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Abstract—Adaptive multi-route query processing (AMR) is
an emerging paradigm for processing stream queries in highly
fluctuating environments. AMR dynamically routes batches of
tuples to operators in the query network based on routing
criteria and up-to-date system statistics. In the context of
AMR systems, indexing, a core technology for efficient stream
processing, has received little attention. Indexing in AMR sys-
tems is demanding as indices must adapt to serve continuously
evolving query paths while maintaining index content under
high volumes of data. Our Adaptive Multi-Route Index (AMRI)
employs a bitmap design. Our AMRI design is both versatile
in serving a diverse ever changing workload of multiple query
access patterns as well as lightweight in terms of maintenance
and storage requirements. In addition, our AMRI index tuner
exploits the hierarchical interrelationships between query ac-
cess patterns to compress the statistics collected for assessment.
Our experimental study using synthetic data streams has
demonstrated that AMRI strikes a balance between supporting
effective query processing in dynamic stream environments
while keeping the overhead to a minimum.

I. INTRODUCTION

The number of monitoring applications has soared [1].
In addition, many monitoring applications that were once
simple (i.e., supported by a single simple query) have be-
come complex (i.e., supported by multiple complex queries).
Consider the stock market. A few years ago, an analyst
looking to trade stock may have only considered the current
price and volume of that stock. Today, the same analyst
needs to combine current price and volume data with the
latest company and sector information. Company and sector
information is now present in multiple sources (e.g., news
feeds, web sites, and blogs). In short, monitoring applica-
tions are increasingly requiring complex data stream queries.

Modern data stream management systems (DSMS) that
support these applications must efficiently function over
long periods of time in environments susceptible to frequent
fluctuations in data arrival rates [2]. Such fluctuations cause
periodic variances in the selectivity and the performance
of operators, typically rendering the most carefully chosen
query plan sub-optimal and possibly ineffective [3]. This
has driven research into DSMS that continuously adapt the
best query path for sets of tuples, henceforth referred to as
Adaptive Multi-Route query processing systems (AMR) [3],
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[4]. AMR systems adapt the order in which operators are
executed (i.e., the query path) to current system statistics.
The prominent AMR system, Eddy [3], utilizes a central
routing operator that decides for (sets of) tuples which
operator to visit next based upon the system environment.

While AMR systems adapt query paths, the operators
never change. Join operators in AMRs process search re-
quests that can be routed along different query paths before
arriving at the operator. The query path taken by a search re-
quest determines which tuples constitute the search request.
The tuples that embody a search request define the search
criteria used to locate tuples in a given state. Consider two
tuples ¢; and to from StreamA. Tuple t; is first routed to
join with tuples from StreamB and then to join with tuples
from StreamC. In contrast ¢, is first routed to the join with
tuples from StreamC. To efficiently join with tuples from
StreamC' requires the system to be able to locate tuples
using search criteria that include the join attributes between
StreamA and StreamC' (i.e., tuple t3) as well as the
combined join attributes between StreamA and StreamC'
and between StreamB and StreamC (i.e., tuple t1). AMR
systems cannot afford to create indices for every possible
query path given the complexity of the number of queries
and joins. Therefore when fluctuations occur and the query
paths change, it is important for AMRs to tune the index
configuration to optimally serve the query path(s) in use. No
index tuning solution has been proposed for AMR systems.
This is now the focus of our work.

A. Indexing in AMR Systems

Raman et. al. [5] proposed multiple access modules for
each state where a state stores tuples originating from
a stream. Each access module employs a hash index to
optimize a particular data access. We now illustrate possible
inefficiencies of access module.

Example: Consider a package tracking DSMS which
tracks the current location of packages using a network of
sensors. Each sensor propagates 3 attributes: priority code
(A1), package id (A2), and location id (A3) to the DSMS.
The state storing the sensor data has 3 hash indices which
support attribute combinations Al, A1& A2, and A2& A3,



respectively (Figure 1). To insert tuple ¢, first ¢ is stored in
the state. Then hash keys are created for t.Al, t.A1&t. A3,
and t.A2&t.A3, each is linked to ¢, and stored.

