
Optimizing Path Query Performance: Graph

Clustering Strategies �

Yun-Wu Huangy

IBM T.J. Watson Labs

ywh@us.ibm.com

Ning Jingz

Changsha Institute of Technology

jning@eecs.umich.edu

Elke A. Rundensteinerx

Worcester Polytechnic Institute

rundenst@cs.wpi.edu

Abstract

Path queries over transportation networks are operations required by many Geographic Information
Systems applications. Such networks, typically modeled as graphs composed of nodes and links and
represented as link relations, can be very large and hence often need to be stored on secondary stor-
age devices. Path query computation over such large persistent networks amounts to high I/O costs
due to having to repeatedly bring in links from the link relation from secondary storage into the
main memory bu�er for processing. This paper is the �rst to present a comparative experimental
evaluation of alternative graph clustering solutions in order to show their e�ectiveness in path query
processing over transportation networks. Clustering optimization is attractive because it does not
incur any run-time cost, requires no auxiliary data structures, and is complimentary to many of
the existing solutions on path query processing. In this paper, we develop a novel clustering tech-
nique, called spatial partition clustering (SPC), that exploits unique properties of transportation
networks such as spatial coordinates and high locality. We identify other promising candidates for
clustering optimizations from the literature, such as two-way partitioning and approximate topo-
logical clustering. We �ne-tune them to optimize their I/O behavior for path query processing. Our
experimental evaluation of the performance of these graph clustering techniques using an actual
city road network as well as randomly generated graphs considers variations in parameters such
as memory bu�er size, length of the paths, locality, and out-degree. Our experimental results are
the foundation for establishing guidelines to select the best clustering technique based on the type
of networks. We �nd that our SPC performs the best for the highly interconnected city map; the
hybrid approach for random graphs with high locality; and the two-way partitioning based on link
weights for random graphs with no locality.

Index Terms | Path Query Processing, Transportation Networks, Spatial Clustering, Clustering
Optimization, Geographic Information Systems.

� This work was supported in part by the University of Michigan ITS Research Center of Excellence grant
(DTFH61-93-X-00017-Sub) sponsored by the U.S. Dept. of Transportation and by the Michigan Dept. of Trans-
portation. N. Jing was supported in part by the State Education Commission of P.R. China .

y This work was performed while the author was Ph.d. student at the University of Michigan
z This work was performed while the author was visiting the University of Michigan.
x This work was performed while the author was a faculty member of the University of Michigan.

1

1 Introduction

1.1 Background on Path Query Processing

Transportation networks are essential components of many Geographic Information Systems (GIS)

applications. Such applications include navigation, route guidance, traveler information systems,

eet management, public transit, troop movement, urban planning, to name a few. Among the

services provided by such GIS systems, path query processing is an important feature required by

many of the above applications [17, 22, 23, 25, 24, 37, 40]. Examples of path queries are:

Q1: \Find the most energy-e�cient path from A to B that does not use toll roads."

Q2: \Display all the garages reachable from A in 10 minutes."

Q3: \Find the shortest path from A to B that does not pass through areas with altitude > 1000

feet for more than 10 miles."

In addition to requiring path search support from the GIS system, queries such as the three

above often also have embedded constraints that must be processed. For example, for Q1, the

computed path contains no links of type toll road. This alpha-numeric �lter can be applied to all

links of the graph before path processing, thus e�ectively constructing a smaller subgraph on which

to apply the path search. For Q2, the constraint is that the destination nodes are of garage type.

Again pre�ltering could be conducted. For Q3, we now deal with a spatial and hence much more

expensive �lter, namely that the computed path does not contain any link that traverses areas

with altitude > 1000 feet for more than 10 miles. In this case, we cannot a priori determine a

valid subgraph of the complete network and worse yet, the spatial characteristics have to be stored

with each link { thus signi�cantly increasing the storage requirements and thus expected costs of

path processing. Note that while the cost measurements used in path query computation for all

examples may be di�erent, such as based on fuel consumption in Q1, on travel time in Q2, and on

distance in Q3, they can be all abstracted and then handled using the same path search techniques.

