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ABSTRACT
Visualization systems traditionally focus on graphical representa-
tion of information. They tend not to provide integrated analytical
services that could aid users in tackling complex knowledgedis-
covery tasks. Users’ exploration in such environments is usually
impeded due to several problems: 1) valuable information ishard
to discover when too much data is visualized on the screen; 2)Users
have to manage and organize their discoveries off line, because
no systematic discovery management mechanism exists; 3) their
discoveries based on visual exploration alone may lack accuracy;
and 4)they have no convenient access to the important knowledge
learned by other users. To tackle these problems, it has beenrecog-
nized that analytical tools must be introduced into visualization sys-
tems. In this paper, we present a novel analysis-guided exploration
system, called the Nugget Management System (NMS). It lever-
ages the collaborative effort of human comprehensibility and ma-
chine computations to facilitate users’ visual exploration processes.
Specifically, NMS first helps users extract the valuable information
(nuggets) hidden in datasets based on their interests. Given that
similar nuggets may be rediscovered by different users, NMScon-
solidates the nugget candidate set by clustering based on their se-
mantic similarity. To solve the problem of inaccurate discoveries,
localized data mining techniques are applied to refine the nuggets
to best represent the captured patterns in datasets. Visualization
techniques are then employed to present our collected nugget pool
and thus create the nugget view. Based on the nugget view, in-
teraction techniques are designed to help users observe andorga-
nize the nuggets in a more intuitive manner and eventually faciliate
their sense-making process. We integrated NMS into XmdvTool, a
freeware multivariate visualization system. User studieswere per-
formed to compare the users’ efficiency and accuracy in finishing
tasks on real datasets, with and without the help of NMS. Our user
studies confirmed the effectiveness of NMS.

1. INTRODUCTION
Visualization systems traditionally focus on building graphical de-
pictions of relationships among information in a human compre-
hensible format. By doing so, they help users to better understand
the information. This means that the users can either learn facts
that are difficult to discover without the graphical depiction, or the
users’ knowledge regarding some facts can become deeper or more
precise. The usefulness of visualization systems has been well es-
tablished [13; 14; 17].
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Figure 1: “AAUP” dataset vi-
sualized with Parallel Coordi-
nates

Figure 2: Complete cluster on
seven dimensions of “AAUP”

Figure 3: One “partial cluster”
found by users

Figure 4: Another similar yet
not identical “partial cluster”

Recently, visual analytics [15] has been proposed as a meansto
solve complex knowledge discovery tasks in many important fields,
ranging from homeland security and credit fraud detection to finan-
cial market analysis. Solving such tasks usually requires analysts
to perform complicated and iterative sense-making processes [5;
7]. Thus, it has been recognized that relying on analysts’ percep-
tual power alone to conduct visual exploration may not always be
the most effective method to solve these problems.
To fully support visual analytics, visualization systems have to be
improved by tackling some key challenges. While we use clus-
tering examples in Figures 1 - 4 to illustrate the these challenges,
our goal over time is to support a rich set of patterns, including
trends, outliers and associations.1) Overloaded Displays:When
too much information is visualized on the screen, effectiveknowl-
edge discovery is difficult. For example, as shown in Figure 1,
when a dataset, even with modest numbers of records and dimen-
sions, is visualized, overloaded displays can make knowledge dis-
covery a time-consuming process.2) Disorganized Discoveries:
Since there is no systematic discovery management mechanism
provided by visualization systems themselves, users have to man-
age and organize their discoveries off line on their own. Forex-
ample, some users, either due to rich domain knowledge or after a
long time of exploration, may be able to identify the patterns (e.g.,
the cluster highlighted in red in Figure 2). Unfortunately,she may



