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Abstract

XML documents exchanged between two E-Services partners may need to be reconciled to conform
to the receiver’s expecting structure. Proprietary manual translation of XML documents is not only
laborious but also error-prone for the quickly evolving E-Services world. We propose an approach that
automatically identifies most likely matching choices between the schemas and then generates the cor-
responding XSLT script to perform the appropriate data transformation. For this, we introduce a set
of transformation operations on XML’s hierarchical structure. Our system will set up the semantic re-
lationship between two schemas by discovering the operations that transform the source schema to the

target one. We report the experimental studies on real DTDs.

*We thank HP for partial support of Hong Su in terms of a grassroot grant.



1 Introduction

1.1 Motivation.

In the vision of E-Services [Kun00], services effortlessly and dynamically discover, connect to, and conduct
business with each other, regardless of underlying platforms and transports. Currently, technologies such as
E-Speak [BKGDO00], BizTalk [Biz01], RosettaNet PIPs [Ros01], and CommerceXML (¢XML) [¢XMO01] enable
E-Services running on heterogeneous devices to discover and exchange messages with each other. However,
these technologies do not address the problem of how to reconcile structural differences between the types of
documents the two E-Services might expect. For example, let there be two E-Services, Service A and Service
B, which front different companies. Suppose that Service A wanted to purchase something from Service B,
and that Service B requires Service A to submit a purchase order. The two services might structure their
purchase order documents differently. Figure 1 shows two example document structures described by DTDs
used by Service A and Service B respectively. Issues we propose to address include the identification of the
most likely semantic relationships between the two structures and then the corresponding transformation of

an XML document from one structure to the other.

<!ELEMENT company (address, cname, personnel)>
<!ATTLIST comapny id ID #REQUIRED>

<!ELEMENT address (street, city, state, zip)>
<!ELEMENT personnel (person)+>

<!ELEMENT person (name, email?, url?, fax+)>
<!ELEMENT family (#PCDATA)>

<!ELEMENT given (#PCDATA)>

<!ELEMENT middle (#PCDATA)>

<!ELEMENT name (familylgiven|middle?)*>
<!ELEMENT cname (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT street (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT state (#PCDATA)>

<!ELEMENT zip (#PCDATA)>

<VELEMENT url (#PCDATA)>

<!'ELEMENT fax (#PCDATA)>

<!ELEMENT company (cname, (street, city, state, zip), personnel)>
<!'ATTLIST comapny id ID #REQUIRED>

<!ELEMENT personnel (person)+>

<!ELEMENT person (name, email+, url?, fax, fax, phonenum)>
<!ELEMENT last (#PCDATA)>

<!ELEMENT first (#PCDATA)>

<!ELEMENT name (first, last)>

<!ELEMENT cname (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT street (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT state (#PCDATA)>

<!ELEMENT zip (#PCDATA)>

<!ELEMENT url (#PCDATA)>

<!ELEMENT fax (#PCDATA)>

<!ELEMENT phonenum (#PCDATA)>

Figure 1: DTD1 of E-Service A’s Purchase Order Figure 2: DTD2 of E-Service B’s Purchase Order

1.2 QOur Approach.

In order to represent the semantic relationships between two XML documents, we represent the documents’
schemas as trees. Then we propose a set of schema transformation operations that establish semantic
relationship between one tree and the other. We also define a cost model on the operations. We introduce
an algorithm that discovers a sequence of such operations that transform the source schema tree to a target
schema tree. We then generate the corresponding eXtensible Stylesheet Language Transformations (XSLT)
[Gro] scripts, and perform them on the source XML document to produce the target XML document. Our
approach can be applied to either XML-Schema [W3C01] or DTDs [W3C98]. However, since DTDs are still
the dominant industry standard, in the remainder of this paper we use DTDs as the representation format

of the schema of XML documents.



2 Related Work
2.1 Schema Translation

Schema Restructuring Thoery. How to build new schemata from existing ones using various structural
manipulations has been a long studied topic in the area of relational databases. [Hul84] first proposed the
notion of relative information capacity. Intuitively, a schema Ss has more information capacity than a schema
Sy if every instance of S can be mapped to an instance of Sy without loss of information. Some work [MS92]
[RR87] on translation and integration has used information capacity equivalence as a basis for judging the
correctness of transformed schemas. [MIR93] presents a classification of common integration and translation
tasks and derive from them the relative information capacity requirements of the original and transformed

schemas.

Schema Matching. Before a schema can be restructured, a semantic relationship between the source
schema, and target schema must be set up. Several methodologies have been proposed in relational schema
matching. ARTEMIS [CA99] [BCV] [BCVV9S] is a tool that supports analyzing and reconciling sets of
heterogeneous data schemas. Schema analysis in ARTEMIS is performed according to the concept of affinity.
The system evaluates the schema affinity by measuring similarity of their names (based on a thesauri), data
type (based on compatibilities) and structures (based on the similarity of relationships within the entities).
[PSU9S8] uses a similar idea as [BCVV98] to discover common properties holding among objects in different
schemes to achieve schema integration. However, a relational schema is flat while the schema of XML is
hierarchical.

TranScm [MZ98] deals with a more general data model rather than being limited to the relational model
only. It defines a common schema model and data model. And it also offers a set of “rules” (i.e., matcher)
that describe how to match a component in the source schema with a corresponding component in the target
schema. The matching is a performed node by node starting at the top. Rules are checked in a fixed order
based on their priorities. However being a system that aims at providing a general approach, it may not be
efficient nor even powerful enough in solving the specific schema matching problem in the domain of XML.
How to assign the priority for each rule or how to efficiently find an appropriate rule in the rule bases are
all critical unsolved issues while this approach is put in the specific context.

