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Abstract

Modern ad—hoc data mining queries often
run on databases over a terabyte in size. At
this scale, large data pages are required to
obtain sufficient disk performance.
Unfortunately, these large data pages greatly
increase update costs, especially for packed
structures such as the B+ tree. In a frequently
updated warehouse, users are often forced to
decide between query performance and update
performance in order to meet maintenance
time windows. Solutions that provide both are
welcome.

In this paper, we analyze and measure the
memory related costs of B+ Tree updates with
lar ge data pages. We introduce the RB+ (Red-
Black+) tree as a practical replacement for the
B+ tree. The RB+ tree uses persistent red—
black binary treesinstead of sorted records for
leaf pages. This organization improves
memory performance up to 3,000% for
updates and provides query performance
comparable to a B+ tree, making it practical
for large, frequently updated war ehouses.

1 Introduction

As data warehouses evolve to meet the needs of E-commerce
and 24x7 uptime applications, the need arises for indexes that can
be efficiently updated. In such modern applications, data is
usually bulk loaded, but the trend is toward updating the
warehouse more frequently, possibly severa times per hour.
Updates must be completed in a timely fashion to prevent input
queues from filling while still leaving time to execute queries. A
structure is needed with the versatility of the B+ tree that can also
support frequent updates.

1.1 Impact of Large Data Pages on
War ehouse Performance

Wheress a typical OLTP database uses data pages in the range
of 1kb and 4 kb, current date warehouses use page sizes as large
as 512Kb [14]. A recent paper [3] shows that 8k-32k is a
reasonable range for index pages given current technology, while
much larger (64k+) page sizes are appropriate for sequentialy
scanned structures. These page sizes have increased substantially
over the past decade and are likely to continue increasing as
technology improves.

The larger page size typica of a data warehouse system plays
an important role in I/O performance. Warehouses use these large
pages to take advantage of the large block 1/0O capabilities of most
modern disks [20]. Large block transfers reduce the number of
disk accesses, which increases disk throughput. Since large page
sizes also reduce the number of pages in an index, there is less
paging activity, less splitting, and less overhead to store pointers
to other pages. Finally, since more tuples can be stored in asingle
page, the fan—out of tree structures is much higher, and therefore
their height is minimized. The net result is reduced 1/0 and
improved throughput for large warehouse queries.

However, while large data pages improve /O performance, the
chunks of memory they occupy can be expensive to move around
during incremental inserts and deletes. As the size of the page
increases, the size of the memory moved also grows. Multi—user
or multi-threaded systems are even more vulnerable since
memory resources must be shared with other processes. If we
compare the bandwidth of the current generation SCSI-3
controllers at 160MB/sec to the current generation of CPUs at
1.3GB/sec memory transfer rate (Sun UltraSPARC 2, 400MHz),
the ratio of memory bandwidth to I/O bandwidth is 8.125:1. This
low ratio suggests that memory bandwidth is becoming
increasingly significant.

1.2 Problem Definition: Impact of Large
Pages on B+ Tree Performance

Performance of B+ tree inserts and deletes [4] can be



particularly vulnerable to large page sizes. It's organization must
be reexamined to eliminate this shortcoming. Various
organizations have been attempted for B+ tree leaf pages,
including sorted array, partitioned, hashing, and unorganized
tuples [5]. By far the most popular organization is the sorted
array, which provides ordered access as well as logarithmic
lookup performance by means of abinary search. The sorted array
organization is ideal for queries, since it provides the densest
possible leaf pages, thus minimizing the I/O. It has been generaly
believed that organizations requiring extra space to store each key
could not compete with the performance of the sorted array [5].
However, we demonstrate in this work that update performance
for the sorted array organization deteriorates rapidly as the page
size increases, making it impractical for high volume inserts under
these conditions.