not be able to store it in the system nor easily retrieve it forfuture
exploration. Even if the systems provide some simple recording
functionality, since a pattern may be repeatedly visited, redundant
recordings may be generated (e.g., the clusters in Figures 3and 4
are very similar). Such redundancy causes information overload
that may hinder the future use of those recordings.3) Inaccurate
Discoveries: Discoveries found by user’s perceptual power alone
may be inaccurate. For example, the “clusters” found by users in
Figures 3 and 4 are actually subparts of a complete cluster depicted
in Figure 2. Such inaccurate discoveries may lead to low-quality
decision making (i.e., this user may miscount the population of the
whole cluster, if she works on the “partial cluster” in Figure 3). 4)
Isolated Knowledge: Even if valuable knowledge may have al-
ready been uncovered, there is no convenient mechanism for users
to access and share it. For example, a user interested in “clusters”
in the dataset may spend a lot of time to find the one mentioned in
Figure 2, even if it may have already been previously discovered.
Previous efforts to tackle these problems can be roughly classified
into two categories. 1) User-driven: In this category, while the
knowledge discovery process still relies on users’ perceptual power,
a variety of visual interaction mechanisms, such as zooming, filter-
ing, color coding and dynamic querying, are offered by the visu-
alization systems to facilitate exploration [1; 17]. Our framework
applies these techniques to allow users to best use their perceptual
power during visual exploration. 2) Data-driven: Data-driven tech-
niques aim to expedite knowledge discovery with the help of the
analytical power of machines. Data mining algorithms [4; 9;23],
which detect useful patterns or rules in large datasets, fulfill an im-
portant role here. These techniques are employed in our framework
to improve the accuracy of discoveries.
More recently, some initial efforts have emerged to take advan-
tage of both human perceptual abilities and computational power
of computers to deal with the challenging process of knowledge
discovery [15]. Visual data mining (VDM) [3; 8] involves users in
the mining process itself, rather than being carried out completely
by machines. In VDM, visualizations are utilized to supporta spe-
cific mining task or display the results of a mining algorithm, such
as association rule mining. However, VDM offers little helpfor
knowledge organization and management, thus it does not support
an iterative and comprehensive sense-making process. Our frame-
work takes a different approach from VDM, that is, we put users
at the first stage of the knowledge discovery process and apply
data mining techniques as secondary method to refine and enhance
what the users have already identified as interesting duringtheir ini-
tial exploration. [5] proposed interactive tools to manageboth the
existing information and the synthesis of new analytic knowledge
for sense-making in visualization systems. This work so farhas
not paid much attention on how to consolidate the users’ discov-
eries. Collaborative visual analytics [7] introduced computational
power into the sense-making process with a focus on supporting
the exchange of information among team members. [6] proposed
a framework to track the history of the knowledge discovery pro-
cess for visualization systems. It created a generalized model so
the tracking can be done across multiple application, systems, indi-
viduals and locations.
In this work, we design, implement and evaluate a novel analysis-
guided exploration system, called the Nuggets Management Sys-
tem (NMS), which leverages the collaborative effort of human in-
tuition and computational analysis to facilitate the process of visual
analytics. Specifically, NMS first extracts nuggets based onboth
the explicit and implicit indication of users’ interest. Toeliminate
possible redundancy among the collected nuggets, NMS combines
similar nuggets by conducting nugget clustering. Then, data min-

ing techniques are applied to refine the nuggets and thus improve
their accuracy in capturing patterns present in the dataset. Visual-
ization techniques are applied to the nugget pool and thus create an
overview of the nugget space, which we call the nugget view. Fur-
thermore, interaction techniques are designed based on thenugget
view. By interacting with the nugget view, users will have more
flexibility in observing the nuggets and be able to manage (e.g.,
users can attach annotations [11]) and organize nuggets (e.g., users
can select a set of nuggets as the evidence to support a hypothesis)
to support their sense-making processes. Lastly, the well-organized
nugget pool can be used to guide users’ exploration in both user-
and system-initiated manners.
To verify the feasibility of NMS, we have integrated it into Xmdv-
Tool [17], a freeware tool developed at WPI for visual exploration
and analysis of multivariate data sets. The main contributions of
this paper are:

• We introduce a novel framework of analysis-guided visual
exploration to facilitate visual analytics of multivariate data.

• We design a nugget combination solution that reduces the
potential redundancy among nuggets.

• We present a nugget refinement solution, which utilizes data
analysis techniques to improve the accuracy of the nuggets
in capturing patterns in datasets.

• We present techniques for visualization and interactions with
the nugget space, which allow users to observe and organize
nuggets in an intuitive manner.

• We describe user studies evaluating the effectiveness of NMS.
The user study demonstrates that NMS is able to enhance
both the efficiency and accuracy of knowledge discovery tasks.

This work is an extension to two previous conference papers [20;
21]. The majority of the new material concerns the visualization of
the nugget space and the sense-making process based on it, which
are presented in Sections 5 and 6. The remainder of this paper
is organized as follows: Section 2 introduces Nugget Extraction.
Section 3 describes the techniques used in Nugget Combination.
Nugget Refinement techniques are discussed in Section 4. Finally,
we describe experimental evaluation in Section 7.

