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Abstract

Accessing data stored in persistent memory represents a
bottleneck for current visual exploration applications. Se-
mantic caching of frequent queries at the client-side along
with prefetching can improve performance of such systems.
However, a prefetching setup that only uses one prefetching
strategy may be insufficient because (1) different users have
different exploration patterns, and (2) a user’s pattern may
be changing within the same session. To solve this, exist-
ing research focuses on refining a single prefetching strat-
egy. We, on the other hand, now propose a novel frame-
work wherein prefetching strategies are adaptively selected
over time across and within one user session. This work is
the first to study adaptive prefetching in the context of vi-
sual data exploration. Specifically, we have implemented
our proposed approach within XmdvTool, a freeware visu-
alization system for multivariate data, and evaluated it us-
ing real user traces. Our results confirm that our approach
improves system performance by dynamically selecting the
most appropriate combination of prefetching strategies that
adapts to the user’s changing patterns.

1. Introduction
1.1. Addressing Needs in Data Visualization

Whether the domain is stock market data, scientific mea-
surements, or the distribution of sales, visualization is be-
coming an increasingly popular technique for data explo-
ration. When presented with visual depictions of the data,
humans can often easily detect interesting patterns as well
as outliers, which may be more difficult to identify and rate
as relevant with automated techniques [18]. Interactive vi-
sual navigation tools play an important role in aiding users
to find their way through large data sets. Significant effort
has thus been spent on developing effective methods to dis-
play and visually explore information [2, 17, 11].

Most visualization tools still execute on data that is first
fetched from the file system and loaded entirely into main
memory. However, as typical sizes of data sets become
larger (on the order of giga-bytes or more), current data sets
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can no longer be held entirely in main memory. We thus
must scale visual tools to work with large data sets without
sacrificing the near real-time responses required to service
user’s navigation requests. Even a small movement in the
user’s navigation tool may mean executing a new query to
retrieve the selected data, potentially resulting in a high data
access rate. Being an interactive feedback-driven paradigm,
it is critical that the user receives responses to her navigation
requests with little or no time lag.

To address the opposing needs of scalability and real-
time response, the XmdvTool team took on the challenge of
integrating a visualization tool with a database management
system. XmdvTool [26] is a public-domain tool for multi-
variate data visual exploration we have been developing at
WPI. In [20], we first applied semantic caching techniques
[5] for maintaining the client-side cache. Caching provides
the advantage of allowing most frequently requested data to
be kept in the cache to speed up future responses. In [7], we
augmented semantic caching techniques with the prefetch-
ing of data into the cache during idle times. We investigated
the use of different static prefetching strategies and showed
that some form of prefetching is better than no prefetch-
ing at all. This paper now describes a continuation of our
work into prefetching, this time proposing a strategy selec-
tion framework to achieve adaptive prefetching.

1.2. General Characteristics of Visual Exploration

Visual exploration packages usually exhibit the follow-
ing characteristics which can be exploited for caching and
prefetching purposes [7]:

e Locality of exploration: In general, users doing data
exploration usually explore one area of a display at a
time before moving on to another area. It is not com-
mon to randomly jump from one area to a remote area.
This locality of exploration increases the predictability
of the user’s next request. Prefetching strategies can be
designed to exploit this.

e Contiguity of user movements: User navigation opera-
tions are translated into queries to the database. Explo-
ration using visual navigation tools such as sliders and
knobs translates to consecutive queries that are con-
tiguous. Such contiguity also increases the predictabil-
ity of the user’s next request.



e Presence of idle time: Users usually pause to under-
stand the display and look for patterns in the data, so
there is idle time between queries to the database. Such
idle times can then be exploited for background tasks
such as prefetching.

These are general characteristics usually found in pack-
ages that contain display navigation tools such as sliders
and knobs. The prefetching concepts we discuss in this pa-
per exploit these general characteristics.

1.3. From Static to Adaptive Prefetching

Static prefetching strategies [7] are not tailored to
changes in the user navigation patterns. Drawbacks include:

1. Static prefetchers lack a feedback mechanism. They
typically generate predictions independent of their past
performance on previous predictions, even if those
were detrimental or non-effective.

