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ABSTRACT

Visualization systems traditionally focus on graphicgresenta-
tion of information. They tend not to provide integrated Isttieal
services that could aid users in tackling complex knowledige
covery tasks. Users’ exploration in such environments isalg
impeded due to several problems: 1) valuable informatidraisl

to discover when too much data is visualized on the scredds@js
have to manage and organize their discoveries off line, ussca
no systematic discovery management mechanism exists;eB) th
discoveries based on visual exploration alone may lackracgu
and 4)they have no convenient access to the important kdgele
learned by other users. To tackle these problems, it hasrbeeg-
nized that analytical tools must be introduced into visalon sys-
tems. In this paper, we present a novel analysis-guideegmn
system, called the Nugget Management System (NMS). It{ever
ages the collaborative effort of human comprehensibilitg ena-
chine computations to facilitate users’ visual explonafwocesses.
Specifically, NMS first helps users extract the valuablerimfation
(nuggets) hidden in datasets based on their interests. nGia
similar nuggets may be rediscovered by different users, NbIS
solidates the nugget candidate set by clustering basedeanst
mantic similarity. To solve the problem of inaccurate diszges,
localized data mining techniques are applied to refine thgets
to best represent the captured patterns in datasets. Mstiah
techniques are then employed to present our collected hpgge
and thus create the nugget view. Based on the nugget view,
teraction techniques are designed to help users observergad
nize the nuggets in a more intuitive manner and eventuatijidse
their sense-making process. We integrated NMS into XmdlEoo
freeware multivariate visualization system. User studiese per-
formed to compare the users’ efficiency and accuracy in fimish
tasks on real datasets, with and without the help of NMS. Gar u
studies confirmed the effectiveness of NMS.

n

1. INTRODUCTION

Visualization systems traditionally focus on building jginécal de-
pictions of relationships among information in a human coenp
hensible format. By doing so, they help users to better wtded
the information. This means that the users can either lesots f
that are difficult to discover without the graphical depati or the
users’ knowledge regarding some facts can become deepearer m
precise. The usefulness of visualization systems has be#resy
tablished [13; 14; 17].

*This work is supported under NSF grant 11S-0414380.
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Figure 1. “AAUP” dataset vi-

sualized with Parallel Coordi- Figure 2: Complete cluster on

seven dimensions of “AAUP”

Figure 4: Another similar yet

Figure 3: One “partial cluster” ! : !
not identical “partial cluster”

found by users

Recently, visual analytics [15] has been proposed as a nteans
" solve complex knowledge discovery tasks in many importaitddi
ranging from homeland security and credit fraud detectidimgan-

cial market analysis. Solving such tasks usually requiredyats

to perform complicated and iterative sense-making prese§s,

7]. Thus, it has been recognized that relying on analyst<qpe
tual power alone to conduct visual exploration may not abvog
the most effective method to solve these problems.

To fully support visual analytics, visualization systenavé to be
improved by tackling some key challenges. While we use clus-
tering examples in Figures 1 - 4 to illustrate the these ehgks,
our goal over time is to support a rich set of patterns, indgd
trends, outliers and associatioriy. Overloaded Displays:When

too much information is visualized on the screen, effedtivewl-
edge discovery is difficult. For example, as shown in Figure 1
when a dataset, even with modest numbers of records and dimen
sions, is visualized, overloaded displays can make knayeletis-
covery a time-consuming proces®) Disorganized Discoveries:
Since there is no systematic discovery management mechanis
provided by visualization systems themselves, users lamgah-
age and organize their discoveries off line on their own. &or
ample, some users, either due to rich domain knowledge er aft
long time of exploration, may be able to identify the pattefe.g.,

the cluster highlighted in red in Figure 2). Unfortunatedge may



not be able to store it in the system nor easily retrieve ifditure
exploration. Even if the systems provide some simple reéongrd
functionality, since a pattern may be repeatedly visitedundant
recordings may be generated (e.g., the clusters in Figueesl 3
are very similar). Such redundancy causes informationloaer
that may hinder the future use of those recordir@jslnaccurate
Discoveries: Discoveries found by user’s perceptual power alone
may be inaccurate. For example, the “clusters” found bysuser
Figures 3 and 4 are actually subparts of a complete cluspacteel

in Figure 2. Such inaccurate discoveries may lead to lowigua
decision making (i.e., this user may miscount the poputaditthe
whole cluster, if she works on the “partial cluster” in Fig8). 4)
Isolated Knowledge: Even if valuable knowledge may have al-
ready been uncovered, there is no convenient mechanisnséos u
to access and share it. For example, a user interested istécill