[DDLO0] can handle hierarchical schema structures. It is a machine-learning approach to match a new
schema, to a predetermined global schema. The learner is trained by a set of user-provided mapping from
a data source to the global schema and then discovers the characteristic instance patterns. Hence given a
new data source, by applying the discovered matching patterns, it can determine all one-to-one mappings
between the leaf nodes of two schema trees . However it does not match source-schema elements at higher
levels as it would require learning methods that deal with structures. And in our scenario, if there are no

example data sets of both source and target XML documents, this approach cannot be applied.



2.2 Tree Matching

Since XML’s schema can be modeled as a tree, XML’s schema matching has some similarity with tree
matching. Using insertion, deletion and relabelling as the edit operations, [ZS89, SWZS90] defines a change
detection problem for ordered trees while [ZWS95] presented the approach for unordered tress. In all above
work, the matching is a prurely structural matching. It treats the label as a second-concern, i.e., the cost of
relabelling is always cheaper than that of deleting a node with the old label and inserting a node with the
new label. This assumption will not hold in our domain.

[CRGMW96] introduces one more edit operation move. It adapts a simple cost model in which insert,
delete and move are all unit cost operations, i.e., cost is 1, while the cost of relabelling operation is given by a
function evaluating how different the new label is from the old label. Also it makes an important assumption
to help matching the nodes. It assumes that each node of the input trees has a special tag that describes
its semantics and in the output tree there is no duplicates (or near duplicates) in the labels found in the
input tree. [CGM97] introduces more edit operations, allows flexible cost models and drops the assumption
in [CRGMW96]. However it takes time quadratic in the size of the input.

There are two differences in our tree model that disables the applicability of their approaches. First, some
of their operations are not meaningful in our model. We need some other XML-Specific edit operations.
Second, the assumption made in [CRGMW96] only hold for part of the nodes in the model. Hence it is
not suitable to use the assumption to direct the mapping, neither is it suitable to completely discard the
assumption which results in a high time complexity.

Our approach is more of a tree matching flavor. However we are exploring an approach further than
traditional tree matching (graph isomorphism) which will incorporate the domain characteristics of XML’s

schema.

3 DTD Data Model

Document Type Definition (DTD) [W3C98] enforces the structure of XML documents. DTD allows for
properties or constraints to be defined on elements and attributes. A DTD defines a document’s structure as
a list of element type declarations. Elements represent the tag names that can be used in an XML document.
Elements can in turn have content particles or attributes or be empty. The structure of elements is defined
via a content-model built out of operators applied to its content particles. Content particles can be grouped
as sequences (e.g., a,b) or as choices (e.g., a|b) to be a content particle again. For every content particle, the
content-model can specify its occurrence in its parent content particle using regular expression operators (i.e.,
?,%,+). There are also some special cases of the content-model: EMPTY for an element with no content
particles; ANY for an element that can contain any content particles; PCDATA for an element that can
contain only text; MIXED for an element that can contain content particles mixed with text; CHILDREN

for an element that contains only content particles.



Attributes can be of various types such as ID for a unique identifier or CDATA for text. They can
be optional (#IMPLIED) or mandatory (#REQUIRED). Optionally, attributes can have a default or a
constant value (#FIXED).

We model an element type declaration as a tree, denoted as T = (N, p, 1), where N is the set of nodes,
p is the parent function representing the parent! relationship between two nodes, [ is the labeling function
representing a tuple of node’s properties including the node’s name and other properties if any.

A node n € N can be categorized based on its label I(n).
1. Tag node: The names of tag nodes appear as tags in the XML documents.

(a) Element node: Each element node n is associated with an element type T'. I(n) is a pair in the
format of [Name, C MType] where Name is T’s name and CMType is the T’s content model’s
type, i.e., CHILDREN, MIXED, PCDATA, EMPTY, ANY.

(b) Attribute node: Each attribute node n is associated with an attribute type T' defined within
an element type. I(n) is quadriple in the format of [Name, Type, Def, Val] where Name is T’s
name, Type is T’s data type (e.g., CDATA, ID, IDREF, IDREFS, ENUMERATION etc.), Def
is T’s default property (i.e., #REQUIRED, #IMPLIED, #FIXED, #DEFAULT), and Val is T’s

default or fixed value if any.

2. Constraint node: The names of constraint nodes do not appear in the XML documents. The label

of a constraint node is a singlet comprising of the node’s name.

(a) List node: Each list node n indicates the connector for composing its children to a content

particle, that is, by sequence (i.e., I(n) = [“,”]) or by choice (i.e., I(n) = [“]"]).

(b) Quantifier node: It represents whether its children occur in its parent’s content model one or
more (i.e., [(q) = [“+"], called as plus quantifier node), zero or more (i.e., [{(g) = [“*”], called as
star quantifier node), or zero or one times (i.e., [(g) = [“?”], called as gmark quantifier node). The
absence of a quantifier node between a non-quantifier child and its non-quantifier parent implies

that the child occurs exactly once.

Except the attribute nodes, each node in the model represents a content particle. If for two nodes n; and
ng, there is p(n1) = ne, ny represents either a content particle in na’s content model or an attribute type
defined in ny’s element type.

A tree rooted at a node of element type T is called T’s type declaration tree. We assume in our study,
the XML documents conforming to a DTD have the same root element type, we call the root element type’s

type declaration tree a DTD tree. For example, company is the root element type in both DTDs in Figure 1

1Tn this paper, we use parent and child to refer to direct parent and direct child respectively, versus ancestor and descendant.



and Figure 2. The two DTDs are modeled as DTD trees in Figures 3 and Figure 42. In the following paper,
we represent a node in the trees by its name n with a subscript ¢ indicating the number of the DTD it is

within, i.e., [n];.

iddlg

Figure 3: DTD1’s DTD Tree Figure 4: DTD2’s DTD Tree

Since each element type declaration is composed of a list of content particles enclosed in a parenthesis
followed by a quantifier or not, we do not explicitly model the outermost parenthesis construct as a sequence
list node in the DTD trees.