2. Different users have varied navigation patterns. Such
variations are likely due to the user’s inherent navi-
gation preference, user’s familiarity with the data set,
user’s familiarity with the visualization tool, and the
patterns present in the data. This implies that no single
static prefetching strategy will work best for all types
of users (verified in Section 5).

3. Even navigation patterns of a user within a single ses-
sion may change as the user gains more knowledge
about the data, becomes more familiar with the data
visualization tool, or changes her goal of exploration.
This implies that a single strategy may not be sufficient
even within one user session (verified in Section 5).

To address these shortcomings, a logical next step is to
make prefetching adaptive. An adaptive prefetcher changes
its prediction behavior in response to a changing environ-
ment with the goal of improving performance. Specifically,
we propose a strategy selection framework for prefetching
wherein we can adaptively shift between prefetching strate-
gies within a user session and find the most appropriate
combination that best supports the user’s changing patterns.

1.4. Contributions

The main contributions of this paper include:

e the first to study adaptive prefetching in the context of
visual data exploration;

e a proposed framework for adaptive prefetching via
strategy selection, as opposed to the common approach
of strategy refinement; and

o empirical results showing benefits of strategy selection
over a wide range of user navigation traces.

1.5. Organization

The remainder of this paper is organized as follows: Sec-
tion 2 describes caching and static prefetching in Xmdv-
Tool. Section 3 outlines our adaptive prefetching approach.
Section 4 describes our implementation. Section 5 de-
scribes our experiments on real user traces. Section 6 lists
related work, while Section 7 concludes the paper.

2. Visualization Tool Case Study

While the concepts of adaptive prefetching we propose
are general, we incorporate our proposed techniques within
an actual system, XmdvTool, in order to evaluate them. The
major hurdles XmdvTool overcomes are the problems of
display clutter and intuitive navigation. Given that inter-
active exploration must support large multivariate data sets,
XmdvTool has a database backend which supports caching
and prefetching [20].

2.1. Structure-Based Brush in XmdvTool

We now illustrate how the characteristics listed in Section
1.2 can be exploited for caching and prefetching in Xmdv-
Tool. For this, consider Parallel Coordinates (Figure 1) as
one of the displays used for depicting multivariate data sets.
Structure-Based Brush (Figure 2) is one of the navigation
tools we use for exploring hierarchical data sets.
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Figure 1: Cluttered Parallel
Coordinates.

Figure 2: Structure-based
brush in XmdvTool.

Figure 1 shows the parallel coordinates display of a five
dimensional data set having 16,384 records. In this display,
each of the IV dimensions is represented as a vertical axis. A
data point in an V-dimensional space is mapped to a poly-
line that traverses across all NV axes crossing each axis at
a position proportional to its value for that dimension. As
seen from Figure 1, displaying all the data to the user at
the same time results in display clutter. Hence, we need to
provide the user with operations such as drilling down and
rolling up the level of detail of the data. Towards this end,
XmdvTool first clusters similar data points together to form
a hierarchy (a cluster tree), and then associates aggregate
information with each cluster node [24].

To support the visual navigation of cluster trees for large
data sets, we designed a navigation tool called structure-
based-brush (see Figure 2) [8]. This tool has two major



"sliders”. The level-of-detail ’b’ slider allows us to navi-
gate the tree vertically and view clusters at different levels
of detail. The focus extents "e’ slider allows us to move hor-
izontally and focus on a subset of clusters within the same
level. The left and right extents of the "e’ slider can also be
adjusted individually to modify the width of the focus area.
Figure 3 displays the same data set as Figure 1 but focused
on a specific cluster of data points; this is after the user nar-
rows the width of the focus area using ’e’ and performs a
drill-down operation using ’b’ as reflected in Figure 4. Fig-
ure 5 displays the same data set as Figure 3 but showing
the mean and range of the data points in that cluster. This
is after the user performs a roll-up operation using ’b’ as
reflected in Figure 6.

Structure-
Showing

Figure 3: Parallel Coordi- Figure 4:
nates After Focused Area based brush
Drilled-Down. Drill-Down.

Figure 5: Parallel Coordi-
nates After Focused Area
Rolled-Up.

Figure 6: Structure-based
brush Showing Roll-Up.