in the dataset may spend a lot of time to find the one mentiamed i
Figure 2, even if it may have already been previously disxie
Previous efforts to tackle these problems can be roughbsifiad
into two categories. 1) User-driven: In this category, whtihe
knowledge discovery process still relies on users’ peradptower,

a variety of visual interaction mechanisms, such as zoopfiiigy-
ing, color coding and dynamic querying, are offered by theivi
alization systems to facilitate exploration [1; 17]. Ouarfrework
applies these techniques to allow users to best use theiegterl
power during visual exploration. 2) Data-driven: Datavdri tech-
niques aim to expedite knowledge discovery with the helphef t
analytical power of machines. Data mining algorithms [428],
which detect useful patterns or rules in large datasetsl] arh im-
portant role here. These techniques are employed in ouefrank

to improve the accuracy of discoveries.

More recently, some initial efforts have emerged to takeaaev
tage of both human perceptual abilities and computationalep
of computers to deal with the challenging process of knogded
discovery [15]. Visual data mining (VDM) [3; 8] involves usen
the mining process itself, rather than being carried outpetaly
by machines. In VDM, visualizations are utilized to supespe-
cific mining task or display the results of a mining algorittsuch
as association rule mining. However, VDM offers little hégy
knowledge organization and management, thus it does npbsip
an iterative and comprehensive sense-making process.r@uef
work takes a different approach from VDM, that is, we put aser
at the first stage of the knowledge discovery process andyappl
data mining techniques as secondary method to refine andenha
what the users have already identified as interesting dthgigini-
tial exploration. [5] proposed interactive tools to manageh the
existing information and the synthesis of new analytic kisalge
for sense-making in visualization systems. This work sohtzs
not paid much attention on how to consolidate the usersodisc
eries. Collaborative visual analytics [7] introduced caitapional
power into the sense-making process with a focus on supgorti
the exchange of information among team members. [6] prapose
a framework to track the history of the knowledge discoveny-p
cess for visualization systems. It created a generalizediefrsn
the tracking can be done across multiple application, systéendi-
viduals and locations.

In this work, we design, implement and evaluate a novel amly
guided exploration system, called the Nuggets Managemgsit S
tem (NMS), which leverages the collaborative effort of hunira
tuition and computational analysis to facilitate the psscef visual
analytics. Specifically, NMS first extracts nuggets basedbath
the explicit and implicit indication of users’ interest. ®minate
possible redundancy among the collected nuggets, NMS cmasbi
similar nuggets by conducting nugget clustering. Thena dain-

ing techniques are applied to refine the nuggets and thusirapr
their accuracy in capturing patterns present in the datasstal-
ization techniques are applied to the nugget pool and trestern
overview of the nugget space, which we call the nugget viaw: F
thermore, interaction techniques are designed based anugget
view. By interacting with the nugget view, users will have nmo
flexibility in observing the nuggets and be able to manage.,(e.
users can attach annotations [11]) and organize nuggetssers
can select a set of nuggets as the evidence to support a kgE)th
to support their sense-making processes. Lastly, theavginized
nugget pool can be used to guide users’ exploration in bagh us
and systeme-initiated manners.

To verify the feasibility of NMS, we have integrated it intarXiv-
Tool [17], a freeware tool developed at WPI for visual exptan
and analysis of multivariate data sets. The main contidigtiof
this paper are:

e \We introduce a novel framework of analysis-guided visual
exploration to facilitate visual analytics of multivarediata.

e \We design a nugget combination solution that reduces the
potential redundancy among nuggets.

e \We present a nugget refinement solution, which utilizes data
analysis techniques to improve the accuracy of the nuggets
in capturing patterns in datasets.

e \We present techniques for visualization and interactioitis w
the nugget space, which allow users to observe and organize
nuggets in an intuitive manner.

e We describe user studies evaluating the effectiveness @ NM
The user study demonstrates that NMS is able to enhance
both the efficiency and accuracy of knowledge discoverystask

This work is an extension to two previous conference papds [
21]. The majority of the new material concerns the visugiiaof

the nugget space and the sense-making process based oitlt, wh
are presented in Sections 5 and 6. The remainder of this paper
is organized as follows: Section 2 introduces Nugget Extac
Section 3 describes the techniques used in Nugget Comiznati
Nugget Refinement techniques are discussed in Section dllysin

we describe experimental evaluation in Section 7.

2. NUGGET EXTRACTION

2.1 Definition of Nuggets

Generally, a nugget is some valuable information extrateh
the dataset, which could be clusters, outliers, assoostad any
other patterns. Additional attributes of a nugget, such aarae
and annotations, can be attached to it as well. In our cuimgpie-
mentation, a nugget is defined by a subset of the multivadate
plus the bounding box containing it.