B+ tree pages with sorted array organization are constructed as
an insertion sort. Tuples are inserted by determining their location
among the existing keys with a binary search, then shifting items
with larger keys to make room for the new tuple. Thus, the
complexity of each insert is CO(1), where the constant C is
proportional to the page size. The worst case occurs when records
are inserted or deleted at the beginning of the page, since each
record causes all other records on the page to be shifted. For small
page sizes, C is smal and thus the cost is generally negligible
compared to the much higher 1/0 costs. We note that an earlier
study that concluded that the sorted array organization is superior
came to such an observation only because they considered page
sizes less than 4kB [5]. This limitation is no longer practical due
to the advantages we mention earlier of using larger pages.
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Figure 1: Worst Case B+ insert

Incremental insertion to a B+ tree with large pages causes a
substantial  amount memory to be moved. Assuming the
complexity of a single insert is CO(1), the complexity of an
incremental load is CO(n), where n is the number of records
inserted. Assuming that large indexes use large page sizes (C is
large) and bulk inserts (n is large), CO(n) constitutes a large
workload that can bottleneck a memory system. This behavior
justifies the need for a new page format that can be updated
efficiently with large pages.

Genera purpose computers move data one word at a time, so
the performance of a memory move is proportional to the size of
the move. Data is moved by loading each word of data from the
main memory to a CPU register using a data bus, then storing it
back in the new location using the same data bus in the other
direction. Each load/store operation is expected to take between
one and two CPU cycles depending on the architecture of the
CPU. For systems that use traditional bus architectures, the
system bus speed usually limits the memory bandwidth. High end
servers that utilize multi-dimensional or dedicated memory
interconnects are instead limited by the speed of the processors. In
either case, as we demonstrate, a hard limit on memory bandwidth
exists that is exposed by B+ tree inserts.

1.3 Approach

To solve the memory bandwidth problem of B+ tree inserts, we
introduce a new organization for B+ tree leaf pages. We adapt the
red-black tree (a balanced binary search tree) [4] for use as a

persistent structure on fixed sized data pages. The resulting
structure, the RB+ (Red-Black Plus) tree, dramatically cuts down
the memory bandwidth required to insert and delete records to the
leaf pages compared to the traditional B+ tree. Since the RB+ tree
preserves the interface and transactional semantics of the B+ tree,
integration into an existing system should be straightforward.

To compare memory performance of the B+ and RB+ trees, we
have implemented both structures in C++ using the Standard
Template Library (STL) [18]. We measure the costs of creating
and incrementally loading each structure with random and sorted
data for severa different page sizes. These experiments
demonstrate that the RB+ tree can improve insert times by
3,000% when used with large data pages.

1.4 Paper Organization

The remainder of the paper is organized as follows. In Section
2, we examine the impact of large pages on B+ tree memory
performance. In Section 3, we give a detailed description of the
RB+ tree structure and theory. Section 4 explains the memory and
1/O tradeoffs of the RB+ tree compared to those of the B+ tree. In
Section 5, we benchmark the RB+ tree against the B+ tree to
demonstrate the superior insert performance and comparable
query performance of our structure. Finaly, we discuss related
work in Section 6 and conclusionsin Section 7.

2 Anlllustrating Example of the Memory
Bandwidth Problem

We now look at an example where one million records are
inserted into a B+ Tree using large (256k) pages. Since B+ tree
pages are 70% full on average [1], an insert of evenly distributed
random keys shifts approximately 35% of the items per record
inserted. Assuming amemory move requires 2 bus cycles, a 64 bit
CPU with a 66MHz bus, 256k page [10], and 1,000,000 items to
be inserted, then we compute:

Total Data Moved =items:(% page to shift)- pagesize
= 1,000,000-0.35-2"® = 91,750,400,000 bytes

Memory Bandwidth = bytes/move- cycles/sec
cycles'move
= M =266,666,664 bytes/sec
Time = Total Data Movgd _ 91,750,400,000 _ 344,06 56¢
Memory Bandwidth 266,666,664

We see that for this example, time spent moving memory for
the insert corresponds to severa minutes. A slow or busy
computer along with alarger page size could make such an insert
last well over an hour. Delete operations would take a similar
time. A solution to this memory performance problem is the focus
of thiswork.

To put any differences due to modern hardware advances into
perspective, we have also collected actual times for this example
on severa mid-range servers using a single CPU. This
experiment performs 1,000,000 shifts of 91,750 bytes of memory
and measures the wall time. The totd data moved
(91,750,000,000 bytes) isthen divided by thistime to arrive at the
bandwidth. We also have calculated the best possible performance
for these machines based on the manufacturer's
clams[15][16][17][19]



Machine CPU Max Time Actual Actual
Speed | Band- @Max Time Band-
(Mhz) | width Band- (sec) width
(GB/sec) | width(sec) (GB/sec)
IBM H50 336 13 65.7 328.9 0.28
HP9000 180 0.96 89 160.2 0.57
Sun E4500 400 2.68 31.9/201.1 0.46
Compag
Alpha GS160 | 625 6.4 13.35 70 131

Table 1: Memory Performance for Mid—Range Servers

It is worth noting that the maximum bandwidth is not achieved
for any of these machines since our test program does not make
use of the several processors required to saturate these computers
memory systems. Although a parallel B+ Tree implementation
could make use of this bandwidth, the parallel insert algorithms
required to reach this limit incur synchronization costs and require
several additiona CPUs to achieve this. Furthermore, parallel
solutions require expensive multiprocessor machines and may not
be suitable in multiuser environments.