One important aspect we want to emphasize here is that the content model is required to be deterministic.
It is an error if an element in the XML document can match more than one occurrence of an element type

in the content model. For example, the content model (a?, a?) is is non-deterministic and thus not allowed.

4 Transformation Operations
4.1 Taxonomy of the Transformation Operations

We now give the taxonomy of the transformation operations on the simplified element trees. We describe
the taxonomy of the transformation operations in two aspects. One is the change to the tree structure, and

the other one is the corresponding DTD semantic change.

1. add(T, n): Add a new subtree T under node n. This corresponds to adding a new content particle T

to n’s content model.

2. insert(n, p, C): Insert a new node n under node p with n a quantifier node or a sequence list node. C,

a subset of p’s children, now become n's children.

2For simplification, we only mark a node with its name instead of a complete label.



e If n is a quantifier node, it corresponds to changing the occurrence property of a set of nodes C

in p’s content model from “exactly once” to the one represented by n.

e If n is a sequence list node, the semantics are to put the nodes C in a group, literally i.e., add a

parenthesis around the set of content particles C' represents.

n can not be an attribute node since attribute node will not have any children. And we do not allow
n to be an element node because it may cause undesirable matches. For example, in Figure 5, it is
inappropriate to derive [name]; from [name]; by inserting a tag node agency between company and
name since [name], indicates company’s agency’s name while [name]; indicates company’s name. We
would rather first delete name and then insert a subtree rooted at agency with a leaf name to derive
DTD2.

DTD2: <!ELEMENT company (agency)>
<!ELEMENT agency (name)>
<!ELEMENT name (#PCDATA) >

DTD1: <!ELEMENT company (name)>
<!'ELEMENT name (#PCDATA) >

Figure 5: Two Example DTDs Showing a Possible Illegal Insertion Relationship

. delete(T): Delete subtree T'. It corresponds to deleting a content particle T' from a content model.

This is the reverse operation of add.

. remove(n): Remove node n. All n’s children now become p(n)’s children. This is the reverse operation

of insert. The constraint that n can only be a quantifier node or a sequence list node also applies here.

. relabel(n, I, I’): Change node n’s original label [ to I’. The relabelings we allow fall into the following

categories:

o relabel within the same type: the relabeling does not change the node’s type. We only allow

following relabeling:

— Renaming between two element nodes, two attribute nodes or two quantifier nodes. Note we

disallow renaming between a sequence list node and a choice list node.

— Conversion between an attribute’s defaulty type Required and Implied.
o relabel across different types: the relabeling changes the node’s type.

— Conversion between a sequence list node and an element node with a content model type of
CHILDREN. This corresponds to expressing a concept by either using a group or encapsu-
lating the group into a new element type. For example, we encapsulate a group composed of
street, city, state and zip into element type address in Figure 3 while the concept of address
is modeled as a group composed of street, city, state and zip in Figure 4.

— Conversion between an attribute node with type CDATA, default type #REQUIRED, no
default or fixed value and a #PCDATA element node whose parent is a tag node.



— Conversion between an attribute node of default property #IMPLIED and a #PCDATA
element node with a gqmark quantifier parent node whose parent is a tag node. Note this is
actually a conversion between one node and two nodes. But since an attribute’s occurrence
in the element within which it is defined is modeled as its property while the occurrence of an
element within its parent element is explicitly modeled as a quantifier node, we do not break
down this conversion into a composition of a deletion (converting from element to attribute)
or adding (converting from attribute to element) of a quantifier node and a relabeling (we
do not allow such a standing alone relabeling) operation. We take this as a special complex

relabeling. For example, In Figure 6, DTD2 can be transformed from DTD1.

DTD1: <!ELEMENT company (EMPTY)> DTD2: <!ELEMENT company (license?)>
<!ATTLIST company license CDATA #IMPLIED> <!ELEMENT license (#PCDATA)>

Figure 6: Two Example DTDs Showing a Conversion Cross Node Types

6. unfold(T,< Ty, Tz,...,T; >): Replace subtree T with a sequence of subtrees T1,T5,...,T;. We have
constraints on the operands. 7" must root at a repeatable quantifier node r. If r has only one child,
construct T as an isomorphic tree of the subtree in T without r; if r has more than one child, then
construct 7" as a tree rooting at a sequence list node where the children forest of the root are isomorphic
to that of r. Ty, Ts, ..., and T; satisfy that: (1) they are adjacent siblings; and (2) themselves or
their subtrees without the optional quantifier root node are isomorphic. This corresponds to explicitly
expressing a repeatable content particle in the format of a sequence of non-repeatable content particles.
For example, phone+ in DTD1 is unfolded to phone?, phone in DTD2.

DTD1: <Element student (phone+)>
DTD2: <Element student (phone?, phone)>

7. fold(< Ty, Ty, ...,T; >,T): This is the reverse operation of unfold.

8. split(sl, < t1,t2 >): sl is split to t1 and ¢2 with s1 a sequence list node, t1 a star quantifier node and
t2 a choice list node. In DTD, there is no operator to create unordered sequences, it requires (a, b)|(b,
a) in order to encode a tuple <a, b>. However, due to the exponential increase of the content particles
with the number of elements in the tuple, people tend to use (a|b)* instead to encode the tuple. This

operation then corresponds to drop the order constraint between content particles.

9. merge(< s1,s2 >,t1): nl and n2 are merged to a single node n3 with nl a star quantifier node, n2 a

choice list node and n3 a sequence list node. This is the reverse operation of split(sl, < ¢1,t2 >).