2. NUGGET EXTRACTION

2.1 Definition of Nuggets
Generally, a nugget is some valuable information extractedfrom
the dataset, which could be clusters, outliers, associations and any
other patterns. Additional attributes of a nugget, such as aname
and annotations, can be attached to it as well. In our currentimple-
mentation, a nugget is defined by a subset of the multivariatedata
plus the bounding box containing it.
The concept of nuggets is independent of the display methodsin
multivariate visualization systems, such as Parallel Coordinates,
Scatterplot matrices and Glyphs [17]. We use Parallel Coordinates
to demonstrate the examples in this paper. Thus visually a nugget
appears as a blue band across the axes, which represents the query
ranges on each dimension, and the red (highlighted) lines that indi-
cate the selected records (result) of the query.

2.2 Nugget Extraction Based on User Interest
Nugget extraction can be achieved by observing a user’s explo-
ration process (user-driven) or by conducting analysis of the pat-
terns existing in the data (data-driven). The NMS frameworkis



compatible with the nuggets derived using either of these two meth-
ods. Data mining algorithms for pattern detection have beenexten-
sively studied in the KDD community and any of these methods
could be plugged into our framework. Here, we instead focus on
nugget extraction via user-driven methods. The main benefitof
user-driven methods is that we can bring into play the advantage
of human perceptual and cognitive abilities to identify patterns in
a knowledge discovery process. In NMS, the nuggets can be ex-
tracted based on either the explicit or implicit indicationof users’
interest. The specific techniques supporting those two nugget ex-
traction methods are discussed in detail in [20].

3. NUGGET COMBINATION
Relying on nugget extraction alone suffers from several problems.
1) Nugget redundancy may arise, because as the users navigate in
the datasets, similar nuggets with slightly different boundaries are
likely to represent the same data features. 2) An excessively large
nugget pool generated during a long exploration period may make
it difficult for users to access individual nuggets. 3) Continuous
growth of the nugget population may lead to low system perfor-
mance. An efficient method is needed to keep the nugget pool of
modest size yet with high representativeness. Several techniques,
such as sampling, filtering and clustering of nuggets may be em-
ployed to achieve this goal. We chose clustering, which groups
similar nuggets and generates representatives for each group.

3.1 Distance Metrics
Clustering aims to group objects based on their similarities. It re-
quires a distance measure that expresses the domain specificsim-
ilarity between objects. To solve this problem, we developed dis-
tance metrics to capture the distances between any pair of nuggets.
Query Distance: Nuggets are defined by both queries and their
results. So, naturally, nuggets defined by similar queries should be
considered to be more similar than those defined by rather different
queries. Thus our problem can be transformed into quantifying the
similarity of queries. The major principle utilized in previous work
[18; 19] for measuring query similarity (QS) between NuggetA
and Nugget B can be summarized as:

QS(A,B) =
QA ∩ QB

QA ∪ QB
(1)

Note that QA and QB are the qualifiers of these two queries. We
adopt this idea as the basic principle for our query similarity mea-
sure on individual dimensions. We have also studied severalim-
portant refinements to this basic idea, which enhance it to handle
different types of domains (discrete, continuous, nominal) and at
best level capture the visual similarity of nuggets. We havealso ex-
tended the previous metric defined for a single dimension to now be
applicable for multiple dimensions. Details of these techniques can
be found in [21]. After we’ve normalized the acquired query sim-
ilarities (between 0-1), we can easily calculate the query distances
(QD) as shown in Formula 2:

QD(A, B) = 1 − QS(A, B) (2)

Data Distance: However, nuggets are not only characterized by
their queries (profile), but also by the results of the queries ob-
tained when applying the queries to a particular dataset (content).
As shown in Figures 5 and 6, two nuggets generated by very simi-
lar queries may be rather different in terms of actual data content.
The former contains a cluster, while the latter is empty. Clearly, we
need to enhance the capability of our distance metrics by also con-
sidering the “contents” of the nuggets. Now, the problem is how we

Figure 5: A nugget capturing a
cluster in the “Iris” dataset

Figure 6: A nugget with no
data record included

can measure distance between two subsets of a multi-dimensional
dataset. Previous work to tackle such problems [2; 12] can beclas-
sified into two main categories: statistical and transform-cost ap-
proaches. Below, we will introduce our proposed algorithm based
on extending a basic transform cost algorithm.
In transform-cost approaches, the distance between two objects is
expressed as the minimum cost of transforming one object to an-
other. A well known algorithm that relies on Transform Cost is the
Nearest Neighbor Measure (NNM) [12]. But unfortunately, NNM
is a population-insensitive algorithm. It may lead to bad compari-
son results in our case, because comparing nuggets with different
populations is going to be the norm in our work. We propose a new
algorithm called the Exact Transformation Measure (ETM).
First, we formulate the problem. Given datasetD, |D| = m, and
datasets A and B,A ⊆ D, B ⊆ D, |A| = a, |B| = b, 0 ≤ a ≤
b ≤ m, |A∩B| = l, |B| − |A∩B| = n. Assume data points in D
can be viewed as geometrically distributed in the value space based
on their values in different dimensions. Our goal is to transform A
to be exactly equal to B with minimum cost. To solve this problem,
simply moving data points in A to their nearest neighbors in Bwill
fail in many cases, because it is neither globally optimal nor sen-
sitive to population. Thus, in order to achieve the transformation
with minimum cost, we define three types of operations:

• Move(x, y): givenx ∈ A, y ∈ B, move x to the position
where y lies.

