
Query Mesh: Multi-Route Query Processing Technology

Rimma V. Nehme
Purdue University

rnehme@cs.purdue.edu

Karen E. Works
Worcester Polytechnic Institute

kworks@cs.wpi.edu

Elke A. Rundensteiner
Worcester Polytechnic Institute

rundenst@cs.wpi.edu

Elisa Bertino
Purdue University

bertino@cs.purdue.edu

ABSTRACT
We propose to demonstrate a practical alternative approach
to the current state-of-the-art query processing techniques,
called the “Query Mesh” (or QM, for short). The main idea
of QM is to compute multiple routes (i.e., query plans)1,
each designed for a particular subset of data with distinct
statistical properties. Based on the execution routes and
the data characteristics, a classifier model is induced and is
used to partition new data tuples to assign the best routes
for their processing. We propose to demonstrate the QM

framework in the streaming context using our demo appli-
cation, called the “Ubi-City”. We will illustrate the innova-
tive features of QM, including: the QM optimization with
the integrated machine learning component, the QM execu-
tion using the efficient “Self-Routing Fabric” infrastructure,
and finally, the QM adaptive component that performs the
online adaptation of QM with near-zero runtime overhead.

1. INTRODUCTION
In most database systems, traditional and stream systems

alike, the optimizer picks a single query plan for all data
based on the overall statistics of the data [5]. The execution
costs for alternative plans are estimated and the one with
the overall cheapest cost is chosen. Real-life datasets, how-
ever, tend to have non-uniform distributions and selecting
a single execution plan may result in the execution that is
ineffective for possibly large portions of the actual data. For
example, in network communication, in case of a congestion,
different traffic types (e.g., voice, multimedia or data) may
have various probabilities of being discarded by routers. A
query monitoring the traffic on a network may observe di-
verse frequencies for packets of different traffic types. Stocks
from various sectors may exhibit different fluctuation pat-
terns, and a query continuously correlating stocks’ behavior
with the latest news or blogs may encounter distinct statis-
tics for various industry sectors. In a health application,
sensors measuring patients’ vital signs may observe different

1
We use terms “plans” and “routes” interchangeably in our work.

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09,August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

values depending on the patients’ age, gender or geographic
location.

Middle Ground in Query Processing
The most prevalent query processing approach in current
systems and in the literature is using a single execution plan.
Such approach has a major disadvantage: its optimization
coarseness [1]. It does not focus on addressing the intra-data

variations and often cannot serve well many of rather diverse
subsets of data. Having a fully established plan a priori
(at compile time), however, has several key advantages: all
tuples follow the same plan, resulting in a nearly “overhead-
free” execution. Moreover, data tuples’ sizes do not need
to be extended to store any optimization-related metadata
(e.g., tuple lineage).

On the other hand, recent systems, like Eddies [1], tend to
use multiple routes by default. Such systems at runtime de-
cide which operator should process a tuple next, thus discov-
ering different execution routes for tuples on-the-fly. Unfor-
tunately the “optimization decision” is made continuously,
and in the worst case for every individual tuple, leading to
its main disadvantage – the unavoidable “route discovery”
overhead. Furthermore, individual tuples’ sizes tend to be
larger, as they must now carry their individual “itineraries”.

In summary, optimizing too frequently as in the Eddies
approach may discover multiple plans, but may also result
in wasted resources, especially if the environment is sta-
ble. However, optimizing too coarsely as in the systems
pre-computing typically a single plan may miss critical op-
portunities to improve query execution performance. We

Classifier Multi-Route Configuration

Query Mesh Solution
…

…

…

route r1
route r2
route r3

Figure 1: QM solution overview.

thus have developed a practical middle ground solution be-
tween these two extremes called the Query Mesh (or QM for
short) [7] model (see Figure 1). The main idea of QM sys-
tem is to compute multiple execution routes a priori, each
optimized for a subset of data with distinct statistical prop-
erties, and then infer a decision tree-based classifier model
based on the computed set of routes and the observed data
characteristics. At runtime, the new data is classified (i.e.,
partitioned) using the classifier into distinct subsets, and
each subset is processed by the best route, customized for
its respective local statistics. While the conditions are sta-