4.2 Constraints on the Transformation

When we ensure that the atomic operation reflects common, intuitive transformation, some combination of

operations may result in an nonintuitive transformation that violates our intention. For example, suppose we



have an element declaration in DTD1: <!Element a (b,¢,d) >, and we have DTD2: <!Element a (e, d) >
<!Element e (b,c) >, we can derive DTD2 from DTD 1 by first inserting a list group node above b and c,
and then relabeling the group node to tag node e. It is equivalent to directly insert a tag node e above b
and ¢ which is an operation we forbid. For another example, suppose we have DTD1: <!Element a (b*) >,
<!Element b (¢,d) > and DTD2: <!Element a (b1,b2) >, <!Element bl (c,d) >, <!Element b2 (c,d) >.
We disallow the transformation that unfolding subtree representing b™ to two subtrees representing b1, and
then applying renaming b1 to b2. So we impose the following constraints:

Constraint. A node cannot be operated on directly more than once besides the following exceptions:
Exception 1. unfold following or followed by relabel.
Exception 2. relabel performed between attribute and element following or followed by deletion/addition of
gmark quantifier node.

For example, in Figure 2, Exception 1 allows deriving DTD2 from DTD1 by such a transformation script:
(1) relabel the parent quantifier node of phone from star to plus; (2) unfold (phone+) to (phone, phone).
In Figure 3, Exception 2 allows transforming DTD1 to DTD2 by: (1) relabel the attribute node license in
DTD1 to an element node license with a parent qmark quantifier node (we then have company (license?));

(2) remove the parent gmark quantifer node of license.

DTD1: <!ELEMENT company (EMPTY)>
<!ATTLIST company license CDATA #IMPLIED)
DTD2: <!ELEMENT company (license)>

DTD1: <!Element student (phonex)>
DTD2: <!Element student (phone, phone)>

Figure 7: DTD Pair 1 Figure 8: DTD Pair 2

5 Cost Model

Since there are many different ways to combine these operations to transform one tree to another, we also

define a cost model to help select among alternate transformations.

Data capacity. Relative information capacity [Hul84] has been used to measure whether an underlying
semantic connection exists between database schemata. Two schemata are equivalent if and only if there is
one-to-one mapping between a data instance in the source schema and the target one. We prefer a mapping
that will introduce as less discrepancy of data instance as possible.

We assume that the DTDs in our study is flat [LSS99], i.e., the component of the schema (e.g., element
and attribute) are all names rather than values. Hence we only consider PCDATA and attribute values in

XML documents as data. We refer data capacity of an XML document to the collection of all its data.

Data capacity gap. We call transformation operations that result in the loss of data data capacity reducing

(DC-Reduce), e.g., delete. Correspondingly, we call operations that result in the addition of data data



capacity increasing (DC-Increase), e.g., add. Operations that result in neither the loss nor addition of data
are called data capacity preserving (DC-Preserve), e.g., merge. However, for some operations, it is difficult
to determine from the DTDs alone whether the transformation will result in a loss, addition, or preservation

“¥7> changes the content particle

of data capacity. For example, the operation remove quantifier node <
from non-required to required which may cause an increase in data. It also changes the content particle from
repeatable to non-repeatable which may cause data reduction. Hence reducing, increasing or preserving of
data capacity are all possible and depend on the individual source XML document. We call those ambiguous
transformations data capacity gap ambiguity (DC-Ambiguous). We use DC(op) to denote the cost that the
data capacity gap of the operation op contributes to op’s overall cost.

We have a heuristic here that information loss is expensive since it is not able to reconstruct the source

document from the target document. We thus rank the operations by their data capacity gap cost from low

to high in the order of: DC-Preserve, DC-Increase, DC-Ambiguous and DC-Reduce.

[ Operation | Type of Data capacity Change
add DC-Increase
delete DC-Reduce
insert DC-Preserve
remove sequence list node DC-Preserve
remove quantifer node DC-Ambiguous
fold DC-Preserve
unfold DC-Ambiguous
merge DC-Reduce
split DC-Preserve
across type relabel DC-Preserve

Table 1: Operation’s property of data capacity change

Operation of Relabel within Same Type Type of Data capacity Change

rename DC-Preserve
relabel attribute type from Required to Implied DC-Preserve
relabel attribute type from Implied to Required DC-Ambiguous
rename “*” to “+” DC-Ambiguous
rename “*” to “7” DC-Ambiguous
rename “+” to “*” DC-Preserve
rename “+4” to “?” DC-Ambiguous
rename “?” to “*7 DC-Preserve
rename “?” to “4” DC-Ambiguous

Table 2: Operation relabel within the same type

Potential data capacity gap. Although some transformations are data capacity preserving, there may
still be a potential data capacity gap between document conforming to the source DTD and one conforming to
the target DTD. For example, the operation insert a quantifier node < “+”> is a DC-Preserve transformation.
However, it changes its children content particles’ occurrence property from non-repeatable to repeatable.

Hence the DTD after transformation allows the XML documents to accommodate more data in the future.



We use PDC(op) to denote the cost of the potential data capacity gap contributes to operation op’s overall
cost. Then we define PDC(0p) = Wrequired * required_changed(op) + Wrepeatable * repeatable_changed(op),
where required_changed(op) and repeatable_changed(op) are two boolean functions that indicate whether
the properties “required” or “repeatable” of the content particles that are operated on by op are changed or
not. Weights wyeguired and Wrepeatasie indicate the importance of the change of the corresponding property

to the potential data capacity.

Scale of operands. The number and size of operands of some operations may have impact on the change
of data capacity or potential data capacity. For instance, the operation of merging a smaller set of non-
repeatable content particles to a repeatable content particle causes a huger potential data gap than that of
merging a larger set. We use Sca(op) to denote the cost the scale of operands of the operation op contributes.

The operations whose operands’ scale matters are:

e add(T,n), delete(T): Sca(op) is proportional to T"s leaf nodes’ size.

e fold(< T1,Ts,....,T; >,T), unfold(T,< T1,T>,...,T; >): Sca(op) is proportional to T;’s leaf nodes’

size scaled by i.

