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Abstract

Our ability to accumulate large, complex (multivariate) data sets
has far exceeded our ability to effectively process them in search of
patterns, anomalies, and other interesting features. Conventional
multivariate visualization techniques generally do not scale well
with respect to the size of the data set. The focus of this paper is
on the interactive visualization of large multivariate data sets based
on a number of novel extensions to the parallel coordinates display
technique. We develop a multiresolutional view of the data via hi-
erarchical clustering, and use a variation on parallel coordinates to
convey aggregation information for the resulting clusters. Users can
then navigate the resulting structure until the desired focus region
and level of detail is reached, using our suite of navigational and
filtering tools. We describe the design and implementation of our
hierarchical parallel coordinates system which is based on extend-
ing the XmdvTool system. Lastly, we show examples of the tools
and techniques applied to large (hundreds of thousands of records)
multivariate data sets.

Keywords: Large-scale multivariate data visualization, hierarchi-
cal data exploration, parallel coordinates.

1 Introduction

As data sets become increasingly large and complex we require
more effective ways to display, analyze, filter and interpret the in-
formation contained within them. Continuously increasing data set
sizes challenges fundamental methods that have been designed and
conceptually verified on small or moderate sized sets. This chal-
lenge manifests itself in methods across many fields, from compu-
tational complexity to database organization to the visual presenta-
tion and exploration of data. The latter is the subject of this paper.

A multivariate data set consists of a collection of � -tuples,
where each entry of an � -tuple is a nominal or ordinal value cor-
responding to an independent or dependent variable. Several tech-
niques have been proposed to display multivariate data. We broadly
categorize them as:

� Axis reconfiguration techniques, such as parallel coordinates
[10, 27] and glyphs [2, 4, 23].

�
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� Dimensional embedding techniques, such as dimensional
stacking [16] and worlds within worlds [6].

� Dimensional subsetting, such as scatterplots [5].

� Dimensional reduction techniques, such as multidimensional
scaling [20, 15, 29], principal component analysis [12] and
self-organizing maps [14].

Most of these techniques do not scale well with respect to the
size of the data set. As a generalization, we postulate that any
method that displays a single entity per data point invariably re-
sults in overlapped elements and a convoluted display that is not
suited for the visualization of large data sets. The quantification of
the term “large” varies and is subject to revision in sync with the
state of computing power. For our present application, we define a
large data set to contain ���
	 to ����� data elements or more.

Our research focus extends beyond just data display, incorporat-
ing the process of data exploration, with the goal of interactively
uncovering patterns or anomalies not immediately obvious or com-
prehensible. Our goal is thus to support an active process of discov-
ery as opposed to passive display. We believe that it is only through
data exploration that meaningful ideas, relations, and subsequent
inferences may be extracted from the data. The major hurdles we
need to overcome are the problems of display density/clutter (too
much data at once tends to confuse viewers) and intuitive naviga-
tion (what tasks comprise a typical exploration process, and how
they can be made intuitive).

In this paper, we focus on the interactive visualization of large
multivariate data sets using the parallel coordinates display tech-
nique. We propose a hierarchical approach that presents a mul-
tiresolutional view of the data, with navigation and filtering tools
to facilitate the systematic discovery of data trends and hidden pat-
terns. Our implementation is based on XmdvTool [25, 19], a public-
domain visualization system that integrates multiple techniques for
displaying and visually exploring multivariate data.

2 Related Work

In recent years several research efforts have been directed at the
display of large multivariate data sets.

One approach is to use compression techniques to reduce the
data set size while preserving significant features. For example,
Wong and Bergeron [31] describe the construction of a multi-
resolution display using wavelet approximations, where the data
size is reduced through repeated merging of neighboring points.
The wavelet transform identifies averages and details present at
each level of compression. However, the transform requires the
data to be ordered, making it useful only for data sets with a natural
ordering, such as time-series data.

Another approach is to let the characteristics of the data set reveal
itself. For example, Wegman and Luo [28] suggest over-plotting
translucent data points/lines so that sparse areas fade away while



dense areas appear emphasized. The disadvantage of this method is
that it relies on overlapping points/lines to identify clusters. Clus-
ters without overlapping elements will not be visually emphasized.

Keim et al. [13] studied pixel-level visualization schemes which
permit the display of a large number of records on a typical worksta-
tion screen based on recursive layout patterns. However, the num-
ber of displayable records is dependent on the size of the display
area. This limitation restricts the scalability of their method. More-
over, since each pixel only represents one variable, it is difficult to
convey the interactions among variables.