QM
Optimizer

1 3

User
QM Executor

Online
Classifier

SRF+

Query

5

Data
Sources

QM Adaptor

DSMS 4

2
 Training

Data Collector

Figure 2: QM execution overview.

ble (which is monitored by the QM Adaptor), the classifier
and the execution routes stay unchanged. For classification,
we consider decision tree model as it helps to “zero-in” on
the sought-after routes very quickly with typically a small
number of comparisons (as will also be illustrated in our
demonstration).

2. TECHNICAL DETAILS
2.1 Research Challenges

Several practical considerations make finding a good qual-
ity query mesh challenging. First, there is a combinatorial
explosion in the search space. Finding a single optimal plan
is already known to be NP -hard; by using multiple plans
concurrently, the problem complexity increases multi-fold.
Second, QM is computed based on the collected training
dataset, and selecting a good representative dataset is a re-
search topic in its own right. In our demo, we will demon-
strate the various techniques for training data collection and
their effect on the resulting query mesh (Section 3). Third,
the classifier model and the number and the choice of partic-
ular execution routes are strongly dependent on each other.
A change in one component may cause a modification in
the other, subsequently affecting the cost of the overall QM

solution. Such interplay between the routes and the classi-
fication introduces a dilemma regarding how a QM solution
should be computed. Should the training dataset be par-
titioned first, and then the optimizer would compute the
routes for the different partitions. Or alternatively, should
some effective routes be determined first, and then the tu-
ples from the training dataset would get assigned to one of
the established routes2. Fourth, the execution of multiple
routes must be done in parallel and must be very efficient,
not to “cancel out” the benefits of using the multi-route
strategy. This requires an effective runtime execution in-
frastructure to support the multi-route execution paradigm.
Finally, given that we consider a streaming environment, the
system conditions may change over the lifetime of a query
execution, thus the QM system must be able to detect and
adapt to runtime conditions in a light-weight manner.

2.2 The QM System and Technology
Overview
Our QM framework is implemented inside a Java-based DSMS
prototype called CAPE [3]. Figure 2 gives a high level
overview of QM execution. A user specifies a continuous
query (Step 1), the QM Optimizer computes a logical QM

solution – a set of execution routes and a classifier – based
on the available training dataset that characterizes the latest
streaming data (Step 2). Then the optimizer forwards the
logical QM specification to the QM Executor, which instan-
tiates the QM physical runtime infrastructure composed of
the Online Classifier Operator and the Self-Routing Fabric

(SRF) (Step 3). After the instantiation, the processing of
the incoming streaming data begins (Step 4). The tuples are

2
We will demonstrate both strategies in our demo.

Self-Routing Fabric (SRF)

op

op

op

0

1

2

3

op

4

...

OI-array Op-modules

<4,2,5,1>

<4,5,3,1>

<3,4,1,5>

<5,4,1,3>

Data
Streams

Route
Labels

A = a2

A = a1

A = a3

B = b1

B = b1

B = b2

B = b3

B = b2

B = b3

Online Classifier

Data subset
execution example

Query
results

...

...

data
tuples r-token

ruster op queues

5

QM OptimizerQuery

Logical QM Solution (Classifier + Routes’ Specifications)

QM Executor

QM Adaptor

Physical QM Execution
Infrastructure

Figure 3: QM framework architecture.

partitioned into groups using the online classifier operator
and are forwarded into the SRF for actual query execution.
As SRF produces final tuples, they are returned to the user
as query results (Step 5). Figure 3 illustrates the architec-
ture of the key QM components in more detail.