Figure 1. Indexing in AMR Systems
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Consider search request sr; looking for all packages with
priority code A1 = 2012 and location id A3 = 47. Executing
sry involves determining the most suitable hash index for
processing sr;. The most suitable hash index is the hash
index that contains the largest number of attributes in sr;
and no attributes not in sr;. In this case, it is hash index
Al. Then a lookup is performed via A1. Now consider srs
looking for all packages where location id A3 = 47. The
only attribute referenced in srs is A3. No suitable hash index
exists for sry. A full scan of the state must be performed.
To improve the search time of sry requires creating a new
hash index on A3. But this would henceforth add additional
memory and maintenance costs for each stored tuple.

To support such diversity of criteria requires multiple hash
indices. This not only adds a high memory overhead due
to multiple references required for each stored tuple, but
worse yet considerable maintenance costs to support the
multiple hash indices under heavy update loads experienced
by DSMS. The inefficiency of deploying multiple hash
indices over a state is confirmed by our experimental study
both on synthetic and on real data sets (Section V).

B. AMR Index Requirements

Traditional off-line index tuning approaches that select
the “best” fixed index structure off-line [6], [7], [8] are not
adequate for AMR systems where the search request work-
load is in constant flux. On-line index tuning approaches
continuously evaluate and adjust the index structure during
execution [9], [10], [11]. Clearly, AMR systems require an
online index tuning approach.

AMR systems have unique challenges. 1) Periodically the
router sends search requests to suboptimal operators to up-
date system statistics [3]. The extremely low frequencies of
these suboptimal search requests are not likely to influence
the final indices selected, yet they add additional overhead.
Thus keeping too few statistics may reduce overhead but at
the expense of not being able to locate the most optimal
indices. While keeping detailed statistics may be able to
accurately locate the “best” indices, but require higher
overhead. 2) To online tune indices requires the system
to continuously assess and adjust indices to the criteria
of the query paths of the search requests in the system.

The abruptness and frequency of changes in the query
paths in AMR systems makes this extremely challenging.
Furthermore the overhead of assessing indices clearly must
not detract from producing rapid results.

In short, AMR systems require an index design and on-
line tuning system that meets the conflicting demands of
being light weight with respect to both CPU and memory
and yet efficiently support multiple possible diverse criteria
for an ever adapting workload of search requests. Such a
system would enhance any AMR system and thus complex
monitoring applications by reducing search request process-
ing time while minimizing the overhead required.

C. The Proposed Approach: AMRI

AMR systems require an index design that: 1) supports a
large number of rather diverse criteria, 2) requires minimal
maintenance time, and 3) compact enough to fit in main
memory. In addition, AMR systems require an index tuning
approach that reduces required system resources while main-
taining the integrity of the indices selected. Our proposed
Adaptive Multi-Route Index (AMRI) solution incorporates a
physical index design and customized index tuning methods
that meet the above named requirements of AMR systems.
Our contributions include:

1) We propose an index design that serves workloads
composed of multiple access patterns while remaining
efficiently maintainable in highly dynamic DSMS.

2) We develop two index assessment methods, Compact
Self Reliant Index Assessment CSRIA and Compact
Dependent Index Assessment CDIA, that reduce the
required system resources by eliminating statistics.
CSRIA utilizes a heavy hitter method [12] to track
and compact statistics. CDIA tracks statistics in a
lattice, exploiting the dependent relationships between
access patterns, and employs a hierarchical heavy
hitter method [13] to compact the statistics.

3) Our extensive experimental study demonstrates that
our AMRI solution always wins over the current AMR
indexing methods, including traditional hash indices
[5] and bitmap indexing [14]. For diverse synthetic
stream data AMRI produced on average 93% more
results (cumulative throughput) than the current index-
ing approach and 75% more results than the bitmap
indexing approach over the same period of time.

The paper is organized as follows. Section 2 defines
terms. Section 3 describes AMRI’s physical design. Section
4 presents assessment methods. Sections 5, 6, and 7 cover
experimental analysis, related work, and conclusion.