3 TheRB+ Tree: Coping with Larger Page
Sizesand Insert Sizes

We now propose the design of a new organization for B+ tree
leaf pages to improve update performance with large data pages.
Our solution must offer query performance comparable to that of
the B+ tree in addition to improving update performance.
Furthermore, B+ trees with sorted array organization offer
acceptable insert and delete performance with smaller data pages,
so our solution must perform well with both small and large page
Sizes.

3.1 Overview: Red—Black Tree Properties

We now propose a format for the leaf nodes of our index that
minimizes in—-memory transfers for inserts and deletes with very
little space overhead. Instead of storing the leaf pages of the B+
tree as sorted lists, we propose to adapt the red-black tree data
structure [7] to serve as the persistent leaf page organization. The
red—black tree can be updated at much smaller cost than a sorted
list, yet provides nearly equivalent search performance. As we
demonstrate, the new structure achieves worst case logarithmic
insert, find, and delete performance and significantly outperforms
the B+ tree under many conditions.

The red-black tree is a binary search tree that uses a flag at
each node of the tree to indicate the balancing of the tree.
Logarithmic insert, find, and delete performance is guaranteed by
ensuring that tree is partially balanced. The balance of the red-
black tree is maintained dynamically by checking that the
following constraints are met after each insertion or deletion:

1. Ledf nodes are dways black;

2. All paths from leaf nodes to the root node contain the
same number of black nodes; and

3. All red nodes have black parent nodes, except for the root
node, which does not have a parent.

Nodes are inserted at the leaves of the red-black tree. After
each insertion, the nodes along the path from the new leaf to the
root may need to be rotated or re-colored to correct newly
violated constraints. Rotations and re-coloring have small
constant complexity which is amortized over time, and the
number of these operations is bounded by the logarithmic height

of the tree. To delete a node, the node is rotated to a position
where it can be truncated, then any constraints violated by the
truncation are corrected as for the insert. Thus, deletions also have
logarithmic complexity.

Typically, the red-black treeis used as an in—-memory structure
where the left child, right child, and parent pointers are stored as
absolute memory addresses. On a 64 bit computer, pointers are 8
bytes wide and structures are padded to 8-byte alignment, so the
space required to store pointers and the color flag for each red—
black tree node is 32 bytes.

The possible use of the red-black tree as a persistent structure
is first explored by Munro [9]. However, this work does not
discuss their approach in the context of relational databases.
Relational databases use fixed size data pages rather than
contiguous files, as had been assumed. This must be considered
when evaluating the performance of such a persistent structure for
relational database indexing. A persistent red-black tree over a
contiguous file does not guarantee efficient ordered access and
has alarge per—node overhead for storing page pointers. The RB+
tree organization succeeds in solving these problems as well as
free—space management problems by cleverly taking advantage of
the fixed data page size.

3.2 RB+ Tree Structure

The RB+ tree uses different organizations for index and leaf
pages. Index pages, which store pointers to leaf pages, use a
sorted array organization like the traditional B+ Tree. The leaf
pages however, which are the specific focus of the RB+ tree, are
quite different in both organization and operation as described
below. Figure 2 depicts the organization of the RB+ tree. The
index nodes have a flat array structure, while the leaf nodes
contain the linked nodes of the persistent red—black trees.