QM Optimizer
QM optimizer computes a logical QM solution offline based
on the available data samples (i.e., the training data) and
their statistics. To find a good quality QM solution without
exhaustive enumeration of the search space, QM optimizer
uses a series of cost-based search heuristics. The heuristics
address the following search sub-tasks: (1) selection of a
promising start QM solution; (2) choice of an effective search

strategy ; and, (3) selection of a stop condition to terminate
the QM search. To identify the relationships between the
data and the resulting execution routes, a decision tree (or
DT, for short) classifier model is induced to be used for fast
and yet accurate classification of new data. A compact clas-
sifier is constructed by employing machine learning measures
of data impurity based on entropy and information gain.

QM Executor
Based on the logical QM specification received from the op-
timizer, the QM executor instantiates the physical runtime
infrastructure consisting of the Online classifier Operator

and the Self-Routing Fabric (SRF) (see Figure 3). When
new tuples arrive, they first get processed by the Online
Classifier operator to determine the routes that will be used
for their processing. The classification of data is cheap,
largely due to decision trees typically being compact in size
(which tends to be the norm). The classifier model stays
unchanged during the execution, except when QM adapta-
tion is required, and the current classifier is replaced by a
new classifier. The benefits of the QM approach is that it
classifies tuples cheaply, and there is no need for continuous
online re-optimization as it is done in Eddies. After classi-
fication, tuples are forwarded into the SRF for the actual
query evaluation according to their assigned routes. SRF

has two key elements: (1) Operator Index Array (OI-array)
that stores the pointers to all of the query operators in SRF.
Here, each index i corresponds to a unique operator opi

3,
and (2) Operator Modules which are the actual operators
processing the tuples. SRF enables concurrent multi-route

3
Index “0” is reserved for the SRF global output queue, where the

result tuples are placed to be sent to the applications.

execution without instantiating physical topologies of the
execution plans and without any central router operator like
Eddy [1]. Operators execute different routes based on the
streaming metadata, called r-tokens, embedded inside data
streams and encoded routing instructions for the streaming
data. Routes in r-tokens are specified in the form of an op-

erator index stack based on the design of SRF. An example
of runtime execution is depicted by a thick black arrow in
Figure 3. Consider an SRF with the operator index array as
follows: OI-array [1] = opi, OI-array [2] = opj , OI-array [3]
= opk, OI-array [4] = opl, OI-array [5] = opm. Then a route
r = <opm, opl, opi, opk> will be encoded in an r-token as a
stack <5,4,1,3>, where ‘5’ is the first operator in the route
and ‘3’ is the last. The top of the stack represents the index
of the operator in the SRF. A distinct group of tuples (called
ruster4) is always routed to the operator that is currently
the top node in the routing stack. OI-array enables the
knowledge of the “location” of all operators. After an oper-
ator is done processing, the operator “pops” its index from
the top of the routing stack in the r-token, and then forwards
the tuples following it to the next (now the top) operator.
The design of SRF and the embedded into streams route
encodings enable the de-centralized self-routing of data by
regular query operators.

QM Adaptor
Given that QM is deployed in dynamic data stream envi-
ronments, QM must be able to adapt to changes in runtime
conditions. The interesting question here is whether a multi-
plan based execution strategy, such as QM, can be as adap-
tive as “plan-less” systems like Eddies? The need for adap-
tivity is evident. Even with an initial good choice of a QM

solution, after some time, data characteristics, e.g., data
values, their frequencies and statistics may change consider-
ably requiring the adaptation of the execution strategy. The
fundamental challenge for QM is the problem of determin-
ing the discrepancy between the previously constructed QM

model5 and the currently most suitable QM solution based
on the new data characteristics, i.e., data values and their
statistics. In machine learning, such disrepancy is called a
concept drift [4]. Concept drifts happen when a model built
in the past is no longer applicable to the current data.

In the context of QM, the change may occur at either the
target (or real) concept level, i.e., the routes in the multi-
route configuration, or at the underlying data distribution
level, i.e., the data values and their frequencies. The neces-
sity to change the current model due to changes in the data
distribution is called a virtual concept drift [7]. A real con-

cept drift may occur when more accurate statistics become
available during execution and the routes in QM must be
adapted based on this new information [7]. Virtual and real
concept drifts often occur together. We refer to such case
as hybrid concept drift. From a practical point, a concept
drift (real, virtual, or both) gives a good indication that the
current QM solution needs to be adapted.

