
The VLDB Journal manuscript No.
(will be inserted by the editor)

Parallel Multi-Source View Maintenance

Xin Zhang
�
, Lingli Ding

�
, Elke A. Rundensteiner

���

Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA 01609-

2280, (xinz
�
lingli

�
rundenst)@cs.wpi.edu

Received: date / Revised version: date

Abstract In a distributed environment, materialized views are used to integrate

data from different information sources and then store it in some centralized lo-

cation. In order to maintain such materialized views, maintenance queries need to

be sent to information sources by the data warehouse management system. Due

to the independence between the information sources and the data warehouse,

concurrency issues raise between the maintenance queries and the local update

transactions at each information source. Recent solutions such as ECA and Strobe

tackle such concurrent maintenance, however with the requirement of quiescence

of the information sources. SWEEP and POSSE overcome this limitation by de-

composing the global maintenance query into smaller subqueries to be send to ev-

ery information source and then performing conflict correction locally at the data

warehouse. Note that all these previous approaches are handling the data updates

�
This work was supported in part by the NSF NYI grant IIS-979624 and NSF CISE

Instrumentation grant IRIS 97-29878 and NSF grant IIS-9988776.

2 Xin Zhang et al.

one at a time. Hence either some of the information sources or the data warehouse

are likely to be idle during most of the maintenance process.

In this paper, we now propose that a set of updates should be maintained in

parallel by several concurrent maintenance processes so that both the informa-

tion sources as well as the warehouse would be utilized more fully throughout

the maintenance process. This parallelism then should improve the overall mainte-

nance performance. For this, we have developed a parallel view maintenance algo-

rithm, called PVM, that substantially improves upon the performance of previous

maintenance approaches by handling a set of data updates at the same time. The

parallel handling of a set of updates is orthogonal to the particular maintenance

algorithm applied for the handling of each individual update. In order to perform

parallel view maintenance, we have identified two critical issues that must be over-

come: (1) detecting maintenance-concurrent data updates in a parallel mode, and

(2) correcting the problem that the data warehouse commit order may not corre-

spond to the data warehouse update processing order due to parallel maintenance

handling. In this work, we provide solutions to both issues. For the former, we

insert a middle-layer timestamp assignment module for detecting maintenance-

concurrent data updates without requiring any global clock synchronization. For

the later, we introduce the negative counter concept to solve the problem of variant

orders of committing effects of data updates to the data warehouse. We provide a

proof of the correctness of PVM that guarantees that our strategy indeed generates

the correct final data warehouse state. We have implemented both SWEEP and

Parallel Multi-Source View Maintenance 3

PVM in our EVE data warehousing system. Our performance study demonstrates

that a multi-fold performance improvement is achieved by PVM over SWEEP.

Key words Data Warehousing – Parallel View Maintenance – Concurrent Data

Updates – Performance Evaluation.

1 Introduction

1.1 Background on View Maintenance

A data warehouse integrates data from multiple information sources and then

stores it in the form of materialized views (MV). The information sources may

be heterogeneous, distributed and autonomous. When the data in any informa-

tion source changes, the materialized views at the data warehouse need to be up-

dated accordingly. The process of updating a materialized view in response to the

changes in the underlying source data is called View Maintenance. The view main-

tenance problem has evoked great interest in the past few years.

It is popular to maintain the data warehouse incrementally by only recomputing

a minimal delta to the view extent based on the particular source change [1,17,13]

instead of recomputing the whole extent. Recomputation is prohibitively expensive

due to the large size of data warehouse and the enormous overhead associated with

the data warehouse loading process. Because the data warehouse usually needs to

connect to and exchange information with multiple information sources through

the network for accomplishing an incremental maintenance process, this process

will be fairly time costly as well. It is hence unacceptable to block the update

4 Xin Zhang et al.

transaction at an information source in order for the integrator to immediately

accomplish the view maintenance process. Instead, the maintenance is performed

in a process separate from the actual source update transaction, thus called deferred

view maintenance [4,12].

Since deferred view maintenance does not block the update transaction of the

underlying information sources, there will be a time period during which the extent

of the data warehouse will be temporarily inconsistent with that of the information

sources. In recent years, there have been a number of algorithms proposed for

such deferred view maintenance [25,17,5,20,8,13,32]. In general, they fall into

two strategies, namely sequential view maintenance strategies (Figure 1) and fully

concurrent view maintenance strategies (Figure 2).

Data Warehouse

DWMS

IS

Wrapper

IS

Wrapper

IS

Wrapper

1
2 43 5

6

Fig. 1 Sequential View Maintenance
Strategy.

Data Warehouse

DWMS

IS

Wrapper

IS

Wrapper

IS

Wrapper

1
2 23 3

4

Fig. 2 Fully Concurrent View Mainte-
nance Strategy.

In Figure 1, the data update arrived at the data warehouse management sys-

tem (DWMS) in step 1. Then the maintenance query is decomposed into multiple

subqueries that are sequentially processed in steps 2 to 5. In this case, all the joins

from the view definition are pushed down to be computed directly by the informa-

tion sources to reduce the size of intermediate data. Finally, the computed result

is committed to the data warehouse in step 6. This strategy significantly reduces

Parallel Multi-Source View Maintenance 5

the partial results shipped over the network as well as the load and responsibility

placed upon the data warehouse server. However, this sequential maintenance pro-

cessing strategy requires the data warehouse manager to wait for the processing

of the database server in each information source as well as for transmissions of

results or update messages over the network between data warehouse and informa-

tion sources. However, most of the information sources would be idle most of the

time. SWEEP [1] using this sequential strategy for handles distributed information

sources.

In Figure 2, after the data update has arrived at the data warehouse management

system (DWMS) in step 1, then the maintenance query again is decomposed into

multiple subqueries and each subquery is sent to one of the information sources

in step 2. All the partial results are returned from the sources in step 3 and joined

at the DWMS in step 4. This strategy uses the different information sources in the

environment at the same time, thus parallelizing their usage. However step 4 may

be very expensive due to the potentially large partial query results returned from

the underlying sources. This is so because individual subqueries may not being

able to exploit join conditions from the view query when retrieving data, due to

all such subqueries being send out at the same time. Second, this increased cost is

due to the complexity of the joins now required to be performed at the data ware-

house in order to integrate all the partial results. For this reason,the information

sources may sit idle for a long time while the data warehouse manager processes

the complex multi-way join, before the next data update can be handled. Strobe

[31] basically follows this full concurrent strategy.

6 Xin Zhang et al.

More recently, Posse [19] supports different strategies for maintenance queries

in order to have a better tradeoff between the size of the messages and number of

queries that can be executed concurrently. Basically, it can interleave the concur-

rent and sequential strategies explained above into one hybrid solution so to handle

one single data update in the most effectively manner.

As we can see, no matter which strategy we pick, due to the handling of the

data updates being done one by one, some information sources are idle during the

maintenance process. Thus, we now propose that we can further improve the over-

all maintenance performance by exploiting the computation power of those idling

information sources. Any solution that manages to improve the performance of

the view maintenance process is critical, given that it would reduce the time dur-

ing which the data warehouse lags behind and thus is inconsistent with the infor-

mation sources. Consequently, such optimization would lead to an improvement

of the timeliness and hence quality of the data warehouse content important for

time-critical applications, like stock market and monitoring-control applications.

Optimization of data warehouse maintenance is hence the focus of our work.

1.2 Our Approach – PVM

While previous work as described above focuses on the handling of one single up-

date, in this paper we now propose an algorithm called Parallel View Maintenance,

in short PVM, that efficiently can process a set of concurrent data updates. PVM

preserves all advantages of its predecessors, in particular SWEEP [1] and POSSE

[19], while overcoming their main limitation in terms of information sources stay-

Parallel Multi-Source View Maintenance 7

ing underutilized caused by the one-by-one processing of information source up-

dates. In particular, both SWEEP and POSSE handle data updates one at a time

enforcing all updates to queue at the data warehouse manager until all updates re-

ceived before the current one have been fully processed and incorporated into the

warehouse extent.

Although a variation called Nested-SWEEP [1] handles multiple updates in a

more efficient way by reusing part of the query results, it puts more requirements

on the updates, e.g., it requires the updates to be non-interfering with each other

in order to terminate. We will show that PVM more efficiently handles a set of

concurrent data updates than previous solutions by parallelizing the maintenance

processes of different updates. Such optimization leads to an improvement of the

timeliness and hence quality of the data warehouse content, which is important for

time-critical applications like stock market and monitoring-control systems.

In this work, we identify two research issues central to enabling parallel han-

dling of the maintenance of a set of updates. The first issue is how to detect con-

flicting concurrent data updates within a parallel execution paradigm. The second

issue is how to handle the random commit order of effects of data updates at the

data warehouse, which we call the out-of-order-DW-commit order, caused by the

parallel execution of the view maintenance process without blocking incoming

updates. Our PVM solution proposed in this paper solves both problems.

For the first issue, we introduce two data structures to store concurrent data up-

dates to help PVM detect the conflicting ones. We also introduce a local timestamp

mechanism to identify each data update and query result received by the warehouse

8 Xin Zhang et al.

manager in order to help detect concurrent data updates, which is much less restric-

tive compared to requiring a global timestamp mechanism. For the second issue,

we extend the meaning of counters 1 kept for tuples at the data warehouse to also

include negative counts. A negative counter now indicates the number of faulty

deleted tuples due to the out-of-order-DW-commit order. We keep track of this in

order to fix the faulty tuples once the delayed data inserts are detected and need to

be compensated for. The correctness of our solution based on negative counters is

proven. A full implementation of PVM and a popular contender in the literature

(SWEEP) within our EVE [22] data warehousing testbed has been accomplished

to allow for experiment evaluation of these two techniques within one uniform sys-

tem. Our experimental studies show that PVM achieves a many fold performance

improvement over SWEEP based on the maximum number of threads that can be

executed concurrently in the given system configuration.

1.3 Contributions

The main contributions of this work are:

– Identify the performance limitation of the state-of-the-art view maintenance

(VM) solutions in the literature in terms of sequential handling of a set of

updates and characterize research issues to be addressed to achieve parallel

execution, in particular, the Concurrent Data Update Detection problem and

the Out-of-Order-DW-Commit problem.

1 Here we assume the representation in the data warehouse is unique tuples with associ-
ated duplicate counters.

Parallel Multi-Source View Maintenance 9

– Introduce a solution strategy to solve the concurrent update detection problem

in a parallel execution mode based on a data warehouse timestamp mechanism

and some auxiliary data.

– Develop a solution strategy to the parallel view maintenance process without

blocking the commit phase to the data warehouse by extending the range of

duplicate counters to allow for negative values to keep track of and then com-

pensate for faulty tuples generated by the out-of-order-DW-commit.

While the basic ideas of PVM were first presented in a workshop paper [29],

we now offer the following additional contributions:

– Prove the correctness of the PVM solution to show that it produces the same

final data warehouse extent as a complete re-computation algorithm.

– Develop a cost model and present an analytic evaluation of PVM using this

model that characterizes its performance advantages over previous solutions.

– Implement both the PVM and SWEEP algorithms in a uniform environment,

namely, the EVE data warehouse system [22], to conduct a comparative study

of these strategies since the source code of view maintenance algorithms in-

cluding SWEEP has not been made available in the community.

– Conduct a set of experimental studies that analyze the behavior of PVM and

verify the performance benefits achievable by PVM under different system

settings over alternate contenders.

10 Xin Zhang et al.

1.4 Outline

The next section presents background material, including an introduction to view

maintenance basics. In Section 3, the PVM solution, including the two open re-

search issues and their solutions, are presented. The different levels of data ware-

house consistency in the context of distributed environments and PVM’s consis-

tency level are discussed in Section 4. In Section 5, the cost model and analytic

evaluation of the performance of PVM are presented. The design and implemen-

tation of the PVM system are detailed in Section 6. Section 7 presents results of

our experimental performance study. In Section 8, the related work is described,

and conclusions are discussed in Section 9.

2 Background

2.1 Background on View Maintenance

View maintenance is concerned with maintaining the materialized views up-to-

date when the underlying information sources are modified over time. The straight-

forward approach of recomputing the complete view extent for each data update

is not realistic in most practical settings. Instead, an incremental solution that only

calculates the individual effect of each source update on the warehouse and then

updates the data warehouse incrementally is typically more efficient. If two data

updates are separated far enough in time so that they do not interfere with each

other during maintenance, then this incremental approach is straightforward. In

this case, when a data update ����� happened at a base relation ��� and is received

Parallel Multi-Source View Maintenance 11

by the warehouse manager, the incremental change is computed by the query in

Equation 1:

�
������� ���
	 ����
����

����� ��� ������
�� � ����������� ��� � ��������� ��� � (1)

The query in Equation 1 is computed by sending down subqueries to the re-

spective information sources [9,10]. For simplicity, let us focus on SPJ views

here, while in a later discussion section we discuss possible generalizations. The

attributes are the columns in the view that are being projected out from the query

result. The predicates are used to filter the query result. To explain the generation

and execution order of the subqueries of Equation 1, we introduce the notations

described in Table 1.

Notation Meaning!#" � A Data Update with unique subscript $.% � A Query for handling
!#" � .% � � The Query Result of
% � .&('*)

An Information Source with unique index + .' % ��,) A Sub-Query of
% � being sent to

&('-)
.' % � ��,) A Sub-Query Result of

' % ��,) .!#" �/. 0
1 !2" � with Unique Timestamp 0 .
�43 � �43 � is Effect of

!2" � .' % ��,) . 0
1 ' % ��,) with Unique Timestamp 0 .' % � ��,) . 0
1 ' % � ��,) with Unique Timestamp 0 .
Table 1 Notations used in this paper.

12 Xin Zhang et al.

A la SWEEP [1], the subqueries are generated in a sequence that starts to join

the relations on the left side of ��� � , and then continues to join the relations on the

right side. Let
!2"���� � � � . In the order of the generation sequence, we have 2:

Scan left: Scan right:' % � , ��� � ���
� � � ���

� � ��� � � ' % � , �	� � �
�
� �
' % � � , � � � �	� � �' % � , ����� � �

� � � �����
� ' % � � , �
� � � ' % � , �	��� � �

� �
' % � � , �	� � � � �	��� �

... ...' % � , � ���
� � �

� � ' % � � , � � ' % � , � ���
� �
' % � � , � � � � ��� �

Please notice we don’t need to send any subquery to the ����� that initially had reported
the update ��� � .

This simple approach will succeed in the case when the updates are spaced

far enough in time so to allow for completing the incremental computation of the

view by executing the distributed maintenance query in Equation 1 before any

new update occurs. However, due to the autonomous nature of the sources par-

ticipating in the data warehouse, this kind of separation in time cannot always

be guaranteed. Hence, we have to maintain the data warehouse even under pos-

sibly concurrent data updates that are not separated far enough to accomplish the

naive incremental maintenance illustrated above. Recent work by [31,1] proposes

special techniques, e.g., compensation queries, to correct for possible errors in the

query results returned by an individual source
&(' � that had undergone a concurrent

update.