*lIndex nodext

& 5 » Y
D @60 TP ©®e o
Figure 2: RB+ Tree Logical Sructure

3.3 Leaf Page Organization

The RB+ tree leaf organization uses a minima amount of
additional space to store red-black tree node pointers and color
flagsin a persistent format that can be paged directly to disk. This
is accomplished by pre-allocating the page into an array of fixed
size cells and storing red—black tree pointers as cell array indices.
The fixed size of the data page guarantees that the cell array can
be indexed by a substantially smaller variable than an absolute
address, the size of which we calculate below.
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Figure 3: RB+ Tree Leaf Page Format
Figure 3 depicts the leaf page organization of a RB+ tree leaf
page. The left side of the page contains page-level meta—data,
including the block numbers of adjacent pages and the roots of
the red—black tree and fredlist. The right side of the page contains
the array of red-black tree cells. In this example, the red—black



tree contains three records. The remaining cels are linked
together using one of the red-black tree pointers to form the
freglist. To insert into the page, the cell at the head of the freelist
is populated with the new record and rotated into position using
the red-black tree insertion algorithm [4]. The fredlist pointer is
then moved to the next free block.

An additional advantage of storing the red—-black tree pointers
as cell array indices is that the entire RB+ leaf page can be freely
paged to disk at little cost, as there is no absolute addressing to
preserve. Specificaly, the RB+ tree can be loaded into any buffer
dot in the cache and manipulated immediately without having to
rebuild any of the red-black tree structure. To accomplish this,
the red-black tree insert, find, and delete algorithms are al be
modified for the RB+ tree to use cell index numbersinstead of the
absolute pointer addressing. In other words, any reference to a
red-black cell by memory address in the Red-Black tree
algorithms is converted to a reference by cell number. The
consequence of using this relative addressing is that the base
address of the cells must be available to al algorithms, whereas
the origina red-black tree can simply instantiate a node at an
arbitrary address. The code is Table 2. demonstrates these
changes. Note that node pointers (class Node *) are stores as
numbers (type nodenum) rather than memory addresses. To get
the left node pointer (also a cell number), the node is located by
its cell number on the Red-Black tree page (class RBPPage) and
de-referenced.

Original Red—Black Red-Black tree using relative

tree code addressing
Node* Nodenun&
Node: : left() RBPPage: : | ef t (nodenum i)

{ return _left; } |{ return _nodes[i]._left; }

Node* y =
node—>[ ef t ()

Table 2: Red-Black Tree Sample Code
3.4 RB+ TreelLeaf Cells

Each RB+ tree cell contains a header that stores the pointers
and color flag used by the red-black tree followed by the data
record that the user inserted. The cell header size must be a
multiple of 8 bytes so that the address of the user record is aligned
to an 8 byte word boundary (most 64 bit computers require 8-
byte aligned pointers). Since there are three equally sized pointers
to store, it makes sense to aso store the color flag in the same size
field to simplify the alignment problem.

nodenumy =
page—>| ef t (_node);

Left | Right | -~ RB+ Header

. | Parent | Color
Key +~User Record

\ Record
Figure 4: RB+ Tree Cell

When a new RB+ leaf page is created, the entire page is
segmented into an array of cells like the one depicted in Figure 4.
Segmenting the page avoids memory fragmentation and simplifies
free space management. Unused cells are managed by linking
them into a fredist that is loca to the page. When the page is
initially created, al cells are placed on the fredist. Cells are
removed from and added to the fredlist as inserts and deletes add
or remove records. A cell can be allocated or deallocated in
constant time by simply removing it from or inserting it as the

new head of the fredlist.

When the freelist becomes empty, the leaf page is split in a
manner reminiscent of the B+ tree. Since individua insert and
delete operations are inexpensive, the split smply moves haf of
the items to the new page, one at a time. Any propagation of the
split through the index pages is handled by the traditional B+ tree
algorithms. The Red-Black Tree on each page could be split
directly at its root to avoid rebalancing after each node is moved.
However, the simpler approach of moving individua items
ensures that both halves of the split are equally sized and
performs well according to out test results.

3.5 Leaf Page Calculations

We now calculate the minimal space required to store the four
field cell header with 8-byte alignment.

Given:
Cells per page: n n=P
Pagesize: p c
Cell size:c x-log,(n)
Fieldsper cell: x=4 c=—-"—
bitsbytee b=8 b;
Simplifying the above equations:
x-log,(n .
C=ﬁ Iogz(n)zﬁzz.c
X

n=2"° P_n=4°p=1s°sc
c
Substituting the maximum page size of 512k bytes (2'°) for p
and solving for ¢ (by successive approximation) and n:

19
C:8byt_es n:£:2_:65536%

cell c 8 page
The header for the 512k page can be stored in 8 bytes since the
two byte fields for the pointers are just big enough to hold the
largest cell number. While smaller pages do not actually use the
entire two byte field, all pages larger than 1k require more than a
single byte to index the cell array. Furthermore, the header size
must also be a multiple of 8 bytes.