The key feature of QM physical adaptivity is that it re-
quires only a single online operation, namely the classifier
change, without affecting the rest of the infrastructure6 [7].

4
“Ruster” stands short for routable tuple cluster.

5
A QM represents a particular “model” of execution, as de- termined

by the classifier and the set of execution routes. In machine learning,
this term is commonly used to refer to classifier-based systems.
6
The optimizer determining a new QM based on the latest conditions

is executed offline (on a separate thread).

Hint to query optimizer to use QM approach

Figure 4: Ubi-City application.

To accomplish this, a pointer re-assignment to the new clas-
sifier (i.e., new decision tree) is the only step that is needed.
The QM runtime infrastructure seamlessly enables the pro-
cessing of tuples using both “old” as well as “new” routes
concurrently. The physical separation between the compo-
nent that determines which plans should be used for exe-
cution (the classifier) and the component that actually ex-
ecutes them (the SRF), enables QM adaptivity to be so
light-weight and efficient.

3. DEMONSTRATION
Demo Scenario: Ubi-City
The real-life application we consider in our demo is a ubiq-
uitous city or short the Ubi-City [8], representing a region,
where virtually everything is linked to an information system
through technologies such as wireless networking or RFID
tags. As was mentioned before, QM addresses the prob-
lem of intra-data variations and employs the best execution
strategy for each distinct subset of data. However, partition-
ing of data into distinct subsets is not limited to only data
values. In our demo, we will present a case where distinct
subsets can be identified based on the data security policies

described by the streaming security metadata called “secu-
rity punctuations” (or short sps) [6]. Sps are interleaved
with streaming data and describe the access control policies
for different portions of the streaming data. Here, QM exe-
cution paradigm is used in conjunction with security-aware

query processing, and distinct subsets are determined based
on how restrictive the data’s access control policies are. Dis-
tinct security policies may lead to different best operator
orderings for various portions of input data. In real-life this
scenario may happen when people are moving, and their de-
vices automatically adapt the security policies based on their
location, the proximity of businesses and users’ preferences,
limiting to who would be allowed to “see” them. This helps
to protect users from “context-aware spam” – information
or services people don’t know of or agree to.

Data and Queries
For data, we use the Network-based Moving Objects Gen-

erator [2] to generate continuously moving objects (e.g.,
cars, pedestrians with GPS devices) travelling in the city
of Worcester, MA USA7. Moving objects continuously and

7
The demo is not limited to this geographic location only. Our im-

plementation supports Tiger line files as inputs, which can run the

(i) QM1 (ii) QM2

(iii) QM3 (iv) QM4

Figure 5: Visualization of logical QM solutions.

selectively restrict access to their current location using se-
curity punctuations. The examples of queries we will use in
our demo include an n-way join and expensive filter queries
of the form:
SELECT MO.id, Mo.loc

FROM MovingObjects as MO

WHERE Similar(MO.Interests[1

hour], Teenager) AND

Similar(MotionPattern(MO.loc[20

min]), Stationary) AND

!Similar(MO.Activities[1

hour], Lunch)

SELECT MO.id, MO.loc FROM

MovingObjects as MO,

Movies M, RetailStores

RS, Restaurants R WHERE

distance(MO.loc, M.loc) <

5 AND distance(MO.loc, RS.loc)

< 8 AND distance(MO.loc,

R.loc) < 3.

Such queries may be executed by a company providing location-
based services to businesses in a certain area, e.g., [9].