Wills [30] describes a visualization technique for hierarchical
clusters. His approach expands upon the tree-map idea [24] by
recursively subdividing the tree based on a dissimilarity measure.
However, the main purpose is to display the clustering results, and
in particular, the data partitions at a given dissimilarity value.

Our research draws on several of the ideas found in the above
work. As in [31], we store and present our data at multiple res-
olutions. However, to overcome the data ordering limitation of
wavelets, we use clustering and partitioning techniques. We also
use the opacity of lines as in [28] to reduce clutter. However, rather
than conveying data density with overlapping lines, we use data ag-
gregation techniques to collapse data into clusters, and show the
population and extents of clusters with bands of varying translu-
cency.

3 Parallel Coordinates

Figure 1: Parallel coordinates of Detroit homicide data set: a 7-
dimensional data set with 13 records. Notice that there are inverse
correlations between the number of cleared homicides and both the
number of government workers and the total number of homicides.

We have chosen parallel coordinates as the visualization tech-
nique to extend upon to support large scale data. Parallel coordi-
nates is a technique pioneered in the 1980’s which has been applied
to a diverse set of multidimensional problems [10, 27]. It has since
been incorporated into many commercial and public-domain sys-
tems, such as WinViz [17], XmdvTool [25, 19], and SPSS Diamond
(http://www.spss.com/software/diamond).

In this technique, each data dimension is represented as a (hori-
zontal or) vertical axis, and the � axes are organized as uniformly
spaced lines. A data element in an � -dimensional space is mapped
to a polyline that traverses across all of the axes crossing each axis
at a position proportional to its value for that dimension.

Parallel coordinates have a distinct advantage over conventional
orthogonal coordinates. By laying out the vertical axes horizontally
across the screen, the number of dimensions that can be visualized
is restricted only by the horizontal resolution of the screen. This is
in contrast to multivariate visualization in orthogonal coordinates
where previous work [21] has attempted to augment each spatial
point with a vector of values, usually with some visual icon that en-
codes the values. It is clear that with such an encoding scheme, one

soon runs out of encoding possibilities as the number of dimensions
increases. The issue of dimensionality never arises in parallel coor-
dinates, though as the axes get closer it may become more difficult
to perceive structures or data relations. Moreover, using parallel co-
ordinates, we can easily spot correlations between variables in the
data set (see Figure 1).

The main difficulty of directly applying parallel coordinates to
large data sets is that the level of clutter present in the visualization
reduces the amount of useful information one can perceive. For
example, the display of a mass of overlapping lines precludes the
perception of relative densities present in the data set (see Figure
2). Our approach reduces the amount of clutter by imposing a hier-

Figure 2: Parallel coordinates display of a Remote Sensing data set:
a 5-dimensional data set with 16,384 records. Note the amount of
over-plotting precludes the perception of any data trends, correla-
tions or anomalies.

archical organization on the data set. We then display aggregations
of the data at different levels of abstraction and provide tools for
dynamically navigating and filtering the hierarchy, as described in
detail in the following sections.

4 Overview of Hierarchical Parallel Coor-
dinates

Exploratory data analysis is the summarization, display and manip-
ulation of data to make it more comprehensible to human minds,
thus uncovering underlying structure in the data and detecting im-
portant departures from that structure [3]. A complete data ex-
ploratory system thus has three major ingredients. Table 1 lists the
three major components to our approach and their corresponding
sub-components. The three basic components are: the summariza-

Summarization Display Manipulation/
Filtering

Hierarchical organization
with statistical aggrega-
tion

Proximity-
Based Coloring
Translucency

Structure-based Brush
Drill-Down/Roll-Up
Dimension Zooming
Extent Scaling
Dynamic Masking

Table 1: Basic Components of the proposed Hierarchical Parallel
Coordinates Approach

tion of the data by imposing a hierarchical structure on the data set,
a scheme for displaying � -dimensional aggregate information and
a set of tools for navigating, manipulating and filtering the hierar-
chical structure. We shall describe each of these components in the
following sections.



5 Hierarchical Clustering

Our primary purpose for building a cluster hierarchy is to structure
and present data at different levels of abstraction. A clustering algo-
rithm groups objects or data items based on measures of proximity
between pairs of objects [11]. In particular, a hierarchical cluster-
ing algorithm constructs a tree of nested clusters based on proximity
information.