We then have, Cost(op) = (DC(op) + PDC(op)) * Sca(op)

6 Generation of Simplified Element Tree Matches
6.1 Simplified Element Trees

In our scenario, the documents exchanged between two E-services belong to the same domain, using uniform
terms if ontology or some naming standards are provided. It is thus fairly reliable to use name affinity as the
first heuristic indicator of a possible semantic relationship between two tag nodes. For example, in Figure
2, we know two root nodes match. Both of the roots have a child node labeled address, without looking
at their descendants, we match these two nodes. We can derive the matching between two address nodes’
descendants by comparing two address’s type declaration trees separately. However suppose in DTD2, addr
is used instead of address, we look further at their descendants to decide whether to match them.

Based on this idea, we introduce the notion of a simplified element subtree. When two DTDs are provided,
we say a tag node is non-rename-able if there exist tags in the other DTD with the same name. A simplified
element tree of element type T', denoted as ST'(T'), is a subtree of T’s type declaration tree T'(E) that roots
at T(E)’s root with each branch ending at the first non-rename-able node reached. In Figure 2 (1) (2),
the subtrees within the dashed line are type company’s simplified element trees. Figure 2 (3) (4) show the

simplified element trees of contactinfo in two DTDs respectively.
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6.2 Outline of Matching Algorithm

Suppose T7 is the source simplified element tree and T» is the target simplied element tree, we call nodes in
Ti source nodes and nodes in Ty target nodes. If n; and no are a source node and a target node respectively,
we apply the algorithm matchPropagate to n1 and ny. It produces a transformation script, i.e., a sequence
of operations that transforms the subtree rooted at n; to the subtree rooted at ns. The cost of the script is
then the cost of matching n; and ns.

rootMatchPropagate is an XML-structure-specific tree matching algorithm. General unordered tree
matching is a notoriously high complexity NP problem. As we have mentioned in Section 2.2, standard
unordered tree matching techniques [Zha96] assume that relabeling is always preferable to deleting a node
and inserting a new one. However, in our domain, labels are critical to tree matching; only certain kinds of
relabeling are allowed. The assumption for the standard unordered tree matching does not necessarily hold
here and thus those techniques do not apply to our scenario.

Also based on common design patterns, an element type declaration will not be deeply nested. A survey
of real world DTDs [Sah00] analyzes 65 DTDs available at XML.ORG and computes the depth of content
models. The depth of content models is defined as: 0 for EMPTY; 1 for a single element, a sequence or a
choice; ...; n for an alternation 2 of sequences and choices of depth n. The maximum depth of the content
models are almost around 2 and 3 (the average depth is even lower). This is because complex regular
expressions are not advisable. It is difficult to understand and it is almost always the case that the complex
expression can be rewritten by some simpler ones. According to this design principle, if a node n; has a
matching partner ng, it is highly likely that n; and ns have a similar depth in the trees rooted at their nearest
matching ancestors. For this reason, we can use a non-exhaustive search strategy to produce a satisfactory
result.

To derive the transformation from the subtree rooted at n; and the subtree rooted at ns, for n;’s each
child my, we attempt to find a matching partner my. If a node is removed or deleted, we say the node
matches special node ®; or ®5 respectively. This matching discovery is done in two passes. In pass 1, we
visit each child m; of ny sequentially and compare it with a certain set of target nodes. We call the set of
nodes that will be compared with the current source node matching candidate set. The following gives the
source node’s type and the conditions of which a target node will be put into the matching candidate set if
satisfying one in Pass 1.

By recursively applying matchPropagate to m, and each node s in S, we find a node k with the least
matching cost ¢. We have a control strategy to decide whether to match m; with k. In pass 1, we apply
delay-match scheme which disallows matching my to k if ¢ is not low enough, i.e., less than the cost of
deleting mj.

After visiting all children of n; , we begin pass 2 and traverse all unmatched children of n; again, comparing

3(a, (b|(c, d))) has depth 3.
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Source Node’s Type Conditions for Matching Candidate

element element node on the same level

attribute attribute node on the same level

choice list choice list node on the same level

sequence list sequence list node on the same level or one level deeper
®,

quantifier quantifer node on the same level or one level deeper
®,

Table 3: Choosing Matching Candidate Set in Pass 1

them with possible candidates. Table shows the criterion for choosing matching candidate set.

[ Source Node’s Type Conditions for Matching Candidate |

element element node on the same level or one deeper level
list sequence node on the same level
attribute node on the same level
attribute element node on the same level
choice list choice list node on same level or one deeper level
sequence list sequence list node on the same level or one level deeper
®,
quantifer node on the same level
quantifier quantifier node on the same level or one level deeper
P,
sequence node on the same level

Table 4: Choosing Matching Candidate Set in Pass 2

Again, we apply matchPropagate to my and each node s in S and find a node k with the least matching
cost ¢. A must-match scheme is applied versus delay-match in pass 1. m; would be matched to k if ¢ is less
than the cost of deleting m; and adding k.

When all children of n; have a partner, the transformation operations for matching n; and ns are then
composed of those for matching ny’s child m; and m;’s partner.

We assume that two DTDs’ root element types R; and R match. We apply the algorithm matchPropagate
to the roots of Ry and Ry’s simplified trees to propagate the matches down the tree. matches between the
name-match nodes of element types E; and E, respectively may be found. Then we recrusively apply
matchPropagate algorithm to E; and Es’s simplified trees until no new name-match node matches are

generated.