The structure-based brush exhibits the three characteris-
tics listed in Section 1.2. First, data exploration using this
tool can only be accomplished by the two sliders. Hence,
locality of exploration is guaranteed. Second, queries to
the database generated by this brushing tool are inherently
contiguous and directional. A single brush movement (e.g.,
sliding the brush to the left) is actually divided into a series
of smaller incremental queries and display updates. This
ensures that the image displayed changes smoothly as the
brush is moved. This inherent directionality of the queries
adds to the predictability of the user movements. Lastly,
users exploring the data clusters in a large data set using
this brushing tool will likely pause to look for patterns in
the data. Data can be prefetched during this idle time.

2.2. Semantic Caching in XmdvTool

Memory organization is critical in interactive applica-
tions since it influences the performance of subsequent op-
erations. When a request for new objects is issued by the
front-end, the difference between the set of objects just se-
lected and the current content of the cache has to be quickly
computed. Thus, we need to be able to know what data
resides in the memory without fully traversing the cache.

For this purpose, XmdvTool uses a semantic caching ar-
chitecture [19]. Semantic caching is a high level type of
cache in which the cache contents at time ¢ are maintained
as a set of queries ¢*,,;..;» rather than a set of data points.
In semantic caching, the front-end does not ask for spe-
cific data points. Instead, it passes a query grequested tO
the back-end: “are the data points within within this brush
available?”. The difference between g,equested aNd @'y pient
represents the data points that are not in the cache and need
to be loaded next.

2.3. Static Prefetching in XmdvTool

Here, we describe two simple prefetching strategies
available in XmdvTool [7] which we used in our adaptive
prefetcher.

Random Strategy: The random strategy is based on ran-
domly choosing the direction in which to prefetch next.
The random strategy applicable to the structure-based brush
only considers four directions: left/right at the same level
in the hierarchy and up/down the different levels of detail.
This strategy is appropriate when the predictor either can-
not extract prefetching hints or provides hints with a low
confidence measure.

Direction Strategy: Direction strategy is analogous
to the sequential prefetching scheme discussed in other
prefetching papers [4, 12]. This strategy assumes that the
most likely direction of the next next brush movement can
be determined. In general, it is intuitive, for instance, that
the user will continue to use the same navigation tool (e.g.,
slider or knob) for a while before changing to another one.
In the structure-based brush, each slider happens to pre-
cisely control one direction only. Based on a user’s past
explorations, the predictor assigns probabilities to the four
directions. The strategy then is to “prefetch data in the di-
rection” currently with the highest probability.

3. Adaptive Prefetching via Strategy Selection

In general, an adaptive system is a system that changes
its behavior in response to a changing environment with the
goal of improving performance. It monitors the effects of
its behavior on its environment through a feedback mech-
anism, with the aim of exploiting previously beneficial be-
havior and exploring alternative behavior [14].

Specifically, an adaptive prefetcher is a prefetcher that
changes its prediction behavior in response to changing data



access patterns. There are at least two approaches for mak-
ing a prefetcher adaptive: strategy refinement and strategy
selection. In strategy refinement, the parameters of a sin-
gle prefetching strategy are adjusted within a user session.
In strategy selection, there are several strategies to choose
from and the choice can change within a session, with the
goal of adapting to changing user navigation patterns. In
this research, we target the three drawbacks listed in Sec-
tion 1.3. Thus, we focus this research on strategy selection.

3.1. Strategy Selection Framework

When using strategy selection for prefetching, every time
prefetching needs to be done, a strategy is selected from the
set of prefetching strategies based on that strategy’s perfor-
mance on past prefetching requests within the current ses-
sion. In strategy selection, we extract feedback by measur-
ing the performance of each prefetching strategy every time
it is selected.

Basic building blocks of strategy selection include:

e Set of Strategies - a set of individual prefetching
strategies to choose from.

e Performance Measures - statistics to measure how
well each prefetching strategy has performed.

e Fitness Function - a function of one or more perfor-
mance measures that is used by the strategy selection
policy to decide which strategy to select next.

e Strategy Selection Policy - a rule used to determine
which among competing strategies to select.