Let E be the a set of
� � -dimensional objects, i.e.,
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A partition Q is nested into a partition P if every component of
Q is a proper subset of a component of P. That is, P is formed by
merging components of Q. A hierarchical clustering is a sequence
of partitions in which each partition is nested into the next partition
in the sequence.

A hierarchical clustering may be organized as a tree structure:
Let

% �
be a component of P, and Q be the $ partitions of

% �
. Let%��

be instantiated by a tree node ? � . Then, the components of Q
form the children nodes of ? � .

We broadly categorize approaches that impose a hierarchical
structure to a data set as either explicit or implicit clustering. In ex-
plicit clustering, hierarchical levels correspond to dimensions and
the branches correspond to distinct values or ranges of values for
the dimension. Hence, a different order of the dimensions give dif-
ferent hierarchical views. On the other hand, implicit clustering
tries to group similar objects based on a certain metric, for instance
the Euclidean distance.

There is a large body of literature on algorithms for the compu-
tation of implicit clusters [11]. The particular method used for the
tree construction is however not relevant to this paper. Any method
that builds a tree which abides by the above definitions could in
principle be used as the tree construction scheme in our system.

However, most clustering algorithms are not appropriate for
large data sets because of large storage and computation require-
ments. In recent years, a number of algorithms for clustering large
data sets have been proposed [1, 9, 32]. We adopt one of these,
namely the Birch algorithm [32], as our primary clustering tech-
nique, although our visualization techniques would work equally
well with data clustered by other methods.

6 Visualizing Clusters

Each node ? � in a hierarchical cluster tree T represents a nested
collection of enclosed data points or sub-clusters. At each node, we
maintain summary information of all points and sub-clusters rooted
from it. The following information may be directly obtained from? � .

� 8;�
: the number of data points enclosed.

� $ �
: the mean of the data points.

�A@ �
: the extents, i.e. the minimum and maximum bounds of

the cluster for each dimension.

�CB � : a measure of the size of cluster ? �
�AD � : the tree depth at node ? �
B � is a computed measure of a cluster size and satisfies the fol-

lowing criteria: If ? � is an ancestor of ? * , then

B �FE B *	�
The value of B � is directly dependent on the shape of the clusters
produced by the clustering algorithm. For spherical clusters, B � may
be the radius of a cluster. For rectangular clusters, B � may be the
� -dimensional volume of the cluster.

We propose to represent the information at a node by making
use of variable-width opacity bands. Figure 3 shows a graduated
band faded from a dense middle to transparent edges that visually
encodes the information for a cluster. The mean stretches across the
middle of the band and is encoded with the deepest opacity, which
is a function of the density of a cluster, defined as the ratio G HI H .
This allows us to differentiate sparse, broad clusters and narrow,
dense clusters. The top and bottom edges of the band have full
transparency. The opacity across the rest of the band is linearly
interpolated. The thickness of the band across each axis section
represents the extents of the cluster in that dimension.

Figure 3: A single multi-dimensional graduated band that visually
encodes information at a cluster node.

6.1 Multiresolutional Cluster Display

We define a horizontal cut S across a tree T as a boundary that di-
vides T into a top half and a bottom half and satisfies the following
criteria: for each path R from the root to a leaf, S intersects R at
exactly one point.

Clearly S defines a partition of the data set E. We may then vary
the level-of-detail (LOD) in our data display by changing the pa-
rameters that control the location of S.

Any variable that varies S is a candidate for the LOD control
parameter. For instance, the tree depth is one conceivable discrete
control parameter. However, it is a poor choice in some cases be-
cause the number of nodes may increase dramatically with depth.
This would manifest itself as abrupt screen changes as the LOD
switches values at higher depths of the tree.

We desire a continuous LOD control parameter that provides
smooth transitions on our data display. We define:

B &KJ�LM� NPO�QR HTS U
� B � �

B & � G
� NWV�XR HTS U

� B �T�

We then choose Y[ZA\ B & � G

 B &KJ�L ] as the LOD control parameter.