3.6 RB+ Index Page Organization

The remainder of the RB+ tree design is identical to that of the
traditional B+ tree. Interior pages of the RB+ tree use the familiar
sorted list format of the B+ tree. The sorted list format maximizes
the fan—out of the RB+ Tree since more nodes are stored on each
interior page. The increased fan—out reduces the number of index
pages and thus the height of the tree. Performance is not
compromised much by using sorted list index nodes because the
frequency of inserts into index nodes is very low (only during a
split or collapse) in comparison to that of the leaf node inserts.
This is especially true for large pages since fan—out is based on
the number of items on a page, and hence more leaf inserts must
occur before a split is required. The left and right page pointers of
the B+ tree are also retained to efficiently support range queries.
Since all structures for the RB+ tree are persistent, the interfaces
and semantics areidentical to those of the B+ tree. Any method of
concurrency control developed for the B+ [8][12][10] tree should
be suitable.

4 Performance Discussion for the RB+ Tree

Although our experimentation has not included any persistent
secondary storage, we recognize that the RB+ tree requires
slightly more storage space than the traditional B+ Tree, which



could negatively impact query performance. However, the
additional storage space is not always significant since the RB+
tree organization minimizes the additional space to eight bytes per
tuple for all configurations. Both multidimensional data and the
extremely wide rows often used in data warehouse tables may
produce tuples that are hundreds of bytesin size each. If the RB+
tree is used with tuples this large, the 8 byte overhead is
insignificant. Even in the worst case, such as may be encountered
for a secondary index, each tuple consists of an 8 byte key and an
8 byte record pointer (after alignment), so the storage required for
the RB+ tree is 150% of the storage required for a B+ tree.

4.1 Cache Considerations

Under random access, increasing the number of pagesin atree
reduces the probability of a page being in the cache. To achieve
the same random access performance with an RB+ tree as a B+
tree storing the same data, the size of the cache needs to be
increased by these same 8 bytes per tuple to facilitate the larger
RB+ tree. If the cache is not increased to compensate for the RB+
tree overhead, there exists be a point (which we demonstrate | ater)
when increased 1/0O costs resulting from cache misses outweighs
CPU performance gains.

For both B+ and RB+ trees that are larger than the cache,
accessing tuples in sorted order may be the only way to
completely avoid thrashing the cache. This guarantees that each
page is read only once, assuming the cache has enough free pages
to hold at least oneroot to leaf path in the tree. Sequential 1/0 aso
creates the prospect for asynchronous prefetch, which could hide
some or al of the additional 1/O caused by the increased size of
the RB+ tree over that of the B+ tree. The effectiveness of the
prefetch depends on the rate at which the DBMSS can process data
pages. Since a data warehouse is likely to perform aggregation,
sorting, or hashing to query result sets, we expect that pages are
typically processed slowly and hence prefetch could effectively
compensate for the increased 1/0O during this time. We assume for
simplicity’s sake in our 1/O tradeoff anaysis given below that
either the entire index can remain in the cache or sequential access
is used to prevent thrashing the cache.

4.2 1/0O Tradeoff

The RB+ tree reduces memory costs at the expense of /O
costs. Multiple inserts to the same page are needed to net
performance gains. We define the page insert density as the
average number of tuples inserted into each existing page (# of
tuples / # of pages visited). If a set of records contains a narrow
range of key values, severa inserts occur to the same page.
Conversely, a sparse key distribution may insert only one tuplein
a given page. A sufficiently high insert density causes the CPU
savings to surpass the cost of the additiona 1/O for the RB+ tree.
Beyond this threshold, the RB+ tree performs inserts increasingly
faster than the B+ tree.