The basic flow of our adaptive prefetching algorithm that
use these building blocks is as follows:

sel ect individual strategies for set STRAT
initialize performance neasures and fitness of each
strategy Si in STRAT
I oop {
set Si to null
if idle time {
sel ect one strategy Si based on fitness
start executing Si in separate thread
}
if user request cones and Si not finished,
pre-enmpt prefetching thread
service the user request
if Si not null {
cal cul ate performance neasures of Si
update fitness of Si
}
}

3.2. Set of Individual Prefetching Strategies

For strategy selection, we have selected the following in-
dividual prefetching strategies: no prefetch, random, and
direction (see Section 2.3). In [7], the Xmdv team tested
the basic random and direction strategies alongside more
complex prefetching strategies, namely focus and vector
strategies. Our experiments revealed that, if we were to
choose one strategy among these strategies that works well

with different types of user navigation patterns, the direc-
tion strategy is the strategy to choose for the structure-based
brush. This is likely due to the inherent directionality of
the queries associated with the structure-based brush as ex-
plained in Section 2.1. However, in situations when the
user’s movements are short and very random, [7] showed
that the random strategy is better than direction strategy.
Because of these observations, we use random and direc-
tion strategies as the base strategies for this research.

We also included the no prefetching strategy in our list for
cases where it is better not to prefetch. For example, when
the time difference between queries is too short to allow for
prefetching, or when the remaining cache space is too small
to accommodate prefetched data, it is better not to prefetch.

3.3. Performance Measures

To measure the quality of a prefetcher in predicting which
objects are needed by the next user query, we utilize the
following measures from [9] (see Figure 7):

Reguired by user

Yes No
Predicted Yes Correctly Mis-predicted
by prefetcher predicted
No Not predicted

Figure 7: Prediction Measurements

Correctly predicted objects (C P) represent the part of the
cache content that was prefetched and then requested by the
next user query. The larger the values of C P, the better.

Not predicted objects (N P) represent the objects re-
quested by a user query but were not predicted by the last
strategy. These objects either had to be fetched on demand,
or were in the cache because of previous queries. The sets of
objects correctly predicted and not-predicted together make
up the set of required objects.

Mis-predicted objects (M P) represent the objects that
were incorrectly predicted and resulted in wasted band-
width. A smaller MP means the prefetcher fetched fewer
unnecessary objects.

Our definition of CP, NP and MP requires that any
prefetched object be accessed immediately in the next user
query. An alternative is to consider a prefetch a success as
long as a user request comes at some later time while the ob-
ject is still in the cache. To do this requires each prefetched
object to be tagged with the strategy that predicted it and
how long ago it was predicted. This raises several issues:
if successive strategies predicted it, which strategies should
take credit, and how much credit should be given? Hence,
we elected to stay with the above simpler model.

Other performance measures include response time and
network traffic. Response time measures how quickly can
the data corresponding to the next user request be dis-
played to the user. We define it as time(dataDisplayed) —
time(user Request). Response time can be reduced by



correctly predicting and then prefetching objects before the
next user request comes in, thus implying lower number of
not-predicted objects. However, any performance measure
involving time is likely affected by external factors such as
the database server workload, the location of the network
(remote or local), the size of the cache, the size of the data
set, the implementation of the database (e.g., presence of
indexing), the presence of pre-empted prefetching opera-
tions, and the size of the user query. Hence, care must be
taken in interpreting results based on response time. Also,
response time does not measure the accuracy of the current
prefetcher. The response time may be fast simply by re-
trieving objects that were previously fetched by some other
prefetcher.

Network traffic measures how much data access is re-
quired between the tool on the client side and the database
on the server side. Network traffic can be determined by the
number of objects retrieved from the database during fetch-
ing and prefetching. The lowest possible value would oc-
cur when (i) we do not prefetch at all (implying that when
the user request arrives, we will load only data that is re-
quired) or (ii) we do not prefetch any data that will not be
required in the next user request. To reduce network traf-
fic, we thus want to minimize the number of mis-predicted
and not-predicted objects. Since network traffic is a simple
function of the number of mis-predicted and not-predicted
objects, we do not show it in Section 5.

3.4. Fitness Function

To take into account all the performance measurements
above, we need to design a function that summarizes the
overall performance of a prefetcher with a single number.
This function, which we call a fitness function (a term taken
from Genetic Algorithms literature [13]), is a function of
one or more performance measures. We use it for the strat-
egy selection policy to decide which strategy to select.

