also include tests with trees of varying

degrees of complexity and balance. Also, since most hierarchy visualization techniques concentrate

predominantly on the display of the relations, rather than the data at the node, tests must be

performed to determine how easy it is to interpret the values depicted at the glyphs positioned at

the nodes of the trees. Clearly, link placement becomes more problematic in the presence of glyphs

on the display.

4.3 Graph/Network Structure

A generalization of hierarchical structure is that of a graph or network, which consists of a set of

nodes (in our case, the data points) and a finite set of links or connections (directed or undirected),

each of which represents a relationship between a pair of nodes. As with hierarchical techniques,

we can replace the simple node representation from an existing method with our glyph to convey
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the data. However, unlike hierarchical techniques it is not possible, in general, to avoid drawing

some representation of the links, as implying connectivity via positioning can lead to errors in

interpretation.

Network visualization has become a very popular research area in recent years. Reichenberger et

al [63] developed a theory of diagram design and showed how different relationships can be mapped

to different graph styles and the attributes of the nodes and links. Force-based techniques, such as

described in [37], are commonly used to automatically place nodes on the screen to convey relations

and their strengths. However, these methods can lead to cluttered displays, depending on the data

characteristics.

Determining positions for graph structured data is a complex process, as many, often conflicting,

factors must be considered [23, 38]. For example, rules of aesthetics, such as minimizing edge

crossings or maintaining a relatively uniform distribution of nodes, are common [22]. Drawing

conventions, such as using only straight lines or ninety degree bends in the links, also must be

adhered to for consistency and ease of interpretation. Constraints may also be imposed on subsets

of the graph, such as centering or clustering the elements of the subgraph or ensuring that a

particular node is on the outer edge of the subgraph.

As in hierarchically-structured glyphs, perhaps the greatest concern when designing graph-

structured placement algorithms is the scalability to large and complex networks. Since the links

themselves may convey other information besides the connectivity of the nodes (e.g., traffic vol-

ume), it is important to allocate sufficient screen space and user control to these information-rich

components of the display. Indeed, the links can be considered a secondary form of glyph, as their

style, size, color, and shape can all be controlled by different aspects of the relationship. Graph-

structured glyphs also have a disadvantage over hierarchies in that there is not a clear method to

navigate through the structure. Thus there must be support for elevating arbitrary nodes to the

center of focus and examining neighborhoods of this focus, rather than simply providing drill-down

and roll-up mechanisms as found in hierarchical structures.
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4.4 Distortion Techniques for Structure-Driven Layouts

Given an initial position assignment for structure-based techniques, we can choose to distort the

results to attain other desirable properties. Distortion techniques have long been used in visual-

ization to emphasize subsets of data while maintaining context and to deal with clutter resulting

from large data sets. Examples include fish-eye and other lens techniques [53, 70, 75], pliable sur-

faces [12], and mapping to hyperbolic space [60]. Shape distortion has also been used to convey

additional information, such as the area-based methods found in some cartographic algorithms.

Position distortion has been employed in cartography to avoid overlaps and congestion, with the

understanding that in many circumstances, the degree of accuracy needed varies considerably. As

mentioned in the discussion of data-driven techniques, random jitter and algorithms to remove

overlaps may also be applied. Luders and Ernst used a combination of node scaling and layout re-

organization to improve the readability of graphs[57]. Beaudoin et al [6] use controlled overlapping

to compress large hierarchies, with a variety of tools to support navigation and exploration of the

stacked space.

An alternate goal of position distortion is to emphasize differences. Space padding can be used

to separate glyphs which have data-specific differences which are not sufficiently reflected in the

screen positions. For example, Figure 11 shows an ordered raster placement with spacing between

glyphs in a given row proportional to their n-dimensional distance. The algorithm for this is given

below.

Let G be the largest gap the user wishes between glyphs, with gap units equal to
the maximum glyph size

Compute Di as the N-D distance from glyph i to glyph i+1
Compute Dm as the maximum N-D distance between adjacent glyphs

For each glyph i, compute the spacing to the next glyph as 1 + G * Di / Dm

Compute the sum S of all spacings, which includes the space for drawing the glyphs
Compute R, the number of glyph spaces per row, which is sqrt(s) + .5
Compute the maximum size for a glyph, which is W / R (W is canvas width)

position = 0
For i = 0; i < M; i++ {
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draw glyph i at row = (position/R) and column = (position modulo R)
add spacing i to position
}

Algorithm 3: inserting white space to emphasize differences in adjacent glyphs.