• Add(x, y): giveny ∈ B, add a new data point x to A at the
same position where y lies.

• Delete(x)x ∈ A, delete x from A.

By using “Move” and “Add”, we are guaranteed to always be able
to transform A to B, since A always has a smaller or equal sized
population to that of B. However, simply relying on “Move” and
“Add” will impose “forced matches”, which may not always lead
to the capture of the real distance between two datasets. Figure
7 shows an example of two 2-dimensional datasets where moving
and adding are not sufficient to make a cost effective transformation
plan. Members of datasets A and B are represented as white and
black points, respectively. If only “Move” and “Add” are used, we
have to match some data points in A with data points in B that
are far away from them. In the worst case, the existence of a few
“outlier” data points that do not have a “near neighbor” close to
them will eliminate opportunities for many other data points to be
matched with their real nearest neighbors.
To deal with this disadvantage of “forced matches”, we use a “Delete”
operation. With it, we no longer need to suffer from “forced matches”,
because for a given data point in A, “Move” is no longer the only
option for it. We can choose “Delete”, if moving it will bringtoo



Figure 7: Trasforming A to B
with moving and adding only

Figure 8: Transforming A
to B with, moving, adding
&deleting

much global cost. However, how to make an optimal transforma-
tion plan, which has the minimum cost, is still a complex problem.
In order to tackle this problem, we need to study the cost of each
operation first.Cost(M[x,y]): The cost of moving a data point x
to y is equal to the normalized Euclidean distance between x and y
(between 0-1).COA: Cost of adding a new point andCOD: Cost
of deleting an existing point are both estimated values thathave a
negative association with|A|.
Having set the costs of all our transfer operations, we now establish
our solution for finding an optimal (most cost-effective) transfor-
mation plan. We note that making such an optimal transformation
plan is non-trivial. Fortunately, the Hungarian Assignment [16]
which was designed for finding minimum cost bipartite matches,
provides a good approach to solving this problem. The algorithm
takes ann × n matrix as input. Each row in the matrix represents
a data point in A, and each column represents a data point in B.
Then each entry is filled with the distance between the row andthe
column it belongs to. The algorithm returns a minimum cost match
in O(n3) time.
Once we make a proper input matrix, the Hungarian Assignment
Method will generate an output matrix representing the optimal
matches. When the output matrix has been produced, by simply
summing all the values in the input matrix entries that matchan
entry location with a “0” in its output matrix, and dividing the sum
by |B|, we get the Data Distance (DD) between two nuggets.
Nugget Distance: Finally, we combine the Query Distance
(QD[X, Y ]) and Data Distance(DD[X, Y ]) to present the Nugget
Distance(ND[X, Y ]) between any pair of nuggets X and Y.

ND[X, Y ] = α ·QD[X, Y ]+β ·DD[X, Y ] (α+β = 1) (3)

whereα andβ are experimentally derived weights. Note thatND
will be normalized (between 0 to 1).
For more details about nugget distance, please see [21].

3.2 Nugget Clustering
Once we have computed the distances between nuggets, any generic
clustering algorithm can be applied to conduct nugget clustering.
The clustering process consolidates our nugget pool by removing
redundant nuggets while keeping good representativeness.Besides
the automatic nugget clustering to the whole nugget pool, our sys-
tem also supports manual nugget clustering with provided interac-
tion techniques based on visualized the nugget space. It maylead to
more meaningful clusters for each individual user, becausedomain
expert knowledge might be more effective than generic clustering
algorithms. Moreover, this could even save the cost of running
an expensive global clustering algorithm against all the collected
nuggets. The visualized nugget space and the specific interaction
techniques supporting manual nugget clustering are introduced in
Section 5.

4. NUGGET REFINEMENT

4.1 Benefits from Nugget Refinement
In this section, we introduce the concept of using data mining tech-
niques to refine the candidate nuggets extracted from users’logs.
Such a refinement can be performed when a nugget was made be-
cause users were searching for some identifiable pattern types, such
as clusters and outliers. For example, assume a user was searching
for a cluster in the dataset, and for some reason, she missed part
of it (Figure 9). Then, NMS will refine the nugget to capture the
complete cluster (Figure 10).