The fitness function should take into account the perfor-
mance of the prefetchers on several queries, and not just on
one single query. Here, we chose misclassification cost as
our fitness function. Misclassification cost, defined as cost
associated with making a wrong classification (of required
data) [25], is given by:

Cnp X #np) + (Cup X #mp)
#cp +#np +H#up

where C'yp is the penalty assigned for not predicting re-
quired objects, and C)p is the penalty assigned for mis-
predicting unnecessary objects. We have set the value of
Cnp = 0.5and Cyp = 0.5. The lower the value for
misclassification cost, the better the prefetcher. We chose
misclassification cost for the following reasons:

Cost = (

o Prefetching is like a statistical binary outcome predic-
tion problem. One way to measure the accuracy of
such a predictor is with the use of misclassification
cost. This cost represents a trade-off between the two

types of errors a predictor can make - not predicted
and mis-predicted. The cost factors (Cnp and Cyp)
represent the weight given to each type of error.

e Since response time is affected by a number of external
factors (as mentioned in Section 3.3), we decided not
to directly include it in our fitness function. However,
since response time is correlated with the percentage
of not-predicted objects, it is therefore indirectly in-
corporated in the misclassification cost.

e Unlike response time, misclassification cost is not af-
fected by external factors beyond our control, making
its interpretation more straightforward.

One misclassification cost value can be calculated for
each prefetch query. But we do not want to base the strategy
selection on the cost of just the most recent query. Instead,
we want to average the cost for a series of queries, giving
more weight to the most recent queries. One way to do this
is with the use of exponential smoothing. For misclassifica-
tion cost, the exponentially smoothed average value (which
we call localAvg) is given by local Avg[1] = Cost[1] and
local Avg[t] = a x Cost[t] + (1 — a) x local Avg[t — 1]
where a = smoothing parameter between [0, 1]. The choice
of the smoothing parameter « dictates the aggressiveness of
decaying older values. For our system, we used a =0.75
to give more weight to the performance of the most recent
queries.

CP, MP and NP are the same component statis-
tics used in calculating precision and recall, popular per-
formance evaluation measures used in Information Re-
trieval. Precision is #cp/(#cp + #mp) While recall is
#cp/(#cp++#np). Precision measures the usefulness of
the prefetched set, while recall measures the completeness
of the prefetched set. An alternative fitness function might
be to combine these two measures (to produce a single num-
ber) such that the trade-off between them is reflected.

3.5. Strategy Selection Policy

A strategy selection policy is a rule used to determine
which among competing strategies to select based on the
fitness values. At the start of a user session, the strategies
should be put on equal footing. For our implementation,
we initialized the localAvg to 0 (all are good). This ensures
that all strategies are selected during the first few runs of the
policy.

Several policies have been proposed in the context of Ge-
netic Algorithms and Operating Systems (see Section 6).
For our problem, we experimented with two policies:

SelectBest: This policy chooses the strategy with the best
fitness function value. If ties occur, we randomly choose
among the tied strategies. One potential disadvantage of
this policy is that a single strategy might dominate the se-
lection early in the process and no other strategies might get
selected from then onwards.



SelectProp: This policy chooses a strategy with a prob-
ability proportional to its fitness function value (assuming
that a higher fitness value means better performance). In
Genetic Algorithms [13], such a strategy is called “fitness
proportionate selection”. The general algorithm proceeds
as follows: Let f; be the fitness value of strategy ¢ and N
be the number of prefetching strategies. The probability of
a strategy being selected is given by p; = —Z%i—. Select-

RN

Prop policy allows for some degree of exploration [13], i.e.,
allows currently lesser performing strategies to be selected
and executed to prevent a single strategy from dominating
the selection process.

4. Implementing Prefetching in XmdvTool

The adaptive prefetching framework described above has
been implemented in XmdvTool 5.0 [26] (see Figure 8).
XmdvTool is coded in C++ with Tcl/Tk and OpenGL prim-
itives. The caching and prefetching modules are written in
C with Pro*C (embedded SQL) primitives for Oracle8i. We
focus our discussion here on the modules that interact with
the prefetching module. For a complete description of the
architecture and caching, see [19].
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Figure 8: XmdvTool system architecture. Rectangles rep-
resent modules. Ovals represent data. Arrows show control
flow.