As another example, a tree drawing algorithm often must put nodes from different subtrees

adjacent to each other. By adjusting positions such that inter-sibling distances are significantly

smaller than between less-related nodes sharing a level of the tree, node relationships become

clearer (see Figure 12). However, this reduces the number of glyphs one may be able to display

without overlap. Other ways to emphasize these differences would be via small vertical offsets (e.g.,

alternating between two y-values at each non-sibling transition along a row of the hierarchy) or

coloring the nodes, links, or background between non-sibling adjacencies.

The concept of an acceptable level of overlapping is a crucial one; in many cases, minor, or even

major, overlaps don’t detract from the message being conveyed in the visualization. The ideal

solution might be to allow user control of the overlapping, with smooth animation of positions

between overlapped and non-overlapped states to allow easy tracking of relationships between the

glyphs. This has been demonstrated in several 3-D tree visualization systems, such as reconfigurable

disk trees[41]. Distortion techniques that permit compression and expansion of arbitrary sections

of the structure, while maintaining context via animated transitions, can allow users to build a

mental model of the regions of interest within the data without being overly constrained by the

display resolution. While ideally the system itself would analyze the congestion on the screen and

attempt to reduce overlap via distortion, to enable the system to understand the user’s task in

sufficient detail to automatically perform this process reliably has not yet been achieved.

5 Summary of Placement Strategies

In this section we attempt to get a feel for the number of possible layout algorithms that can be

applied to a given data set, and then give some guidelines on how one might go about selecting
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one or more algorithms to test. It should be noted that, to date, no formal, extensive evaluations

and/or user studies have been performed on this problem, although it is clearly a desirable future

goal. Some studies focusing on subsets of the techniques have been reported (e.g., [41, 75]), and

evaluation metrics for information visualization have been proposed that involve issues such as

density, dimensionality, occlusion, and number of identifiable points [10]. However, we have not

found a comprehensive study of glyph layout strategies in the literature.

5.1 The Size of the Design Space

One might wonder what the total number of distinct ways a set of N -D glyphs can be positioned

on a 2-D data space. The rather simplistic computations below cover a significant subset of the

methods described in this paper. Clearly adding the third display dimension (not to mention the

time dimension) would increase this number considerably, and visually exploring the entire space

of alternatives would be a daunting task.

data-driven (raw): (1 + D)(N2 − N), where D is the number of distortion techniques (e.g.,

random jitter, relaxation)

data-driven (derived): (1+D)
∑j≤k

j=1 pj, where k is the number of distinct derivation algorithms

and pj is the number of variations within algorithm j (e.g., different distance metrics).

structure-driven (linear ordered): N × FP (1 + SP +OL), where FP is the number of filling

patterns, SP is the number of methods which introduce white space for separation (space-

padding), and OL is the number of methods which distort the placement to allow overlaps.

5.2 Selecting a Placement Algorithm

In selecting an appropriate method, one must consider several factors, including the characteristics

of the data (size, distribution), the purpose of the visualization (presentation, confirmation, explo-

ration) and the specific task(s) at hand (e.g., detection, classification, or measurement of patterns

or outliers). An additional critical component in the selection process is the skills of the prospec-
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tive user of the visualization. Some visualization methods require significant training to interpret

correctly.

Domain knowledge also plays a significant role in selecting meaningful strategies. In data driven

approaches, there are usually mappings of data dimensions to position that make more intuitive

sense than others. Similarly, the dimensions used to control structure-driven techniques, whether

it be the key for sorting or the order of dimensions used for layering a hierarchy, are usually best

left to selection by the user.

Placement techniques often force the user to trade off between efficient screen utilization, the

degree of occlusion, and distortion of the values being used to position the glyphs. Ideally, the user

should be able to dynamically adjust the mapping to strengthen or weaken the relative importance

of each of these factors. Thus rather than selecting a single visualization technique, he or she would

have a continuum of interrelated methods. This is a relatively unexplored area in the development

of glyph placement strategies, though static constraint satisfaction algorithms have been applied

to graph drawing tasks in the past.

Another question the user must ask is whether to impose a structure on the data in the event

that no explicit structure already exists. While the structure provides relational information that

might not be readily perceivable in data-driven approaches, the results are often not unique and

may convey misleading or erroneous information. For example, clustering algorithms require the

specification of a distance or similarity metric to process the data, and it is often difficult to capture

the relative interdependencies between data dimensions or their contextual importance within this

metric. Again, user control of the process is vital, and this in turn requires users to be knowledgeable

not only of the semantics of their data but also of the structuring algorithm being utilized.