In order to process path queries such as the above, a GIS system must model the topological

information of the transportation networks as well as maintain the attributes and cost measurements

associated with each component of the network. Typically, a GIS system models the topological

information of a transportation network by representing it as a graph composed of nodes and links.

2

A node represents for example an intersection and a link represents a road segment which is one

section of a road between two neighboring intersections where tra�c
ows in one direction. The

network then stores the topological information and other attributes associated with intersections

and road segments in two separate structures, called the node table and the link table respectively

in this paper. Each element in such a table is referred to as a tuple of the table. The attributes that

describe a node tuple may include its x- and y-coordinates, the connecting road segments (incoming

and outgoing), the tra�c control con�guration (tra�c light, stop sign, etc.), points of interest, and

so on. A link itself is identi�ed by its origin and destination nodes. Additional attributes for

describing each link include for example for a road network the number of lanes, maximum speed,

length, up-to-date link travel speed, and so on. The sizes for each node and link therefore can be

very large, up to hundreds of bytes in length.

Transportation networks are considered stable graphs for the purpose of this paper, since the

addition and the removal of intersections or roads occurs only very infrequently in practice. The

cost measurement data used for path query computation may however be either stable or unstable

depending on the attributes. The up-to-date estimated link traversal time, for example, may depend

on changing tra�c conditions, and therefore is unstable because it needs to be updated as soon as

the tra�c changes occur. Link distance or the geographic coordinates of nodes on the network on

the other hand are considered stable.

1.2 Clustering for Path Query Processing: Motivation

This paper investigates the optimization of path query processing based on graph clustering tech-

niques. To compute paths for path queries such as those previously listed (Q1 - Q3), we assume

that popular graph-traversal search algorithms such as the Dijkstra, A�, Breadth-First Search,

and Depth-First Search algorithms or any of their variants are used. They search for paths by

traversing from one node to another through their respective connecting link. Because path search

computation is recursive in nature, searching a path means to recursively access links from the link

table.

However, since the size of the link table is often larger than the capacity of the main memory

bu�er of a given GIS system, the link table may need to be stored on a secondary storage device,

typically on disk. While state-of-the-art database engines may attempt to cache the link table into

main memory during path evaluation, this will generally not be feasible due to size constraints.

3

In this case, many tuples (links) in the link table may need to be retrieved over and over again

from secondary storage and placed into the main memory bu�er for evaluation. Given that such

I/O operations on most modern computers are typically several 100-fold more expensive than CPU

operations, the I/O costs are the dominant factor of path computation costs.

The high processing costs are thus incurred by the recursive nature of the graph traversal

component of path query computation. Resolving embedded constraints may further increase I/O

costs signi�cantly. For example, in a related e�ort [17, 18, 22, 23, 19, 20], we found that processing

spatial constraints (see Q3 path query) is very I/O intensive. Thus such constraint resolution

competes with the path �nding component of the search process for computational resources such

as the bu�er space. This further motivates our research presented in this paper on optimizing the

path computation process by reducing I/O activities.

Data is commonly not transferred between secondary storage and main memory one tuple at

a time, but rather at the granularity of one or more bu�er pages containing possibly many tuples

each. Hence, one important performance consideration studied by the database community is how

best to place tuples onto disk pages so to minimize the number of required I/O operations. This

is done by assuring that tuples brought into memory on one disk page are ideally all made use

o� whenever in the bu�er. This optimization strategy of grouping data onto pages is commonly

referred to as clustering.

The purpose of this paper is to demonstrate that clustering optimization for path query compu-

tation can be e�ective for many types of transportation networks. Clustering is attractive because

it does not incur any run-time cost, nor does it require any auxiliary data structure that demands

bu�er space. Because transportation networks are stable graphs, clustering is a one-time apriori

cost not a�ecting actual path processing. If the clustering were not based on not stable attributes

(see Section 1.1), it may need to be reclustered at some point which again could be done o�-line

without any dynamic update cost . Most importantly, clustering is at a level lower than many

other path query solutions that focus on auxiliary access structures or on algorithmic techniques,

therefore results emerging from the comparative evaluation of our clustering research can be de-

ployed by such other solutions that do not already employ speci�c link clustering [2, 3, 8, 40]. Our

work thus is complimentary to much of the existing work on path �nding and could be exploited

to further optimize such techniques.