The concept of nuggets is independent of the display methmods
multivariate visualization systems, such as Parallel Gioates,
Scatterplot matrices and Glyphs [17]. We use Parallel Goateds
to demonstrate the examples in this paper. Thus visuallyggetu
appears as a blue band across the axes, which representetkie q
ranges on each dimension, and the red (highlighted) lirsgsnti-
cate the selected records (result) of the query.

2.2 Nugget Extraction Based on User Interest
Nugget extraction can be achieved by observing a user'soexpl
ration process (user-driven) or by conducting analysishefat-
terns existing in the data (data-driven). The NMS framewisrk



compatible with the nuggets derived using either of thesensth-
ods. Data mining algorithms for pattern detection have lea¢en-
sively studied in the KDD community and any of these methods
could be plugged into our framework. Here, we instead fogus o
nugget extraction via user-driven methods. The main bepéfit
user-driven methods is that we can bring into play the adwgnt
of human perceptual and cognitive abilities to identifytpats in

a knowledge discovery process. In NMS, the nuggets can be ex-

tracted based on either the explicit or implicit indicatiafhusers’
interest. The specific techniques supporting those two etLiexy
traction methods are discussed in detail in [20].

3. NUGGET COMBINATION

Relying on nugget extraction alone suffers from severablems.

1) Nugget redundancy may arise, because as the users m@avigat
the datasets, similar nuggets with slightly different bdanes are
likely to represent the same data features. 2) An excegdzeaie
nugget pool generated during a long exploration period malgem

it difficult for users to access individual nuggets. 3) Cpuotus
growth of the nugget population may lead to low system perfor
mance. An efficient method is needed to keep the nugget pool of
modest size yet with high representativeness. Severahitpos,
such as sampling, filtering and clustering of nuggets mayrbe e
ployed to achieve this goal. We chose clustering, which ggou
similar nuggets and generates representatives for eaap.gro

3.1 Distance Metrics

Clustering aims to group objects based on their similavitie re-
quires a distance measure that expresses the domain sgéuific
ilarity between objects. To solve this problem, we devetbgis-
tance metrics to capture the distances between any paiggetst
Query Distance Nuggets are defined by both queries and their
results. So, naturally, nuggets defined by similar quelesilsl be
considered to be more similar than those defined by rathierelift
queries. Thus our problem can be transformed into quantfthie
similarity of queries. The major principle utilized in pieus work
[18; 19] for measuring query similarity (QS) between Nugget
and Nugget B can be summarized as:

_ QANQB
T QAUQB

Note that QA and QB are the qualifiers of these two queries. We
adopt this idea as the basic principle for our query sintifariea-
sure on individual dimensions. We have also studied several
portant refinements to this basic idea, which enhance it tallba
different types of domains (discrete, continuous, nominad at
best level capture the visual similarity of nuggets. We ralse ex-
tended the previous metric defined for a single dimensiotole
applicable for multiple dimensions. Details of these téghes can
be found in [21]. After we've normalized the acquired queim-s
ilarities (between 0-1), we can easily calculate the quéstadces
(QD) as shown in Formula 2:

QD(A,B) =1-QS(A, B)

QS(A, B) (1)

(2)

Data Distance However, nuggets are not only characterized by
their queries (profile), but also by the results of the quenb-
tained when applying the queries to a particular datasettéod).
As shown in Figures 5 and 6, two nuggets generated by very simi
lar queries may be rather different in terms of actual datderd.
The former contains a cluster, while the latter is empty.a@iewe
need to enhance the capability of our distance metrics tycais-
sidering the “contents” of the nuggets. Now, the problenvis ve

sepal vty e tengn el vidts

Figure 5: A nugget capturing a Figure 6: A nugget with no
cluster in the “Iris” dataset data record included

can measure distance between two subsets of a multi-dioreisi
dataset. Previous work to tackle such problems [2; 12] casidse
sified into two main categories: statistical and transfacost ap-
proaches. Below, we will introduce our proposed algoritramdal
on extending a basic transform cost algorithm.

In transform-cost approaches, the distance between tvazisbis
expressed as the minimum cost of transforming one objeabto a
other. A well known algorithm that relies on Transform Casttie
Nearest Neighbor Measure (NNM) [12]. But unfortunately, MN
is a population-insensitive algorithm. It may lead to bathpari-
son results in our case, because comparing nuggets witretiff
populations is going to be the norm in our work. We proposena ne
algorithm called the Exact Transformation Measure (ETM).
First, we formulate the problem. Given dataggt| D| = m, and
datasets Aand BA C D,B C D,|A| = a,|B| =b,0 < a <
b<m,|ANB| =1,|B|—|AN B| = n. Assume data points in D
can be viewed as geometrically distributed in the valueespased
on their values in different dimensions. Our goal is to tfama A
to be exactly equal to B with minimum cost. To solve this peoh)
simply moving data points in A to their nearest neighbors i
fail in many cases, because it is neither globally optimal sen-
sitive to population. Thus, in order to achieve the transfation
with minimum cost, we define three types of operations:

e Move(x, y): givenz € A,y € B, move x to the position
where y lies.

e Add(X, y): giveny € B, add a new data point x to A at the
same position where y lies.

e Delete(x)r € A, delete x from A.