Figure 9: A nugget which cap-
tures the main body of a cluster
but misses part of it

Figure 10: The refined nugget
which captures the complete
cluster

Nugget refinement offers two main advantages over both pure log
analysis and mining techniques of the data itself. Firstly,log anal-
ysis techniques, for example, the nugget extraction introduced in
Section 2, rely on users’ actions only, without any help fromcom-
putational analysis of the datasets and their properties. Thus they
may lack accuracy in nugget specification. Nugget refinementlikely
improves the accuracy by exploiting both of them. Secondly,even
assuming the system knows the specific pattern type a user is inter-
ested in, in many cases the user is not searching for all possible pat-
terns but only for certain patterns of this type. This makes running
expensive global pattern detection algorithms not cost effective and
unrelated patterns detected may even cost users more effortto iso-
late the useful ones. We chose density-based clustering [4]and
distance-based outlier detection [9] as our sample patterndetection
algorithms, which are popular algorithms in the data miningfield.

4.2 Techniques for Nugget Refinement
The refinement process is divided into two phases, called thematch
and refine phases.
In the match phase, we aim to match the identified nuggets withpat-
terns “around them” within the data space. In other words, our goal
is to determine which patterns users were searching for whenthese
specific nuggets were made. In this work, we concentrate nuggets
refinement on two important pattern types, clusters and outliers.
The concept of “Match” is used to judge whether some data pat-
terns or the major parts of these patterns primarily contribute to
a nugget. If it is the case, we call the nugget and these patterns
“matched”. The nuggets may be “matched” with more than one
pattern. Or, put differently, a nugget may contain several patterns.
Technically, to match a nugget with patterns, we have to compute
two important factors that each represent one side of the match:

• Participation Rate(PR) : A pattern P should be matched
with a nugget N, only if most of its members, if not all, par-
ticipate in (are covered by) the nugget. For example, in Fig-
ure 11, for the cluster at the left side, data points 2, 3, 4, 5,
6 are covered by the nugget. So, we usePR to present how
much of a pattern P is covered by a nugget N.



PR(N, P ) =
P.population ∩ N.population

P.population
(4)

• Contribution Rate(CR) : Since “match” is two-directional,
while PR just expresses one direction, namely, nugget to pat-
tern, we introduce CR to capture the opposite direction, from
patterns to nugget. This shows how much a whole or par-
tial pattern contributes to the nugget. Moreover, because a
nugget is decided by a query and the results of this query,
we consider both the selected area and data population of the
pattern and the nugget when calculating CR.

CR(N,P ) =
P.area ∩ N.area

2 ∗ N.area

+
P.population ∩ N.population

2 ∗ N.population
(5)

Next we show a specific example of how to calculate PR and CR
between a nugget and a cluster (the left side cluster on Figure 11).

Figure 11: A nugget which
captures the main bodies of
two clusters

Figure 12: The refined nuggets
which each capture a complete
cluster

The covered pattern population (P.population ∩ N.population)
equals 5 (containing data points 2, 3, 4, 5, 6), and the pattern pop-
ulation (P.population) equals 6. SoPR = 5/6 = 0.83. The
Nugget Area (N.area) in this example is the area denoted by the
Nugget Boundary. The Pattern Area (P.area) is indicated by the
Pattern Boundary. Overlap Area (P.area ∩ N.area) is the over-
lap area depicted by the shaded area in the figure. Let’s assume
Overlap Area/Nugget Area=0.3. The concept of “Area” here ex-
tends to the hypervolume when the number of dimension increases.
We also know that the Nugget Population equals 12. So CR=
(0.3+5/12)/2=0.39
Now we use PR and CR to match a nugget with the patterns around
it. We useMatchRate(P,N) to express the result of a match be-
tween a nugget N and all patterns of type P. Based on the match
results, we classify nuggets into different categories. Here we con-
centrate our discussion on clusters. Techniques to handle other pat-
tern types can be found in [20].