2 For simplicity, we omit the selection predicates and projection attributes applied to the
related relations for each subquery.

Parallel Multi-Source View Maintenance 13

2.2 View Maintenance under Concurrent Data Updates

Because the data updates are happening concurrently at the information sources,

one data update
!2"��

at a information source could interfere with the query pro-

cessing of a query sent by the data warehouse manager to the same informa-

tion source to handle another data update
!2" � . We call this data update

!2"��

a maintenance-concurrent data update as it takes place concurrently with the

maintenance process servicing other updates as formally defined in Definition 1.

Definition 1 Let
!2" � and

!#" �
denote two updates on

&('-)
and

&(' � respectively.

The data update
!2" �

is called maintenance-concurrent with the update
!2" � ,

iff:

i)
!2" � is received earlier than

!2" �
at the middle layer, (i.e., $����)

ii)
!2" �

is received at the data warehouse before the answer of the sub-query

' % � , � on the same
& ' � generated by the data warehouse for handling

!2" � .
The data update

!2" �
is also called maintenance-concurrentdata update.

Like previous work [31,1], we also make the following assumption to facilitate

the definition of the maintenance-concurrent property.

Assumption 1 The order in which the data warehouse manager receives the mes-

sages from an information source is the same as the order in which the information

source sends out the messages. It is known as FIFO Assumption.

For example, in Figure 3,
!2" � occurs at

&(' � and
!#" � occurs at

&(' � respec-

tively. We assume that
!2" � is received at time 0 �	� , denoted as

!2" � . � 1 , which

14 Xin Zhang et al.

DU1[1] DU2[2]

DU2

DU1

Q1 SQ1-2

SQ1-2 SQR1-2

SQR1-2[3]

Thread:

Message:

Legend
DW

IS1

IS2

QR1

Fig. 3 Definition of a maintenance-concurrent Data Update

is earlier than
!#" � at time 0 ��� , denoted as

!2" � . � 1 , by the data warehouse man-

ager. Then the data warehouse manager generates a query
% � in order to handle

!2" � . � 1 . The query
% � will then be broken into sub-queries to be handled by each

information source. The sub-query
' % � , � that is generated from

% � is sent to
&(' � .

Since
!2" � occurred before

&(' � received
' % � , � , and because of assumption 1,

!2" � is received earlier than the query result of
' % � , � , denoted as

' % � � , � , at the

data warehouse. Then, the data warehouse manager will assign 0 ��� to
' % � � , �

and denotes it as
' % � � , � . � 1 . Based on the timestamp, we can see that

!2" � . � 1 was

received earlier than
!#" � . � 1 and

!2" � . � 1 was received earlier than
' % � � , � . � 1 by

the data warehouse manager. This means that
!#" � affected the sub-query result

' % � � , � . By Definition 1,
!2" � is said to be a maintenance-concurrent data

update.

The maintenance-concurrent
!2"

will cause an anomaly in the compen-

sation query. Assume we have a view defined as 3 � � � � � � � ��� . We

have two data updates
!2" � for � � and

!2" � for � � . Assume � � after
!2" � is

denoted as ��� � , and � � after
!2" � is denoted as ���� . In order to maintain the

view 3 , we need to send two compensation queries down, one for each update.

The first compensation query
% � � !2" � � � � � � � and the second com-

pensation query is
% � � ��� � � ��� � !2" � . The

% � is broken into two sub-

Parallel Multi-Source View Maintenance 15

queries to
&(' � and

& '
� . The subquery

' % � , � for
&(' � is

!2" � � � � , and the

subquery
' % � , � for

& '
� is

' % � � , � � � � . However, when
' % � , � arrives at

&('
� ,

the
!2" � has already been applied to ��� . So now the

' % � , � receives the result

' % � � , � � ���� � ' % � � , � � � � � � !2" � � , instead of
' % � � , � � ��� . Hence the

' % � � , � � !2" � is the anomaly of this subquery
' % � , � result.

All previous work including Strobe [31], SWEEP [1] and Posse [19] can han-

dle data warehouse maintenance for maintenance-concurrent data updates. For

this, both [1] and [19] introduce a local-compensation strategy to remove such

anomaly locally at the data warehouse. For each sub-query affected by the concur-

rent data update, a local compensation query will be composed as the concurrent

data update joins with the previous partial query result. In the previous example,

a local compensation query for
' % � , � will be constructed as

' % � � , � � !2" � .
This is exactly the same as the anomaly and can be computed locally, because

' % � � , � and
!2" � are both known values. Our solution PVM can be applied to

extend any of these existing systems independent from the particulars of how they

handle maintenance-concurrent data updates.

2.3 Assumptions

Below are the assumptions held by the previous view maintenance solutions in the

literature that we continue to assume for our work on parallel view maintenance.

Assumption 2 All information sources are independent from each other, in the

sense that a data update at one information source will not propagate into other

information sources.

16 Xin Zhang et al.

This assumption also holds in any of the prior work that we are aware of [30,

31,1], even though it may not typically be stated explicitly.

Assumption 3 The updates to the base relations are assumed to be inserts and

deletes of tuples. A modify is modeled as a delete followed by an insert.

Besides the assumptions that are explicitly defined in SWEEP [1], we note that

the following assumptions also hold for SWEEP as well as for PVM.

Assumption 4 We assume an information source
& '

will send a notification mes-

sage to the data warehouse manager only after the data update has been committed

at that
& '

or the query result has been generated.

Assumption 5 The view definition will not be changed during the view mainte-

nance process, and the information sources will only undergo data changes but no

schema changes.

[18,28] drop this assumption to evolve views in a dynamic environment.

Assumption 6 Every information source will report all changes caused by a data

update at the tuple level after having committed the data update, including the

direct effect of that data update as well as the indirect effects of that data update

on that information source.

For example, we assume there are two relations � � and � � at IS1 as defined

in Table 2. As one can see, � � has a foreign key referring to � � . When there is a

data update
!2" � that deletes tuple T1 from � � , the indirect effect of

!2" � would

be the deletion of these tuples from � � that have referred to T1.

Parallel Multi-Source View Maintenance 17

CREATE TABLE � � (A CHAR(11),
D INTEGER,
E DATE,
PRIMARY KEY (A, D),
FOREIGN KEY (A) REFERENCES R2,
ON DELETE CASCADE)

CREATE TABLE � � (A CHAR(11),
B CHAR(11),
C INTEGER,
PRIMARY KEY (A))

Table 2 Schema Definition of Example of Indirect Effect of a Data Update.

2.4 Information Source and Data Warehouse States

Definition 2 A legal information source state from the data warehouse point of

view is defined iteratively as follows:

a. The initial state of an information source space,
& &('��

, is a legal information

source state.

b. For a sequence of actual updates at one
&(' � for some i, denoted by

!2" ��, � ,
!2" ��, � , ...,

!#" ��, � , then an information source space state generated by applying

any contiguous subsequence of
!2" ��, � , !2" ��, � , ...,

!#" ��, � with 1
�

k
�

n to this
&(' �

is a legal information source space state.

c. For any pair of data updates
!2" � and

!2" �
from different information

sources
&(' � and

& ' �
with i �� j, the information source space state generated

by applying
!2" � to a legal information source space state, and the information

source space state generated by applying
!#" �

to a legal information source space

state are both considered to be legal.

We consider a data warehouse state to be legal if the data warehouse state

can be generated from a legal information source state by execution of the data

warehouse query.

18 Xin Zhang et al.

For example, if two data updates
!2" � and

!#" � occur at two different infor-

mation sources, then the system could be in three legal information source states.

That is, we only have committed
!#" � , we only have committed

!2" � , or we have

already committed both.

Definition 3 A data warehouse state is called quiet if there is no un-handled up-

date queued in the data warehouse. Quiescence of information sources refers to

a period of time when no new data updates occur at any information source until

the data warehouse has handled all the reported data updates.

3 PVM: A Parallel View Maintenance Solution

A data warehouse maintenance algorithm for maintenance-concurrent updates

has to address the following four tasks: 1) execution of a distributed maintenance

query, 2) detection of maintenance-concurrent data updates, 3) handling of

maintenance-concurrent data updates, and 4) committing of maintenance query

result to the data warehouse. First, the algorithm will generate the maintenance

query for each update submitted from an information source. It needs to execute

such a distributed maintenance query over all related ISs (thus, indeed making

a decision on the distributed query plan). Second, during the processing of the

maintenance query, the algorithm needs to be able to detect any maintenance-

concurrent data updates that happened concurrently to the maintenance process.

Third, given such a detection, the algorithm must provide a mechanism to han-

dle such concurrency, usually referred to as compensation queries [30,31,1,19].

Lastly, the corrected maintenance query result will be committed to the data ware-

Parallel Multi-Source View Maintenance 19

house. The first and third tasks vary from maintenance algorithm to maintenance

algorithm [30,31,1,19], while we now propose that the second and fourth tasks

can be generalized.

Given this observation, the PVM system separates the maintenance query ex-

ecution and maintenance-concurrent data update handling tasks (tasks 1 and 3)

from the maintenance-concurrent data update detection and maintenance query

result committing tasks (tasks 2 and 4). PVM provides mechanisms solving the

later two tasks. This allows PVM to eventually plug in different maintenance algo-

rithms, with their own maintenance query execution and maintenance-concurrent

data update handling strategies.

3.1 PVM Architecture

The architecture of PVM is depicted in Figure 4. Here, the data warehouse man-

ager is located at the data warehouse side and the wrappers are located at the

information source side connected by a FIFO network. Each information source

wrapper contains two modules, i.e., ProcessQuery and SendUpdate. SendUpdate

will report all the updates that happened at the information source to the data ware-

house manager, and ProcessQuery will process the queries from the data ware-

house manager and return the result back.

The data warehouse manager of PVM employs five processes, namely Main-

tenance Manager, Commit Manager, Concurrency Detection, Assign Timestamp,

and ViewChange. The Maintenance Manger process monitors the updates received

in the update message queue (UMQ) and spawns an instance of the ViewChange

20 Xin Zhang et al.

∆V

V

UMQ

Query QueryResult Data Update

Commit
Manager

ViewChange
Assign

TimeStamp

Data Warehouse

Information Source

∆R

R ProcessQuery

SendUpdate

FIFO Network

PPU

RPU

Legend

Queue

Database

Process

Data Flow

Multi-
Threaded

Data

Maintenance
Manager

Concurrency
Detection

Control Flow

Fig. 4 PVM Architecture

subprocess to handle an individual update if parallel processing update set (PPU)

is not full. The Commit Manager process will commit the view changes computed

by the ViewChange process into the data warehouse. The Concurrency Detection

process will check each received query result to determine if it is affected by in-

coming data updates by using three structures, i.e., update message queue(UMQ),

parallel processing update set(PPU), and related processed update set (RPU). The

Assign TimeStamp process gives a unique timestamp to each incoming message in-

cluding update messages and query results. This is essential for detection of con-

currency as discussed in a later section. The ViewChange process is responsible

for calculating the effect of every data update on the data warehouse by choosing a

specific query plan. It is responsible for the following tasks: (1) generating the dis-

tributed query plan for each update, (2) sending remote subqueries to information

sources, and (3) handling these remote queries. Handling of the remote subqueries

of a maintenance task could be done either one by one in a sequential order [31,

1] or in recent work possibly also allowing processing of the remote queries for

one update to be run in parallel [19] and then joined locally at the data ware-

house. Clearly, the ViewChange process is expensive. Hence, most of the time the

ViewChange process is idle waiting for either messages to be shipped across the

Parallel Multi-Source View Maintenance 21

FIFO network or information sources to compute query requests. We propose that

this is the process in the system that must be replicated to handle more than one

data update at the same time. Our goal here is to interleave the handling of many

updates by running parallel threads of ViewChange processes, thus it leading to

potential performance improvements.

Thread:

Process:

DU
Message:

Sequential DW Maintenance:
VC

IS1

IS2

PVM:

IS1
IS2

VC1
VC2

VC: View Change

Legend

Time Saved

Fig. 5 Ideal Execution Plan of PVM

In Figure 5, we contrast the sequential handling with the parallel handling of

updates. In the upper part of the figure about the sequential handling of updates,

the updates have to wait to be handled by the view change process one by one.

While, the lower part depicts the paralleling handling case of updates assuming

two threads of the ViewChange process (3�� � and 3�� � in our example figure) are

active in the system. Hence the overall performance of handling those four updates

can be significantly improved.

3.2 Detection of Maintenance-Concurrent Updates under Parallel Execution

In order to handle concurrent data updates in a parallel fashion, the first issue we

need to address is how to correctly detect all concurrent updates. We note that

like in previous data warehouse management systems, PVM also holds one data

structure called update message queue (UMQ) in the data warehouse manager. It is

22 Xin Zhang et al.

used to buffer all the incoming update messages. The original data update detection

by SWEEP is based on storing data updates in the UMQ. Because SWEEP is a

sequential system, all the data updates will wait in the UMQ in the order in which

they arrived while the first one is taken off and handled by the data warehouse

manager of SWEEP. Given that all messages continue to wait in their arrival order

in that UMQ, it is trivial to detect whether later updates arose during this process

of maintaining the current update.

However, a concurrency detection that only relies on the UMQ will not work

for PVM. PVM parallelizes the execution of the ViewChange process, i.e., it re-

moves multiple updates from the UMQ and puts them into the parallel processing

update set (PPU), which is a queue to store all the parallel processing updates,

during the parallel handling process. At first glance, it may appear that PVM could

simply extend SWEEP’s concurrent update detection scheme by checking both

the UMQ and PPU data structures. We now show that this checking would not be

sufficient by presenting one example illustrating that such a strategy would fail to

detect concurrent updates.

3.2.1 A Motivation Example Illustrating the Maintenance Concurrent Detection

Problem In Figure 6 there are two data updates
!2" � and

!#" � from information

sources
& ' � and

& ' � , respectively.
!2" � arrived at the data warehouse before

!2" � .
So

!2" � is handled first. However,
!2" � affects the query result

% � � processed at

&(' � , which is used to calculate the effect of
!2" � . So

!2" � is a maintenance-

concurrent data update by Definition 1. In Figure 6 we can see that
!2" � first

waited in the UMQ to be handled. Then it is stored in the PPU while being han-

Parallel Multi-Source View Maintenance 23

dled. Finally it is erased from the system by PVM after having been handled. Note

that we assumed that
!2" � is handled faster than the processing of

!2" � . So, be-

fore
!2" � receives the query result

% � � from the
&(' � , !#" � has already been

completely handled and thus has been removed from the PPU in general. Hence,

PVM can no longer detect the maintenance-concurrent data update
!2" � . Thus

the final state of the data warehouse after handling the
!2" � and

!2" � updates

would be inconsistent with the state of the information sources.