By using “Move” and “Add”, we are guaranteed to always be able
to transform A to B, since A always has a smaller or equal sized
population to that of B. However, simply relying on “Move” én
“Add” will impose “forced matches”, which may not always tka

to the capture of the real distance between two datasetaurd-ig
7 shows an example of two 2-dimensional datasets where govin
and adding are not sufficient to make a cost effective tramsition
plan. Members of datasets A and B are represented as white and
black points, respectively. If only “Move” and “Add” are useve
have to match some data points in A with data points in B that
are far away from them. In the worst case, the existence ofva fe
“outlier” data points that do not have a “near neighbor” elds
them will eliminate opportunities for many other data psittd be
matched with their real nearest neighbors.

To deal with this disadvantage of “forced matches”, we udeealéte”
operation. With it, we no longer need to suffer from “forcedtohes”,
because for a given data point in A, “Move” is no longer theyonl
option for it. We can choose “Delete”, if moving it will bringpo
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Figure 8: Transforming A
to B with, moving, adding
&deleting

Figure 7: Trasforming A to B
with moving and adding only

much global cost. However, how to make an optimal transferma
tion plan, which has the minimum cost, is still a complex peof

In order to tackle this problem, we need to study the cost ofiea
operation first.Cost(M[x,y]): The cost of moving a data point x
toy is equal to the normalized Euclidean distance betweeardxa
(between 0-1) COA: Cost of adding a hew point an@OD: Cost

of deleting an existing point are both estimated values liaat a
negative association with|.

Having set the costs of all our transfer operations, we nadabéish
our solution for finding an optimal (most cost-effectivearisfor-
mation plan. We note that making such an optimal transfdomat
plan is non-trivial. Fortunately, the Hungarian Assignmft6]
which was designed for finding minimum cost bipartite masche
provides a good approach to solving this problem. The dlyori
takes am x n matrix as input. Each row in the matrix represents
a data point in A, and each column represents a data point in B.
Then each entry is filled with the distance between the rowthed
column it belongs to. The algorithm returns a minimum costcima
in O(n?®) time.

Once we make a proper input matrix, the Hungarian Assignment
Method will generate an output matrix representing therogti

4. NUGGET REFINEMENT

4.1 Benefits from Nugget Refinement

In this section, we introduce the concept of using data ngitéich-
niques to refine the candidate nuggets extracted from ulegs'’

Such a refinement can be performed when a nugget was made be-
cause users were searching for some identifiable pattees tgpch

as clusters and outliers. For example, assume a user wahisgar

for a cluster in the dataset, and for some reason, she missed p
of it (Figure 9). Then, NMS will refine the nugget to capture th
complete cluster (Figure 10).
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Figure 10: The refined nugget
which captures the complete
cluster

Figure 9: A nugget which cap-
tures the main body of a cluster
but misses part of it

Nugget refinement offers two main advantages over both jgre |
analysis and mining techniques of the data itself. Firttly,anal-
ysis techniques, for example, the nugget extraction intred in
Section 2, rely on users’ actions only, without any help froom-
putational analysis of the datasets and their propertidsis They
may lack accuracy in nugget specification. Nugget refineiiarty
improves the accuracy by exploiting both of them. Secorellgn
assuming the system knows the specific pattern type a usgeis i
ested in, in many cases the user is not searching for alllgegsit-

matches. When the output matrix has been produced, by Simp|yterns but only for certain patterns of this type. This makesing

summing all the values in the input matrix entries that matoh
entry location with a “0” in its output matrix, and dividinge sum
by | B|, we get the Data Distancé(D) between two nuggets.
Nugget Distance Finally, we combine the Query Distance
(QD[X,Y]) and Data DistanceD D[ X, Y]) to present the Nugget
Distance(N D[X, Y]) between any pair of nuggets X and Y.

®3)

wherea and 3 are experimentally derived weights. Note thaD
will be normalized (between 0 to 1).
For more details about nugget distance, please see [21].