When the system is idle, the prefetcher thread is cre-
ated which coordinates the prefetching process and com-
municates with the predictor to make decisions about the
next most probable data to be prefetched depending on the
prefetching strategy and the current cache content. The
prefetching query is then passed to a rewriter. The rewriter
consults the cache contents and generates sub-requests to
adjust the data in the cache. Each sub-request is trans-
formed into an SQL query by the translator. The queries
are passed to the loader, which fetches the necessary objects
from the database and places them in the cache. Whenever
the cache is full, the replacer removes the objects from the
cache by examining probability values that depend on their
semantic distance from the active region. On explicit user
request, the fetching process is started by the main thread.
If the prefetcher thread is still running, it is preempted and

the contents of the cache are adjusted for consistency. The
predictor module implements the framework explained in
Section 3.1.

5. Experimental Evaluation
5.1. Experimental Setup

To verify drawbacks #2 and #3 listed in Section 1.3 and
to evaluate the performance of our adaptive prefetcher, we
investigate real user traces. In a user study, we collected
the navigation traces of 14 users of XmdvTool. Each user
used the structure-based brush to navigate through a hier-
chical parallel coordinates display of a data set containing
8 dimensions and 16,384 data points. The cache size was
limited to 1/4 the number of data points. Each user used the
tool for 30 minutes and made around 300-3000 brush move-
ments (i.e., requests for data) using the two sliders described
in Section 2.1. We now use these traces as input to our tool
and we varied settings such as prefetching strategies.

Additional measures were used in this section. % direc-
tionality per minute measures the user’s tendency to move
the brush in the same direction as his previous movement.
Number of requests per minute measures the frequency of
brush movements. Width of brush measures approximately
the size of each request. Global average misclassification
cost is the average of the misclassification costs from time
0 to the current time.

5.2. User Trace Analysis

To characterize the navigation patterns of each user, we
measured % directionality per minute, number of requests
per minute, and width of the brush. We then performed
cluster analysis based on these measurements to group to-
gether similar navigation patterns. For the cluster analysis,
we used SAS’ Average Linkage Method in PROC CLUS-
TER [16]. Figure 9 summarizes the results of this analysis.
The vertical axis shows the normalized values of the 3 mea-
surements (normized such that the smallest value is mapped
to 0 while the largest value is mapped to 100), while the
horizontal axis lists the users and their corresponding clus-
ters. Cluster 1 consists of users who like to change direc-
tions often but they pause longer; we labelled them random-
starers. Cluster 3 consists of users who like to explore in
the same direction often and move often; we labelled them
directional-movers. Cluster 2 consists of everyone else;
we labelled them indeterminates. By identifying distinct
groups of navigation patterns, we can now systematically
investigate each group in more detail.

5.3. Detailed Analysis of A Directional User

User 13 Characteristics: We look closer at the naviga-
tion patterns of user 13, a directional-mover user, and use
this insight to explain how adaptive prefetching worked for
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Figure 9: Analysis of User Traces

him. Figure 10a shows the % directionality per minute for
user 13. Recall that for the structure-based brush described
in Section 2.1, the user can only move in 4 directions (up,
down, left, right). Based on Figure 10 this user’s direc-
tionality changes over time, from being 100% directional at
times to being 40% directional at other times. On average,
he stays 73% directional.
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Figure 10: (a). % Directionality/Minute and (b) Number of
Requests/Minute for User 13

Figure 10b shows the frequency in which the user moves
the brushing tool, which translates to the number of times
data is requested from the cache. Frequent moves mean
lesser time to prefetch. The frequency for this user varies
from 105 movements per minute to no movements for 2
minutes. On average, he moves 70 times per minute.
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Figure 11: Brush movements vs. Time for User 13

Figure 11 illustrates the movements by the user in both
horizontal (left/right) and vertical (up/down) directions.
The lower line indicates horizontal movements by the user.
Value 0 means the user is at the leftmost extent and value 1
means he’s at the rightmost extent. The upper line indicates
the vertical movements by the user. Value 1 indicates the

user is at the bottom of the cluster tree (drill-down opera-
tion). Value 2 indicates the user is at the top of the cluster
tree (roll-up operation). As seen in Figure 11, the user an-
alyzes data horizontally most of the time with hardly any
vertical slider movements initially. Then he starts analyzing
the same data at a different level of detail, and so on.