II. PRELIMINARIES

We consider SPJ (select-project-join) queries using stan-
dard sliding window semantics (Figure 2). The solution is
explained using a single SPJ query. However, our proposed
logic equally applies to multiple SPJ queries.



Figure 2. SPJ Query Template and Example

Select  <agg-func-list>
From <stream-name>
Where  <preds>

Select  A.*, B.* C.*

From StreamA A, StreamB B, StreamC C

Where A.Al=B.A2and A.A3=C.A3and B.A3=C. A4
Window 10000

A state is instantiated for each stream in the FROM clause
(i.e., a state for each of the following: StreamA, StreamB,
and StreamC). Each state is associated with a unary join
STeM operator [5] that supports insertion and deletion of
tuples, and locating tuples based on join predicates.

A join predicate is expressed in the WHERE clause of
a query composed of 1) a join expression (=, <, >, >,
<), 2) an attribute stream reference S/.al, and 3) another
attribute stream referenceS2.a2 (e.g., A.A1l = B.A2). The
Jjoin attribute set, or JAS, for a state is the set of attributes
specified in at least one join predicate in the query (i.e., for
Stream A JAS={A1,A3}). Each STeM operator can search
for tuples based on any combination of attributes in JAS. An
access pattern (ap) is a combination of JAS attributes used
to specify a search. An ap is denoted by a vector whose
size is equal to the number of attributes in JAS. Each vector
position represents a single join attribute. A join attribute or
ja used to search is represented by a capital letter naming
the attribute, while a ja not used to search is represented by
the special wild card symbol .

For example consider the state of Stream A with jas
Al and A3. < Al, A3 > is an ap indicating that all join
attributes are used to search on. While < Al,* > is an ap
only using ja Al, and < #,% > is an ap using no join
attributes (i.e., a full scan).

III. AMRI PHYSICAL DESIGN

Instead of maintaining multiple distinct hash indices we
propose to employ a versatile yet compact bit-address index
as the foundation of our solution [14]. We now explain how
this meets the AMR requirements (Section I-B).

The foundation of our bit-address index is an index key
map (also called the index configuration IC) that is a
blueprint to the memory location where tuples are stored.
Given B bits, 28 bucket locations are created to store tuples.
The specific bucket where a tuple is stored is found by using
the IC' to map a tuple’s attribute values to a bucket location.
IC' delineates for each join attribute the number of bits
(possibly none) used in the mapping. The IC' derived for
each tuple is never stored.

Reconsider the example from section I-A. Now ponder
inserting tuple ¢, a package record, into the bit-address index
BI solution in Figure 3 where the IC has 10 bits (5 bits
for attribute A1, 2 bits for A2, and 3 bits for A3). First
the bucket id for t is generated by mapping the values
for t.Al, t.A2, and t.A3, which are 00111, 11, and 010

respectively. Then these values are combined into form the
bucket id. 0011111010 represents bucket 250. Thus ¢ is
stored in bucket 250. ¢ does not store the /C' generated.
Thus, no memory or CPU time is required to support index
links. This is in contrast to the hash index approach [5]
(Section I-A) which utilizes both memory and CPU time to
create and store hash keys for each hash index to every tuple
associated with the state. Thus, BT satisfies the low memory
and CPU requirement.

Also, adapting BI requires on average less CPU time than
the hash index approach due to the number of hash indices
supported. To adapt tuples in the state from BI; to Bls
requires the relocation of each tuple to the buckets defined
by BI,, and deletion of the memory associated with BI;.
While the hash index approach may need to create and delete
multiple hash keys for each stored tuple.