DU1 from IS1

DU2 from IS2

QR from IS2

DU2 is waiting
in UMQ

DU2 is in PPU set

Thread:

ViewChange
Process:

Legend
VC1

VC2

Fig. 6 Maintenance-Concurrent Update Detection Problem.

3.2.2 Solution of Detecting Maintenance Concurrent Updates The reason for

this problem is we haven’t kept track of updates that while having been completely

handled already may still be needed for the purpose of detecting prior concurrent

data updates. We propose to address this problem by keeping the completely han-

dled and actually committed data updates in a special holding place where we can

check for potentially concurrent data updates. It is important to note that we do not

require the delay of committing the effect of the update to the data warehouse as

in Strobe [1], i.e., quiescence is not required by PVM. We call these data updates

related processed updates.

Definition 4 [Related Processed Updates]: An update
!2" � already completely

handled (and committed) by the data warehouse manager is a related processed

24 Xin Zhang et al.

update if there exists at least one update
!2" �

received before
!2" � by the data

warehouse that hasn’t been completely handled by the ViewChange process yet.

This definition identifies the situation in which a committed
!2" �

could have

caused a maintenance-concurrent detection problem, and hence the knowledge

about the occurrence of this
!2" �

must be kept track of by the data warehouse.

In order to solve this problem, we put a second data storage into the PVM sys-

tem (Figure 4), called the related processed updates set or RPU in short. It will

maintain all related processed updates until their retention becomes no longer nec-

essary. After the ViewChange process handles one data update
!2" � and commits

the effect of that
!2" � to the data warehouse, if the

!2" � is found to be a related

processed update as defined by Definition 4, then the ViewChange process will put

it into the RPU.

DU1 from IS1

DU2 from IS2

QR from IS2

DU2 is waiting in UMQ DU2 is in PPU set DU2 is in RPU set
Thread:

ViewChange
Process:

Legend
VC1

VC2

Fig. 7 Solution of Maintenance-Concurrent Update Detection Problem.

Figure 7 illustrates the relative time intervals for the update along the time-

line of the ViewChange process. In Figure 7 we can see that the concurrent data

update
!2" � is not immediately removed from the system after committing the

effect of it into the data warehouse. Instead we put the
!2" � into RPU, because

it was handled later than
!#" � but finished before the handling of

!2" � . Hence,

!2" � is a related processed update. When the data warehouse manager receives

the query result
% � � from

& ' � , it checks UMQ, PPU and now also RPU for con-

Parallel Multi-Source View Maintenance 25

current data updates. This time, it finds the
!2" � in the RPU, and compensates the

effect of
!#" � from the query result

% � � . Hence,
% � � is corrected and the effect

of
!2" � is computed correctly. This ensures the final data warehouse state will be

consistent with the information source space.

The ViewChange process also cleans up the RPU to remove all unrelated up-

dates. This can be done by simply checking the timestamps and information source

of updates in the PPU and the RPU, as explained below.

Definition 5 A data update
!2" � in RPU is said to be unrelated if the following

condition holds: there does not exist any
!2" �

in PPU such that the timestamp 0 �

for
!#" �

is smaller than the timestamp 0 � for
!2" � .

From Definitions 4 and 5 we conclude Lemma 1.

Lemma 1 A data update
!2" � in PPU that is unrelated by Definition 5 can be

safely removed from the RPU set while guaranteeing that no maintenance-concurrent

update related to this
!#" � will be missed, i.e., no potentially conflicting

!2" �
could

ever be added to the PPU or could exist in the UMQ after this removal time.

From the definition of maintenance-concurrent updates (Definition 1), we

know that any concurrent update would have to be between the currently being

handled update and the maintenance query result. If the update
!#" � is unrelated,

then it must have been received earlier than all the other updates in PPU and

UMQ. Hence,
!2" � is not a maintenance-concurrent update, as this condition

of maintenance-concurrent updates cannot be hold. So Lemma 1 holds.

26 Xin Zhang et al.

3.3 The Out-of-Order-DW-Commit

We now show that even if an individual
!2" � can be handled correctly using some

local compensation technique, the final data warehouse state after committing

these correctly computed effects can still lead to an inconsistent data warehouse

state due to the variant commit orders caused by parallelism.

3.3.1 An Example Illustrating the DW-Commit Problem Assume we have two

relations A and B with the data warehouse
!��

defined by
!�� �������

. The

extents of A, B and data warehouse
!��

are shown in Figure 8. Two data updates

!2" � and
!2" � happened to B and A respectively.

!#" � adds � �
	 to B, while

!2" � deletes � ��	 from A. The data warehouse manager receives first
!2" � and

then
!2" � . The effect of

!2" � , denoted by � !�� � 3 defined by
��� !2" � , is shown

in Figure 8. The effect of
!2" � , denoted by � !�� � , is calculated after receiving

!2" � . It is defined by
!2" � �
� � as shown in Figure 8 4. After we commit the two �

DW-s to the data warehouse
!��

in the order of � !�� � and � !�� � as described

in Correct Commit Order part of Figure 9, we get the correct data warehouse state.

If we reverse the commit order of the two � DW-s (and the original data

warehouse only counts positive tuples as is the state-of-the-art for current DBMS

systems), we update the data warehouse in the wrong commit order as shown at

3 SWEEP assumes that compensation queries are used so that each individual ��� returns
a correct query result � � � . So either way if there were no time conflicts or if we actually
encounter time conflicts, our results are the same.

4 The strategy of how to calculate the ������� is based on the time stamp of the updates
and query results and we assume that the local compensation strategy as adapted from
SWEEP. If two updates are received at the same time, we can choose any order to log them
into the data warehouse. Then, clearly the query for calculating the ������� will depend on
this selected order. However the ��� will still be updated correctly.

Parallel Multi-Source View Maintenance 27

A B
1 2

DW
A B
1 2

DU1: Add <3> to B

B
2
3

∆DW1

∪

DU2: Drop <1> from A

A
1

∆DW2

A B
1 2

-

3 2

3

=×
Counter

1
1

Counter

1
1

1 3
3 3

A B

Counter

1

Initial State of
Relations A and B
and Data Warehouse

Data Update DU1 &
Its Effect on Data
Warehouse is ∆DW1

Data Update DU2 &
Its Effect on Data
Warehouse is ∆DW2

3

1 3 1

+

-

Fig. 8 Environment of Out-of-Order-DW-
Commit Example

DU1 from IS1

DU2 from IS2

Normal Commit: DW(after ∆DW1)

A B
1 2
3 2

Counter

1
1

1 3
3 3

1
1

DW (after ∆DW2)

A B
3 2

Counter

1
3 3 1

DW(after ∆DW2)

A B
3 2

Counter

1

DU1 from IS1

DU2 from IS2

Out-of-order Commit:

DW(after ∆DW1)

A B
3 2

Counter

1
1 3 1
3 3 1

Thread:

VM
process:

DU:

Legend

Fig. 9 Example of Out-of-Order-DW-
Commit Problem

the bottom of Figure 9. First, we would subtract � !�� � , which given that �
��� � 	

does not yet exist in data warehouse, would be equal to a no-op. Then after

unioning of � !�� � to
!��

, we get the wrong data warehouse extent depicted

in Figure 9, which now contains a faulty tuple � ��� � 	 with counter 1. The

correct answer instead should have been the data warehouse extent as depicted in

the Correct Commit Order part of Figure 9.

3.3.2 The Problem Caused by Out-of-Order-DW-Commit Assume two updates

!2" � and
!2" � happened on two different information sources

& ' � and
&(' � of the

information source space with state
& ' ' � , and information source state transforms

from
&(' ' � to

&(' ' � as depicted at the bottom of Figure 10. No matter in which

order these two updates are executed, the information source space will be unique,

denoted by the state
& ' ' � .

Assume the data warehouse defined upon the information source space is af-

fected by these two data updates. If we are doing parallel incremental view main-

tenance of the data warehouse, different orders of committing the effects of the

two data updates may occur and hence different final extents of data warehouse

28 Xin Zhang et al.

may result. However, only one of them can be the correct one. In fact, we know

that the extent of the data warehouse is correct if and only if it is the same as the

view extent that would be recomputed directly from the information source space

with state
& ' ' � .

DW1 DW2

∆DW1 ∆DW2

DU1 DU2ISS1 ISS2

Re-compute Re-compute

Incremental
View Maintenance

Concurrent
Data Updates

Fig. 10 Correctness Criteria of Extent of Data Warehouse

Definition 6 The data warehouse extent of a quiet data warehouse state as defined

in Definition 3 is defined as correct under multiple information source updates

!2" � and
!2" � if it is equal to the extent we get when first updating the information

source space with
!#" � and

!#" � and then recomputing the data warehouse extent

from scratch (Figure 10).

Definition 7 We call the potential inconsistency between the final state of the data

warehouse and the information source space caused by the out-of-order data ware-

house commit the Out-of-Order-DW-Commit problem.

Theorem 1 The Out-of-Order-DW-Commit problem defined by Definition 7 will

only occur when first an add-tuple and then a delete-tuple, both of which modify

the same tuples in the data warehouse, are received by the data warehouse man-

ager and both are handled in parallel by PVM.

Proof: Please see Appendix B for the proof.

Parallel Multi-Source View Maintenance 29

DU1 from IS1

DU2 from IS2

Threads:

ViewChange:
Process:

legendDU1 Commit Later

DU2 Commit First

View
Change1

View
Change2

Fig. 11 Out-of-Order-DW-Commit Problem

Figure 11 illustrates the Out-of-Order-DW-Commit problem with a time-line

depiction. This problem may happen when the later handled data update
!2" � is

processed much faster than the previously handled data update
!2" � . In this case

the
!2" � will complete first and commit its effect to the data warehouse prior to the

effect of
!2" � being committed to the data warehouse, since PVM does not require

any quiescence but rather commits updates as soon as their handling is completed.

3.3.3 Negative-Counter Solution We now provide a solution, called the negative-

counter solution, that guarantees that the extent of the data warehouse after the in-

cremental view maintenance of
!2" � and

!#" � will be correct. The basic principle

underlying the solution is that we store the data warehouse extent as unique tuples

with a counter that shows how many duplicates exist of each tuple. For example,

� 1,3
	

[4] means four tuples with values � 1,3
	

exist. The unique twist here is that

we permit the counter to be negative. Then, for adding (deleting) one tuple, if the

tuple already exists in the data warehouse, we increase (decrease) the counter by

one, else we create a new tuple with counter ‘1’ (‘-1’). We remove a tuple when-

ever its counter reaches ‘0’. When the user accesses the data warehouse, any tuple

with a counter
�

0 will be not visible.

We now apply the proposed solution strategy to our running example. In par-

ticular, Figure 12 compares the extent of the data warehouse from our previous

example from Section 3.3.2 with and without the negative counter. In the upper

30 Xin Zhang et al.

DW
A B
3 2

Counter

1

DW
A B
3 2

Counter

1
1 3 1

DU1 from IS1

DU2 from IS2

Out-of-order Commit:

DW
A B
3 2

Counter

1

DW
A B
3 2

Counter

1

DU1 from IS1

DU2 from IS2

Commit with Negative
Counter:

1 3 -1

3 3 1

3 3 1

Thread:

VM
process:

DU:

Legend

Fig. 12 Example of Solution of Out-of-Order-DW-Commit Problem

half of the figure, data warehouse keeps only tuples with positive counters at any

time. After the effect of
!2" � , � !�� � , is committed, we removed � ��� � 	 but the

delete-tuple update � � � � 	 is invalid since � ��� � 	 is not in the data warehouse

yet. Hence, this deletion has no effect. Then, after we commit the � !�� � later, we

now have added the faulty tuple � � � � 	 into the data warehouse, which should

be deleted (however, the deletion was attempted too early).

In the lower half of Figure 12, the data warehouse can keep tuples with a nega-

tive counter. Then the addition of that faulty tuple in the future will remove the

tuple with the negative counter from the data warehouse. So, the tuple with a

negative counter effectively remembers what tuple should have been deleted but

cannot be deleted at the current time due to it not yet being in the data ware-

house. For example, in the lower part, we can see that data warehouse keeps the

tuple � � � � 	 with a negative counter -1 and thus effectively remembers that

� ��� � 	 should be deleted eventually. After committing the � !�� � , the tuple

� ��� ��	 . �
� 1 is compensated for with the tuple � � � � 	 . � 1 in � !�� � . Given

� � � ��	 . �
� 1 � � � � � 	 . � 1 � � � � � 	 . � 1 , the tuple is finally completely re-

Parallel Multi-Source View Maintenance 31

moved from data warehouse. Hence the final state of data warehouse is consistent

with the state of the information sources.

Lemma 2 Given the negative counter mechanism described in Section 3.3, the

counters of all tuples will always be positive when the data warehouse reaches a

quiescent state.

By Definition 3, in a quiescent state, there is no more maintenance-concurrent

update in the environment. The data warehouse will be stable and consistent with

the current information source space state. Hence, there can be no tuple with a neg-

ative counter in the data warehouse. The proof for Lemma 2 is shown in Appendix

C.

Lemma 3 The negative counter mechanism captured by the algorithm in Figures

13 and 14 correctly solves the Out-of-Order-DW-Commit problem defined in

Definition 7 for any two data updates handled in parallel by the data warehouse

manager.

The proof of Lemma 3 can be found in Appendix D. Lemma 3 then leads us

to the more general case of correctness as given in the theorem below.

Theorem 2 The negative-counter based algorithm described in Figures 13 and

14 correctly solves the Out-of-Order-DW-Commit problem for any number of

maintenance-concurrent updates.

As shown in Appendix E, the proof of this theorem can be given based on

an induction on the number of concurrent tuples. This theorem confirms the cor-

32 Xin Zhang et al.

rectness (as illustrated in Figure 10) of the final state of the data warehouse after

applying the effects of the data updates in any order.

3.4 The Core Algorithms for the PVM Processes

Based on the previous description of the key features of PVM, we now can give

details of the PVM processes. The update and query server components employed

at each information source are given in Figure 13. They are fairly standard, such

as for example found in SWEEP [1] algorithm.