4

1.3 Contributions

The contributions of this paper can be summarized as follows:

(1) We identify existing clustering techniques from the literature, namely topological clustering

(adopted from [5]), two-way partition clustering (adopted from [11]), and random clustering,

and apply them for optimizing the I/O behavior for path query processing.

(2) We develop a novel clustering technique, which we call Spatial Partition Clustering (SPC),

that exploits unique properties of transportation networks such as spatial coordinates or

high locality of such networks. The basic idea of SPC is to achieve spatial partitioning by

dividing the links in the networks into partitions such that the origin nodes of all links within a

partition are bounded by an area that resembles a square on the map underlying the network.

the network.

(3) In addition, we develop two extensions to the above techniques further tuned for path query

processing for GIS systems. Namely, we combine our proposed spatial partition solution with

the min-cut technique to create a hybrid approach. Second, we modify the two-way partition

clustering to consider both connectivity and link weights in determining partitions.

(4) We implement the six selected clustering techniques on a uniform testbed for fair comparison.

To benchmark these six techniques, we also implemented the Dijkstra algorithm [12], one of

the more popular and e�ective path search algorithms, so that it can be applied as search

technique over the network data once clustered.

(5) We perform extensive experimental evaluation of both existing as well as our proposed clus-

tering techniques to determine their relative e�ectiveness. These experiments are conducted

both using real data (in particular, the road network of Ann Arbor, Michigan (5,596 nodes,

14,033 links)) as well as synthetically generated networks. We compare the performance re-

sults of running the Dijkstra algorithm on network data layed out on disk by the di�erent

clustering strategies.

(6) Our experimental results are used to establish guidelines to select the best clustering technique

based on the type of network found in a given application domain. Characteristics of the

network considered include parameters such as the size of the graph, the average out-degree

5

or the locality1.

While a preliminary version of this work appears in an earlier conference paper [26], this jour-

nal paper di�ers from it in many respects. First, we propose two additional new graph clustering

techniques that are the extensions of the clustering techniques presented in [26], namely the hybrid

SPC technique and the link weight based partitioning technique. Second, we include the experi-

mental results of the new extensions into the performance evaluation section in this paper. Third,

this paper presents additional types of experiments that provide new insights into the behavior

of proposed clustering techniques. Such experiments, not available in the previous report, are for

example the path �nding experiments based on paths of di�erent lengths and networks of various

average out-degrees. These new types of experiments have been instrumented for all clustering

techniques, both the ones introduced in [26] as well as the new optimizations. Fourth, because the

performance of the new extensions can be shown to lead to further improvement over the original

techniques, the conclusions for this paper have been revised to re
ect the new results. Lastly, this

paper is written with more examples and illustrations for better understanding and accessibility to

the material.

2 Related Work

There are many recent research e�orts reported in the literature that focus on minimizing the I/O

costs of path computation in a database setting that assumes a �xed-size main memory I/O bu�er.

Most of such research has proposed solutions to solve recursive query problems for general databases

that focused on pure transitive closure computation [1, 4, 7, 13, 27, 28, 29, 35]. In our work, rather

than aiming for generality, we now take an application-driven stance by proposing di�erent disk

page clustering algorithms for optimizing path query processing for GIS type of applications and

then experimentally evaluating their relative advantages and disadvantages.

Two unresolved problems arise when applying transitive closure pre-computation techniques to

path query processing for transportation networks. First, a single transitive closure computation

cannot take di�erent embedded constraints into account. For example, a transitive closure com-

puted for path query Q1 cannot be used to answer path query Q3. To answer all path queries with

1We de�ne that in a graph of high locality, the two end nodes of most links are located closely geographically,
whereas for graphs of no locality, such restriction does not apply.

6

a large set of di�erent embedded constraints, we may need to compute numerous transitive closures,

each based on a unique embedded constraint. Clearly, this is not feasible in practice. Second, some

link weights (cost measurements) may be unstable and can change very frequently. In order for the

transitive closure computed based on such cost measurements to re
ect the most up-to-date cost,

re-computation may need to be conducted very frequently. However, performance results in [1, 29]

have shown that their techniques are not e�cient in computing the shortest path transitive clo-

sure for graphs with cycles such as transportation networks in GIS applications. Re-computation of

shortest path transitive closure using such techniques thus cannot be done frequently, under-cutting

the correctness of the computed paths.