Figure 3. State using a Bit Address Index
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insert tuple | 2012 | 125-89 | 47 I

bit-address index
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Bucket 0 Bucket 1

Now consider search request sr; looking for all packages
with priority code = 2012 and location id = 47 using the
bit-address index solution in Figure 3. First the bucket ids
that must be searched are found by mapping the attributes
specified in sr; (i.e., 00111 and 010) and the attributes not
specified in sry (i.e., attributes represented by the special
wild card symbol * or in the case of sri, t.A2 whose bit
values cover 00 to 11). Then the values are combined into
bucket ids (i.e., 0011100010, 0011101010,0011110010, and
0011111010). Finally a scan is performed across buckets
226, 234, 242, and 250. If the search is narrow and precise
(i.e., the access pattern specifies all join attributes) then a
single bucket will need to be searched. If the search is wide
(i.e., the access pattern contains wild cards) then several
buckets will need to be searched. There is no clear winner
between searching using a BI versus using multiple hash
keys. On average we expect a good index configuration to
limit the number of buckets scanned for the majority of
search requests. Clearly, a single BI can serve multiple
access patterns and require less memory and CPU for
maintenance than multiple hash keys.

The configuration of the index key map influences the
number of buckets evaluated during the search. The optimal
index key map is configured so that no bucket stores more tu-
ples than any other bucket (i.e., a even distribution of stored



tuples). Index key map selection is a generic hashing issue
and not specific to inherent challenges of AMR systems.
To simplify the presentation, we assume that the range and
estimated distribution of each attribute is known.

IV. INDEX ASSESSMENT

The index assessment component maintains compact
statistics used to locate the index configuration with the
lowest index configuration dependent costs Cp.

A. Index Configuration Dependent Costs Cp

The quality of an index configuration /C' depends upon
the estimated total unit processing cost for IC [15], or the
combined maintenance and search costs [14]. The main-
tenance cost is the sum of the cost to insert and delete
tuples in a state and to compute bucket ids (Cinsert +
Cletete + Chash,1)- The search cost is the sum of the cost to
compute bucket ids and search for tuples stored in the state
(Chash,ST + Csearch)~ Cinsert and Cdelete are independent
of which IC is evaluated. Henceforth when comparing
different index configurations we only need to consider the
index configuration dependent costs C'p (Equation 1) [14].
See notations in Table I [14].

Table 1
NOTATIONS.

Notation | Meaning
ap a search access pattern
Ad # of incoming tuples from a stream received

within a time unit
Ar # of search requests received

within a time unit
Ch average cost for computing a hash function
Ce average cost for conducting a value comparison
Ny # of indexed attributes
Na,ap # of indexed attributes specified in ap
Wap window length (in # of time units) of ap
Bap # of bits assigned to all attr. specified in ap
Fap frequency of ap
A the set of all search access patterns that arrived

within a time unit

C1D = Chash,l + Chash,ST + Csearch, (1)
AdWop F,
Cp = (AaNaCh+Ar Y (NaapCh + %@)

apeA
B. Access Pattern Statistics

To assess possible index configurations, statistics must be
collected on the frequency of each access pattern (fyp).

The frequency of access Apattern ap in a workload D,
denoted as fop, is fop = |Ti”|7 where Aqyp is the number
of search access patterns in D for ap and |A| is the total
number of search access patterns utilized in D.

To collect statistics on the frequency of each access
pattern each state tracks the number of search requests
received for each possible access pattern. The number of

possible access patterns is equal to the number of combi-
nations of join attributes for a given state. If there are Nj,
join attributes then the number of possible access patterns

Nja
is kz (N]g“) which is exponential in the number of join
1

attributes. We now outline our index assessment approaches.

C. Self Reliant Index Assessment SRIA

1) Basic SRIA: The naive index assessment algorithm,
called Self Reliant Index Assessment captures access pattern
statistics for a given state in a hash table referred to as the
SRIA table. Access pattern statistics collected in the SRIA
table are independent of each other (i.e., self reliant).

To enable quick access to each access pattern ap in the
SRIA table, we create direct referencing by mapping each
ap to a unique binary representation BR(ap). A 1 indicates
that a particular join attribute is used to search, while a 0
indicates that a join attribute is not used to search. Consider
a state with 3 join attributes {A, B, C}. If ap; is searching
using only attribute A (i.e., ap1 =< A, % >) then
BR(ap1) = 100 which represents ap number 4. But if ap; is
searching using attributes B and C (i.e., ap; =< %, B, C >)
then BR(ap;1) = 011 which represents ap number 3.