Performance for User 13: Figure 12 shows the global
average misclassification cost (globalAvg) over time. The
lower the globalAvg, the better. Among the static prefetch-
ing strategies, the direction prefetching strategy gives the
best globalAvg. This result was expected as this user
appears to be directional (average 73% as noted in Fig-
ure 10a). Also note that for adaptive prefetching, the glob-
alAvg for "Best” (SelectBest) is even better as it selects the
best strategies, namely, direction and no prefetching strate-
gies, for improving the performance further.
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Figure 12: Misclassification Cost vs. Time for User 13
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Figure 13: Strategy selection vs. Time for User 13

Strategy selection over time for user 13 is exemplified in
Figure 13. Since the direction strategy is best for user 13,
we note that it is the one that gets selected most of the time.
Also, sometimes the no prefetching strategy is selected as
the user appears a bit random at those time instances (from
Figure 10a) and the movements are more frequent (from
Figure 10b), thus indicating not to prefetch in order to re-
duce the number of objects mispredicted.

From Figure 14, response time is better for SelectBest for
user 13, even though it was not directly used as the objective
function for strategy selection. But as we will see below,
this is not always the case for other users.

5.4. Detailed Analysis of An Indeterminate User
User 5 Characteristics. Let us look at how the adaptive

prefetcher works for user 5, an indeterminate user, and com-
pare it with user 13. Figure 15a gives the directionality for
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Figure 14: Response Time vs. Time for User 13

user 5 at any given time during the session. This chart shows
that the user’s directionality on average stays around 40%.
Also, the change in directionality for this user is steady
throughout. In Figure 15b, the user speed again changes
with respect to time. Compared to user 13, user 5 is slow
and steady with an average of 40 movements per minute.
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Figure 15: (a). % Directionality/Minute and (b) Number of
Requests/Minute for User 5
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Figure 16: Brush movements vs. Time for User 5

Figure 16 illustrates the movements by user 5 in horizon-
tal and vertical directions. This figure shows that user 5
mostly analyzes data vertically, systematically selects dif-
ferent subsets and visualizes them at different level of de-
tails.

Performancefor User 5:  As shown in Figure 17, among
the static prefetching techniques, the random strategy gives
the best misclassification cost compared to no prefetching
as well as direction strategy. This is different from what we
observed for user 13 where direction strategy is superior.
This confirms our claim that no single prefetching strategy

wins for all users. Also for adaptive prefetching, the mis-
classification cost is even better as it selects the best strate-
gies for improving the performance further.
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Figure 17: Misclassification Cost vs. Time for User 5
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Figure 18: Strategy selection vs. Time for User 5

Strategy selection over time for user 5 is shown in Fig-
ure 18. Since random strategy is best for user 5, it is the
one that gets selected most of the time. Also, sometimes
no prefetching strategy is selected when the movements are
quick, thus indicating not to prefetch in order to reduce the
number of objects mispredicted. The direction strategy is
hardly ever selected as its misclassification cost is high.
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Figure 19: Response Time vs. Time for User 5

InFigure 19, the response time is similar for all the strate-
gies. This indicates that adaptive prefetching might not help
to improve the performance much if individual prefetching
strategies do not have significant improvements.

The strategy selection done for user 13 resulted in the
combination of direction strategy with no prefetching. On
the other hand, the strategy selection done for user 5
resulted in the combination of random strategy with no
prefetching. In both cases, no prefetching was chosen to
compensate for the high mis-prediction done by direction
and random strategies. This suggests that one could adjust
the amount of data to be prefetched to achieve less % mis-
predicted objects for both direction and random strategies.



5.5. Summary Charts

We experimented on all user traces listed in Section 5.2.
To remove the possible effect of network traffic on the per-
formance measures, each experiment was repeated 3 times
and the measures were averaged. To get an overall picture of
the performances, the results are summarized for each user
cluster. Figures 20 and 21 show the global average misclas-
sification costs and normalized response times for different
prefetching strategies, summarized for each cluster.
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Figure 20: Global Average Misclassification Cost (Aver-
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Figure 21: Normalized Response Time (Averaged) For Dif-
ferent User Clusters

Figure 20 shows that, on average, strategy selection im-
proves the misclassification cost for the random-starers and
directional-movers, and only improves slightly for the in-
determinates. This could be due to the fact that the ran-
dom and directional prefetchers do not have direct control
over how much they prefetch and thus have large number of
mispredictions. With strategy selection, there is the option
to switch to 'no prefetching’ when the movements become
more random and more frequent, thus minimizing the num-
ber of mispredictions which in turn minimizes misclassifi-
cation cost. This observation leads us to consider refining
the random and directional prefetchers to allow the amount
of data to be prefetched to change over time. For indetermi-
nate users, strategy selection improved the misclassification
cost only slightly compared to static prefetching.