Walkthrough
The audience of our demo will be able to see and perform
the following actions using our QM system:
Distinct data generation: The attendees will be able to
manipulate the parameters for generating the data with dis-
tinct characteristics (by modifying the access control poli-
cies) using our provided UI (see Figure 4).
Query specification: Second, the users will be able to sub-
mit a query to the DSMS using SQL language with a “hint”
for the optimizer to employ QM optimization as shown in
Figure 4 (top).
Sampling and training data collection: We have ex-
plored several techniques from statistics, including random
sampling with cross-validation and sampling with bootstrap-
ping for QM training data collection. Using these meth-
ods, the system can estimate how well the selected training
dataset is going to represent the future yet-unseen data, and
re-sample the data until the desired accuracy is achieved.
We will illustrate how various techniques can make a differ-
ence on the training tuple mix and the resulting QM.
QM optimization: After a user submits a query, the QM

optimizer will be invoked to compute the best logical QM

solution for the query. Given different search parameters,
we will show how the QM optimizer may find a different
QM solution and visualize it (see snapshots in Figure 5).
Using the GUI, the audience will be able to see the distinct
subsets of data, the structure of the classifier, and the best
routes determined for execution. We will also illustrate a
graphical respresentation of the QM lattice-shaped search
space (see left in Figure 6) and the sub-space iterated by the

system in the context of other geographic areas as well.

Start solution

Final QM solution

QM Search Space
0

1

2

3

4

5

SRF Visualization

Figure 6: QM search space and SRF visualization.

optimizer when searching for a QM solution under different
input parameters.
QM execution: After optimization, the QM Executor will
be called to consume the logical QM solution (produced by
the optimizer), to instantiate the physical runtime infras-
tructure. To highlight the uniqueness of QM runtime archi-
tecture, we will show the stack-based encoding of the routes
in the r-tokens that allow the operators to “self-route” the
data. Using our SRF visualizer (see Figure 6 on the right),
we will show the SRF with the instantiated in it query oper-
ators and their runtime properties (operator statistics). The
audience will thus observe the complete path of a query, from
specification to optimization and finally to physical instan-
tiation of query mesh runtime infrastructure.
QM adaptation: To illustrate the QM adaptive compo-
nent [7], we will periodically trigger changes in the security
policies depicted by the streaming sps. We will show how
the QM system adapts to these changes during query execu-
tion. New QM solution will be computed offline and then a
single and very cheap physical operation – the replacement
of the classifier, will be performed online.
Performance showcase: Finally, our demo will present
the performance benefits of our QM system compared to
the existing approaches, namely the static single plan and
the Eddies systems. Furthermore, we will also measure and
visually illustrate the statistics for various QM overheads,
including the QM optimization cost together with the run-
time execution and the adaptivitiy overheads.

4. CONCLUSION
We propose to demonstrate a Query Mesh (QM) system

which takes an innovative approach towards addressing the
real-world problem that “all data is not created equal”. QM

provides a middle-ground approach compared to the single
plan-based systems and the solutions that continuously re-
discover different plans for different data at runtime. The
key contribution of our demo is to show that QM is practical
and versatile and implemented in a prototype DSMS can
achieve great performance improvements.

5. REFERENCES
[1] A. Deshpande et. al. Adaptive query processing. In Foundations

and Trends in Databases, 2007.

[2] T. Brinkhoff. A framework for generating network-based moving
objects. Geoinformatica, 6(2):153–180, 2002.

[3] E. R. et. al. Cape: Continuous query engine with
heterogeneous-grained adaptivity. In VLDB, 2004.

[4] T. M. Mitchell. Machine Learning. McGraw-Hill, NY, 1997.

[5] R. Ramakrishnan and J. Gehrke. Database Management

Systems. McGraw-Hill Higher Education, 2000.

[6] R.Nehme et.al. A security punctuation framework for enforcing
access control on stream. data. In ICDE, pages 406–415, 2008.

[7] R.Nehme et.al. Self-tuning query mesh for adaptive multi-route
query processing. In EDBT, 2009.

[8] S.Kim et.al. Ubiquitous city technology & applications. Int.

Conference on Convergence IT, 0:2342–2348, 2007.

[9] The Carbon Project. http://www.thecarbonproject.com/.