Each incoming access pattern ap is processed using the
BR(ap) function. If the access pattern exists in SRIA then
Aqgp is incremented by 1. Otherwise the new access pattern
ap is created in SRIA with A,, set to 1.

2) Compact SRIA: Access Pattern Reduction: The large
number of possible access patterns (Section IV-B) can cause
memory limitations. We now explore an access pattern
reduction method extension to SRIA modeled after the heavy
hitter algorithm proposed by Manku et. al. [12] referred to as
Compact SRIA or CSRIA. During assessment CSRIA period-
ically removes any access pattern statistic whose frequency
falls below a preset error rate or €. At the end of assessment,
CSRIA returns all access pattern statistics whose frequencies
are above a preset threshold 6.

Given a state Si, SRIA access patterns for Sy, threshold
0, maximum error in the fq, collected 0, and error rate ¢,
the CSRIA algorithm outputs the set of frequency access
patterns @ such that: Yap € Q : (fop +0) > (6 —€) and
Vap € (Aagp — Q) = (fap +9) < (0 —¢)

CSRIA evaluates incoming access patterns in segments.
Each segment contains [%] search requests. Segments are
associated with an id that represents the required number
of search requests for an access pattern to meet the preset
error rate threshold. The current segment id or s;4 is equal to
lex A, | where A, is equal to the number of search requests
received thus far. To ensure that access patterns are not
deleted too early, each time an ap is added to the SRIA
table the current maximum error in frequency ¢ along with
it. 0 represents the minimum number of requests that should
have occurred in order for f,, to be above s;4.



CSRIA is composed of three phases, insertion (creating
statistics), compression (removing statistics), and final re-
sults (finding all statistics that meet the threshold). Insertion
and compression occur during the assessment phase. During
assessment, creating statistics from the access patterns of
incoming search requests (insertion) proceeds as follows:
First, the binary representation BR(ap) is computed. Sec-
ond, if the access pattern already exists in SRIA then the
frequency A,; is increased by 1. Otherwise a new access
pattern is created in SRIA with A, equal to 1 and the
maximum error in frequency collected § equal to s;q — 1.
Also during assessment, compression is executed whenever
a segment worth of search requests has been received.
Compression removes any access pattern from the SRIA
table whose frequency is below the preset error threshold,
ie., Agp+9 < si4. At the end of assessment, the final result
is produced by locating any access pattern whose f,, + ¢
is greater than the preset threshold in accordance with the
preset error rate, i.e., fop + > 0 — €.

There are several benefits to this approach: 1) It guaran-
tees to find any access pattern whose frequency is greater
than the preset threshold 6. 2) The memory required is

Njo—1
limited to at most 1log(e > ("927')) access patterns

m=0
where INV;, is the number of?oin attributes [16].

Table 11
COMPACT SRIA ESTIMATION EXAMPLE
ap Jap ap Jap

<A, % *> 1 4%
<*, B, *> | 10%
<K K C> | 10%

<A, B, *> | 4%

<A, * C> 16%
<* B, C> 10%
<A, B,C> | 46%

Discussion: CSRIA, while efficient, fails to utilize the re-
lationship between different access patterns. This decreases
an opportunity to find the optimal /C. Consider a state with
3 join attributes, SRIA Table II, and a 4 bit IC. If 6 is 5%
and € is .1%, then CSRIA will delete the access patterns
< A,x,x > and < A, B,* > even though both access
patterns would benefit from an IC containing < A, *, % >.
Furthermore the combined frequency of < A, x,x > and
< A, B,* > is 8% which is greater than 6. The IC found
by CSRIA is the configuration with the B attribute having
1 bit and the C attribute having 3 bits. Whereas the true
optimal IC' is the configuration with A and B attributes
having 1 bit each and the C' attribute having 2 bits.

D. Dependent Index Assessment DIA

1) Basic DIA: We now explore how the dependent access
pattern relationships affect assessment. We first outline how
a search request is executed based on the index configuration
IC of a state. Then we describe how the dependent access
pattern relationships can be used in a index assessment
approach referred to as Dependent Index Assessment or DIA.