MatchRate(C,N) =
X

1≤i≤n

PR(Ci, N) ∗ CR(Ci, N) > T (6)

WhereCi’s are all the cluster patterns fully or partially covered by
the nugget. T is a threshold which decides whether the nuggetand
the patterns match. In this case, a nugget is matched with oneor
more clusters. In other words, the main components of this nugget
are clusters.
The match phase reveals what type of patterns a user was likely
searching for. We now describe the refinement phase. If a nugget is
classified into the first two categories mentioned above, we finish
nugget refinement using the following two steps, called splitting (if
necessary) and modification.
Splitting: If a nugget is composed of more than one pattern, we
could split it into several new nuggets, each representing one pat-
tern only. Because we already know all patterns the users were

searching for from the match phase, simply putting all the mem-
bers of each pattern into a new nugget will finish this job.
Modification: For the nuggets representing a single pattern only,
the modification is to make the nugget boundaries exactly thesame
as the pattern boundaries.
In Figure 12, we show the new nuggets after nugget refinement.
Each now represents one pattern only.
As with nugget clustering, nugget refinement can either be au-
tomatically performed against all the collected nuggets, or users
could manually pick the nuggets of interest from the nugget space
view as refinement candidates. Specific interaction techniques to
support manual nugget refinement are also discussed in Secction 5.

5. NUGGET SPACE VISUALIZATION
Up to now, we have obtained a set of nuggets, each of which is
either defined by users or is generated by extraction, combination
and/or refinement. We call this set thenugget space. A natural
requirement from analysts is a visual overview of these nuggets. In
this section, we propose a visualization approach, theMDS nugget
starfield, to present such an overview to users, which is inspired by
the VaR display [22] developed by Yang et al. In addition, some
interaction techniques are discussed to help users expose patterns
in nugget space and do maintenance on nuggets.

5.1 MDS Nugget Starfield
Figure 13 shows an MDS nugget starfield to present a nugget space
obtained from the cars dataset. Each glyph is an overview of a
nugget and we generate this layout using an MDS algorithm [10].
The proximity among nugget positions reflects nugget distances.
Assume that we have N nuggets in this nugget space, the procedure
to get such a starfield is as follows: (1) We calculate nugget dis-
tances and record them into an N× N matrix. (2) This matrix is
regarded as the input to an MDS algorithm [10], which generates a
position for each nugget. (3) Each nugget overview is rendered in
the position obtained from the MDS algorithm.

Figure 13: MDS Nugget Starfield. Each glyph represents a nugget.
The distances among glyphs are determined by nugget distances.

The advantage of this approach is obvious. First, users can eas-
ily observe the distribution of nuggets and clusters in nugget space
since this layout conveys the distance among nuggets. Then dif-
ferent actions, such as manual clustering and refinement, can be
easily applied to some nuggets. For example, in Figure 13, wecan
see that there are four nugget clusters and two outlier nuggets. For
each cluster, we can do nugget maintenance using interaction tech-
niques as discussed in the following subsection.

5.2 Interactions on Starfield Layout



Figure 14: When users select a nugget on the MDS Starfield, a
popup dialog shows its details.

We propose a set of interaction techniques to help users explore
nugget space and maintain nuggets. These interactions include:
Focus+Context: If users want to see details of one nugget, an orig-
inal view can be displayed as shown in Figure 14.

Figure 15: When users select a group of nuggets, the NMS system
merges these queries and generate a new nugget.

Figure 16: NMS refines a selected nugget and shows the resultsin
a new dialog.

Nugget Brushing: We allow users to select a subset of nugget
space based on attributes such as the person who defined this nugget,
or when it was created or visited. In such a way, users can focus
on important nuggets or those of interest. For example, selecting
only those nuggets which were visited recently helps users focus on
important nuggets and de-emphasizes old and less interesting ones.
Move: Users can move one nugget to make it closer to or farther
from other nuggets using “drag and drop”. The reason why we in-

troduce this action is that nugget distance in the users’ mind might
be different from our distance formulas or the MDS algorithmre-
sult. Such an action allows users to correct the error from algo-
rithms based on the knowledge of domain experts. It is possible for
experts to make a mistake, thus we allow users to restore to the dis-
tances generated by our distance formulas or the MDS algorithm.
Compare: This action can popup a dialog to show the distances
(query, data, nugget) between two nuggets selected by the user.
The query arguments are also listed in this dialog to facilitate user’s
comparison.
Manual Clustering: As discussed before, NMS can do clustering
on existing nuggets. However, users might not be satisfied with the
automated clustering result. Thus our system allows users to select
several nuggets and group them. A new nugget will be shown to re-
place these selected nuggets. For the flexibility, we do not delete the
results from the clustering algorithms. Users can switch between
automatic and manual results. An example of manual clustering is
shown in Figure 15.
Automatic Refinement: Figure 16 shows the interface to do nugget
refinement based on the algorithm discussed in Section 4. After the
user select one nugget of interest, NMS runs the algorithm torefine
the selected nugget and then pop up a dialog to show the results. If
the user is satisfied with the refined results, NMS can replacethe
original nugget with the refined one.
In the above actions,MoveandManual Clusteringpotentially en-
able our system to learn some domain knowledge from experts,
which is proposed as a part of our future work.