Figure 21 shows that, on average, strategy selection
does not improve the response time compared to the static
prefetchers for the random-starers and directional-movers.
Recall that response time is affected by several external fac-
tors (listed in Section 3.3). As such, the exact reason behind
these summary patterns is hard to pinpoint.

We also tried the SelectProp strategy selection policy (de-
scribed in Section 3.5) to investigate if a more exploratory

approach (SelectProp) is better than a greedy approach (Se-
lectBest). Our experiments showed that SelectBest yielded
better results compared to SelectProp. One reason for this
is that SelectProp allows even the worst performing strategy
to be selected (though just a small probability). One could
combine SelectBest and SelectProp to create a new selec-
tion policy as follows: use SelectBest most of the time, but
when there is one strategy that dominates and its fitness is
declining over time, execute SelectProp once (to give other
strategies some chance).

6. Related Work

There has been much research performed on adaptive
prefetching for different applications. Davidson et al. [6]
proposed a solution for predicting the next user command in
the Unix shell prompt by using simple Markov chain predic-
tors. These statistics, collected for each user, are aged over
time in order to emphasize the recent commands by the user.
This solution utilizes the concepts of strategy refinement
and information aging. Our use of exponential smoothing in
our fitness function also utilizes the concept of information
aging. Other prefetching work involving Markov chains in-
clude [3, 10, 15].

Tcheun et al. [22] proposed an adaptive sequential
prefetching scheme for hardware, which is similar to our
static direction strategy. It adapts to a user’s step size to
ensure that only the best data gets in the memory. This so-
lution utilizes strategy refinement but not strategy selection.

Some research efforts utilize the concept of learning (in-
stead of strategy selection nor strategy refinement) in de-
ciding the next adaptive action to take. Srikant et al. [1]
present a data mining approach to gathering sequential pat-
terns about time-series data. This algorithm can also be
used to predict the next user movement. [21] discusses a
model for capturing user behavior that may be useful to
adapt to the changes in the user patterns. Learning is one
potential enhancement for adaptation that we currently do
not apply in our system.

Several strategy selection policies already exist in various
fields, including Genetic Algorithms (fitness-proportionate
selection, tournament selection) [13] and Operating Sys-
tems (lottery scheduling [23]). For our research, we tried
fitness-proportionate selection (in SelectProp). However,
other selection methods could be considered in the future.

For performance evaluation, we extracted the idea of us-
ing mis-predicted/not predicted/correctly predicted statis-
tics from [9]. The idea of a fitness function in strategy selec-
tion is inspired by fitness functions in Genetic Algorithms
[13]. Furthermore, since prefetching boils down to a sta-
tistical classification problem, we looked into the Statistics
field for ideas for fitness function and found misclassifica-
tion cost [25].



7. Conclusions

In this paper, we tackled the problem of single-strategy
prefetching being unable to adjust to changing user naviga-
tion patterns. We showed empirically that there are benefits
to having more than one prefetching strategy implemented
and in allowing the choice of strategy to adaptively change
over time, within and/or across user sessions, in response
to changing user navigation patterns. The benefits of adap-
tive prefetching via strategy selection is reflected in the re-
duced number of prediction errors (not-predicted and mis-
predicted objects) and consequently, the reduced response
time, as shown in our experiments over a wide range of
real user navigation patterns. Although our experiments
involved only the structure-based brush in XmdvTool, the
concepts are applicable to any visual exploration package
exhibiting the general characteristics listed in Section 1.3.
This work is the first to study adaptive prefetching in the
context of visual data exploration.

While existing adaptive prefetching research focuses on
refining a single strategy, we instead put forth a framework
that facilitates strategy selection. This framework involves
several parameters. We have shown that even with simple
parameter settings, strategy selection already improves sys-
tem performance. A natural next step is to refine the di-
rection and random strategies to make them adaptive (e.g.,
adapt the amount of data to prefetch), and then compare
the performance of strategy selection against strategy re-
finement.
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