A search request with access pattern ap; will be more effi-
ciently executed if an index exists such that the combination
of join attributes supported by the index is a subset of the
join attributes in ap; as compared to an index that includes
join attributes not in ap;. Consider a state with JAS = {A,
B, C, D} and a search request with ap =< A, B, %, % >:

In the worst case, the IC consists of no attributes in
ap (e.g., IC consists of attributes C' and D). IC and ap
have no common attributes. No buckets can be eliminated.
A comparison of all tuples stored in the state is required.

In a slightly better case, IC' consists of some attributes
in ap and some not in ap (e.g., IC' consists of attributes A,
B, and ). Each attribute in the IC that is not in ap creates
the search wild card condition described in Section III. If
n is the number of bits assigned to the attributes not in ap
then 2™ buckets will need to be compared.

In a much better case, the attributes in the IC' are a
subset of the attributes in ap (e.g., IC consists of attribute
A). In this case, one single bucket worth of tuples must be
searched. The bucket searched will contain all tuples relevant
to ap as no wild card condition exists but not every tuple
is guaranteed to satisfy ap. Overall, the number of tuples to
be compared against is likely smaller than the cases above.

In the optimal case, the attributes in the /C' exactly match
the attributes in ap (e.g., IC that consists of attributes A and
B). Since all attributes in /C' are specified in ap, one single
bucket will be searched. Further, all tuples in the bucket will
correspond to matches. The number of tuples required to be
compared is the smallest number of tuples that ap would be
required to search for using this IC.

Definition 1: An index based upon access
pattern ap; provides a search benefit to a search
request utilizing access pattern apy, denoted as
apy < apo,ifVa; € apy = a; € apy where a; is
an attribute in ap;.

The search benefit relationship organizes the access pat-
terns into a lattice (Figure 4). Each node in the lattice
corresponds to an ap. The lattice is formed from a single
node representing the ap that contains no join attributes
(top). At each level in the lattice, nodes are formed by taking
each node in the prior level and adding one join attribute
not already in it. This process continues until all possible
join attributes are included in a single node (bottom). Nodes
from one level are linked to nodes that they provide a search
benefit to in the level directly below as represented by lines
in Figure 4.

Dependent Index Assessment DIA stores the assessment
values in a lattice to retain the dependent search benefit
relationships between access patterns. DIA builds a lattice in
a top-down manner at runtime. Each node NN in the partial
lattice L consists of the access pattern it represents, namely
N.ap, and the count of N.ap requests, or IN.Ag.

For each access pattern, if a node exists in the lattice
that matches it then the corresponding count N.Ag, is



Figure 4. State with 4 join attributes
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incremented by 1. Otherwise, a new node is created for the
ap. To enable quick direct referencing to ap, each node in
the DIA lattice is mapped to a unique binary representation
in the same fashion as outlined above for SRIA. As such,
physically each DIA nodes is stored in a SRIA table.

2) Compact DIA: Access Pattern Compression: The large
number of possible access patterns in DIA (Section IV-B)
can cause memory limitations. We now explore an access
pattern reduction method extension to DIA modeled after
an elegant hierarchical heavy hitter algorithm proposed by
Cormode et. al. [13] namely Compact DIA, or CDIA. In our
context, the search benefit relationship is utilized to combine
access pattern statistics rather than deleting them. During
assessment, CDIA periodically combines the statistics of any
access pattern ap whose frequency falls below a preset error
rate € with the statistics of any access pattern that provides
search benefits to ap. At the end of assessment, CDIA returns
all access pattern statistics whose frequencies are above a
preset threshold 6.

Given a state Sy, DI A access patterns, threshold 0, error
rate €, the set of all possible access patterns of Sy referred
to as Pap, the CDIA algorithm outputs the set of frequency
access patterns () such that: Yap € Q : f*,, —€ < fop <
[*ap where (f*,, =3 fx: (k € Pap)and(ap < k)) and
Vap & Q: > fr < 0 where (Vk € Pap (k € Q) and (ap <
k)).