Define ^`_�Y#a as the collection of clusters whose size B � is less than
or equal to Y but whose parent’s size is greater than Y . Then ^b_�Y#a
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Figure 5: Ambiguous case in monochromatic parallel coordinates.
(A) Two data points plotted in parallel coordinates. (B) Differing
interpretation of the two points shown on the X-Z plane.

is a partition of E that satisfies our criteria for a continuous level-
of-detail control parameter. Formally, we define ^b_�Y#a as:

^b_�Y.a � � ? � � _ B � -0Y or ? � is a leaf node a andB�� J���� G��
	 ��� E Y �
Note that ^b_ B & J�L a is a single partition comprising the entire E,
while ^b_ B & � G a is a partition consisting of all the leaf nodes of T.

Figure 4 shows a series of images captured at six varying levels
of abstraction (only 3 are shown in the Color Plates). The data set
used is approximately 230,000 records of Fatal Accident Reports (8
variables shown) compiled by the National Highway Traffic Safety
Administration National Center for Statistics and Analysis Acci-
dent Investigation Division.

6.2 Proximity-Based Coloring

Monochromatic line drawings present an inherent difficulty in par-
allel coordinates. Figure 5 shows a simple case where two three-
dimensional data points give an ambiguous interpretation. This am-
biguity arises whenever it is visually difficult to trace the topology
of a data point as it traverses across the coordinate axes. This com-
monly occurs where data lines meet at axis lines.

One way to discriminate between such cases is through the use of
color. It is easy to distinguish two intersecting data lines that have
different colors. Ideally we wish to adopt a coloring scheme that
assigns colors via a similarity measure. Data lines that are similar
with respect to some measure should be in similar colors, whereas
dissimilar data lines should be shown in contrasting colors.

Our method maps colors by cluster proximity, hence the name
proximity-based coloring. This proximity is based on the structure
of the hierarchical tree, that is sibling nodes are considered closer
than non-sibling nodes. We first impose a linear order on the data
clusters gathered for display at a given LOD value, Y . These clus-
ters are simply the partition elements ^b_�Y.a as described in the pre-
vious section. The elements of ^b_�Y#a are gathered in a recursive
top-down manner using an in-order tree traversal.

Finally, we assign colors to each cluster by looking up a linear
colormap table. Colors are assigned to clusters based on the follow-
ing recursive formula:�� � � � � � �  � J���� G���	 ������� _�/2a��� H
� � (1)

where
 � Z \ � 
 � ] is the normalized color value of node ? � , and

��
is the color of the root. We currently use

 �
as the hue component

of an HSV colormap.
�

is the branching-factor of the cluster tree,D � is the tree depth at node ? � , and � _�/2a is the sign function defined
as:

� _�/2a � � � � if i is odd� � if i is even
(2)

Equation (1) colors clusters based on the cluster order derived
during the tree traversal. The color ranges assigned by Equation (1)
are nested just like clusters are nested, meaning larger clusters are
assigned a broader range of color values and smaller clusters are
assigned narrower ranges. Since small clusters imply that elements
are closer to each other, they are assigned closer color values on
the narrower color range. Equation (1) satisfies our definition of
proximity-based coloring.

The equation however does not differentiate between adjacent
elements (with respect to the linear order) belonging to different
subtrees. It is important to distinguish between such elements be-
cause such adjacent elements are deemed “significantly separated”
according to our proximity measure. For this, we revise Equation
(1) by introducing a “buffer” between subtrees. The buffer acts
as an unused color interval between subtrees so that elements at
the proximal ends of subtrees are not assigned colors that are in-
distinguishable. Clearly the buffer should be larger between large
subtrees and smaller otherwise.

Let � , where � � � , be the desired buffer interval. Let the revised
definition be: � �  � J���� G��
	 ��� � � _�/2a"!�� � H � �� � H � �$# (3)

Equation (3) achieves our desired purpose. We typically choose� to be small with values around ���&% � .
Proximity-based coloring highlights the relationships among

clusters. Consider the first image on Figure 6 (see Color Plates)
which shows the Iris data set [7] without proximity coloring, and
the second image which shows the same data set with proximity
coloring. By comparing the two images, it is clear that coloring
aids immensely in discerning meaningful patterns. In this example,
three distinct clusters are apparent, as concentrations of blue, green,
and pink cluster trends.

It is however not always possible to impose a linear order on the
data clusters. For instance, a cluster chain forming a circular loop
is not amenable to any linear order. In this case, an arbitrary break
must be made at some point in the loop. Data elements at the break
point, though similar according to our proximity measure, may be
assigned contrasting colors.