MODULE Update&QueryServer
CONSTANT

MyIndex = i;

PROCESS SendUpdates;
BEGIN

LOOP
RECEIVE � R from R;
SEND (� R, MyIndex) TO DataWarehouse;

FOREVER;
END SendUpdates;

PROCESS ProcessQuery;
BEGIN

LOOP
RECEIVE � V FROM DataWarehouse;
��� = ComputeJoin(��� , R);
SEND ��� TO DataWarehouse;

FOREVER;
END ProcessQuery;

BEGIN /* Initialization */
StartProcess(SendUpdates);
StartProcess(ProcessQuery);

END

Fig. 13 Pseudo Code of Module Update&QueryServer of PVM

Figure 14 depicts the logic of the middle layer component that is employed at

the data warehouse for view maintenance. ViewChange is the main process that

is invoked for every update (��� , $) received at the data warehouse. At initializa-

tion time, the DataWarehouse module will start two processes: AssignTimeStamp

and Maintenance Manager. The AssignTimeStamp process assigns a unique local

timestamp to all the messages coming into the data warehouse including data up-

dates and query results. The Maintenance Manager process monitors the UMQ to

check if there is any data update logged in the UMQ and the PPU still has more

room (i.e., we can create more threads to handle updates). In this case, it would

Parallel Multi-Source View Maintenance 33

move the data update from the UMQ to the PPU in one atomic operation, and then

create a new instance of the ViewChange process to handle this data update now in

the PPU. The ViewChange process will first handle the data update, and then com-

mit the effect of the data update to the data warehouse. It will then move the data

update from the PPU to the RPU if the data update is a related processed update,

otherwise the data update is completely removed from the system. The RPU set

is cleaned up at the end of the ViewChange process. Alternatively, one could also

run a dedicated background process to clean up the RPU set at some fixed time

interval.

3.5 Remarks on Extensions of PVM

So far, we use select-project-join queries for our view definitions so to focus our

discussion on the core ideas of the proposed parallel mechanism. As stated in

[19], the 3 $���� � �����
	 � module, which handles one update for one view defi-

nition, can easily be extended to support aggregation functions and a HAVING

clause in the view definition by adding additional maintenance queries. These ad-

ditional maintenance queries could also be part of the query plan generated by the

3 $���� � �����
	 � module. Hence they can be parallelized with other queries from

different maintenance transactions.

One other expression to consider is a self-join of the same relation multiple

times. The updates from one relation will appear multiple times if the relation

appears multiple times in a view. Hence, if we treat those updates using separate

transactions, the data warehouse may result in an inconsistent state. To prevent

34 Xin Zhang et al.

MODULE DataWarehouse;
CONSTANT

n: INTEGER /* Size of CPQ */
GLOBAL DATA

V: RELATION; /* Initialized to the correct view */
UpdateMessageQueue: QUEUE initially 0;
ParallelProcessingUpdate: SET with length n
RelatedProcessedUpdate: SET initially 0;

PROCESS ViewChange(��� : RELATION; UpdateSource:
INTEGER; TimeStamp: INTEGER): RELATION

VAR
��� , TempView: RELATION;
j: INTEGER;

BEGIN
��� = ��� ;
/* Compute the left part of the incremental
view resulting for ��� */
FOR (j = UpdateSource -1; j � 1; j–) DO
��� = ProcessSubQuery(��� , j, TimeStamp)

ENDFOR;
/* Compute the right part to the incremental
view resulting from ��� */
FOR (j=UpdateSource+1; j � n; j++) DO
��� = ProcessSubQuery(��� , j, TimeStamp)

ENDFOR;
CommitManager(��� , ���);

END ViewChange;

FUNCTION CommitManager(��� : RELATION;
��� : RELATION)
V = V + (���);
/* erase the unrelated Updates */
CleanUp RelatedProcessedUpdate;
CRITICAL AREA

REMOVE (��� , i, t)
FROM ParallelProcessingUpdate;

IF (��� , i, t) is related
THEN PUT (��� , i, t)

INTO RelatedProcessedUpdate;
ENDAREA

END CommitManager;

FUNCTION isConcurrent(��� : RELATION; j: INTEGER;
t: INTEGER): BOOLEAN
IF ��� ���	��
���
�������������
������! ! ���"���#%$&��$&�

or �'� ���	��
!��
��(�*)+��,-��././�!.0)1,-2!3��� ! �4657"���������
��
or ��� ���	��
!�8
����*�1��./��
��!��)1,-2!3��� ! !������������
��
THEN return TRUE; ELSE return FALSE

ENDIF
END isConcurrent

FUNCTION ProcessSubQuery(��� : RELATION; j:
INTEGER; t: INTEGER): RELATION
TempView = ��� ;
SEND ��� TO Data Source j;
/* The ��� in the next line has
already time stamp assigned by AssignTimeStamp
process */
RECEIVE ��� FROM Data Source j;
/* Remove the error due to concurrent update
if any (maybe more than one) */
FOR ALL ��� from 9-:
 DO

IF isConcurrent(��� , j, t)
THEN ��� = ��� - ���<; TempView; ENDIF;

ENDFOR
END ProcessSubQuery

PROCESS AssignTimeStamp;
VAR

t: TIME; /* current system time at data warehouse */
BEGIN

LOOP
RECEIVE Message FROM Data Source i

as received order;
IF Message is � THEN

t= getCurrentTime();
APPEND (��� , i, t) TO UpdateMessageQueue;

ELSE
Assign getCurrentTime() to ���

ENDIF
FOREVER;

END AssignTimeStamp;

PROCESS MaintenanceManager;
BEGIN

LOOP
IF ParallelProcessingUpdate not full THEN
BEGIN

CRITICAL AREA
REMOVE (��� , i, t) FROM UpdateMessageQueue;
APPEND (��� , i, t) TO ParallelProcessingUpdate;

ENDAREA
StartProcess(ViewChange(� R, i, t));

END
ENDIF

FOREVER
END MaintenanceManager;

BEGIN /* Start DataWarehouse Processes */
StartProcess(AssignTimeStamp);
StartProcess(MaintenanceManager);

END DataWarehouse

Fig. 14 Pseudo Code of DataWarehouse Module of PVM

that, we can batch multiple updates caused by the same relation as one transaction

to ensure the correctness of the data warehouse. Please refer to [16] for details of

batching.

Also notice that different information sources may have different capabilities.

Though we can parallelize the execution of multiple data update maintenance pro-

cesses at the same time, some fast information sources might still need to wait for

the slower information sources to accomplish the maintenance queries. In princi-

ple, our system could easily plug-in a 3 $ ��� � �����
	 � module, which would support

Parallel Multi-Source View Maintenance 35

a more dynamic query plan selection based on the query processing status of the

information sources, to balance the usage of different information sources hence

to reach the optimal maintenance performance (like in [19]). Hence their work

would be orthogonal to ours.

Please noticed that the correctness of each maintenance query result has been

checked by the $�� ��� �����	�
� � � 0 function of PVM to ensure its correctness once

the query result arrived at the data warehouse. Their correctness is not affected by

the order of the maintenance subqueries. Hence the above extension to PVM of

introducing more maintenance subqueries would not affect the correctness of the

PVM system in general.

4 Consistency Levels and PVM

4.1 Consistency Levels of the Data Warehouse State

Zhuge et al.’s [30,31] define notions of consistency of a view extent depending on

how the updates are incorporated into the view at the data warehouse. The seman-

tics of the consistency levels are somewhat different under distributed information

sources compared to a single information source as assumed in [30,31]. We hence

refine the consistency levels from the data warehouse point of view.

Definition 8 A state order diagram for a given information space I and a set D

of data updates
!2" � with i = 1, ..., k, applied to information sources in the space

I is defined to be a rooted acyclic directed diagram where each node represents

a legal information source space state by Definition 2 and each directed edge E

36 Xin Zhang et al.

from a node
&(' ' �

to a node
&(' ' � labeled with the data update

!2"��
indicates that

information source space state
&(' ' � can be derived from the information source

space state
&(' ' �

by applying the data update
!2" �

. The root of the diagram is

the initial state of the information source space I (or the quiet information source

space state from which all updates in D started). The leaves of the diagram are

quiet information source states reachable by
&(' ' �

of I by applying all updates in

D in some order as long as they generate legal information source space states.

x y z

xy yz xz

xyzIS1 IS2 IS3

DW

x y z

(a) DW Setup (b) State Order Diagram

x yz

z
y

y x
x

z

x y z

Fig. 15 Example of State Order Diagram.

For example, Figure 15 (a) depicts an environment for a data warehouse that

has three updates (� , � , �) from three information sources. Figure 15 (b) depicts

the state order diagram for the three updates. The root node shows that no update

has arrived at data warehouse yet. The second level shows three possible states of

the information source space, i.e., update � applied, update � applied, or update

� applied. The third level shows the next three possible states that can be reached

from the previous states. The forth level shows the leaf node.

Definition 9 Every directed path from the root to a leaf node of a state order di-

agram as defined in Definition 8 is a legal order of information source space

states.

Parallel Multi-Source View Maintenance 37

As we can see in Figure 15 (b), there are six possible legal orders of informa-

tion source space states for our given example.

Definition 10 Five consistency levels of the data warehouse in distributed envi-

ronments from the data warehouse point of view can now be defined as follows:

– Convergence: The data warehouse state is legal by Definition 3 in any quiet

state of the data warehouse.

– Weak Consistency: All states of the data warehouse are legal by Definition 3

at all times.

– Consistency: Weak consistency and the data warehouse states correspond to

one legal order of the information source space states as defined by the state

order diagram given in Definition 9.

– Strong Consistency: Consistency and convergence.

– Complete Consistency: Strong Consistency and all the states in a legal order

of the state order diagram as defined by Definition 9 have corresponding legal

data warehouse states.

Convergence
(a)

Weak
Consistency

(b)

Complete
Consistency

(e)

Strong
Consistency

(d)

Consistency
(c)

Fig. 16 Consistency Level Illustration.

Figure 16 illustrates the basic idea behind the five consistency levels defined

in Definition 10. IS space states are depicted by circles, while data warehouse

states are represented by boxes. A shaded circle represents a quiet information

38 Xin Zhang et al.

source space state. A shaded box represents a quiet state of the data warehouse.

We denote the correspondence between a data warehouse state and its associated

information source space state by a line connecting them. By Definition 2, each

data warehouse state with associated information source space state is called legal.

Hence in Figure 16(a) for convergence, we notice all quiet states of the data

warehouse state are legal, but there is one data warehouse state in the middle which

is not legal because there is no corresponding information source space state. Ac-

cording to Theorem 2, PVM at least ensures convergence. In Figure 16(b) for weak

consistency, we see all the data warehouse states have corresponding information

source states, but the order of DW states may not correspond to the order of in-

formation source states. In Figure 16(c) for consistency, we see this time all data

warehouse states are legal and also the corresponding information source space

states are in a legal order. However, there is no quiet data warehouse state that

matches the final quiet information source space state5. Hence convergence is not

guaranteed. In Figure 16(d) for strong consistency, all the data warehouse states

are legal and also in a legal order. However, there may be information source states

that have no corresponding data warehouse states. In Figure 16(e) for complete

consistency, all the data warehouse states are legal and in the legal order. In addi-

tion, all the information source space states on exactly one legal path also have a

corresponding data warehouse state.

5 For example, this would happen if the data warehouse requires next data update to
compensate the previous maintenance error.

Parallel Multi-Source View Maintenance 39

4.2 Extension to PVM to Achieve Complete Consistency

Based on the algorithm described in the previous section, PVM ensures the con-

vergence level of consistency. If we enforce that the effects of data updates are

committed in the order in which they have arrived at the data warehouse, then

PVM achieves the complete consistency level as explained below. PVM handles

updates in parallel and commits them as soon as �43 is ready. It could happen that

some
!#" � arrives at the data warehouse earlier than another

!2" �
but is committed

later. For example,
!2" � is received earlier than

!2" �
at the data warehouse man-

ager (here $�� �), and both
!#" � and

!2"��
are handled in parallel. Let us assume

the thread handles
!2"��

fast and thus the � 3 � is committed to data warehouse be-

fore �43 � . It is very straightforward to achieve strong consistency, if so desired. We

simply would need to enforce �43 s to be committed to the data warehouse in the

same order as they arrive. For the example above, we simply don’t commit �43 �

until �43 � has been committed.

We now discuss what mechanism is needed so that we can enhance the core

engine of PVM to control the proper commit order. For this, we need to address

the following issues : One, how do we determine when to and when not to com-

mit a
!2" � ; and two, how long do we have to wait in the worst case to commit?

To solve the first problem, a data storage, called ��� +#+#$ 0 % � � � � , is added into

the PVM system. This queue stores all the �43 that have been handled but not

yet committed to the data warehouse. We also modify the 3 $ ��� � �����
	 � and

�
�
� $ 	���� $
+ �

' 0 � +�� processes. We modify the ��� +2+#$ 0�� � � � 	
�
�

to commit

�43 by using the ��� +#+2$ 0 % � � � � . Whenever the data warehouse receives a update

40 Xin Zhang et al.

(say
!2" �

), we initialize an item in the ��� +2+#$ 0 % � � � � in the
�
�
� $ 	���� $ + �

' 0 � +��
process. After the

!2" �
has been handled by PVM, the result �43 � is associated

with
!2" �

in the ��� +#+2$ 0 % � � � � . Then the function ��� +2+#$ 0�� � � � 	
�
�

checks

whether all the items before it in the ��� +#+2$ 0 % � � � � have been committed. After

all the �43 � ($ � �) before
!2" �

have been committed, then we commit this �43 �

and remove it from the ��� +2+#$ 0 % � � � � . Figure 17 presents pseudo code for the

new modules of 3 $���� � �����
	 � and
�
� � $ 	 ��� $ + �

' 0 � + � of PVM system with the

major changes highlighted.

Given the modification to the PVM system in Figure 17 new called PVM CC,

the data warehouse system would commit data updates in the same order as they

arrive at the data warehouse. PVM will calculate the effect of every data update

that changes the information source state from one legal information source state

to another legal information source state and commit the effect of that information

source state change on the data warehouse state. Hence, all legal states of the

information source space will be reflected as states of the data warehouse as well.

According to Definition 10 of consistency in Section 4.1, PVM CC now achieves

the complete consistency level.