In the GIS community, there has been much work on data structures and representations for

most e�ciently being able to manage and access geograhical data sets [15, 16]. Focus here typically

was on the logical organization of data to support certain access patterns, whereas less e�ect has

gone into the lower-level physical aspect of management of the data on disk (clustering). The later

is the target of our current work, and is complimentary to data structure type of work. Similarly,

there is also a body of literature on evaluating shortest path algorithms both in the database as

well as in the GIS community. Focus here has been on a comparison of the performance of di�erent

types of shortest path algorithms itself [39], on on-line reordering [24], or on a-priori materialization

of best paths [21].

In [2], a multi-level structure is proposed to prune the search space by conducting path pre-

computations within each component data structure. Such a technique is less useful for processing

path queries with embedded constraints because the pre-computation information is general and

may not be e�ectively usable as heuristics in pruning the search space for path queries with em-

bedded constraints.

In our previous work, we have explored the hierarchical path view approach which fragments a

large graph into smaller subgraphs and pre-computes the path transitive closure for each subgraph

[30, 23, 25, 31, 21]. The advantage of such a technique is more e�cient computation in both

transitive closures of the subgraphs and path search through the hierarchy.

In [40], a graph indexing technique is proposed to improve paging performance for graph traver-

sal by building an auxiliary structure that predicts which nodes are to be accessed in the future.

However, such an auxiliary structure itself requires storage that competes for bu�er space. A further

7

limiting factor is that the examples given in [40] have fanout of only 1 or 2. Typical transportation

networks have a fanout of at least 2 and 5, meaning that the size of the auxiliary structure will be

larger than indicated in [40]. Thus more bu�er space needs to be put aside to load such a structure.

In [40], no path �nding experiment on real networks was conducted. The degree of improvement

for GIS road and other transportation networks therefore is unknown.

Clustering techniques, which are the focus of this paper, have been previously proposed to reduce

the path query processing I/O costs by arranging the link relation in a certain order in secondary

storage [5, 6, 32]. However, pure topological clustering [6, 32] is not e�ective for shortest path

computation for cyclic graphs such as GIS transportation networks where the ancestor relation is

mostly bidirectional. This is because pure topological clustering only preserves the ancestry relation

in one direction; it does not guarantee good paging behavior when the computation searches the

other direction when cycles exist. In [5], an approximate topological clustering was proposed that

handles cyclic graphs using heuristics that �rst remove the acyclic subparts of the graph and

next remove some links to break the remaining cyclic subparts. The goal of such clustering is to

minimize the number of link tuples that trace backward topologically. In this paper, a version of

this clustering technique is implemented and benchmarked in order to apply it to networks and

to compare against alternative strategies. Our experimental evaluation in Section 6 indicates that

several alternative clustering strategies outperform such topological clustering technique for both

GIS networks and for random ones.

The heuristic partitioning techniques [11, 14, 33, 38] commonly deployed in VLSI (Very Large

Scale Integrated Circuit) design can also be adopted to cluster the link relation for a graph. Such

techniques partition a graph in subgraphs based on certain partitioning objectives, of which the

most common one is to minimize the total distance of inter-connection links between partitions. [37]

adopted a two-way partitioning algorithm [11] as a clustering mechanism for the proposed access

structure for aggregate queries for transportation networks and found it e�ective. Their aggregate

query experimentation given in [37] however is based on a linear path evaluation. Recursive path

search such as the path queries discussed in this paper is not considered. In this paper, we also

include the two-way partition algorithm [11] in our evaluation in order to compare this technique

to alternative clustering solutions.

8

3 Spatial Partition Clustering

In this section, we �rst present the transportation network characteristics exploited by our proposed

Spatial Partition Clustering (SPC) algorithm, followed by a description of the algorithm that creates

the SPC.