Given:
Page Insert Density: D
Total Number of Tuples Inserted: N
Page Sizein bytes: S
Memory Bandwidth: M
1/0 Bandwidth: |
Size Ratio of RB+ Page to Equivalent B+ Page: R
Average percentage of keys shifted: Z

The page density is calculated by finding the point when
additional 1/O costs for the RB+ tree are equivalent to the savings
in memory related costs:

We now compute the page density for our previous example:
N = 1,000,000 tuples | =20,971,520 bytes/sec
S= 28 phytes R=15
M = 266,666,664 bytes/sec Z = 0.375

N-S(R-1) _ ZN-S
Dl M
b= M(R-1)

Al

Time=

D= 266,666,664-(1.5—1)

0.375-20,971,520

For this example, we must insert 6.35 or more tuples into a
page on average during an insert to benefit from the RB+ tree.
The likelihood of achieving this density depends on the insert
density (described above), which is a factor of the number of
records inserted and the initial tree size. We now calculate the
largest tree that can sustain the 6.35 tuple/page insert density with
a1,000,000 record insert:

= 6.35 tuples/page

N-S _ 1,000,000-2"
6.35

=41,282,437,120 bytes = 38.6 GB
The RB+ tree in this example can insert 1,000,000 tuples faster
for al trees less than 38GB. For a clustered index, the larger
tuples reduces the ratio of the RB+ page to the equivaent B+
page, denoted by R. This in turn reduces the page insert Density,
denoted by D. Hence, (clustered) indexes with larger tuples
achieve even better performance gains from the RB+ tree.

5 Experimental Results

To contrast the performance of the B+ and RB+ trees, we have
implemented both of these structures in a uniform testbed. The
purpose of these experiments is to demonstrate the improved
memory performance of the RB+ tree when compared to that of a
similar B+ tree. In our experiments, we focus on the measurement
of performance for insert and find operations. The logarithmic
delete performance of the red-black tree is expected to produce
results identical to those of the insert. Therefore, we have chosen
not to implement the delete operation for the two index structures
in the interest of implementation time. The simple buffer manager
that we have implemented for these experiments does not actually
perform disk 1/0O, so the indexes are always resident in main
memory.

TreeSize=

Our experiments measure the time to incrementally load an
index that is initially empty. The experiments are conducted with
8k and 256k page sizes to show the effect of increased page size.
To guarantee an even distribution of the data, we generate a set of
records with unique sequential keys. We experiment with various
different sequences of this data, inserting the keys in ascending,
descending, and random order. The insert size is fixed a 1IMB
(about 52,000 tuples) for these tests. Time is measured as wall
time on an idle system and only includes the time needed to
populate the in-memory index since datais not written to disk.

Our structures are implemented in C++ using the Standard
Template Library (STL). Tests were run on a 64 bit 250MHz Sun
Server running Solaris 7. Both the B+ and RB+ trees use the same



algorithm templates for page-level operations (page alocation,
page traversal, page splitting, etc). There is a separate
implementation for the leaf pages of each structure that
encapsulates the different leaf page organizations with a common
interface. This arrangement is possible since the leaf page
organization is in fact the only difference between the RB+ tree
and conventional B+ tree, indicating the simplicity of adapting it
to an existing B+ indexing system.

5.1 Incremental Load Performance Test

This experiment demonstrates the costs associated with
incremental loading of an index with keys that are evenly
distributed across the existing entries. The size of the index
increases as each incremental load is applied. This is a likely
scenario for an existing database that receives periodic updates.
We expect the RB+ tree to outperform the B+ tree for al key
orderings in this test. The 1IMB of data to be loaded is divided
into 10 incremental loads that each contain about 5,200 keys. This
relatively small load is sufficient to demonstrate the relative
memory performance of the two structures and the effectiveness
of our proposed solution.

When alarge number of tuplesisinserted into the same B+ tree
page, performance is dightly better if the keys arrive in ascending
order, as compared to a random or descending order. This is
because the tuples with the lowest keys, which belong more
toward the beginning of the page, are inserted when the page is
less full. Since the least number of items are moved for the
ascending insert, the time is guaranteed to be less than that of the
other orderings. The time for a random sequence of inserts to the
B+ tree should be somewhere in between the ascending and
descending times.

For the RB+ tree, our expectation is to see equivalent times for
al page sizes and key orderings, since we have not included I/0
in our measurements. This behavior should allow the RB+ tree to
outperform the B+ tree under most circumstances. The one
exception is an initia load of ascending keys, which can be
efficiently append to the end of the B+ tree [13].

5.1.1 Small Page Results
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Figure 5: Load Performance with 8k pages

The measurements depicted in Figure 5 confirm that B+ tree
insert costs are considerably higher then RB+ inserts, even with
an 8k page size. The B+ tree only outperforms the RB+ tree by a
small margin for the incremental load of ascending keys. For
descending and random inserts to the 8k page, the RB+ tree
outperforms the B+ tree by a factor of 2. This demonstrates that
the RB+ tree can indeed perform well in place of the B+ tree,
even for databases that support several different page sizes.