The CDIA approach is composed of three methods inser-
tion (creating statistics), compression (combining statistics),
and final results (finding all statistics that meet the thresh-
old). Insertion works by evaluating incoming access pattern
in segments in the same fashion as outlined for CSRIA. After
collecting a segment full of search requests, compression
evaluates the leaf nodes of the lattice. A leaf node is any
node in the lattice that does not provide a search benefit to
any other node (i.e., no node below it has a count > 0).
Compression proceeds as follows. For each leaf node in the
lattice, if the total count of the given access pattern A,
plus the maximum error in the frequency ¢ is less than the
current segment id and a parent of the leaf node exists, then
the access pattern count of the leaf node is added to the
access pattern count of the parent. Otherwise a new parent
node is created with A, equal to the access pattern count of
the leaf node and maximum error in the frequency & equal
to s;q — 1. Finally, the leaf node is deleted.

During the final results computation step, any access

pattern whose frequency is greater than 6 is located as
described below. For each node N in the lattice starting
from the nodes in the lowest level of the lattice, first the
frequency of the access pattern N. f,,, is computed. If V. f,,,
is less than 6, then a parent of the leaf node is identified,
and the access pattern count of the leaf node is added to the
parent. Otherwise, the node is added to the result set Q.

CDIA Combination Methods: Several combination
strategies can be utilized [17]. One method, random com-
bination, randomly picks a parent node. Another method,
highest count combination, adds the child’s frequency to
the parent with the largest frequency thus far. The intuition
is that the parent node with the largest frequency during
assessment has a greater chance of being larger than the
preset threshold 6 when the final results are found.

There are several benefits to the CDIA approach: 1)

It guarantees to find any access pattern whose frequency
Nj@—l
is greater than 6. 2) It only stores “log(e > (Me1))

m
access patterns where h is equal to the number of levels
in the lattice [13]. 3) It reduces the number of access
patterns stored while retaining the statistics of removed
access patterns.

Figure 5. CDIA Example
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Reconsider the example in Section IV-C2 with a state
containing 3 join attributes, a 4 bit index configuration, and
DIA outlined in Figure 5. If 6 is 5% and € is .1%, the CDIA
approach using the random combination method combines
the frequency of < A, B,* > into < A, *,* >. In this case,
CDIA will find the true optimal index configuration.

V. EXPERIMENTAL RESULTS

Experimental Setup: Experiments are implemented in
the CAPE stream system [18] using Linux machines with
AMD 2.6GHz Dual Core CPUs and 4GB memory. They
measure throughput defined as the cumulative output tuples
produced. Our experiments explore: 1) Which of our pro-
posed assessment methods is the most effective at improving
the AMR throughput? and 2) Is AMRI more effective at
improving throughput than state-of-art AMR indexing?

Synthetic Data Sets: To test the effectiveness of our
methods under conditions where adaptive indices are re-
quired we created synthetic data in which the selectivities
of joining one stream to another adapt over time. This may
cause the router to use new query paths which in turn may
initiate the selection of new indices.



Every experiment uses a 4 way join query across 4 data
streams. Every stream is joined to each of the 3 other streams
via a unique join attribute (i.e., 3 join attributes). Each state
is required to efficiently support search requests containing
all possible combinations of the 3 join attributes (7 possible
access patterns). Our results illustrate that even for systems
with a small number of possible aps, there already is a
significant benefit in removing a single ap. Clearly, as the
number of ap in a state increases so does the probability of
ap statistics being eliminated.

The IC on each state uses 64 bits and is initiated by
running index selection using statistics gathered by executing
the stream for 15 minutes (as quasi training data). For
the state-of-the-art approach, the starting indices are those
found to support the most frequent aps by running the quasi
training data approach above.

Index Assessment: First, we compare index assessments
methods SRIA, CSRIA, DIA, and CDIA using both random
and highest count compression. Each method is run using the
maximum error § = .05 and threshold § = .1. Both CDIA
versions outperform DIA, SRIA, and CSRIA (Figure 6).
In fact CDIA using highest count compression outperforms
both DIA and SRIA by 19%, and CSRIA by 30%. This
demonstrates the utility of combining access pattern statistics
(i.e., CDIA) . Note that DIA’s and SRIA’s results are equal,
because both approaches share the same code base, use the
same SRIA table, and do not reduce any nodes.