3.1 Exploiting Characteristics of Transportation Networks

We propose to cluster link tuples from the link table based on the spatial proximity of their origin

nodes, that is, to group tuples of the link table into disk pages and then to transfer the link

relation between secondary storage and main memory in the granularity of these pages. We call

this the Spatial Partition Clustering, or short SPC. To understand why the SPC can be e�ective

for transportation networks, we describe the unique characteristics of the (road) networks:

� road networks are relatively sparse, have uniform fanout typically between 2 and 5.

� road networks are strongly inter-connected, with each node typically reachable from near-by

nodes by traversing only a few links.

� road networks consist of mostly short links in comparison to the size of the underlying spatial

region. In other words, most road links span a short distance from one intersection to the

neighboring intersection.

Graph-traversal search algorithms conduct node expansions by traversing links. Because most

road links are short, these algorithms therefore exhibit high expansion locality on transportation

networks. Furthermore, page sizes in modern databases can be quite large. Therefore many link

tuples in the link table can be stored within one page. Because road transportation networks are

sparse with low fanout, multiple groups of links with the same origin can be stored within one

page. We call them SOL (Same-Origin-link) groups. For example, with a 4 K-byte page size and

link tuple size of 128 bytes, 32 links can be stored within one page. For a transportation network

with average fanout of 3, roughly 11 SOL groups can be clustered in one page. This means that

there are roughly 11 di�erent nodes in each page that could potentially be expanded by the search

algorithm.

If we cluster the link table so that every page contains links whose origin nodes are geographically

9

closely located, we are grouping the expansion nodes based on their spatial proximity. Based on

the fact that transportation networks are highly inter-connected and consist of mostly short links,

the graph-traversal algorithms such as Dijkstra are likely to expand nodes within the same page by

traversing the intra-page links before traversing cross-page links with such a clustering. Given a

�xed-sized main memory bu�er not large enough to hold the entire link table, such paging behavior

would reduce page misses caused by cross-page link traversing. We now present the algorithm that

creates the spatial partition clustering for a given network.

3.2 The Spatial Partition Clustering Algorithm

The algorithm that creates the SPC clustering is based on the plane-sweep techniques commonly

found in multi-dimensional spatial data operations. The plane-sweep technique is for example used

to implement the spatial intersect operation in [9, 34, 36]. The basic idea of SPC is �rst to sort all

links by the x-coordinate values of their origin nodes. The plane-sweep technique is then applied

to sweep all x-sorted links along the x-coordinate from left to right. The sweeping process stops

periodically to sort the links swept since last stoppage by the y-coordinate values of their origin

nodes. Because the origin nodes of the links between two stoppage points span a short distance

along the x-axis, sorting these links by the y-coordinate values of their origin nodes achieves a

partial spatial ordering. After each y-sorting, the y-sorted links can be grouped into disk pages.

We call the output of this clustering process the SPC-clustered link table, which as explained earlier

corresponds to the layout of link tuples onto disk pages.

One critical decision to such a partition algorithm is to determine the proper stoppage points

during plane sweeping when y-sorting takes place. Our goal is to achieve a balanced partitioning in

which each resulting partition consists of links whose origin nodes are located within a bounding

area that resembles a square block when the links are evenly distributed on the map. Below, we

introduce a heuristic that dynamically computes the proper stoppage points in order to achieve

such a balanced partitioning. To accommodate unevenly distributed maps, the heuristic we use will

adjusts the bounding block for each partition by growing in the y-axis direction if the regional link

distribution is sparse, and shrinking if otherwise. In either case, each partitioned page is maximally

�lled with links whose origin nodes are relatively closely located.

To present the algorithm that creates the SPC clustering, we use the following parameters:

10

| f refers to the number of link tuples that �t into a given page size, referred to as the link

tuple blocking factor. We thus call every f consecutive link tuples an f -page.

| The block table is a temporary table that stores the links collected between two stoppage

points during the sweeping process.

| dxi is the di�erence between the minimum and maximum x-coordinate values of the origin

nodes of the links in the �rst i f -pages in the block table.

| dyi is the di�erence between the minimum and maximum y-coordinate values of origin nodes

of the links in the �rst i f -pages in the block table.

| SPC-clustered link table is the resulting table.