We believe that any deviation that can be seen in Figure 5 is
due to page splitting, which is much more frequent for small
pages. These splits occur in waves for ascending and descending
data in this test since al of the data pages are filled equally and
thus split at roughly the sametime.

5.1.2 Large Page Results

Figure 6 confirms our expectations that the RB+ tree
demonstrates excellent insert performance for all key orderings
with a large page size. The RB+ tree outperforms the B+ tree by
over two orders of magnitude at several points and even
outperforms the B+ tree for the initia load of ascending keys.
This confirms our intuition that while a traditional B+ tree may
work fine for OLTP databases, it cannot compare with the RB+
tree with larger warehouse pages. It is this performance that
demonstrates that the RB+ tree is a practical solution to facilitate
high volume inserts with large data pages.

80 T

T T T
B+ Ascending Keys —+—
B+ Decending Keys ---<---
70 B+ Random Keys ---*--- -
AN RB+ Ascending Keys &
N RB+ Decending Keys --m-
60 F RB+ Random Keys ---0--- ]

50

40

Time (sec)

30

20 1

10 1

0 - i - & - S . e

1 2 3 5 6 7 8 9 10
Load Number

Figure 6: Load Performance with 256k page size
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The B+ tree only offers acceptable performance with a large
page size on an initial load with ascending keys. The differencein
performance between the initia load (Load 1) and the first
incremental load (Load 2) is nearly two orders of magnitude,
while subsequent loads remain at fairly steady time. All other
loads are in the tens of seconds, which is unacceptably high for
this relatively small incremental load (around 5,200 records). A
real data warehouse load could have millions of records and
multiple indexes to update.

5.1.3 Find Performance

Figure 7 shows the effect of page size on query performance.
The RB+ tree slightly outperforms the B+ tree for find operations
with both page sizes. Find performance is better for both
structures with the larger page size, mainly due to the shorter
height of the tree. The steep slopes at loads 3 and 4 are points
where the height of the tree increases from 2 to 3 levels. This
decrease in height causes a 20% decrease in find time, while
measurements between all other adjacent loads differ by less than
5%.

Even if we had factored additional 1/0O costs for the RB+ tree
into the result, the page density is maximized for an initial insert,
so the RB+ tree would still prevail. Furthermore, there is no read
1/0 for an initial load (since all pages are new) unless the cache
begins to thrash. This evidence suggests that the RB+ tree can
effectively use larger pages without incurring performance
penalties during inserts and deletes.
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6 Related Work

Several approaches have been proposed to increase the
efficiency of bulk loads [1][7][6] These solutions employ
auxiliary structures as a buffer for incremental inserts. Although
these structures can be used to address memory bandwidth
problems, they complicate the transactional model and delay
availability of the updated data to queries. A query on a buffered
index must either merge the results from the auxiliary structurein
temporary space or merge the buffered data into the primary index
before running the query (these queries are then actually writers).
Neither of these methods is practica for improving update
performance without sacrificing query performance.

Munro [9] considers a similar problem of storing a large
ordered set of pointsis solved with a persistent red—black tree. He
conclude that the red-black tree eliminates the memory overhead
of maintaining a contiguous sorted list, but the remainder of their
work focuses on orthogonal issues. Since the data in question was
stored in contiguous persistent storage, there was no means of
reducing the inherent pointer overhead of the red—black tree aswe
have done in the RB+ tree and no guarantee of locality for
ordered access of tuples. This locality of reference guarantees
efficient sequential access, unlike the red—black over a contiguous
file, which can be scattered across the file after incremental
inserts.

Several of the solutions proposed to address B-Tree 1/O
performance for bulk loading are related to our
work [3][6][12][10]. The most common solution for these bulk
updates is to first store inserted records in a smaller auxiliary
structure and then later merge these records with the main index
in asingle bulk update. Both the LSM tree [10] and modified B—
Tree [6] use one or more auxiliary trees to buffer random inserts
and deletes before they are merged into the main index. Our RB+
tree is complementary to such work of bulk loading, namely is
well suited as the auxiliary structure used to buffer inserts. The
RB+ tree is designed for such quick loading, especialy if the
auxiliary structure can stay memory resident. For the main index
of such designs, a traditional B+ tree may be more suitable since
it is dightly more compact and could still be efficiently merged
with the sorted data from the RB+ tree.