NDIX,Y] = a-QD[X,Y]+B-DD[X,Y] (a+8=1)

3.2 Nugget Clustering

Once we have computed the distances between nuggets, arjcgen
clustering algorithm can be applied to conduct nugget efirgg.
The clustering process consolidates our nugget pool by vi&Ego
redundant nuggets while keeping good representativeBesides
the automatic nugget clustering to the whole nugget poalsygs-
tem also supports manual nugget clustering with providestae-
tion techniques based on visualized the nugget space. llgadyo
more meaningful clusters for each individual user, becaaseain
expert knowledge might be more effective than generic etirgg
algorithms. Moreover, this could even save the cost of mopni
an expensive global clustering algorithm against all thikected
nuggets. The visualized nugget space and the specific étitara
techniques supporting manual nugget clustering are inted in
Section 5.

expensive global pattern detection algorithms not costéffe and
unrelated patterns detected may even cost users moretefied-

late the useful ones. We chose density-based clusteringrd]
distance-based outlier detection [9] as our sample padietection
algorithms, which are popular algorithms in the data mirfialgl.

4.2 Techniques for Nugget Refinement

The refinement process is divided into two phases, callechdieh
and refine phases.

In the match phase, we aim to match the identified nuggetspaith
terns “around them” within the data space. In other wordsgoal

is to determine which patterns users were searching for Wiese
specific nuggets were made. In this work, we concentrateatagg
refinement on two important pattern types, clusters andeosil|

The concept of “Match” is used to judge whether some data pat-
terns or the major parts of these patterns primarily couteitio

a nugget. If it is the case, we call the nugget and these patter
“matched”. The nuggets may be “matched” with more than one
pattern. Or, put differently, a nugget may contain seveasigons.
Technically, to match a nugget with patterns, we have to ecdaep
two important factors that each represent one side of thelmat

e Participation Rate(PR) : A pattern P should be matched
with a nugget N, only if most of its members, if not all, par-
ticipate in (are covered by) the nugget. For example, in Fig-
ure 11, for the cluster at the left side, data points 2, 3, 4, 5,
6 are covered by the nugget. So, we 3R to present how
much of a pattern P is covered by a nugget N.



PR(N, P) = P.population N N'?‘”’“““"” (4) searching for from the match phase, simply putting all thenme
P.population bers of each pattern into a new nugget will finish this job.

e Contribution Ratg/C'R) : Since “match” is two-directional, Modification: For the nuggets representing a single pattern only,
while PR just expresses one direction, namely, nugget to pat the modification is to make the nugget boundaries exactlgange
tern, we introduce CR to capture the opposite directiompfro  as the pattern boundaries.
patterns to nugget. This shows how much a whole or par- In Figure 12, we show the new nuggets after nugget refinement.
tial pattern contributes to the nugget. Moreover, because a Each now represents one pattern only.
nugget is decided by a query and the results of this query, As with nugget clustering, nugget refinement can either be au
we consider both the selected area and data population of thetomatically performed against all the collected nuggetsusers

pattern and the nugget when calculating CR. could manually pick the nuggets of interest from the nuggeate
view as refinement candidates. Specific interaction teciasido
CR(N,P) = P.arean N.area support manual nugget refinement are also discussed ini@ebct
’ 2% N.area
P.population N N.population
+ (5) 5. NUGGET SPACE VISUALIZATION

2 % N.population . L
Up to now, we have obtained a set of nuggets, each of which is

either defined by users or is generated by extraction, caatibim
and/or refinement. We call this set thegget space A natural
requirement from analysts is a visual overview of these etgggn

Next we show a specific example of how to calculate PR and CR
between a nugget and a cluster (the left side cluster on &ityLiy.

Nugget Boundary Original Nugget Boundary

Overdap Area this section, we propose a visualization approachMB&S nugget
~ \ starfield to present such an overview to users, which is inspired by
" i % i) _ ) %Il@ the VaR display [22] developed by Yang et al. In addition, som
o \ \® @E o“ 13 !nteractlon techniques are (.:hscussed to help users exposEs
J \, _____ | - in nugget space and do maintenance on nuggets.
Pattem Boundary New Nugget Boundary

et fren e o Brndony 5.1 MDS Nugget Starfield

Figure 11: A nugget which Figure 12: The refined nuggets Figure 13 shows an MDS nugget starfield to prgsent a nuggeespa
captures the main bodies of Which each capture a complete obtained from the cars dataset. Each glyph is an overview of a

two clusters cluster nugget and we generate this layout using an MDS algorithrj [10
The proximity among nugget positions reflects nugget destan