Algorithm: SPC()

Input: L: link table �lled with all link tuples

Output: CL: link table clustered into pages

1 The unclustered link table L is sorted by the x-coordinate values of the origin nodes of its

link tuples. The result is called the x-sorted link table.

2 Read the x-sorted link table sequentially one f -page at a time using the following process:

read the next f -page and write the page to the end of the block table (block table is initially

empty). Then check the following conditions:

| If all tuples in the x-sorted link table are read, go to step 3.

| If there is only one f -page in the block table, go to step 2 to read the next f -page and

write it to the end of the block table.

| Otherwise, conduct the following evaluation:

2.1 Let p be the number of f -pages in the block table. Compute the following:

dp = j(dyp=p)� dxpj

dp�1 = j(dyp�1=(p� 1))� dxp�1j

2.2 If dp > dp�1, this is a stoppage point. Perform the following:

2.2.1 Sort the link tuples of the �rst p � 1 f -pages by the y-coordinate values of their

origin nodes, group them into pages, and sequentially append to the SPC-clustered

link table.

11

2.2.2 Move the p-th f -page of link tuples in the block table to the �rst page in the block

table. Set the number of pages in the block table to 1.

2.3 Go to step 2 to read the next f -page.

3 Sort all remaining link tuples in the block table by the y-coordinate values of their origin

nodes, group them into pages, and sequentially append to the SPC-clustered link table CL.

Output CL.

Link table

dx

dy

X

Y

Map

Link table

Link table Link table

(d) Spatial partition clustered links

(a) Sort links by x−value of their origin nodes

 p
f−pages

Orig Dest Wgt

Orig Dest Wgt

Orig Dest Wgt

Orig Dest Wgt

0
1
2
3
4

f−page

0 1 2 3 4

x−sorted
 f−page 3 f−pages3

3

dx

4

4

dy

(b) 4 f−pages loaded in block table when
 d4 > d3 where d4 = |(dy / 4) − dx | and
 d3 = |(dy / 3) − dx |3 3

44

p = 4

p = 3

A Stoppage Point

(c) Sort 3 f−pages links by y−value of their origin nodes

 4 f−pages

 3 f−pages
are spatially
 clustered

Links sorted
 by y−value
of their origin
 nodes

 all f−pages are
spatial clustered

Figure 1: Spatial Partition Clustering.

The intuition behind the heuristic is that when the �rst few f -pages (e.g., 1 or 2) are written

from the link table to the block table, p is small, and dp = j(dyp=p) � dxpj will likely be large,

assuming a map with evenly distributed links. This is because in the plane sweep process, we are

proceeding with small progress on the x-axis and with entire range on the y-axis. When more

12

f -pages are added to the block table, p increases and dp decreases. At some point, dp will approach

0 and then starts picking up again when dxp > (dyp=p). We capture this point by dynamically

detecting dp > dp�1 and make it a stoppage point. At a stoppage point, links in the �rst p � 1

f -pages in the block table are sorted by the y-coordinate values of their origin nodes. Because dp�1

= j(dyp�1=(p�1))�dxp�1j approaches 0, each partition will be bounded by an area that resembles

a square box.

Figure 1 illustrates the sweeping process and the reasoning behind the heuristics in determining

the stoppage points. In Figure 1(a), the link tuples are sorted by the x-coordinate values of their

origin nodes. Next, f -pages of link tuples are written to the block table sequentially. In Figure 1

(b), when the 4th f-page is written to the block table, d4 > d3. This is a stoppage point. In Figure

1 (c), links in the �rst 3 f-pages in the block table are then sorted by the y-coordinate values of

their origin nodes and the y-sorted links are grouped in pages and written to the SPC-clustered

link table. Note that at this point, the �rst 3 f-pages in the link table are properly clustered. When

the sweeping process is complete, all f-pages in the link table are properly clustered as shown in

Figure 1 (d).

4 Alternative Graph Clustering Strategies

In this section, we present three alternative clustering strategies implemented for comparative stud-

ies. They are the Two-Way Partition Clustering (TWPC) [11], the \approximately" Topological

Clustering (TopoC) [5], and the Random Clustering (RandC). We assume that for each clustering

technique, links of the same SOL group are always clustered together in the link table. Such a

clustering is important because the graph-traversal path search algorithms typically expand a node

by traversing all its outgoing links to the connecting nodes. Grouping links by their origin nodes

makes sure such expansions exhibit good I/O behavior.