Index Assessment & State-of-art AMR Index
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State-of-art AMR Index Approach: Next, we evalu-
ate the state-of-art AMR indexing [5] using highest count
compression CDIA outlined above. The synthetic data set
and query were run with the minimum (1) to maximum (7)
number of possible hash indices. Static non-adapting hash
indices (i.e., no index tuning) produced poor results. Thus
adaptive hash indices that utilize highest count compression
CDIA index tuning and conventional index selection (i.e.,
indices created support the most frequent search request
access patterns) are used.

None of the trials ran for more than 12.5 minutes (Figure
6). In each case, the system ran out of memory due to the

large amount of CPU time and memory overhead required to
maintain the indices (See Section 3.2). For systems with only
a few indices a backlog of active search requests occurs from
the processing delay caused by the large number of complete
scans performed. AMRI produces 93% more results than
even the best hash index configuration (Figure 7).

Index Tuning: We now compare the AMRI index tuning
to a non-adapting bitmap index. Both start with the same
optimal index configuration. The non-adapting bitmap in-
dex could not keep up with the search requests and ran
out of memory after 15.5 minutes. AMRI produces 75%
more results than the non-adapting bitmap index (Figure 7).
Additional concepts and experiments using real data can be
found in [19].

Figure 7. State-of-art vs AMRI in Synthetic Data
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VI. RELATED WORK

The first AMR system, Eddy, used a router to route
individual tuples through operators [3]. Enhancements in
routing policies were proposed in [4], [20]. Multi-query
AMR system issues were covered in [21]. [5] improved
optimization capabilities by extending routing flexibility
through the development of the STeM operator and access
modules. As shown in our experiments the overhead of
access modules makes such hash indices ineffective.

Index Tuning in static databases aims to find a set of
indexes that maximally benefit a given query workload by
either selecting the most optimal index configuration off-line
[6], [7], [8] or online [9], [10], [11]. Online index tuning
continuously evaluate and adjust the index configuration
to the current workload. Our solution borrows from the
online index tuning work. We explore novel index tuning
approaches that reduce the system resources required while
maintaining the integrity of the index selection evaluation in
accordance with a preset threshold and error rate.

Bit-address indexing, initially designed to index partial
match queries on a file [22], has been applied for a variety
of applications ranging from compactly storing very large
multidimensional arrays [23] to reducing processing costs of
multidimensional queries [24]. [14] studied index selection



heuristics using a bit-address index where the search request
workload is known prior to execution. We instead tackle the
on-line index tuning problem for AMR systems.

Assessment methods for bit-address index have not been
studied while they are core to our effort. Such methods
utilize stream sampling algorithms. Heavy hitter algorithms,
a type of stream sampling algorithm, meet the requirements
of AMR systems (Section I-B) as they analyze and report
all items that appear above a preset threshold [25], [12].

[25] introduced the first deterministic algorithm for
approximating frequency counts, called the heavy hitter
method. [12] added the error rate e approximation guaran-
tee. Our CSRIA method is modeled after the heavy hitter
algorithm proposed in [12]. Hierarchical heavy hitter, ap-
plying the heavy hitter methodology to hierarchical multi-
dimensional data, was studied in [13]. Our CDIA method
is modeled after this hierarchical heavy hitter work. CDIA
implements two compression methods customized to handle
the search benefit relationships between indices in AMR
systems, namely, random combination and highest count
combination. Similar compression strategies were presented
by [17]. To our knowledge, ours is the first application
of heavy hitter and hierarchical heavy hitter algorithms to
address the problem of index tuning in general and tuning
in AMR systems in particular.

VII. CONCLUSIONS

We developed the Adaptive Multi-Route Index for AMR
systems. We propose 4 customized AMR systems assess-
ment methods (SRIA, CSRIA, DIA, and CDIA). Our exper-
iments demonstrate the overall effectiveness of our AMRI at
improving throughput in dynamic stream environments. In
particular, using synthetic data AMRI produced on average
93% more results than the state-of-art approach.
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