The covered pattern populatio®.population N N.population) Assume that we have N nuggets in this nugget space, the preced

equals 5 (containing data points 2, 3, 4, 5, 6), and the paiep- to get such a starfield is as follows: (1) We calculate nugigt d

ulation (P.population) equals 6. SAPR = 5/6 = 0.83. The tances and record them into an>NN matrix. (2) This matrix is
Nugget Area {V.area) in this example is the area denoted by the regarded as the input to an MDS algorithm [10], which gemsrat
Nugget Boundary. The Pattern AreR.¢rea) is indicated by the ~ position for each nugget. (3) Each nugget overview is resuiér
Pattern Boundary. Overlap Are®.area N N.area) is the over- the position obtained from the MDS algorithm.

lap area depicted by the shaded area in the figure. Let's &ssum
Overlap Area/Nugget Area=0.3. The concept of “Area” here ex
tends to the hypervolume when the number of dimension iseea
We also know that the Nugget Population equals 12. So CR=
(0.3+5/12)/2=0.39

Now we use PR and CR to match a nugget with the patterns around
it. We useM atchRate(P, N) to express the result of a match be-
tween a nugget N and all patterns of type P. Based on the match
results, we classify nuggets into different categoriesehiee con-
centrate our discussion on clusters. Techniques to hatttie pat-

tern types can be found in [20].

MatchRate(C,N) = > PR(Ci,N)* CR(Ci,N) > T (6)

1<i<n

WhereC;'s are all the cluster patterns fully or partially covered by Figure 13: MDS Nugget Starfield. Each glyph represents aetugg
the nugget. T is a threshold which decides whether the nuaggkt The distances among glyphs are determined by nugget destanc
the patterns match. In this case, a nugget is matched wittoone

more clusters. In other words, the main components of thggeu The advantage of this approach is obvious. First, users asn e
are clusters. ily observe the distribution of nuggets and clusters in migpace
The match phase reveals what type of patterns a user wag likel since this layout conveys the distance among nuggets. Tifien d
searching for. We now describe the refinement phase. If agtiglg  ferent actions, such as manual clustering and refinementbea

classified into the first two categories mentioned above, misti easily applied to some nuggets. For example, in Figure 13ame
nugget refinement using the following two steps, calledtpdj (if see that there are four nugget clusters and two outlier risgger
necessary) and modification. each cluster, we can do nugget maintenance using intemaetb-

Splitting: If a nugget is composed of more than one pattern, we niques as discussed in the following subsection.

could split it into several new nuggets, each representireypat- . .
tern only. Because we already know all patterns the usere wer 5.2  Interactions on Starfield Layout



troduce this action is that nugget distance in the usersdmiight

be different from our distance formulas or the MDS algoritten
sult. Such an action allows users to correct the error frogo-al
rithms based on the knowledge of domain experts. Itis plestib
experts to make a mistake, thus we allow users to restore tish
tances generated by our distance formulas or the MDS ahgorit
Compare: This action can popup a dialog to show the distances
(query, data, nugget) between two nuggets selected by #we us
The query arguments are also listed in this dialog to fatéitiser’s
comparison.

Manual Clustering: As discussed before, NMS can do clustering
on existing nuggets. However, users might not be satisfidutive
automated clustering result. Thus our system allows usessléct

Figure 14: When users select a nugget on the MDS Starfield, a several nuggets and group them. A new nugget will be showerto r

popup dialog shows its details.

We propose a set of interaction techniques to help usermrexpl
nugget space and maintain nuggets. These interactionglacl
Focus+Context If users want to see details of one nugget, an orig-
inal view can be displayed as shown in Figure 14.

Figure 15: When users select a group of nuggets, the NMSmayste
merges these queries and generate a new nugget.

Figure 16: NMS refines a selected nugget and shows the résults
a new dialog.

Nugget Brushing We allow users to select a subset of nugget
space based on attributes such as the person who defineddbistn

or when it was created or visited. In such a way, users carsfocu
on important nuggets or those of interest. For examplectete
only those nuggets which were visited recently helps usetssfon
important nuggets and de-emphasizes old and less integestes.

place these selected nuggets. For the flexibility, we do elete the
results from the clustering algorithms. Users can switdiween
automatic and manual results. An example of manual cluefesi
shown in Figure 15.

Automatic Refinement Figure 16 shows the interface to do nugget
refinement based on the algorithm discussed in Section 4r kit
user select one nugget of interest, NMS runs the algorithrefioe
the selected nugget and then pop up a dialog to show thegeHult
the user is satisfied with the refined results, NMS can replaee
original nugget with the refined one.

In the above actiondyloveandManual Clusteringpotentially en-
able our system to learn some domain knowledge from experts,
which is proposed as a part of our future work.