MatchPropagate (nl, n2)
{
//preprocessing for discovery of fold or unfold operations
For each child tag node ml of nil
If there are neighbor siblings which have the same names
Merge the sequence of unrepeatable tag nodes into a repeatable tag node

//Pass 1
For each child tag node ml of nl
{
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If there is a child tag node m2 of n2 whose element type
(1) has the same name or a synonym name of ml’s element type’s name
or (2) has been matched with ml’s element type before
Match ml with m2;
}

For each child choice list node ml of ni
{
Find a node m2 which is a child choice node of n2
associated with a least matching cost c_Intact;
If c_Intact is less than the cost of deleting ml
Match ml and m2;

For each child sequence list node ml of nl
{
//intact matching
Find a node which is a child sequence list node m2 of n2
and associated with a least matching cost c_Intact;

//corresponding to an operation of "insert a node above ml"
Find a node which is a child sequence list node of n2’s child
and associated with a least matching cost c_Insert;

//corresponding to an operation of "remove ml"
c_Remove = 0;
For each child node ol of ml

{
Find a node which is a child node of n2, of the same type as ol,
and associated with a least matching cost c_ChildIntact
c_Remove = c_Remove + c_ChildIntact

};

Choose the smallest one cmin from c_Intact, c_Insert, c_Remove
and the corresponding partner m2’.

If cmin is less than the cost of deleting mil
Match ml and m2’.

For each child quantifier node ml of ni
{
Find a node m2 which is a child node of n2,
of type quantifier node or sequence list node,
and associated with a least matching cost c
If c is less than the cost of deleting mil
Match ml and m2;
}

//Pass 2
For each unmatched child tag node ml of nil

{

If it is a name-match node // a node can not be renamed

{
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If there is an unmatched node o2 which is a child of m2 and
has the same name/synonym
or their element types have been matched before
//corresponding to an insert operation
Match ml and o2;

}
Else //it is not a name-match node
{
Find a node m2 which is a child sequence list node
or a non-name-match child node of n2
and associated with a least matching cost c;
If ¢ is less than deleting ml and adding m2
Match ml and m2.
}

}

For each unmatched child choice node ml of nil

{
//intact matching
Find a node m2 which is a child choice list node of n2
and associated with a least matching cost c_Intact;

//corresponding to an operation of "insert a node above ml"
Find a node o2 which is a child choice node of n2’s child sequence node
and associated with least matching cost c_Insert;

Choose the smallest one cmin from c_Intact, c_Insert
and the corresponding partner m2’.

If cmin is less than the cost of deleting ml and adding m2’.
Match ml and m2’.

For each unmatched sequence, quantifier child node ml of nil
{
//intact matching
Find a node m2 which is a child sequence or quantifier node of n2
and associated with a least matching cost c_Intact;

//corresponding to an operation of "insert a node above ml"
Find a node o2 which is a child sequence

or quantifier node of n2’s child sequence list node,

and associated with least matching cost c_Insert;

//corresponding to an operation of "remove ml1"
c_Remove = 0;
For each child node ol of mil
{
Find a node which is a child node of n2, of the same type as ol,
and associated with a least matching cost c_ChildIntact
c_Remove = c_Remove + c_ChildIntact

};

Choose the smallest one cmin from c_Intact, c_Insert, c_Remove
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and the corresponding partner m2’.

If cmin is less than the cost of deleting ml and adding m2’.
Match ml and m2’.

6.3 Matching Example DTDs

We now describe how the match discovery between DTD 1 and DTD 2 depicted in Figures 3 and 4 would
be done by our system. We will use the same settings as shown in the examples in Section 4.2.

As shown in Figures 3 and 4, there are four pairs of simplified element trees, i.e., company, personnel,
person and name. We apply DMatch to the root type company’s simplified element trees first. We traverse
<company>1’s children one by one. For <address>i, its matching candidate set is empty since all the
element nodes on the same level (i.e., 2) are non-rename-able. For <cname>1, its matching candidate set
contains only <cname>s. Since they have the same name, they are matched. Similarly, <personnel>
is matched against <personnel>;. For attribute <id>i, its matching candidate set is empty. In pass
2, <address>1’s matching candidate set contains only <,>s. We apply DMatch to them and derive the
transformation script composed of an operation of relabeling “address” to “,”. As illustrated in Section 4,
<address>; will be mapped to <,>5. Attribute <license>;’s matching candidate set now contains element
<license>5. And with the parameter setting, they will be matched. Now each of <company>;’s children
has a partner. Hence we are done with matching element type company.

We continuously apply DMatch to the element simplified trees of each pair of element type matched by

name, i.e., personnel, person and name. In this way, all matches between them are discovered.

7 Generation of XSLT for Transforming Documents

Based on the established semantic relationship between two DTDs, we use XSLT [Gro], a language designed
for transforming individual XML documents, to specify and then execute the transformation. XSLT uses
XPath [W3C99] expressions to specify exactly which nodes in the XML documents are operated on. Each
node n in the DTD tree is associted with a set of nodes in the XML tree which can be specified by an XSLT
expression. We call this XSLT expression n’s XSLT expression.

For each element type matching, i.e., the two roots of the simplified element trees associated with the
element types match, the XSLT generator generates a named template. It then will traverse the target
simplified element tree in a width-first manner. The following gives what kind of XSLT expressions will be
generated based on the node it is now visiting. We use Figure 1 and Figure 2 as our running examples.
Appendix A shows the XSLT scripts that will be generated for transforming XML documents conforming to
DTD1 in Figure 1 to XML documents conforming to DTD2 in Figure 2. We will use Figure 5 as our running

example to show how the generator works.

1. element node:

15



(a) the element type is associated with a template. We define a named template for an element
types in target DTD if it is associated with a simplified element tree pair. in source DTD. If the

associated template has not been defined yet, generate the template as well.

Example 1 In Figure 1 and 2, element type person in DTD1 matches person in DTD2 and then
there is a named template person-trans defined for deriving target instances of element type person
from source instances of person. Once the gemerator reaches the tag node with name person, it
will generate the following XSLT expressions:

<person>
<xsl:call-template name = "person-trans"/>
</person>

If named template person-trans has not been defined yet, the template will be then generated. It is
similar to that to generate expressions for element type which is not associated with o template.
The only difference that a special head which is always at the beginning of a template will be
generated.

(b) the element type is not associated with a template yet:

generate the tag of the element type and recursively apply the algorithm to its children. If this
element node is of type #PCDATA, XSLT expressions jzsl:value-of; will be generated.