Note that PVM CC still handles updates in parallel and has all the advantages

of the algorithm described in Section 3.3.3. The wait we would possibly incur is

miniscule as it only concerns the “actual commit” time that it takes right after

the process we were waiting for committed. The wait is not an “infinite wait” as

we do not need to wait for a “quiet time” for updates. We just need to wait a � 0
time while parallel threads finish processing updates that need to be committed

Parallel Multi-Source View Maintenance 41

MODULE DataWarehouse;
CONSTANT

n: INTEGER /* Size of CPQ */
GLOBAL DATA

V: RELATION; /* Initialized to the correct view */
UpdateMessageQueue: QUEUE initially 0;
ParallelProcessingUpdate: SET with length n
RelatedProcessedUpdate: SET initially 0;
CommitQueue: QUEUE initially 0;

PROCESS ViewChange(��� : RELATION; UpdateSource:
INTEGER; TimeStamp: INTEGER): RELATION

VAR
��� , TempView: RELATION;
j: INTEGER;

BEGIN
��� = ��� ;
/* Compute the left part of the incremental
view resulting for ��� */
FOR (j = UpdateSource -1; j � 1; j–) DO
��� = ProcessSubQuery(��� , j, TimeStamp)

ENDFOR;
/* Compute the right part to the incremental
view resulting from ��� */
FOR (j=UpdateSource+1; j � n; j++) DO
��� = ProcessSubQuery(��� , j, TimeStamp)

ENDFOR;
CommitManager(��� , ���);

END ViewChange;

FUNCTION CommitManager(��� : RELATION;
��� : RELATION)
FIND(���) IN CommitQueue;
PUT(���) TO CommitQueue;
WHILE(��� in first item of Queue is not empty)

DEQUEUE(��� , ���);
V = V + (���);

/* erase the unrelated Updates */
CleanUp RelatedProcessedUpdate;
CRITICAL AREA

REMOVE (��� , i, t)
FROM ParallelProcessingUpdate;

IF (��� , i, t) is related
THEN PUT (��� , i, t)

INTO RelatedProcessedUpdate;
ENDAREA

END WHILE
END CommitManager

PROCESS AssignTimeStamp;
VAR

t: TIME; /* current system time at the data warehouse */
BEGIN

LOOP
RECEIVE Message FROM Data Source i

as received order;
IF Message is � THEN

t= getCurrentTime();
APPEND (��� , i, t) TO UpdateMessageQueue;
APPEND (��� , i, t, empty ���) TO CommitQueue;

ELSE
Assign getCurrentTime() to ���

ENDIF
FOREVER;

END AssignTimeStamp;

BEGIN /* Start DataWarehouse Processes */
StartProcess(AssignTimeStamp);
StartProcess(MaintenanceManager);

END DataWarehouse

Fig. 17 PVM CC: Pseudo Code of DataWarehouse Module Achieving Complete Consis-
tency

for reasons of complete consistency before the current update is actually to be

committed. Any complete consistent algorithm would have to commit and hence

wait for the completion of the processing of these earlier updates. Hence it would

have the same or worst performance than PVM, i.e., we cannot do better if we do

require this level of consistency.

5 Cost Model of PVM

In this section, we present a cost model we have designed to compare the perfor-

mance of PVM to the performance of SWEEP in terms of number of messages

and total processing time.

42 Xin Zhang et al.

5.1 Factors and Measurements

Factors of the Cost Model�
Number of concurrent updates that happened before the middle layer starts to handle them.

+ Number of information sources.
� Size of PPU (maximal number of parallel threads).
� Number of queries could be processed by the information source space at one time.�

Number of consecutive updates from same information source (the smaller
�
, the more even updates distribu-

tion).
$ Average Time Intervals between two consecutive updates.

Measurement of the Cost Model
� Number of messages.�

Elapsed time of handling a set of updates.
0 Elapsed time of handling one data update.

Table 3 Parameters of the Analysis

The factors we used in this analysis are described in Table 3. Please note that

the factor 0 captures the complete processing time for one data update. This time

includes the plan generation, network delay for transferring queries and results,

and the processing time at the information source. The information sources may

be loaded with their respective OLTP transactions. Hence, the processing time at

the information sources may affected by the locking of the OLTP transactions and

other local operations. However for the purpose of our evaluation of PVM, it is

sufficient to abstract all factors affecting the cost of processing a query on the

source by one parameter 0 .
For simplicity, we assume we have + information sources and

�
updates, and

������� + is 0. The view is defined over all of + information sources and is

assumed to be affected by all
�

updates. We also assume that the updates are evenly

distributed, and all updates happened before any processing of the updates. So

Parallel Multi-Source View Maintenance 43

they are all concurrent with one another. For simplicity, we label the information

sources in an increasing order from 1 to + and number the updates from 1 to
�

as

follows:

& ' $ ��� � � � �(� ���

& ' � &(' � &('
�

&('�� ����� &('*)
!2" � !#" � !2"

�
!#" � ����� !#")

!2") � � !#") ��� !2") � � !#") � � ����� !#" �)
...

...
...

...
...

...

!2" � �) � � !#" � �) � � !2" � �) � � !#" � �) � �	����� !#" �

(2)

5.2 Comparison in Number of Messages

The cost models for both SWEEP and PVM are the same in terms of the total

number of messages � . The reason is that PVM simply parallelizes the execution

of SWEEP instead of changing the way the view maintenance for each data update

is handled. There are two kinds of messages send by the SWEEP (or also PVM)

algorithms: remote queries and local queries. The number of the remote queries

is denoted by � ���)�
 ��� , and the number of local queries by � ��
 � � � , i.e., we have:

� � � ��
 � � � � � �/�)

 ��� .
Then � ��
 � � � for every

!#" � can be represented by a matrix of the number

of messages in the number of updates and the number of information sources as

shown below:

44 Xin Zhang et al.

&(' $ ��� � � � ��� ���

� � � ����� +�
� � � � �) �) ����� �)

��� � �) �
� � �) ����� �)

!2" � �) �
� �) �

� � ����� �)
� $ � ...

...
...

...
...

...� + � � � �) �
� �) �

�	����� �) �
�

+ � � �) �
� � �) �

�	����� �) �
�

...
...

...
...

...
...

�
�
� � � � ����� �
� � � � ����� �

(3)

So the message cost � ��
 � � � of
!#" � at

&(' �
is defined by:

� ��
 � � � �
������ �����
�) �	� � � � $ �

� � ����� � + � � ��) � � � �
� � � 	 � $ �

� � ����� � + � � �
� � � $ � ��� +
� � � � $ �

� � ����� � + � � � ����� �) � �
� � 	 � $ �

� � ����� � + � � � ����� �) � � �
�

(4)

with � the index of
information sources,
and $ the index of
updates.

� ��

� �������) � � $ 	 �
� $ � �

(5)

� ��
 � � ���
� � ��
��� � $ � +

5� � ��
��� � � � � + �

�
� + � � � (6)

And, from [1] we know that:

Parallel Multi-Source View Maintenance 45

� �/�)�
 ��� � � � � + �
� � � � + �

� � � (7)

5.3 Comparison in Total Execution Time

Although the number of messages are the same for PVM and SWEEP, the ex-

ecution times for them are different. If we assume the overall time spend on a

local-join is � ��
 � � � and on a remote-join is � �/�)�
 ��� per query, then we get the total

time
�

for SWEEP as:

����������� � � ���)�
 ��� � � ���)�
 ��� � � �
 � � � � � �
 � � �
� � + �

� � � � � ���)�
 ��� � �) � ��) � � � � � ��
 � � �
(8)

Because � ���)�
 ��� is much larger than � ��
 � � � , for small numbers of
�

we can

simplify the equation to:

� ���	���
� � � � + �
� � � � �/�)

 ������
 � � � + � � �/�)

 ��� � (9)

This shows that the time performance of SWEEP is linear in the product of the

number of information sources and the number of updates. Hence, for one update,

the estimate time is:

0 ���	�
��� � � + �
� � � � ���)�
 ��� (10)

We are going to use 0 instead of 0 ���	���
� for the following discussion.

Then, for SWEEP, we have

46 Xin Zhang et al.

�����	���
� � � 0 (11)

For PVM, the number of parallel handling (i.e., size of the PPU set), denoted

by � , as well as the query capability � of the information source space will affect

the performance of PVM. � denotes how many queries can be processed at the

same time at the information source space. We denote the overhead of generating

a new thread and waiting for locks to access the critical area as
�
. Depending on

the value of � and � , there are two cases.

Case 1: � � � means that compared to how many threads can be executed in

parallel, the data sources have much larger (infinite) query processing capabilities.

Then for every update in the UMQ, we can assess how long it will wait for being

handled. The first update
!2" � does not need to wait,

!#" � needs to wait time
�

,

!2"
� need to wait time

� �
, and so on. In general,

!2"
�
� � � �

� � � .
!2"

� �
� needs

to wait time 0 because
!2"

� �
� can start to be handled right after

!2" � is handled

which is 0 . So, we get the following waiting sequence:

!2" � � � � ����� � �
� � � � � ����� � � � � � � �����

� � $ 0 � � � � ����� � � �
� � � � � �

� � � 0 ����� 0 � � � �
� � � � 0 �����

(12)

Hence for
!2" � , the waiting time

� � $ 0 � $�� is:
� � $ 0 � $ � ��� �
� ��

� 0 � . � $ �
� � �����

� 1 � , with 0 , � , $, and
�

as defined above.

Case 2: ��� � means that the query capabilities of information sources limit

the number of threads that should practically be run at the same time in order for

Parallel Multi-Source View Maintenance 47

the benefits of each thread in terms of performance improvement to out-weight its

overhead in terms of system resources. This case is similar to case 1. The waiting

time
� � $ 0 � $ � is:

� � $ 0 � $�� � � �
� �� � 0 � . � $ �
� � ����� � 1 � .

Based on the discussion, the general waiting time for
!#" � is:

� � $ 0 � $ � � � $ �
�

+2$ � � � � � �
� 0 � . � $ �

� � � ��� +#$ � � � � � �
1 � � (13)

Then the total execution time of PVM is:

������� � �����
� � �
	�	�	 � � � � $ 0 � $ � � � 0 � (14)

Let � � +#$ � � � � � � . If we assume � � �
� � � ��� � � �

and 0 	 � � �
� � � , then

we can simplify
� �����

:

������� �
 �
�
�� � ��� 0 � (15)

Comparing the performance of
�����	�
���

and
�������

we observe that PVM

has approximately a best case scenario of k-fold better performance over SWEEP

with � � +#$ � � � � � � 6. This implies for example that if your DW implementation

platform comfortably supports 10 concurrent threads over 10 data sources, then up

to a 10 fold performance improvement may be achievable.

All the previous analysis is based on the assumption of updates being even dis-

tributed over the information sources. If the updates are not evenly distributed, for

6 Because we assume every information source is sequentially processing the incoming
queries. Hence, the whole information source space with � information sources has query
capability � , which means ������������������ .

48 Xin Zhang et al.

example all the
�

updates of
& ' � will be handled after the updates of the

& ' � , and

so on, the overall performance of PVM will be
�

times lower unless a proportional

query capacity also happens to exist at this bottleneck of
&(' � .

There is a trade-off between � ��
 � � � and � �/�)

 ��� . From previous discussion we

know that for each update, the handling time is 0 � � + �
� � � � ���)�
 ��� � �) � ��) � � �

� ��
 � � � . Let’s denote the first part as 0 ���)�
 ��� , and the second part as 0 ��
 � � � . The ratio

between 0 �
 � � � and 0 �/�)

 ��� is:

0 ��
 � � �
0 �/�)�
 ���

� �
� +
� � ��
 � � �
� ���)�
 ��� (16)

If we know � ./2�38� .
� ,-� � 2�
�� is 0.01, we have 10 information sources, and we want

� ./2�38� .� ,-� � 2�
�� less than 0.1 in order to ignore the cost of local join queries. Then the

maximum number of maintenance-concurrent updates we can have is 200. If

we have more than 200 maintenance-concurrent updates, the 0 ��
 � � � time can no

longer be neglected.

6 Design and Implementation of the PVM System

The PVM system is implemented within the EVE data warehousing [?] environ-

ment implemented in JAVA. Currently, the system connects to Oracle and ODBC

MS Access servers using the Oracle JDBC driver and the JDBC-ODBC bridge,

respectively.

Figure 18 provides an overview of the PVM system in terms of the types of

different threads. For every information source there are two types of threads run-

ning. The thread called SendUpdate will keep sending the data updates of this

Parallel Multi-Source View Maintenance 49

information source to the data warehouse manager. The thread called Process-

Query will process the queries sent from the data warehouse manager and return

the query result back to the data warehouse manager. Within the data warehouse

manager, there are three kinds of threads. The AssignTimeStamp thread will assign

a timestamp to all the incoming data updates and query results. The Maintenance-

Manager thread will monitor the data updates and will create one sub-thread of

type ViewChange for each data update that is to be concurrently handled.

For example, assume we set up a system that can handle two data updates

in parallel over three information sources. Then at system setup, two threads of

SendUpdate and ProcessQuery will be created at each information source. In ad-

dition, there will be two threads of AssignTimeStamp and MaintenanceManager at

the data warehouse. At run time, if multiple data updates happened, one additional

thread of ViewChange will be created at the data warehouse for each of the data

updates to be handled concurrently, while all the other data updates will wait in the

" � %
for processing. In general, the maximum number of threads in our system

can be computed as in Equation 17, where � and + are defined in Table 3.

���������	��

����� ��� ������� �������
���������	��

����� ��� � ��� ��� � �����
���������	��

����� ��� ������� � � �!�����"�#��

�$�%� ��� �������!� �!�&�'�(�	��
'���%� ����� ��� �)�

� �����*�����+�
(17)

Figure 19 depicts an object-oriented design of the PVM system, in particular, focusing

on the aggregation relationships of the PVM classes. The PVM component contains four

50 Xin Zhang et al.

Data Warehouse

Information Sources

ViewChange ViewChange ViewChange…

MaintenanceManager

AssignTimeStamp

IS1 IS2 ISn

SendUpdate

ProcessQuery

SendUpdate

ProcessQuery

SendUpdate

ProcessQuery
…

Fig. 18 PVM Algorithm Thread Overview

classes. DataUpdateReceiver is used to detect data updates. DWProcess represents the data

warehouse manager. ISProcess implements the wrapper of the information sources. Mul-

tiQueue “manages” the FIFO network connection between the ISProcess and DWProcess.

ISProcess class contains the reference to the MultiQueue, SendUpdate class for SendUp-

date module, ProcessQuery class for ProcessQuery module, and Relation class to capture

the schema of the relation stored at this information source. DWProcess class also contains

the reference to the MultiQueue. The class MessageQueue is used to implement the UMQ.

The class AssignTimeStamp implements the module AssignTimeStamp, the class Mainte-

nanceManager implements the module MaintenanceManager and the class ViewChange

implements the module ViewChange.