6. NUGGET-BASED SENSE-MAKING

In this section, we introduce techniques to support nubgsed
sense making. As described in [5; 7], visualization-basatss
making is usually a complicated and interactive procespaiied
by continuous interacting with visualized evidence setgesiées
evidence collecting, another major task is to reveal theriata-
tions among individual pieces of evidence. Thus, beyondalis
ization techniques for evidence sets, namely, the nuggetesm
our case, more sophisticated nugget organization mechamsed
to be provided to support nugget-based sense making.

In particular, we use two distinct but interlaced phasewutorsa-
rize the nugget-based sense making process. They are ragget
lection and interrelation discovery. This is because asispinion

of a certain hypothesis is eventually formed based on ateelec
set of evidence and also the interrelations among them. \We us
an important sense making model, which is hypothesis assgss
to demonstrate the techniques we develop to support nigsed
sense making. However, the general principles we propose fo
nugget-based sense making and the design for “hypothesisYi
can easily be adapted to several other models, such as fuere
diction and alternative comparison. Before we present #taild

of nugget organization mechanisms, we introduce the hgsigh
view, which acts as the nugget organization bed for hypéhes
sessment in our system. As shown in Figure 17, a hypothesis vi
for a certain hypothesis is mainly composed of a “overviea”,
“support view” and a “refute view”. Initially, all the nugtg re-
lated to the given hypothesis are collected in the “overtiehe
nuggets which are considered to be positive or negativeeacil
for the hypothesis are later separated from the “overviewd' jput
into the “support view” and “refute view” respectively.

6.1 Nugget Selection

Move: Users can move one nugget to make it closer to or farther After long term exploration by multiple users, a single datamay

from other nuggets using “drag and drop”. The reason why we in

have accumulated a certain amount of nuggets in its nuggeesp
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Figure 17: An example of “Hypothesis View” over four dataset
Totally 19 nuggets are collected as evidence to access dlegis:
The stock value of ‘ABC’ company is over-estimated. 4 of them
are considered to be positive evidence and thus being pupjvost
view (the user is expanding the second one to view the defftls

6 of them are judged to be the negative evidence and put iterefu
view. Others remain in the overview.

Many, if not most, of these nuggets may be unrelated to ainerta
hypothesis, because different users may have differeantions
when exploring the dataset, and even for a single user, hxo-ex
ration may be for pursuing multiple goals. Moreover, to asse
a hypothesis (e.g., whether the stock value of a certain aagnp
is over-estimated), an analyst may need to analyze the reséde
from multiple data resources (e.g., datasets recordingk stwar-
ket transactions, datasets recording company profits).s, Tour
nugget selection techniques should allow users to effigisetect
related nuggets from multiple nugget spaces. In NMS, sueh se
lections could either be achieved by users’ direct opematan the
system interface (e.g., drag nuggets from nugget spaaethimhy-
pothesis view), or by automatically importing the nuggethjch
fulfill the queries submitted by users, to the hypothesisiwidMS
provides functionality, such as sorting and querying otistteal
information and keyword based search on additional ate#uo
help users quickly access the nuggets of interest. Figush&®s
an example of selecting nuggets from four different nugpetss.

6.2 Interrelation Discovery

Interrelation discovery against selected evidence is ticakiyet
complicated task for sense-making. It aims to incrementate-
grate individual evidence pieces to form larger evideneegs, i.e.,
sub-opinions, until the final opinion is reached. Here weerthat
there may exist numerous interrelation models among thieaee
and some of them may be very complex. In this work, we describe
several simple interrelation models among nuggets andrtite-p
type in our system that helps alalysts use them in the hypisthe
views. We show examples of the interrelation models we stippo
in figure 18.

Group relation: Group relation is one of the simplest interrelation
models. It indicates that a group of evidence together stpo
refutes some component of a hypothesis. This is similar gget
selection, because even among the positive or negativeresador

a hypothesis, different evidence may support or refute yipethne-
sis from different aspects. In NMS, users can group nuggetse
support or refute view and the system marks different grauigis
frames in different colors. Moreover, in a group of nuggstsne

of them may have greater importance than others and act as the
"core evidence” for the whole group, which is distinguisteam
others by a wider frame.