Example 2 FElement type name is associated with a named template name-trans. To generate
this template, the generator traverses name’s simplified element trees which is composed of the root
of element type name itself and two children leaf tag nodes of type first and last. The following
scripts will be generated.

<xsl:template match = "name" name = "name-trans">
<first>
<xsl:value-of select="given"/>
</first>
<last>
<xsl:value-of select="family"/>
</last>
</xsl:template>

2. attribute node: generate the attribute with the tag along with the node’s XSLT expression.
3. list node:

(a) sequence list node:
does not generate any XSLT expression.
(b) choice list node:

generates making choices XSLT expression, i.e., < xsl : if >. Since choice list node indicates
that one branch of this node’s children will be choosen, < xsl : ¢f > will change the output based

on the input.

4. quantifier node: suppose quantifier node n has a matching partner n’. We have mentioned before

that an absence of quantifer node between two non-quantifer nodes in DTD indicates that the content
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particle represented by the child node appears exactly once in the content model of the content particle

represented by the parent node. We can take matching ®; to n (i.e., inserting n) as matching an implict

quantifier node whose properties are required and non-repeatable to n.

(a)

if changing from n' to n is a data capacity preserving transformation (refer to table ):

generates processing multiple elements XSLT expression, i.e., < zsl : for — each >. In the select
clause, it selects all the nearest decendant tag nodes of n'. For each such a selected tag node,
< xsl : if > with the test condition of deciding what element type the the input node is of is

generated. Based on the element type, the algorithm is recursively applied (refer to item 1 ).

Example 3 <xsl:for-each select = "person'>
<xsl:if test = "(local-name() = ’person’)">
<person>
<xsl:call-template name = "person-trans'"/>
</person>
</xsl:if>

</xsl:for-each>
</xsl:template>

if the transformation of changing from n' to n changes the property of “required” from not re-
quired to required or from countable-repeatable to countable-repeatable with an increasing repeating
number but does not change the property of “repeatable” from repeatable to non-repeatable or
countable-repeatable, this may encounter a situation where at least one target XML data node in
target XML document is required to be instantiated while its data source, a corresponding source
XML data node, is not provided. In such circumstance, the generator will generate < xzsl : if >
to test whether the source data is available. If not, tags with a content which is a message to

remind that additional data is needed there.

Example 4 Content particle email* in element type person is changed to email+. The following
XSLT script will be generated.

<xsl:if test = "(count(email)=0)">
<email>
value needed here
</email>
</xsl:if>
<xsl:for-each select = "email">
<xsl:if test = "(local-name() = ’email’)">
<email>
<xsl:apply-templates/>
</email>
</xsl:if>

</xsl:for-each>

if the transformation of changing from n' to n changes the property of “repeatable” either (1) from
repeatable or countable-repetable to non-repeatable, or (2) from countable-repeatable to countable-

repeatable with a decrease of the repeating number, and if the transformation does not change the
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property of “required” from not required to required, this may encounter a situation where only
a subset of multiple data source are needed to instantiate the target XML data nodes. Then the
select clause is slightly different from the routine expression < xsl : for — each > generated for
quantifer node current visited. We by default instantiate the target XML data nodes by assigning
the value from the first several source XML data nodes among all the available source XML data

nodes.

Example 5 suppose in DTD2, in person’s content model, content particles fax, fax are replaced
by fax, then at most one XML data node of type fax can be present. The following XSLT scripts
will be generated.

<xsl:for-each select = "fax[position()=1]">
<xsl:if test = "(local-name() = ’fax’)">
<fax>
<xsl:apply-templates/>
</fax>
</xsl:if>

</xsl:for-each>

(d) gmark node: if the transformation of changing from n’ to n changes the properties from not
required to required and either (1) from repeatable or countable-repeatable to non-repeatable, or
(2) from countable-repeatable to countable-repeatable with a changing repeating number, this may
encounter a situation that is the compound of the two scenarios discussed in, both the expressions
for generating tags with reminding message and selecting the first available data source will be

generated.

Example 6 Content particle fax+ in element type person in DTDI is changed to fax, fax in
DTD2. The first fax can be derived, but the second fax is not ensured to have data source. The
following XSLT script then will be generated.

<xsl:for-each select = "fax[position()=1|position()=2]">
<xsl:if test = "(local-name() = ’fax’)">
<fax>
<xsl:apply-templates/>
</fax>
</xsl:if>
</xsl:for-each>
<xsl:if test = "(count(fax)=1)">
<email>
value needed here
</email>
</xsl:if>

8 Implementation and Experimentation

Experimental Setup In order to evaluate our solution, we have implemented a prototype system, EXTRA
(E-business Xml document TR Anslation), using Java, IBM XML4J parser and IBM LotusXSL. We have run

experiments evaluating the precision of the DTD matching. As data sets, we selected a DTD Journalist.dtd
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from XML.org DTD repository [Org98] and DocBook.dtd from Oasis [Org01]. Journalist.dtd is loosely based
on DocBook.dtd. 1t started with elements in DocBook.dtd but some content models have been simplified and
some parts of the hierarchy have been flattened. In addition, new element types are added and renaming
has occurred. Most importantly, Jounalist.dtd provides a readme document that lists changes made to
DocBook.dtd. Thus we can test our system on these real changes.

Due to the absence of an ontology in this domain, we use WordNet [CSL], a lexical database providing
a synonym dictionary, identifying synonym renaming such as between “remark” and “comment”. We use
a longest matching subsequence [oMO01] scheme to measure the similarity of two strings. For example,
the longest matching subsequence of strings “Doclnfo” and “Prefacelnfo” is “Info”. We normalize this
subsequence’s length (e.g., 4) by the longer length of the two strings (e.g., 11), deduct it from 1, and scale
it by a parameter (e.g., 1.5) to calculate the renaming cost (1-4/11)* 1.5 = 0.9.