7 Navigation and Filtering Tools

So far, we have structured the data by imposing a hierarchy upon
it and have described a technique for displaying the data at a given
level-of-detail. In this section, we describe the set of manipulation
and filtering tools that allow us to interactively modify the display
in order to discover new or hidden relationships in the data set.

7.1 Structure-Based Brushing

Brushing, in the context of multivariate visualization, refers to an
interactive process for localizing a subset of a data set [19, 31, 28].
Many useful operations, such as highlighting, deleting, masking, or
aggregation, may then be performed on elements that lie within the
brushed subspace.

Brushing is a direct and data-driven metaphor. The operation
may be performed in 2-D screen space, e.g., via methods such



Figure 4: This image sequence shows a Fatal Accident data set of 230,000 data elements at different level of details. The first image shows a
cut across the root node. The last image shows the cut chaining all the leaf nodes. The rest of the images show intermediate cuts at varying
levels-of-detail. (See Color Plates).

Figure 6: Left image shows Iris data set without proximity-based coloring. Right image shows Iris data set with proximity-based coloring
revealing three distinct clusters depicted by concentrations of blue, green and pink lines. (See Color Plates).



as rubber-banding rectangles or mouse lasso operations. Brushing
may also be performed in N-D data space by interactive creation of
N-D hyperboxes by painting over data points of interest.

Figure 7: Structure-based brushing tool. (a) Hierarchical tree
frame; (b) Contour corresponding to current level-of-detail; (c)
Leaf contour approximates shape of hierarchical tree; (d) Structure-
based brush; (e) Interactive brush handles; (f) Colormap legend for
level-of-detail contour.

We introduce a new variant of brushing that we have developed
as a general mechanism for navigating in hierarchical space called
structure-based brushing (see Figure 7). Details of the structure-
based brush can be found in [8].

The triangular frame depicts the hierarchical tree. The leaf con-
tour depicts the silhouette of the hierarchical tree. It delineates the
approximate shape formed by chaining the leaf nodes. The colored
bold contour across the middle of the tree delineates the tree cut^b_�Y.a that represents the cluster partition corresponding to a level-
of-detail Y (Section 6.1). The colors on the contour correspond to
the colors used for drawing the nodes on the main parallel coordi-
nates display (Section 6.2). The two movable handles on the base
of the triangle, together with the apex of the triangle, form a wedge
in the hierarchical space.

The brushing interaction for the user consists of localizing a sub-
space within the hierarchical space by positioning the two han-
dles at the base of the triangle. The embedded wedge forms a
brushed subspace within the hierarchical space. Elements within
the brushed subspace may be examined at different level-of-detail
(Section 7.2), or magnified and examined in full view (Section 7.3),
or masked or emphasized using fading in/out operations (Section
7.5).

7.2 Drill-down and Roll-up

The two basic hierarchical operations when displaying data at mul-
tiple levels of aggregation are the “drill-down” and “roll-up” oper-
ations. Drill-down refers to the process of viewing data at a level of
increased detail, while roll-up refers to the process of viewing data
with decreasing detail.

Our system provides smooth and continuous level-of-detail con-
trol in all drilling operations. The control parameter is based on
a measure of cluster size (Section 6.1). The level-of-detail can be
varied indirectly using a slider or directly by adjusting the colored
contour across the cluster tree.

We couple our drilling operations with brushing. Our system
permits selective drill-down and roll-up of the brushed and non-
brushed region independently. This flexibility is important as it al-
lows the viewing of a subset of elements in varying levels of detail
in relation to elements outside the subset.

7.3 Dimension Zooming

In parallel coordinates, the brushed subspace appears as a confined
strip across the coordinate axes. For a narrow brush, it may be dif-
ficult to examine the data within this confined strip. To be able to
study elements within a subspace and explore its interesting charac-
teristics, it is essential that we treat this subset of elements as data
in its own right, and place them in full view so that they can be
examined as appropriate.

The use of distortion techniques [18, 22] has become increas-
ingly common as a means for visually exploring dense informa-
tion displays. Distortion operations allow the selective enlargement
of subsets of the data display while maintaining context with sur-
rounding data. We introduce a distortion operation that we term
dimension zooming. We scale up each of the dimensions indepen-
dently with respect to the extents of the brushed subspace, thus fill-
ing the display area. The subset of elements may then be examined
as an independent data set. This zooming operation may be per-
formed as many times as desired. For a data set occupying a large
range of values, this operation is invaluable for examining localized
trends.