Sequence relation: Sequence relations among nuggets are based
on group relations but involve the concept of a time sequentes

is important, because, in many cases, a group of evidencesnak
most sense when they are considered in a certain order. Bor-ex
ple, in order to assess the hypothesis that the current gasipiat

a wave bottom, a user may have to gather the national aveesge g
prices for previous months, and analyze them in a time seguen
In NMS, users can define sequence relations among nuggegigrou
In particular, to express the order of two nuggets, userstaich

an arrow from one to another. Finally, the whole “nuggetnsfi
connected by the arrows forms a “storyline”, which supportee-
futes the hypothesis from one aspect (In the current versiaur
system, we do not allow “cycles” in a storyline).

the support or refute view, we also introduce an externaitice
between positive and negative evidence, which is a comtiadi
Although, in general, the positive and negative evidenenew
ally contradicts with each other, the “contradiction” wdide here
refers to a direct conflict between two specific pieces of @vig.
For example, a nugget extracted from dataset A shows thaathe
price in Massachusetts is lower than the national averabde w
another nugget extracted from dataset B may indicate thesiigp
Such direct conflict usually indicates uncertainty or esrior the
datasets. Figuring out these contradictions will help siserbe
aware of “bad” evidence, and eventually avoid data from lisivke
data sources. As shown in figure 18, in NMS, two nuggets ialv
in contradiction are marked by dashed frames and connegted b
dashed line.

- [B]x]

{AHypothesicd)

Hypothesis:

The stock price for "ABC” company is over-estimated.

OVERVIEW

A ] M M ] A

Support View

Refute View

Support Assess La(evl Refute

Figure 18: An example of interrelation discovery based goolly-
esis view. 5 nuggets in refute view are grouped together o fo
an evidence group, and the one in the center is considereztteb
“core evidence” of this group. 2 groups of nuggets, 4 in eacé,
recognzied to be evidence sequences and thus linked todsthe
arrows in the support view. A pair of nuggets are pointingdote
other by a double-direction dashed arrow, which indicaiasthey
are contradicted with each other.

7. EVALUATIONS

In order to show the effectiveness of NMS, we have performed
some preliminary user studies to compare user efficiencyaand
curacy when solving tasks with and without the help of NMS. We
divided 12 students into 4 groups, 3 users per group. All 4jgso



were asked to finish the same 5 knowledge discovery taskshwhi
were based on 3 real datasets; three groups (group 2, 3, d swer
ported by NMS. All the users were encouraged to finish thestask
as quickly and correctly as possible. Our user studies sthonat
NMS may not only greatly improve users’ time efficiency when
solving knowledge discovery tasks, but also it can enhaseesu
accuracy of finishing these tasks. Details of the experiaieetup,
methodology and results of these user studies can be folga@Jin
Here we note that these user studies were mainly designedite e
ate the functionalities of the analytical components of NM&nely
the nugget extraction, nugget combination and nugget regéné
The nuggets in these user studies were displayed with verg bia
sualization techniques, such as pull-down item lists. Theaced
visualization and interaction techniques introduced ictida 5 and

6 were not employed in these user studies.

To further evaluate the functionalities of the nugget viadion
(NV) and nugget-based sense making (NBSM) components inNMS
we conducted a preliminary case study to compare the eféewss

of NMS alone and NMS(NV+NBSM). In this case study, we in-
vited 4 users (all WPI graduate students, but different frioose in-
volved in the previous user studies) to analyze the nuggetisqol-
lected during previous users’ exploration. They were as@éden-

tify the most “well-mined” nuggets, i.e., those that captusers’
interest best, and also to eliminate the “misinterpreteafjgets,
which were most likely generated by misinterpretation efrasin-
terest. In this case study, 2 of the 4 users used NMS first @ th
NMS(NV+NBSM), while other 2 used them in the reverse order.
Our case study showed that all 4 users were much more efficient
in terms of both time spent and accuracy when using NMS(NV+
NBSM) to perform the tasks. Moreover, all 4 users gave com-
ments that NMS(NV+NBSM) was “useful” and easier to use. This
result was expected, because the nuggets view gave ariviatuit
overview of the interrelations among nuggets and the nusgyete-
making component provides convenient mechanisms to argani
the nuggets.

8. CONCLUSION

In this paper, we introduce a framework for analysis-guidisdal
exploration of multivariate data. Our system (NMS) levesthe
collaborative effort of human intuition and machine congpigins
to extract, combine, refine and visualize the valuable m#iion
(nuggets) hidden in large datasets. NMS also provides ifumedt
ity to support users’ sense-making processes based on gyetnu
space. Our preliminary evaluations indicate that NMS maatly
improve users’ time efficiency when solving knowledge disry
tasks. It may also be able to enhance users’ accuracy inifigish
these tasks, although more complicated tasks are needes-to v
idate this. Our future work includes expanding the recoajniiz
nugget types(nugget extraction), pattern types(nugditeraent)
and nugget interrelation models (nugget-based senseagjaldu-
tomatic mining for interrelations among nuggets and tempies
to guide users’ further exploration with the well-orgamizaigget
spaces will also be investigated. Finally, more comprekiensser
studies that involve more users and more complex tasks il b
major component of our future work.
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