7 Performance Studies

7.1 System Setup

We have implemented the SWEEP and PVM algorithms in JAVA within our prototype EVE

data warehousing system; a demonstration of which has been given at ACM SIGMOD’99

[22]. While the EVE system interacts with different data servers, our studies were conducted

using Oracle 7.0 servers running on a network of NT machines. Every IS � (on Oracle) has

Parallel Multi-Source View Maintenance 51

DataUpdateReceiver

ViewDefinition

DWProcess ISProcess

ELement

Queue

MultiQueue

PVM

Queue

RelationSchema

Tuple

RelationExtent

Relation

DataUpdateReceiver

MultiQueue

MultiQueue CreateUpdateFile

Queue Relation

UpdateReceiver

SendUpdate ProcessQuery Relation

ISProcess

Relation Type

Attribute

ProjectList

Attribute Operator PrimitiveValue

LocalCondition

SelectList

Relation

RelationList

Attribute Operator

JoinCondition

JoinConditionList

JoinList

View_Definition

MultiQueue MessageQueue

MultiQueue Queue

AssignTimeStamp

MultiQueue MessageQueue ViewDefinition View ViewChange

MaintenanceManager Set

DWProcess

Fig. 19 PVM Implementation Class Relation

its own index number from 1 to � . Each information source has one relation. The relation

of each ����� is denoted by � � , with � the index of ����� . The schema of every relation is the

following:

CREATE TABLE � � (A as integer, B as integer); ����� ��� ��
The extents of all � � are randomly generated and all are approximately the same size,

i.e., ranging up to several five thousand tuples per information source for different experi-

ments. The data updates were randomly generated, with the number of data updates chang-

ing as indicated from experiment to experiment. In general, each data update was only

counted (as assumed in our model), if it actually affected the extent of the information

source (i.e., it was not a duplicate for an insert or a non-existing tuple for a delete). In gen-

eral, the join selectivity between a data update at one information source with the extent of

another information source was kept to assure that at least one “join” tuple was returned

from each maintenance query, i.e., that the maintenance query results are not empty.

The data warehouse is defined over all � information sources as given in Figure 20.

52 Xin Zhang et al.

CREATE VIEW V AS
SELECT � � .A, � � .A, � � .A, ..., �) .A
FROM � � , � � , � � , ..., �)
WHERE � � .A = � � .B, � � .A = ��� .B, ... �) � � .A = �) .B

Fig. 20 Data Warehouse View Definition

Each of the experiments described below have been re-run around 10 times, and the

reported measurement values represent an average over all runs.

7.2 Changing the Maximum Number of Concurrent Maintenance Threads (PPU

Size �)

This experiment has been designed to study the effect of varying the number of threads that

can be run in parallel in PVM on the total execution time of handling a set of concurrent

updates. For this, we change the maximum number of threads (PPU size � , where � is

defined in Table 3, from 1 to 10 on the X-axis), while measuring the total execution time

�
(in wall clock seconds on the Y-axis). In particular, fixed settings for this experiment are

number of updates � is 60, number of information sources � is 4, and time interval � is 0.

In Figure 21, the left chart shows the expected value calculated based on our cost model

(specifically Equation 15 of the cost model), while the right chart shows the actual experi-

mental measurements. Based on the model, we expect to see an up to � -fold performance

improvement of PVM in the ideal case as we increase the maximum number of threads by

� . As seen in the left chart in Figure 21, we can see that the total processing time of PVM

drops rapidly at the rate of ��� � as we increase � until the curve flattens out into a horizontal

line. In our setup, the flattening occurs at roughly ����� , which corresponds to the system

limitation in terms of its query capabilities of the information source space, i.e., the number

of information sources � =4 and the number of queries that can be handled concurrently

Parallel Multi-Source View Maintenance 53

T vs p

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

p (size of PPU)

T:
 s

T_PVM

Real Exps T vs p (m)

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

p (size of PPU)

T
 (s

)

m=4

Fig. 21 Experiment 1: Change Maximum Number of Concurrent Maintenance Threads
(Size of PPU �). Left figure is cost model, right figure is experimental result.

per information source being set to 1. The later is so because no concurrency is supported

at the information sources due to JDBC implementation limitations.

The right chart shows actual measurements we made using our PVM system which

indeed closely follow the expected behavior. The initial total processing time when � � �

is very similar to the expected time. And, as the size of PPU � is increasing, the total

performance of PVM is decreasing at a rate of roughly � � � �

IS1 IS2 IS3 IS1 IS2 IS3 IS1 IS2 IS3

0 DU1 '8� DU3 DU1 '8� DU3 DU1 '8� DU3

1 SQ1,1 64��� SQ1,1 64��� SQ1,1

2 SQR1,1 645��� SQR1,1 645��� SQR1,1

3 SQ1,3 SQ1,3 SQ3,2 SQ1,3
4 SQR1,3 SQR1,3 SQR3,2 SQR1,3
5 64��� SQ3,2 64��� SQ3,1 64���

6 645��� SQR3,2 645��� SQR3,1 645���

7 64��� SQ3,1

8 645��� SQR3,1

9 SQ3,2
10 SQR3,2
11 SQ3,1
12 SQR3,1

Tick
SWEEP PVM (p=2) PVM (p=3)

Fig. 22 Block Overhead between Data Update Maintenance Processes.

54 Xin Zhang et al.

The maximum percentage of performance improvement we measured is 330%, which

is less than the best case improvement of up to 400%. The actual percentage of improvement

being slightly less than what we expected can be explained by additional system overhead

not accounted for in our simple cost model as well as that the maintenance queries processed

by the information sources are blocked by each other at every information source because

the query capability of each information source is only one query at a time.

Figure 22 illustrates the overhead of the potential blocking between the data update

maintenance processes for 3 information sources and 3 data updates. There are three por-

tions of the charts, from left to right, we have SWEEP, PVM when � � � , and PVM when

� � �
. Every row in the table shows one clock tick. Each cell shows the status of the in-

formation source for that clock tick. For example, at (tick 0, SWEEP) ����� has data update

��� � committed, and at (tick 1, SWEEP) ����� processes the subquery � � ��� � for the process

of ���	� . If the cell is empty, then this means the corresponding IS is idling at that time. As

we can see, SWEEP uses 12 ticks to handle 3 data updates, while PVM (p=2) uses 8 ticks,

and PVM (p=3) uses 6 ticks. Intuitively, the performance of PVM (p=2) should be 2-fold

of that of SWEEP, which would mean 6 ticks. However as can be seen it actual takes us 8

ticks. The reason for that is the blocking on ����
 where � � � �
 has to wait for �������
 . By

increasing � from 2 to 3, we can improve the overall performance by further utilizing ��� �

for � �

� � while ���
 is blocked. For a fixed query plan generated by the � � �����)��� ��� �
process, more threads can improve the utilization of the information sources, and hence re-

sult in a better performance. This can be done until we exhaust the total query capability of

the information sources.

Also, while rapidly improving upon the performance when increasing � from 1 to 2

and so on up to 4, the decrease of the curve continues (though at a much reduced rate)

Parallel Multi-Source View Maintenance 55

until �)� � size � � � . In summary, PVM improves the performance of SWEEP by several

magnitudes depending on system resources.

We have compared our PVM algorithm with selecting � � � with the SWEEP algo-

rithm and found no significant performance differences between the two. For the most part,

PVM with � � � and SWEEP are identical in terms of software in our system. Hence, from

now on, we do not specifically focus on SWEEP in the remainder of this study.

7.3 Changing the Number of Information Sources (+)

In this experiment, we do not only control the maximum number of parallel maintenance

threads (by varying PPU size � from 1 to 10 on the X-axis), but we also study the effect of

different numbers of information sources (by plotting different curves for different values of

� with � ranging from 2 to 6) on the overall performance of handling a set of data updates.

In summary, for this experiment we set the number of updates per information source � � �
to 10, and the time interval � to 0, while varying the number of information sources � from

2 to 6 and the size of the PPU � from 1 to 10.

The results reported in Figure 23 again have two components, namely, the left chart

in the figure is directly derived from our cost model, while the right one reports the actual

experimental measurements. We observe in general that the measured trends approximately

reflect the expected ones, though with some slight overhead added on.

Based on Figure 23, we make the following observations. First, as already observed in

the first experiment, an increase in the maximum number of concurrent threads (i.e., the

PPU size � increasing from left to right) decreases the total execution time
�

by � � � with

each additional thread, e.g., 1/2, 1/3, 1/4, and so on. This dependency on the number of

threads holds true independent of the numbers of information sources (i.e., the different

lines in the figure). Second, the overall query capability � ��� of the system, with �

56 Xin Zhang et al.

T vs p (m)

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10

p (size of PPU)

T
:s

2 3 4 5 6

T vs p

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10

p: PPU Size

T
 (s

)

m=2 m=3 m=4 m=5 m=6

Fig. 23 Changing the number of information sources (and number of threads). Left figure
is the cost model. Right figure is the experimental result.

the number of information sources and � the number of queries an information source can

handle in parallel, is a delimiting factor on the overall performance achievable in the system.

Hence, for each of the lines the decrease in execution time slows down and eventually

reaches a certain point (we call it the “turning point”) at which it completely flattens. That

is, an increase in the number of threads � would no longer be effective beyond this turning

point. It does no longer positively affect the performance costs
�

as the environment’s

query capability and not the parallel data warehouse maintenance capability becomes the

bottleneck.

In summary, the observations above show that the performance gain of PVM is based

on both the query capability of the information source space and the maximum number of

threads (�) of the data warehouse manager.

7.4 Change Distribution of Update Load from Information Sources (
�
)

In this experiment, we change the distribution (but not numbers) of updates � , which is

over a fixed number of information sources � , to study how data update distribution affects

Parallel Multi-Source View Maintenance 57

the performance of SWEEP and PVM. Here, the notion of distribution � captures rates at

which update are being generated from the different information sources. Assuming a total

of 30 updates and 3 information sources. Then if c is equal to 1, the sequence of updates

is generated as follows by the different information sources: ��� � comes from IS1, ��� �

comes from IS2, ���
 comes from IS3, then ����� comes from IS1 again, and so on. If c

is equal to 5, ���	� to ����� come from IS1, then ����� to ���	��� come from IS2, etc. In

summary, the settings are: the number of information sources � is 3, number of updates

� is 30, the size of PPU � is 5, and the time interval � is 0, while varying the number of

continuous updates from same information source � from 1 to 10.

T vs c

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

c (# of Continuous DUs)

T
: s

PVM SWEEP

Fig. 24 Change of distribution of updates over information sources

For this experiment, the cost model in its present form cannot predict any behavior due

to � not being captured by the cost model. Intuitively, we expect the performance will get

58 Xin Zhang et al.

worse as � gets larger, and when � is large enough, the performance of PVM will remain

flat, but will still be better than SWEEP. Figure 24 depicts the actual experimental results.

The different distribution of continuous updates � are plotted on the x-axis (ranging from

� � � to 10) and the time (in seconds) taken by PVM and SWEEP for different � values is

plotted on the y-axis. The two lines correspond to PVM and SWEEP, respectively.

Figure 24 illustrates that the distribution of updates � decreases PVM’s performance to

a small degree while not affecting the performance of SWEEP. The reason for the former is

that as � goes up, more and more updates will arrive at the same information source at the

same time. Those queries will be synchronized at that site given that only one query can be

processed at a time by our information sources. Hence the performance is slightly worse. If

� is larger than � (total numbers of updates), then the performance will not be affected by

� any more because all the updates come from one information source. However, we note

that in all these cases PVM exhibits significantly better performance than SWEEP, e.g., for

the given system setup SWEEP has a 100% longer execution time than PVM.

7.5 Change Number of Updates
�

Figure 25 depicts the performance of PVM and SWEEP in terms of seconds (depicted on

the y-axis) for different numbers of data updates � (depicted on the x-axis varying from 4 to

40 per information source). In all plots, the number of information sources is fixed, in this

case � =2. Again, the left chart in Figure 25 is derived from our cost model, while the right

one corresponds to the actual experimental result. The settings are number of information

sources � is 2, number of continuous updates from one information source � is 1, size of

PPU � (for PVM) is 5, while varying the number of updates for each information source

(
�

�) from 4 to 40.

Parallel Multi-Source View Maintenance 59

T vs n

0

5

10

15

20

25

30

35

40

45

50

4 8 12 16 20 24 28 32 36 40

n (# of DUs)

T:
 s

T_SWEEP T_PVM

T vs n

0

5

10

15

20

25

30

35

40

45

50

4 8 12 16 20 24 28 32 36 40

n: # of DUs

T
 (s

)

SWEEP PVM(p=5)

Fig. 25 Change number of updates. Left figure is the cost model. Right figure is the exper-
imental result.

We expect PVM will have an up to �������������� -fold better performance than SWEEP.

As expected, the ratio of
�

between SWEEP and PVM (� � ������� � = 2) is about 2, i.e.,

we achieve a 100% increase in performance.

7.6 Change Time Interval $

We change the time interval between the occurrence of two adjacent updates � . Here, the

time interval � simulates at what rate new updates are generated. For example, if i is equal to

20ms, one update happens every 20ms. Our experimental settings are number of information

sources � is 2, number of updates � is 40, size of PPU � is 5, while varying the time interval

� from 0 to 1600 (ms).

Figure 26 shows the behavior of PVM and SWEEP in response to the change of the

time interval, with the left chart derived directly from our cost model and the right one

reporting the actual experimental measurements. In Figure 26, the time interval � is plotted

on the x-axis (by varying it from 0 to 1600 ms) and the time (in seconds) taken by PVM

and SWEEP is presented on the y-axis. As given that we measure both PVM and SWEEP,

60 Xin Zhang et al.

T vs i

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

i (Time Interval): s

T
: s

T_PVM T_SWEEP

T vs i

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

i (Time Interval): s

T:
 s

PVM(p=5) SWEEP

Fig. 26 Experiment 5: Change Time Interval between two Continuous Data Updates (�).
Left figure is the cost model. Right figure is the experiment result.

two lines are depicted. Our cost model (see the left chart) indicates that we expect that the

larger � is, the less a performance gain PVM will achieve compared to SWEEP. When � is

large enough, PVM will eventually be same as SWEEP. In other words, the more frequent

the update comes, the better the performance of parallel maintenance handling than the

non-parallel one.

So when the time interval � is large enough, i.e., larger than the time required to han-

dle of one individual data update, then the system will effectively process the updates se-

quentially one after the other according to SWEEP’s query plan and the improved parallel

handling capability of PVM is not made use of. That is, in that case, only one thread of

PVM is ever used (PPU=1). Thus in a very quiet data warehouse environment with very

sparse data updates, PVM cannot improve the maintenance performance further beyond the

performance of the original maintenance algorithm, in this case, SWEEP.

Our experimental measurements indeed confirm that increasing the time interval be-

tween continuous updates will change the performance of both algorithms. When the in-

tervals are larger than the total time taken by the SWEEP process for all the updates, then

Parallel Multi-Source View Maintenance 61

the SWEEP total execution time increases linearly. For PVM, the performance will not be

affected until when the intervals are larger than the total time that PVM takes to process

all the updates. Then the total execution time of PVM goes up to being linear as well. The

point where the PVM performance switches from being flat to increasing linearly is roughly

�������������� fold earlier than SWEEP.