6. NUGGET-BASED SENSE-MAKING
In this section, we introduce techniques to support nugget-based
sense making. As described in [5; 7], visualization-based sense
making is usually a complicated and interactive process supported
by continuous interacting with visualized evidence sets. Besides
evidence collecting, another major task is to reveal the interrela-
tions among individual pieces of evidence. Thus, beyond visual-
ization techniques for evidence sets, namely, the nugget space in
our case, more sophisticated nugget organization mechanisms need
to be provided to support nugget-based sense making.
In particular, we use two distinct but interlaced phases to summa-
rize the nugget-based sense making process. They are nuggetse-
lection and interrelation discovery. This is because a user’s opinion
of a certain hypothesis is eventually formed based on a selected
set of evidence and also the interrelations among them. We use
an important sense making model, which is hypothesis assessment,
to demonstrate the techniques we develop to support nugget-based
sense making. However, the general principles we propose for
nugget-based sense making and the design for “hypothesis views”
can easily be adapted to several other models, such as futurepre-
diction and alternative comparison. Before we present the details
of nugget organization mechanisms, we introduce the hypothesis
view, which acts as the nugget organization bed for hypothesis as-
sessment in our system. As shown in Figure 17, a hypothesis view
for a certain hypothesis is mainly composed of a “overview”,a
“support view” and a “refute view”. Initially, all the nuggets re-
lated to the given hypothesis are collected in the “overview”. The
nuggets which are considered to be positive or negative evidence
for the hypothesis are later separated from the “overview” and put
into the “support view” and “refute view” respectively.

6.1 Nugget Selection
After long term exploration by multiple users, a single dataset may
have accumulated a certain amount of nuggets in its nugget space.



Figure 17: An example of “Hypothesis View” over four datasets.
Totally 19 nuggets are collected as evidence to access a hypothesis:
The stock value of ‘ABC’ company is over-estimated. 4 of them
are considered to be positive evidence and thus being put in support
view (the user is expanding the second one to view the detailsof it).
6 of them are judged to be the negative evidence and put in refute
view. Others remain in the overview.

Many, if not most, of these nuggets may be unrelated to a certain
hypothesis, because different users may have different intentions
when exploring the dataset, and even for a single user, her explo-
ration may be for pursuing multiple goals. Moreover, to assess
a hypothesis (e.g., whether the stock value of a certain company
is over-estimated), an analyst may need to analyze the evidence
from multiple data resources (e.g., datasets recording stock mar-
ket transactions, datasets recording company profits). Thus, our
nugget selection techniques should allow users to efficiently select
related nuggets from multiple nugget spaces. In NMS, such se-
lections could either be achieved by users’ direct operations on the
system interface (e.g., drag nuggets from nugget spaces into the hy-
pothesis view), or by automatically importing the nuggets,which
fulfill the queries submitted by users, to the hypothesis view. NMS
provides functionality, such as sorting and querying on statistical
information and keyword based search on additional attributes, to
help users quickly access the nuggets of interest. Figure 17shows
an example of selecting nuggets from four different nugget spaces.

6.2 Interrelation Discovery
Interrelation discovery against selected evidence is a critical yet
complicated task for sense-making. It aims to incrementally inte-
grate individual evidence pieces to form larger evidence pieces, i.e.,
sub-opinions, until the final opinion is reached. Here we note that
there may exist numerous interrelation models among the evidence
and some of them may be very complex. In this work, we describe
several simple interrelation models among nuggets and the proto-
type in our system that helps alalysts use them in the hypothesis
views. We show examples of the interrelation models we support
in figure 18.
Group relation: Group relation is one of the simplest interrelation
models. It indicates that a group of evidence together supports or
refutes some component of a hypothesis. This is similar to nugget
selection, because even among the positive or negative evidence for
a hypothesis, different evidence may support or refute the hypothe-
sis from different aspects. In NMS, users can group nuggets in the
support or refute view and the system marks different groupswith
frames in different colors. Moreover, in a group of nuggets,some