4.1 Two-Way Partition Clustering

Partitioning algorithms have been widely deployed in the design and fabrication of VLSI (Very Large

Scale Integrated circuit) chips. Most such algorithms partition a network into two subnetworks

[11, 14, 33], and through a divide-and-conquer process, reduce a complex problem into smaller and

hence more manageable subproblems. The common objective of such partitioning is to shorten

13

the total interconnection distance between all subnetworks in achieving a reduced layout cost and

better system performance. We now propose that these partitioning algorithms could also be

applied to our problem of transportation network clustering, namely to cluster the link table by

storing each partition within a single page. In our context, the size of each partition therefore is

bounded by the size of a bu�er page. Our goal of such partitioning is to reduce the page misses

that occur during path query computation to a minimum. Because each cross-page traversal in

path computation may potentially incur a page miss, our partition objective is then to minimize

the number of inter-partition (cross-page) links.

4.1.1 The Two-Way Partitioning Algorithm

x

Partition B
subgraph

Partition A
subgraph

x

Swap

Figure 2: An Example of Single-Node Swap-
ping.

x

Partition B
subgraph

Partition A
subgraph

y

Swap

xy

Figure 3: An Example of Pair-Wise Swap-
ping.

We implement a partition clustering based on the two-way algorithm proposed in [11]. Because

the partition problem with speci�ed size constraints belongs to the class of NP-complete problems

[10], all partition algorithms focus on �nding heuristics in providing solutions in polynomial time.

The most common heuristic used in two-way partitioning is based on a two-stage process [33].

First, an initial cut that separates a network into two is derived. Next, nodes are swapped from

one partition to another as long as such swapping results in a better cut. For example, in Figure

2, swapping node x from partition A to B creates a cut that reduces the connecting links from 3 to

2 between the two partitions. Swapping can also be conducted between two nodes from di�erent

partitions. For example, in Figure 3, swapping node x and node y to their opposite partition

reduces the cross-partition links from 4 to 2. During each swapping run, priority is always given

to the swap that yields the best cut. Swapping can continue until it no longer creates a better cut.

14

To avoid cyclic swapping that results in an in�nitive loop, a restriction is imposed that allows one

node to be swapped only once during each swapping run. To remedy such a restriction, multiple

iterations of swapping runs may be necessary to achieve an acceptable result.

The two-way partitioning algorithm we implement is also based on the two-stage heuristics

[11]. We add a contraction stage that has been shown to be an improvement over the traditional

two-stage approach [11]. Because our partitioning objective is to reduce the inter-connection links,

we abbreviate this clustering technique as TWPC con. We now give an overview of the algorithm,

while a detailed presentation of the algorithm can be found in the original paper [11].

Algorithm: Two-Way Partitioning TWPC con().

Input:

. G: network with all link tuples

. p: integer denoting maximal size of a partition

. i: integer denoting number of swaps allowed

. s1,s2: integers denoting size constraints on partitions

Output:

. G': network G partitioned into two groups

1 Contracting stage:

1.1 Initially, the network G has only one partition.

1.2 Based on divide-and-conquer, recursively apply the ratio-cut routine in [38] to the par-

titions whose sizes are greater than a speci�ed value p.

1.3 Based on the resulting partitions, contract G to a condensed graph G0 such that each

partition in G is a node in G0 and each interconnection link between two partitions is a

link between the two corresponding nodes in G0.

2 Swapping stage:

2.1 Randomly select a cut that partitions G0. into two groups.

2.2 Iteratively, apply the Fiduccia-Mattheyses algorithm [14] to the partitioned G0 i times

for better swapping result, with the size constraints of the two resulting partitions set

to s1 and s2. The i, s1, s2 are pre-speci�ed input parameters.

2.3 The result of step 2.2 is a two-way cut of G0.

15

3 Restoring stage:

3.1 Restore the two partitions in G0 created in step 2 by replacing each condensed node in

each partition by its original nodes in the correspondent partition created in step 1. The

result is two-way cut in G.