8 Related Work

Self-maintenance [20,8,24,7,11] is one way to maintain the materialized views at the data

warehouse without access to the base relations by replicating all or parts of the base data at

the data warehouse. As more and more data is added to the data warehouse, it increases the

space complexity and gives rise to information redundancy which might lead to inconsis-

tencies. In addition, not all views are self-maintainable.

Consistency maintenance methods concentrate instead on ensuring consistency of the

data warehouse when the materialized views are not self-maintainable. The ECA [30] fam-

ily of algorithms introduces the problem and solves it partially, i.e., for one single informa-

tion source. Strobe [31] and SWEEP [1] are two view maintenance algorithms for multiple

information sources both of which focus on the concurrency of data updates. The Strobe

[31] algorithm introduces the concept of queuing the view updates at the data warehouse

and committing the updates to the data warehouse only when the unanswered query set is

empty. The algorithm solves the consistency problem but is subject to the potential threat

of infinite waiting, i.e., the data warehouse extent may never get updated. Other mecha-

nisms [2] are based on requiring the information sources to timestamp the view updates by

a global clock shared by all information sources. So far, consistency maintenance methods

either have the infinite waiting deficiency or need a global time stamp service, while our

solution is able to make use of timestamps local to data warehouse manager only.

62 Xin Zhang et al.

The SWEEP [1] family of algorithms eliminates the above mentioned limitations by

applying local compensation techniques. SWEEP uses special detection methods for con-

current updates that don’t need the global time stamp. It also requires no quiescent state

before being able to update the data warehouse. Nested-SWEEP [1] is used to handle a

set of updates by reusing the query results. Due to its recursive solution, it requires non-

interference of the updates, otherwise, an infinite recursive call may result in a maintenance

failure. PVM doesn’t apply any recursive process optimization to share the query result as

in Nested-SWEEP, rather it instead parallelizes the SWEEP maintenance process. So it will

not have an infinite wait.

The Posse [19] proposes a data warehouse framework that supports a concurrent ex-

ecution plan of the maintenance subqueries of one maintenance task, however at the well

known cost of possibly having to bring more data back to data warehouse manager. Their

algorithm can select various degrees of concurrency for the maintenance queries (or prob-

ing queries in their terms) to tradeoff between message size and processing cost. However

none of a cost model, an implementation, or any experiment results is provided. Their work

could also be used as a maintenance strategy in the � � � ���)��� � � � module in our system

where different execution plans can be plugged in for each maintenance task (by default,

we assume to use SWEEP here but any plan is possible and does not affect correctness

of our strategy.) PVM could improve the performance for their optimized algorithm if in-

formation sources remain idling exposed only with one maintenance task at a time. Some

integration of the parallelism of intra-maintenance query versus the parallelism we propose

across separate maintenance queries could be combined into one maximally flexible solu-

tion for maintenance. They also discuss briefly that the local compensation techniques from

SWEEP [1] can be extended to support SQL view queries with aggregation and HAVING

clause over data with bag semantics. Such solution is also applicable to our system.

Parallel Multi-Source View Maintenance 63

A comparison of the features of popular algorithms, such as Strobe, C-Strobe, SWEEP,

Nested-SWEEP, Posse [19], and PVM is shown in Table 4 inspired by [1]. As we can see

PVM inherits all the advantages from its ancestors, e.g., complete consistency, low message

complexity O(n), no requirement of quiescence, local compensation, and multi-threadable.

Algorithm Consistency Message Quiescence Key Points Execution
Cost

Strobe Strong O(n) Required Unique key Multi-thread
assumption

C-Strobe Complete O(n!) Not Required Unique key Multi-thread
assumption

SWEEP Complete O(n) Not Required Local Single-thread
compensation

Nested Strong O(n) Not Required Local Single-thread
SWEEP but requires compensation

non-interference
POSSE Complete O(n) Not Required Full Multi-thread

Concurrency
PVM Complete O(n) Not Required Parallel Multi-thread

Execution

Table 4 Comparison of ECA, Strobe, SWEEP, and PVM

Most algorithms like ECA [30], Strobe [31], SWEEP[1], and Posse[19] have been de-

signed for a single view. Zhuge et al. [33] defined multiple views to be consistent with

each other as the multiple view consistency problem. With multiple views, the maintenance

algorithms discussed above could still be used to maintain the view. Also some existing

algorithms for a single view can be extended to handle multiple views [14], while new

algorithms [33,3,5] have also been proposed specifically for multiple views.

Salem et. al [23] introduced an asynchronous incremental view maintenance algorithm.

They keep the maintenance transaction asynchronous from the update transaction, so that

the data warehouse can reach a state that is behind that of the information sources. Their

algorithm can at most reach strong consistency, meaning some information source states

will not be reflected in the data warehouse. However, their algorithm decreases the number

64 Xin Zhang et al.

of compensation queries and hence increases the overall maintenance performance. During

the roll up, the data warehouse manager still needs to wait for the remote queries to be

processed. Hence parallelism techniques as proposed in our work could be applied here in

order to further improve the maintenance performance.

9 Conclusions

In this paper, we have investigated the problem of parallel view maintenance. First, we have

identified the potential performance bottleneck of the current state-of-the-art VM solution

called SWEEP [1] in terms of sequential handling of updates. In this work, we have iden-

tified several open issues to achieve parallel view maintenance, notable, concurrent data

update detection in a parallel execution mode and the out-of-order-DW-commit problem.

We then present an integrated solution called PVM that is capable of handling both of these

problems.

If we enforce that effects of data updates are committed in the order that they arrive,

then PVM achieves the complete consistency of the data warehouse. If on the other hand

we commit an update as soon as its successful handling has been completed, then some

may be submitted before others. Hence PVM then would ensure the convergence level of

consistency.

The parallel mechanism of PVM algorithm can be applied to optimize prior view main-

tenance solutions from the literature that used sequential handling of maintenance tasks. In

this paper, we apply PVM concepts to the SWEEP algorithm, which is the state-of-the-art

algorithm, to improve its performance. Our cost model of SWEEP and the PVM systems

demonstrates that PVM improves SWEEP’s performance significantly. We have also fully

implemented both SWEEP and PVM in our EVE data warehousing system [22], which

Parallel Multi-Source View Maintenance 65

now is one of the first public software tools for distributed view maintenance available in

the database research community.

We have conducted a set of experiments to study the performance of PVM. The experi-

mental results show that PVM has a multi-fold performance improvement over SWEEP [22]

under a heavy load of updates. The more updates happen and the more evenly distributed

they are over the information sources, the larger a performance improvement can be gained

by PVM over SWEEP. Given sufficient query processing capability of the information

sources, we are able to observe up to p-fold performance improvement for PVM when

increasing the number of parallel threads run in our system to p.

Acknowledgements The authors would like to thank students at the Database Systems

Research Group at WPI for their interactions and feedback on this research. In particular,

we are grateful to Andreas Koeller for his help with the EVE design and implementation.

We also thank Prof. Nabil Hachem for his guidance with some of the ideas incorporated

into this paper.

References

1. D. AGRAWAL, A. EL ABBADI, A. SINGH, AND T. YUREK, Efficient View Mainte-

nance at Data Warehouses, in Proceedings of SIGMOD, 1997, pp. 417–427.

2. E. BARALIS, S. CERI, AND S.PARABOSCHI, Conservative TimeStamp Revised for

Materialized View Maintenance in a Data Warehouse, in Workshop on Materialized

Views, 1996, pp. 1–9.

3. L. COLBY, A. KAWAGUCHI, D. LIEUWEN, I. MUMICK, AND K. ROSS, Supporting

Multiple View Maintenance Policies, AT&T Technical Memo, (1996).

66 Xin Zhang et al.

4. L. S. COLBY, T. GRIFFIN, L. LIBKIN, I. S. MUMICK, AND H. TRICKEY, Algorithms

for Deferred View Maintenance, in Proceedings of SIGMOD, 1996, pp. 469–480.

5. L. S. COLBY AND I. S. MUMICK, Staggered Maintenance of Multiple Views, in Work-

shop on Materialized Views: Techniques and Applications, 1996, pp. 119–128.

6. L. DING, X. ZHANG, AND E. A. RUNDENSTEINER, The MRE Wrapper Approach:

Enabling Incremental View Maintenance of Data Warehouses Defined On Multi-

Relation Information Sources, in Proceedings of the ACM First International Workshop

on Data Warehousing and OLAP (DOLAP’99), November 1999, pp. 30–35.

7. A. GUPTA, H. JAGADISH, AND I. MUMICK, Data Integration using Self-Maintainable

Views, in Proceedings of International Conference on Extending Database Technology

(EDBT), 1996, pp. 140–144.

8. A. GUPTA, H. V. JAGADISH, AND I. S. MUMICK, Maintenance and Self Maintenance

of Outer-Join Views, in Next Generation Information Technologies and Systems, 1997.

9. A. GUPTA AND I. MUMICK, Maintenance of Materialized Views: Problems, Tech-

niques, and Applications, IEEE Data Engineering Bulletin, Special Issue on Material-

ized Views and Warehousing, 18(2) (1995), pp. 3–19.

10. A. GUPTA, I. S. MUMICK, AND V. S. SUBRAHMANIAN, Maintaining Views Incre-

mentally, in Proceedings of SIGMOD, 1993, pp. 157–166.

11. N. HUYN, Efficient View Self-Maintenance, in Proceedings of the Workshop on Mate-

rialized Views: Techniques and Applications, June 1996, pp. 17–25.

12. A. KAWAGUCHI, D. F. LIEUWEN, I. S. MUMICK, D. QUASS, AND K. A. ROSS,

Concurrency Control Theory for Deferred Materialized Views, in ICDT, 1997, pp. 306–

320.

13. A. KAWAGUCHI, D. F. LIEUWEN, I. S. MUMICK, AND K. A. ROSS, Implementing

Incremental View Maintenance in Nested Data Models, in Workshop on Database Pro-

gramming Languages, 1997, pp. 202–221.

Parallel Multi-Source View Maintenance 67

14. W. J. LABIO, R. YERNENI, AND H. GARCÍA-MOLINA, Shrinking the Warehouse

Updated Window, in Proceedings of SIGMOD, June 1999, pp. 383–395.

15. A. J. LEE, A. NICA, AND E. A. RUNDENSTEINER, The EVE Approach: View Syn-

chronization In Dynamic Distributed Environments, IEEE Transaction on Knowledge

and Data Engineering, (Accepted 2001). To Appear.

16. B. LIU, S. CHEN, AND E. A. RUNDENSTEINER, A Transactional Approach for Paral-

lel Data Warehouse Maintenance, Tech. Rep. WPI-CS-TR-02-08, Worcester Polytech-

nic Institute, 2002.

17. M. K. MOHANIA, S. KONOMI, AND Y. KAMBAYASHI, Incremental Maintenance

of Materialized Views, in Database and Expert Systems Applications (DEXA), 1997,

pp. 551–560.

18. A. NICA, A. J. LEE, AND E. A. RUNDENSTEINER, The CVS Algorithm for View Syn-

chronization in Evolvable Large-Scale Information Systems, in Proceedings of Inter-

national Conference on Extending Database Technology (EDBT’98), Valencia, Spain,

March 1998, pp. 359–373.

19. K. O’GORMAN, D. AGRAWAL, AND A. E. ABBADI, Posse: A framework for opti-

mizing incremental view maintenance at data warehouses, in Data Warehousing and

Knowledge Discovery, 1999, pp. 106–115.

20. D. QUASS, A. GUPTA, I. S. MUMICK, AND J. WIDOM, Making Views Self-

Maintainable for Data Warehousing, in Conference on Parallel and Distributed Infor-

mation Systems, 1996, pp. 158–169.

21. E. A. RUNDENSTEINER, A. KOELLER, AND X. ZHANG, Maintaining Data Ware-

houses over Changing Information Sources, Communications of the ACM, (2000),

pp. 57–62.

22. E. A. RUNDENSTEINER, A. KOELLER, X. ZHANG, A. LEE, A. NICA, A. VANWYK,

AND Y. LI, Evolvable View Environment, in Proceedings of SIGMOD’99 Demo Ses-

68 Xin Zhang et al.

sion, May 1999, pp. 553–555.

23. K. SALEM, K. S. BEYER, R. COCHRANE, AND B. G. LINDSAY, How to roll a join:

Asynchronous incremental view maintenance, in Proceedings of the 2000 ACM SIG-

MOD International Conference on Management of Data, May 16-18, 2000, Dallas,

Texas, USA, W. Chen, J. F. Naughton, and P. A. Bernstein, eds., vol. 29(2), ACM,

2000, pp. 129–140.

24. S. SAMTANI AND V. KUMAR, Maintaining Consistency in Partially Self-Maintainable

Views at the Data Warehouse, in Database and Expert Systems Applications (DEXA),

1998, pp. 206–211.

25. J. L. WIENER, H. GUPTA, W. LABIO, Y. ZHUGE, H. GARCIA-MOLINA, AND

J. WIDOM, A System Prototype for Warehouse View Maintenance, in Workshop on

Materialized Views: Techniques and Applications, 1996, pp. 26–33.

26. X. ZHANG AND E. A. RUNDENSTEINER, Flexible Data Warehouse Maintenance Un-

der Concurrent Schema and Data Updates, in Proceedings of IEEE International Con-

ference on Data Engineering, Special Poster Session, March, Sydney, Australia 1999,

p. 253.

27. , The SDCC Framework for Integrating Existing Algorithms for Diverse Data

Warehouse Maintenance Tasks, in International Database Engineering and Application

Symposium, August 1999, pp. 206–214.

28. , DyDa: Dynamic Data Warehouse Maintenance in a Fully Concurrent Environ-

ment, in Data Warehousing and Knowledge Discovery, Proceedings, Lecture Notes in

Computer Science (LNCS) by Springer Verlag, September 2000, pp. 94–103.

29. X. ZHANG, E. A. RUNDENSTEINER, AND L. DING, PVM: Parallel View Mainte-

nance Under Concurrent Data Updates of Distributed Sources, in Data Warehousing

and Knowledge Discovery, Proceedings, Munich, Germany, September 2001. 230–

239.

Parallel Multi-Source View Maintenance 69

30. Y. ZHUGE, H. GARCÍA-MOLINA, J. HAMMER, AND J. WIDOM, View Maintenance

in a Warehousing Environment, in Proceedings of SIGMOD, May 1995, pp. 316–327.

31. Y. ZHUGE, H. GARCÍA-MOLINA, AND J. L. WIENER, The Strobe Algorithms for

Multi-Source Warehouse Consistency, in International Conference on Parallel and Dis-

tributed Information Systems, December 1996, pp. 146–157.

32. Y. ZHUGE, H. GARCÍA-MOLINA, AND J. L. WIENER, Consistency Algorithms for

Multi-Source Warehouse View Maintenance, Distributed and Parallel Databases, 6

(1998), pp. 7–40.