Other data structures [12][10] could also be used to improve
memory related performance of traditional B+ trees with large
pages, but not as effectively as the RB+ tree. These structures
could be used to prevent individual inserts from occurring, instead
substituting batch inserts which can be efficiently merged into B+
tree pages. Merging algorithms guarantee that existing records on
a data page are shifted once per merge instead of once per record

inserted. However, buffering inserts apart from the main index
complicates query processing since ordered data is stored in
digoint locations. To query data stored across several indexes, the
search must be executed on each index and a single result set
assembled from the result set of each index. The added costs of
such intermediate results could be detrimental for small queries.
Other requirements, such as maintaining a unique key, could be
inefficient and complex to implement across several data
structures.

Sequential accessfor RB+  Sequential access across multiple
Treeisawaysavailable structures requires calculating the
through pointers order of the data. )

ARLLTls) |

Figure 8: Sequential Access Coﬁi)arison

We find that merging solutions also do not address delete
operations, whereas the RB+ tree can efficiently handle deletions
simply because the red-black tree guarantees logarithmic
performance for both insert and delete. B+ trees also have a
memory performance problem when deleting records, since the
delete requires the same number of records to shift as the insert,
but in the opposite direction. A separate solution to address
memory performance for deletions is required to complement any
solution to insert performance based on merging. This is
something not typically studied in the literature, but again
illustrates the practicality of our structure.

The Y-Tree [7] could also be enhanced with the RB+ leaf
format. The Y-Tree reduces 1/0O by buffering tuples in the heap
buckets that are stored in the interior nodes. Nodes are migrated to
the sorted exterior nodes as the interior nodes fill. For this index,
queries that search the interior nodes must perform extra
processing compared to the evaluation of the leaf nodes. The RB+
leaf format could be an effective replacement for the heap buckets
used in the interior nodes of the Y-Tree since RB+ leaf pages
offer logarithmic insert behavior while providing ordered access
in constant time and point access in logarithmic time. This would
significantly improve the query performance of the Y-Tree and
possibly reduce the overhead resulting from having to migrate
tuples to leaf nodes.

The RB+ tree could aso improve the performance of a
multiprocessor system [12]. We suspect that paralel B+ tree
inserts are susceptible to memory bottlenecks, even with a small
page sizes. The reduced memory bandwidth from the RB+ could
make parald inserts and deletes in these systems scae better.
Since the RB+ tree has identica interface semantics to those of
the B+ tree, any method of parallelizing the B+ tree could be
easily adapted to work on the RB+ tree.

Two of the papers we surveyed [2][11] analyze the
performance of CPU level caching for different index page
formats. They find that binary search of a sorted array (which the
B+ tree uses for its leaf format) yields poor processor cache
performance since the search oscillates from one end of the array
to the next until converging at some point. For large data pages,
the page is much larger than a processor cache line, causing
several cache misses to occur for a single lookup. In comparison,
a binary search tree (which the RB+ tree uses for its leaf format)
can be arranged so as to localize data accesses since there is no



dependency on the physica node location. By placing tuples
along a search path physically close together, the probability of
subsequent items in a search being in the same cache line is
greatly increased and in turn there are far fewer reads to 2nd level
CPU (L2) cache or man memory. Locaity could be
accomplished in the RB+ tree by constructing a red-black tree
from the free nodes on each leaf page that is ordered by their
physica page location (this would replace the fredlist). Inserts
could then allocate a node that has good locality in logarithmic
time and subsequent queries would benefit from the higher CPU
cache hit ratio.

7 Conclusions

Our experimental results have confirmed that the RB+ tree is
an efficient index for high volume data warehouses. For large
inserts and deletes of random data to large data pages, it can
significantly reduce the memory bandwidth compared to
traditional B+ trees. Although RB+ storage requirements are
larger than those of a B+ tree, we show that the performance
gained by reducing memory bandwidth often outweighs possible
additional /O costs. From our experiments, we expect the RB+
tree to improve the memory performance of incremental inserts
into large pages by around 3,000%.

Query performance of the RB+ tree is near—identical to that of
the B+ tree, making it suitable for a general purpose index. Since
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