Experimentatal Studies To evaluate our algorithms, we compare the discovered transformation scripts
with the documented real transformation scripts. We use two settings of parameters, illustrating how the
tuning of the parameters can affect the discovery of matches. In setting 1, the cost of each data capacity gap
category ranks from lower to higher in the order of DC-Preserve (0.25), DC-Increase (0.5), DC-Ambiguous
(0.75) and DC-Reduce (1.0). We assign 0.5 to both potential data capacity gap parameters Wreqyireq and
Wrepeatable- Lhe scale parameter for string similarity comparison is 1.5. In above example, this allows
renaming a leaf node “DocInfo” to another leaf node “Prefacelnfo” since the cost (0.9) is lower than that of
deleting a leaf node (1.0).

In parameter setting 2, we assign 1.0 to all data capacity gap parameters while all the other parameters
are kept the same. In table 1, for each kind of transformation operations, we show its occurrence number in
the real change scripts, the discovered change scripts and the number of the discovered changes consistent
with the real changes with two parameter settings respectively. We can see parameter setting 2 produces
suboptimal scripts while parameter setting 1 produces precise scripts. This is because our algorithm assumes
the order of DC-Preserve, DC-Increase, DC-Ambiguous, DC-Decrease in terms of their costs from low to
high. When this is violated, suboptimal transformation scripts may arise. For example, with parameter
setting 2, DC-Decrease is no more expensive than other operations. Therefore deleting a node may be
chosen rather than attempting to match this node. However, we can see the result is still acceptable and
close to the real change.

9 Conclusion

We have addressed two problems in this work: First, how to automate the identification of semantic relation-
ships between XML-based documents. Second, how to leverage this knowledge to transform an XML-based
document from a given schema to a different, yet related, schema. This work is unique because we incorporate
domain-specific characteristics of the XML documents, such as domain ontology, common transformation

types, and specific DTD modeling constructs such as quantifiers and type-constructors. This allows us to
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Match | Rename | Insert | Remove | Add | Delete
Real Changes 15 3 1 1 1 7
Setting 1 | Changes Discovered 15 3 2 1 1 7
Correct Changes 15 3 2 1 1 7
Setting 2 | Changes Discovered 12 2 1 1 1 5
Correct Changes 12 2 1 1 0 4

Table 5: Comparison of Precision of Discovered Changes with Different Parameter Settings

avoid the high level of user interaction as well as complexity required by other approaches.

As XML-Schema emerging as a potential schema standard for describing XML documents, in the future

we will investigate how to adapt our approach to exploit the richer treatment of types offered by XML

Schema as additional hints of similarity.
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A XSLT Examples

<?xml version="1.0"7>
<xsl:stylesheet xmlns:xsl="http://www.w3.0org/1999/XSL/Transform" version="1.0">
<xsl:template match ="/*">
<company>
<cname>

<xsl:apply-templates select = "cname"/>
</cname>
<street>

<xsl:apply-templates select = "address/street"/>
</street>
<city>

<xsl:apply-templates select = "address/city"/>
</city>
<state>

<xsl:apply-templates select = "address/state"/>
</state>
<zip>

<xsl:apply-templates select = "address/zip"/>
</zip>
<personnel>

<xsl:apply-templates select = "personnel"/>
</personnel>
</company>
</xsl:template>

<xsl:template match="cname//*|@*|comment () |processing-instruction() |text()">
<xsl:copy>
<xsl:apply-templates select="x*|@*|text()"/>
</xsl:copy>

</xsl:template>

<xsl:template match="street//*|@*|comment () |processing-instruction() |text()">
<xsl:copy>
<xsl:apply-templates select="*|@*|text()"/>
</xsl:copy>

</xsl:template>

<xsl:template match="city//*|@x|comment () |processing-instruction() [text () ">
<xsl:copy>
<xsl:apply-templates select="*|@*|text()"/>
</xsl:copy>

</xsl:template>

<xsl:template match="state//*|@*|comment () |processing-instruction() |text()">
<xsl:copy>
<xsl:apply-templates select="x*|@*|text()"/>
</xsl:copy>

</xsl:template>

<xsl:template match="zip//*|@x*|comment() | processing-instruction() [text()">

<xsl:copy>
<xsl:apply-templates select="*|@*|text()"/>
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</xsl:copy>
</xsl:template>

<xsl:template match = "personnel" name = "personnel-trans">
<xsl:for-each select = "person'">
<xsl:if test = "(local-name() = ’person’)">
<person>
<xsl:call-template name = "person-trans'/>
</person>
</xsl:if>

</xsl:for-each>
</xsl:template>

<xsl:template match = "person" name = "person-trans">
<name>
<xsl:apply-templates select = "name"/>
</name>
<xsl:if test = "(count(email)=0)">
<email>
value needed here
</email>
</xsl:if>
<xsl:for-each select = "email">
<xsl:if test = "(local-name() = ’email’)">
<email>
<xsl:apply-templates/>
</email>
</xsl:if>
</xsl:for-each>
<xsl:for-each select = "fax[position()=1]">
<xsl:if test = "(local-name() = ’fax’)">
<fax>
<xsl:apply-templates/>
</fax>
</xsl:if>
</xsl:for-each>
<phonenum>

value needed here
</phonenum>
</xsl:template>

<xsl:template match = "name" name = "name-trans">
<first>
<xsl:value-of select="given"/>
</first>
<last>
<xsl:value-of select="family"/>
</last>
</xsl:template>

<xsl:template match="email//*|@*|comment () |processing-instruction() |[text()">
<xsl:copy>
<xsl:apply-templates select="x|@x*|text()"/>
</xsl:copy>
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</xsl:template>

<xsl:template match="fax//*|@*|comment () | processing-instruction() [text()">
<xsl:copy>
<xsl:apply-templates select="*|@*|text()"/>
</xsl:copy>

</xsl:template>

</xsl:stylesheet>
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