33. Y. ZHUGE, J. L. WIENER, AND H. GARCÍA-MOLINA, Multiple View Consistency for

Data Warehousing, in Proceedings of IEEE International Conference on Data Engi-

neering, 1997, pp. 289–300.

A Correctness Proofs of the PVM algorithm

A.1 Notations

Notations used in the proofs are listed in Table 5.

!2"�� . $
1 data update at information source
&('��

and assigned time-stamp $ by data
warehouse manager.� � add-tuple operation at information source.� � is delete-tuple operation at information source.

+ A DW-Commit-Order order of
�

-s and
�
-s denoted by a regular expres-

sion 7.
� � !2" � effect of

!2"
on the data warehouse.

� � + 	 Extent after committing a set of updates in DW-Commit-Order + .
3 � � � � � � � ����� � � � � extent of 3 generated based on the extents of � � � � � � ����� ��� .

Table 5 Notations

7 For example, � � � � � means that a sequence of
�

and
�

of length 2, e.g.
� � � � ,����� � ,

��� � � ,
�+� � � ;

�+�)� � means
�

followed by
�

.

70 Xin Zhang et al.

We assume all the views are select-project-join (SPJ) views.

B Proof of Theorem 1

Theorem 1: The Out-of-Order-DW-Commit problem defined by Definition 7 will only

occur when first an add-tuple and then a delete-tuple, which will modify the same tuples in

the data warehouse, are received by the data warehouse manager and both are handled in

parallel by PVM.

Proof: We prove this by examining all possible DW-Receive-Orders of two data up-

dates, i.e., � � � � � � � , � �&� � � � � , � � � � � � � , � � � � � � � , where
� � denotes

an add-tuple operation at position � in DW-Receive-Order, and
���

denotes a delete-tuple

operation at position � in DW-Receive-Order, where � � � ��� �!� .
Using this notation, we represent the Theorem 1 as: Only � � � � � � ������ �

� � � � � , while � � � � � � � ��� � � � � � � , � � � � � � � �	� � � � � � � , and

� � � � � � � �
� � � � � � � , with the order in which the
� � and

� � are listed in the

sequence denoting their commit order.

CASE 1: Add-Tuple Update Followed by Delete-Tuple Update: � � � � � � ����
� �+� � � � � .

We are going to show via an example that the following may hold: � � � � � � ����
� �+� � � � � .

Let’s define the ��� by ��� � ���
� � � � � . � � is modified by data update ‘
� � ’ that

is adding one tuple. The updated � � is denoted by ��� � . � � is modified by data update

‘
� � ’ that is dropping one tuple. The updated � � is denoted by ��� � . We assume the data

warehouse manager received ‘
� � ’ before ‘

� � ’. So, ��� � � � ��
� 	� � � � � � � , and ��� � � �
��� 	� �
��� � � � � . The updated ��� , denoted by ����� , is � �
��� � � ��� � . The expected commit

order is ��� � � then ��� � � . If we follow the expected order we will get ��� � � ��� ��� �

Parallel Multi-Source View Maintenance 71

� � � � � � ���
 � � � � � ���
 ��� �
��� � � � �
 , which is � �
��� � � ��� � . So, ��� ��� ��� � � � � �
��� � .

The reason for this is the following. First we can divide ���
� � � � � � into two parts:

���
���
� � � and ��� � �
� � � . Since
� � � � � , we know that � � � � � � � is in � � � �
� � � .

��� �&� �
� � � ���
 and
� � � ��� , and hence � �
� � � � � in ��� . So, ��� � � � � � #��� �
� � � � � ,

which is ���
��� � � � � , is in ����
 ��� � �
� � � . So, no error occurs at the deletion of � �
� � � � � � .
��� � � ��� � � � � indeed represents the new extent ����� .

If DW-Commit-Order is the reverse order of DW-Receive-Order, which means that

we commit ��� � �
 first and then ��� � � , we get ��� � � ��� � � � � ������� � �
� � � � � �

��� � � � � � . This is not equal to ��� � as explained below.

Note that � � � �
� � � is missing from the equation which implies we have the Out-of-

Order-DW-Commit problem. The reason for it is that
� � �� ��� , so � � � � � � � �� ��� ,

since ��� ��� �
� � � ��� . As a result, subtracting ��� � � � � � will do nothing to the data

warehouse, so we can treat it as an empty set. In this case, we will return the faulty tuples

��� � � � � � in the final result.

As the result, it shows � ��� � � � ���� � ��� � � �*� .

Case 2: Two Add-Tuple Updates: � ��� � � � � � � ��� � � � �

There is no Out-of-Order-DW-Commit problem for the data warehouse under two

add-tuple updates, simply because ���
 ��� � �
 ��� � � � ����
 ��� � �
 � � � � .
Case 3: Delete-Tuple Updates: � ��� � � � � � � ��� � � � �
Assume we have relations ��� and � � , and the data warehouse is defined by ���
� �
� � � .

Two delete data updates are
� � of � � and

� � of � � . We denote ��� � �
���� as updated relation

��� �
� � , defined by ��� � � ���
� � � � � . We denote the updated ��� as ����� , defined by

���
� � � � � �� . ��� � � and � � � � are calculated below based on the DW-Receive-Order that

72 Xin Zhang et al.

� � is received before
� � . � � � � �� ��� � � � � � is the effect of

� � , and ��� � � �� � �
��� � � � �
is the effect of

� � .

Case 3.A: If DW-Commit-Order is that ��� � � is committed before ��� � � , then:

– Because
� � � � � , we know that � � � � � ��� . Hence, ��� � ��� � � doesn’t have

any tuple with negative count. So ��� � � � � � equals � �
��� � � ��� .
– Because

� � � � � , ��� � � �&���
��� � � � � � � �
��� � � � � . Hence, ��� � ��� � � � ��� � �
doesn’t have any tuple with negative count. So ��� � ��� � � � ��� � � � ��� � � �

� � � � � equals ���
� � � � � � � .
Case 3.B: if we reverse the DW-Commit-Order that � � � � is committed before ��� � � ,

then:

– Because � � ��� � � and
� � � � � , ��� � ��� � � doesn’t have any tuple with a negative

count. ��� � ��� � � �� ���
��� � � ��� �
 ��� � �
� � � .
– Then ��� � � belongs to ��� � ��� � � because � � � � � � � � � � ��� and ��� �

��� � � �&� �
� � � � � � � �
 ��� � � � � � . Then ��� ����� � � ��� � � � �� ��� ��� ��� � � �*�
has no tuple with a negative count. Hence, � ��� � � � � � ���
� � � � � � � .
As conclusion, because

� � and
� � are both in the original data warehouse, the Out-of-

Order-DW-Commit problem does not occur. So � ��� � � � � � � ��� � � � � .

Case 4: Delete-Tuple Update followed by Add-Tuple Update: � �+� � � � � � � �
� � � � �

Assume we have relations ��� and � � . The data warehouse is defined by � �
���
� � � .
The two data updates are: delete-update

� � of ��� and add-update
� � of � � . The DW-

Receive-Order is
��� � � � � that means

� � received earlier than
� � . As before, we denote

��� � (or ����) as updated relation ��� (or � �), defined by ��� � � � (or � �
 � �). We denote

��� � as the updated ��� , defined by � �
� � � � � � � .

Parallel Multi-Source View Maintenance 73

��� � � � ��� 	� � � � � ��� is the effect of
� � , and ��� � � � ��
� 	���
� � ��� � �) is the effect

of
� � .

Case 4.a: If DW-Commit-Order is ��� � � followed by ��� � � :
– Because

� � � � � , ��� � � � ��� . Hence, ��� � � � � � doesn’t have any tuple with

a negative count. It equals ���
� � � � � � . And the union will also not generate any tuple

with a negative count.

– ��� � � ��� ��� � � � �
 � � � � � � �
��� � � � � ��� � � � � � �
 ���
� � � � � � �&� �
� � � � � � �

� �
� � � � � � � ���
� � � � � �� . By the same argument as case 3, no tuple with a negative

count appeared.

Case 4.b: If the DW-Commit-Order is that ��� � � is committed before � � � � , then it

is trivial that ���
 ��� � �
 has not generated any tuple with a negative count.

– ���
 � �
� � � � � � � ���
��� � � �
 � �
� � � � � � , and due to union only, no negative

counters are generated.

– Because
� � � ��� and ��� � � � ��� , we know ��� � � � � ���
 ��� � � � . Hence

� ���
 ��� � � � � ��� � � doesn’t have any tuple with a negative count.

– ��� � � ���
 � � � � � � � � �
�&� �
��� � � �
 � �
��� � � � � � � � � � � � �
�&� �
��� � � � � � � � � � � �
����
��� � � � �
�&� �
��� � � � �
 � �
��� � � � � � ���
��� � � ��� �
No Out-of-Order-DW-Commit problem occurs because the tuples to be deleted are in

the original data warehouse. So � ��� � � � � � � ��� � � � � . Q.E.D.

C Proof of Lemma 2

Lemma 2: Given the negative counter mechanism described in Section 3.3, the counters of

all tuples will always be positive when the data warehouse reaches a quiescence state.

74 Xin Zhang et al.

Proof: First intuitively, if we recompute the view extent after data updates happened

at the information sources, the ��� will result in a state which only has tuples with posi-

tive counts. Hence, we know that tuples with negative counts will not appear in the stable

(correct) state of data warehouse.

Second, assume we have defined a view V upon two relations � � and � � . The updated

��� � is defined by ��� � � � . The updated ��� � is defined by � � � � � . In the proof of Theorem

1, we know that only
� � being received earlier than

� � by the data warehouse can cause the

Out-of-Order-DW-Commit problem. The tuple � � � �
� � � will be negative after we apply

��� � � first. As we know, ��� � � �� ��
� 	��� � � � � � . Because
� � � � � , so ��� � �
� � � ��

��� � � � � � . Hence the negative tuple � � � � � � � will be compensated by ��� � � . This means

the final result will be positive or an empty set. Q.E.D.

D Proof of Lemma 3

Lemma 3: The negative counter based mechanism described in algorithm in Figures 13

and 14 correctly solves the Out-of-Order-DW-Commit problem if any two data updates

are handled in parallel by the data warehouse.

Proof: We will prove Lemma 3 based on Theorem 1 and Lemma 2. We can represent

Lemma 3 by the following equation:

� � � � � � � � � � � � � � � � � with � a’s, 0
�

=i
�

=2, and � ��� � d’s.

This means that for two updates no matter how they commit to the data warehouse, the

final state of the data warehouse will be consistent with the information source space if we

use the negative counter technique. We break this discussion into four subcases:

– case 1: � ��� � � � � � � ��� � � �*�
– case 2: � ��� � � � � � � �+� � � � �
– case 3: � ��� � � � � � � ��� � � �*�

Parallel Multi-Source View Maintenance 75

– case 4: � ��� � � � � � � ��� � � � �
The cases 1,2 and 4 have already been shown to not produce any Out-of-Order-DW-

Commit problem by Theorem 1. Hence we do not need to discuss them further. So we

will only need to explain how the negative count concept solves the Out-of-Order-DW-

Commit problem of � ��� � � � � � � �+� � � � � .

Assume we have a data warehouse with two information sources that have � � and ���

respectively, defined by ��� � � �
��� � � � . Assume the two updates are
� � and

� � from

� � and ��� respectively. We denote updated � � after applying
� � as � � � , and updated ���

after applying
� � as ��� � . ��� � � represents the effect of

� � on the data warehouse ��� ,

which should be � � � � � ��� � � � � � in the sequential case when
� � is received before

� � (DW-Receive-Order is
��� � � � � �). � � � � represents the effect of

� � on the data

warehouse ��� , which should be ��� � � � ���
��� � � � � in the sequential case when
� � is

received after
� � .

If we keep tuples with a negative count, then the ��� � � � � � will be not really deleted.

Rather the tuple that has been prematurely deleted will be kept in the database with a neg-

ative count. When ��� � � is added, the tuples with a negative count will finally cause the

��� � � � � � to be deleted from data warehouse. So the final result will be correct.

So, � ��� � � � � � � �+� � � � � .

That means if we keep a negative count for the tuples at the ��� , no matter how we

commit the effects, we always get the correct final state of data warehouse.

E Theorem 2 Proof

Theorem 2: The negative-counter based algorithm (Figures 13 and 14) correctly solve

the Out-of-Order-DW-Commit problem for any number of maintenance-concurrent up-

dates.

76 Xin Zhang et al.

Proof by induction:

Induction hypothesis: Theorem 2 is true for any set of updates of length � .

Induction basis:

For n = 1: It’s trivial

For n = 2: It has proven by Lemma 3.

Induction assumption: Assume hypothesis holds for � � � .

Induction step: Need to prove hypothesis for n = k + 1.

Assume data update commit sequence � � ��� � ��� � ���
 � � � � ������� � is the sequence we

want to prove correct. Assume the desired ordering when receiving order = commit order is

instead � � �	� ��
 ��� �
��� � � � ��� �����
 .
Because of Lemma 3, we can see that, for a pair of data updates

� � � � � � � with � , �

denoting any prefix or suffix, we have:

� � � � � � � � � �"� � � � � � � ��� � � � � � � � � �(�
� � � � � � �+� � � � � � � � � ���
� � � � � � � � � � ���

For same reason, we have the following equations:

� � � � � � � � � �(� � � � � � � � � � � �"�
� � � � � � � � � ��� � � � � � � � � � � �(�
� � � � � � � � � �(� � � � � � � � � � � �(�

These formulae indicate that the sequences at both sides with only one pair of data

updates having their order switched will result in the same data warehouse state using the

negative count technique.

By using this pair switch operation we can convert the sequence � � to the corresponding

position in sequence � � .

Parallel Multi-Source View Maintenance 77

First, it always exists ��� in � � that corresponds to � �
 in ��� which can move to the

first place of � � by using pair switching.

� � � � � � � � � � � � � � ��� ����� ��� � � � � � ��� � � � �
� � � ��� � � � � � � � ��� ����� � � � � ������� � �

� � �

� � � � � ��� � � � � � ��� ����� ��� � � � � � � � ������� � �
� � � � � � � � � � � � � � ��� ��� � ��� � � � � � � � ��� � � � �
� � � � ��
�� � � � � � � � � ��� ��� � ��� � � � � � � � ������� � � .

While � � � � � � � � � �
 ��� ��� � � � � ��� ��� �
 � � � � � �
)� � � � �
� � � � � ��� ��� �
 �
Then, the remaining sequence of � � has length � . We know by our induction assumption

we can convert it to the remaining sequence of � � . So, the whole sequence � � has been

shown to be equal to sequence � � . Hence, � � � �*� � � � � � � for � � ��� � .
Q.E.D.