As an initial, though not exhaustive or definitive, set of guidelines for selecting a layout strategy,

we look at two of the important design criteria: data characteristics and user task. The table in

Figure 13 displays several points within this design space, and a recommendation for a starting

layout. Each can be augmented with distortion depending on the degree of overlap present and
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amount of empty space on the screen, as well as the desired accuracy of placement for data-driven

methods. Note that these recommendations are not infallible, but reasonable starting points. Other

methods, such as imposing structure on unstructured data or ignoring the structure in a structured

set, may also prove insightful. The main point is that no single placement strategy is good for

all tasks and data characteristics, which implies that for other than very limited circumstances,

support should be provided for a variety of layout methods.

6 Conclusions

The visualization of multivariate data is a task of growing importance in a wide range of disciplines,

and numerous techniques have been proposed and employed. In this paper we have focused on N -

dimensional glyphs as a visualization component, and have presented a taxonomy of techniques for

positioning the glyphs on the screen. Methods were divided between data-driven and structure-

driven approaches, and a variety of post-processing distortions were described.

Our future work will involve consolidating the techniques described in this paper into a sin-

gle application to facilitate a comprehensive analysis of the applicability and limitations of each

placement algorithm. A wide assortment of customizable glyphs will be supported, similar to the

Glyphmaker program [64]. Usability and perceptual testing will also be conducted. Finally, we are

interested in exploring the use of animation to help overcome some of the deficiencies found in the

static presentation of multivariate data with glyphs. For example, smoothly animating the trans-

formation of one placement strategy to another might convey relational information not readily

discernible in either static display.
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Figure 1: Examples of glyphs: variations on profiles; stars/metroglyphs; stick figure icons and trees;
autoglyphs and boxes; faces; arrows and weathervanes.

Figure 2: Taxonomy of glyph placement strategies.

Figure 3: All pairwise raw data-driven views (star glyphs) of the Iris data set: (a) sepal length vs.
sepal width, (b) sepal length vs. petal length, (c) sepal length vs. petal width, (d) sepal width vs.
petal length, (e) sepal width vs. petal width, and (f) petal length vs. petal width.

Figure 4: Star glyphs of the Iris and cars data sets with position based on the first two principal
components.

Figure 5: Star glyphs of 7 dimensions of the breakfast cereal data set with position based on fiber
and sugar levels. The left image is the original mapping, and the right was distorted to reduce the
level of overlap.

Figure 6: Various placement patterns for linearly structured data (from [44, 45]), including raster,
radial, and recursive raster.

Figure 7: Profile glyphs of monthly economic time series data using linear ordering and spiral layout
(from SpiralGlyphics[56, 78]). Dimensions are (from left to right) Dow Jones average, Standard
and Poors 500 index, retail sales, and unemployment.

Figure 8: Star glyphs of remote sensing data from the Grant’s Pass region of Western Australia (5
channels) using 2-D raster ordering(from XmdvTool[76]). Second image shows a zoomed in region
highlighting an area with high Uranium values.

Figure 9: Profile glyphs of average values from hierarchical partitioning of the Iris data using the
DySect partitioning algorithm [3].

Figure 10: Star glyphs of Iris data set using recursive hierarchical placement based on the DySect
[3] data partitioning algorithm and the Tree-map [42] recursive space partitioning technique[77].

Figure 11: Star glyphs of the iris data set, sorted by sepal length, with spacing inserted at positions
of significant variation between adjacent glyphs.

Figure 12: Profile glyphs of average values from hierarchical partitioning of the Iris data using
the DySect partitioning algorithm [3], with added space placed between adjacent non-siblings to
emphasize sibling relationships.

Figure 13: Sample points in a design space of glyph layout strategies.
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Variations on Profile glyphs Stars and Anderson/metroglyphs Sticks and Trees

Autoglyph and box glyph Face glyphs
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Arrows and Weathervanes

Glyph Placement Strategies

Data-Driven
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Original
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Overlapping
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Space-filling

Overlapping

Space-filling

Separation

Space-filling
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Overlapping

Network

Hierearchical

Ordered

Structure-Driven
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Data Characteristics User Task Recommended Strategy
Small to moderate size univariate analysis sorted structure-driven
Small to moderate size bivariate analysis raw data-driven
Small to large size outlier detection raw or derived data-driven
Moderate to large size cluster analysis derived data-driven, e.g., MDS
Small to moderate size cluster analysis hierarchical structure-driven

after imposing a hierarchy
Small to moderate size, relational link analysis network structure-driven
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