of them may have greater importance than others and act as the
”core evidence” for the whole group, which is distinguishedfrom
others by a wider frame.
Sequence relation:Sequence relations among nuggets are based
on group relations but involve the concept of a time sequence. This
is important, because, in many cases, a group of evidence makes
most sense when they are considered in a certain order. For exam-
ple, in order to assess the hypothesis that the current gas price is at
a wave bottom, a user may have to gather the national average gas
prices for previous months, and analyze them in a time sequence.
In NMS, users can define sequence relations among nugget groups.
In particular, to express the order of two nuggets, users canstretch
an arrow from one to another. Finally, the whole “nugget string”
connected by the arrows forms a “storyline”, which supportsor re-
futes the hypothesis from one aspect (In the current versionof our
system, we do not allow “cycles” in a storyline).
the support or refute view, we also introduce an external relation
between positive and negative evidence, which is a contradiction.
Although, in general, the positive and negative evidence eventu-
ally contradicts with each other, the “contradiction” we define here
refers to a direct conflict between two specific pieces of evidence.
For example, a nugget extracted from dataset A shows that thegas
price in Massachusetts is lower than the national average, while
another nugget extracted from dataset B may indicate the opposite.
Such direct conflict usually indicates uncertainty or errors in the
datasets. Figuring out these contradictions will help users to be
aware of “bad” evidence, and eventually avoid data from unreliable
data sources. As shown in figure 18, in NMS, two nuggets involved
in contradiction are marked by dashed frames and connected by a
dashed line.

Figure 18: An example of interrelation discovery based on hypoth-
esis view. 5 nuggets in refute view are grouped together to form
an evidence group, and the one in the center is considered to be the
“core evidence” of this group. 2 groups of nuggets, 4 in each,are
recognzied to be evidence sequences and thus linked together by
arrows in the support view. A pair of nuggets are pointing to each
other by a double-direction dashed arrow, which indicates that they
are contradicted with each other.

7. EVALUATIONS
In order to show the effectiveness of NMS, we have performed
some preliminary user studies to compare user efficiency andac-
curacy when solving tasks with and without the help of NMS. We
divided 12 students into 4 groups, 3 users per group. All 4 groups



were asked to finish the same 5 knowledge discovery tasks, which
were based on 3 real datasets; three groups (group 2, 3, 4) were sup-
ported by NMS. All the users were encouraged to finish the tasks
as quickly and correctly as possible. Our user studies showed that
NMS may not only greatly improve users’ time efficiency when
solving knowledge discovery tasks, but also it can enhance users’
accuracy of finishing these tasks. Details of the experimental setup,
methodology and results of these user studies can be found in[20].
Here we note that these user studies were mainly designed to evalu-
ate the functionalities of the analytical components of NMS, namely
the nugget extraction, nugget combination and nugget refinement.
The nuggets in these user studies were displayed with very basic vi-
sualization techniques, such as pull-down item lists. The advanced
visualization and interaction techniques introduced in Section 5 and
6 were not employed in these user studies.
To further evaluate the functionalities of the nugget visualization
(NV) and nugget-based sense making (NBSM) components in NMS,
we conducted a preliminary case study to compare the effectiveness
of NMS alone and NMS(NV+NBSM). In this case study, we in-
vited 4 users (all WPI graduate students, but different fromthose in-
volved in the previous user studies) to analyze the nuggets pool col-
lected during previous users’ exploration. They were askedto iden-
tify the most “well-mined” nuggets, i.e., those that capture users’
interest best, and also to eliminate the “misinterpreted” nuggets,
which were most likely generated by misinterpretation of users’ in-
terest. In this case study, 2 of the 4 users used NMS first and then
NMS(NV+NBSM), while other 2 used them in the reverse order.
Our case study showed that all 4 users were much more efficient
in terms of both time spent and accuracy when using NMS(NV+
NBSM) to perform the tasks. Moreover, all 4 users gave com-
ments that NMS(NV+NBSM) was “useful” and easier to use. This
result was expected, because the nuggets view gave an intuitive
overview of the interrelations among nuggets and the nuggetsense-
making component provides convenient mechanisms to organize
the nuggets.

8. CONCLUSION
In this paper, we introduce a framework for analysis-guidedvisual
exploration of multivariate data. Our system (NMS) leverages the
collaborative effort of human intuition and machine computations
to extract, combine, refine and visualize the valuable information
(nuggets) hidden in large datasets. NMS also provides functional-
ity to support users’ sense-making processes based on the nugget
space. Our preliminary evaluations indicate that NMS may greatly
improve users’ time efficiency when solving knowledge discovery
tasks. It may also be able to enhance users’ accuracy in finishing
these tasks, although more complicated tasks are needed to val-
idate this. Our future work includes expanding the recognizable
nugget types(nugget extraction), pattern types(nugget refinement)
and nugget interrelation models (nugget-based sense-making). Au-
tomatic mining for interrelations among nuggets and techniques
to guide users’ further exploration with the well-organized nugget
spaces will also be investigated. Finally, more comprehensive user
studies that involve more users and more complex tasks will be a
major component of our future work.
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