One common problem with such scaling operations is that it is
easy to lose context of the big picture, and be lost wandering in
some isolated subspace. To maintain contextual information, we
display a mini-map showing the position of the currently zoomed
space in relation to the entire data space. Figure 8 shows an in-
stance of this zooming operation and the accompanying mini-map.
As an additional mechanism for context preservation, we animate
the zooming process, which shows both the differences in scaling
across the dimensions as well as the effects on data points neigh-
boring the brushed area.

7.4 Extent Scaling

Where there are overlapping bands, it is often difficult to isolate or
tell them apart. Our system overcomes this difficulty by allowing
the thickness of bands to be scaled uniformly via a dynamically
controlled scale factor. With this feature we can, for example, re-
veal the relative sizes of the extents while reducing occlusions (see
Figure 9).

7.5 Dynamic Masking

Another tool for managing the complexity of a dense display is a
process we call dynamic masking. This involves controlling the rel-
ative opacity between brushed and unbrushed areas. With dynamic
masking, the viewer can interactively fade out the unbrushed nodes,
thereby obtaining a clearer view of the brushed nodes. Conversely,
the brushed nodes can be faded out, thus obtaining a clearer view of
the unbrushed region. Hence, context is maintained while reducing
clutter (see Figure 10).

8 Conclusion and Future Work

This paper describes hierarchical enhancements to the parallel coor-
dinates visualization technique to facilitate the exploration of very
large multivariate data sets. There are three main contributions of
our general approach to hierarchical visualization on parallel coor-
dinates. First, our cluster-based hierarchical enhancements provide
a multiresolution view of the data and aid in revealing data trends
at different degrees of summarization. Second, our proximity-based
coloring scheme assures that data and clusters from similar parts of
the hierarchical structure are shown in similar colors. The color
scheme not only has a visual impact, but also aids in direct data
selection by color. Third, we augment our system with a set of



Figure 8: The image in the middle shows a magnified view of the brushed region indicated by the red lines in the leftmost image and an
accompanying mini-map that captures the location of the brush with respect to the entire data space. (See Color Plates).

Figure 9: The left image shows a view of the Fatal Accident data set without extent scaling. Notice that the overlapping bands make it difficult
to gauge the relative extent of the bands, as opposed to the same data set at the right image but with extent scaling.



Figure 10: The image on the left shows the Traffic Safety data set displayed without dynamic masking. The middle image shows partial
fading. The image on the right shows the effect of complete fading, with the unselected nodes faded out. The nodes are drawn with their
actual encoded colors to better distinguish them. Notice the increased clarity in the right image. We observe that both of these clusters have
accidents that involved not more than two vehicles and took place during lighted conditions. However, they differ widely in the number of
persons involved and the kind of atmospheric conditions under which the accidents occurred.

navigation tools to support data localization and subspace drilling
operations while maintaining context within the data space.

The ideas in this paper are implemented as OpenGL extensions
to XmdvTool 3.1. The source code and video clips highlighting the
operations supported will be made available to the public domain
in the near future (see http://davis.wpi.edu/ � xmdv).

This work is part of ongoing research at WPI focusing on mul-
tivariate visualization of large data sets. Our future undertakings
include extending the hierarchical methods to other visualization
modes in XmdvTool, including scatterplots, glyphs, and dimen-
sional stacking. This will be done in a unified manner to main-
tain consistency across all display modes. In particular, we are
interested in studying whether the navigation/interaction tools we
have developed for parallel coordinates will apply across other vi-
sualization techniques. We are also investigating effective database
management strategies within a large-scale multivariate visualiza-
tion setting, including innovative indexing schemes and query opti-
mizations to maximize performance for interactive data exploration
tasks. Finally, we plan to expand our work on perceptual bench-
marking for multivariate data visualization [26] to focus on assess-
ing the effectiveness of various techniques when dealing with large
data sets.
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Figure 4: This image sequence shows a Fatal Accident data set of 230,000 data elements at different level of details. The first image shows a
cut across the root node. The last image shows the cut chaining all the leaf nodes. The middle image shows an intermediate cut.

Figure 6: Left image shows Iris data set without proximity-based coloring. Right image shows Iris data set with proximity-based coloring
revealing three distinct clusters depicted by concentrations of blue, green and pink lines.

Figure 8: The image in the middle shows a magnified view of the brushed region indicated by the red lines in the leftmost image and an
accompanying mini-map that captures the location of the brush with respect to the entire data space.