3.2 Apply the Fiduccia-Mattheyses algorithm on the two restored partitions in G one time,

and the ending two partitions are the �nal result.

Patition A
subgraph

Partition B
 subgraph

x

y

cut

Figure 4: An Example of Partitioning with
Contraction.

a
b

c
d

x

y

Partition A
subgraph subgraph

Partition B

cut

Figure 5: An Example of Partitioning with-
out Contraction.

The ratio-cut routine [38] in step 1.2 and the Fiduccia-Mattheyses algorithm [14] in step 2.2

are two partitioning algorithms based on the two-stage heuristics described earlier. The former

relies on the ratio-cut property to achieve a more balanced split while the latter deploys a data

structure that reduces the computational complexity and a speci�c size restriction to achieve a

desired partitioning.

The intuition behind the contraction approach is that nodes that are more strongly connected

are identi�ed by the ratio-cut routine in step 1.2 and treated as one node in the swapping stage. This

way the chance of them being split into di�erent partitions by a bad split is reduced. For example,

in Figure 4, the ratio-cut routine may group the nodes forming a circular versus a triangular

con�guration into two di�erent subgraphs A and B. Because partitions A and B are subsequently

contracted into two inseparable units, if there is a cut that goes through A and B, it has to go

through the link between node x and node y. Note that this is an optimal cut between A and B

16

and no further swapping will change this cut-link. If no contraction is performed, an initial cut of

all the nodes in A and B may look like the cut in Figure 5. Note that subsequent swapping will

not alter this cut because any single-node or pair-wise swapping of nodes a, b, c, d does not yield

a cut with less inter-partition links. Therefore the optimal cut that goes through the link between

nodes x and y would be lost in the case if we were to not utilize the contraction heuristic.

4.1.2 Our Adaptation of the Two-Way Partitioning Algorithm

The above two-way partition algorithm cuts a network into two partitions based on ratio-cut heuris-

tics. To adapt it to our page clustering, we recursively apply it until each partition �ts into one

page. Because the tremendous potential I/O required to process a path query, we desire to load as

much graph information into one page as possible. Consequently, the occupancy rate of each page

is set to be very high. As a result, we allow for an uneven two-way partitioning as long as the size

of one partition approximates that of a page. To achieve this, we set a relatively high minimum

occupancy rate for each partition. To avoid a \local minima" trap, we allow the swapping process

to over
ow a partition to make it larger than a page with the hope that further swapping will

decrease its size to be within a page. Thus it is possible that after several iterations of swapping,

one partition may have a size that is slightly greater than that of a page. To avoid partitions with

such an unsatisfactory occupancy rate in our context of paging, we instead introduce a heuristic

during the �nal Fiduccia and Mattheyses algorithm run in step 3.2 to favor swapping nodes out of

such partitions whose sizes are slightly over that of a page. We �nd that this adaptation achieves

a uniformly high occupancy rate among all �nal partitions.

4.2 Approximately Topological Graph Clustering

For an acyclic directed graph, topological clustering consists of arranging all its links in a topological

order. The advantage of this topological clustering of links is that a path query over it can be

processed by accessing links in one pass. Thus, if the link table does �t into main memory, the path

query will exhibit good I/O performance by avoiding to access any page more than once. However,

this topological clustering approach is not applicable to cyclic graphs as there is no topological order

that can be established due to cycles. [5] proposed an approach which extended the topological

clustering to cyclic graphs by recursively breaking cycles and removing acyclic portions of the cyclic

graph. By this approach, the cyclic graph can be \approximately" topologically sorted.

17

In this paper, we implement and evaluate the approximately topological clustering algorithm

proposed in [5] and call it TopoC (for Topological Clustering). The following is a description of the

main steps of the TopoC.

Algorithm: TopoC()

Input: L: link table representing transportation network

Output: CL: link table clustered into pages

1 Move a root-link 2 of the link table L into the clustered link table CL. Repeat this process

until no more root-links can be found in the remaining table If the remaining link table is

empty, go to step 4.

2 Move a sink-link 3 to a temporary link table. Repeat this process until no more sink-links

remain in the link table L.

3 Randomly pick a node in the remaining link table L. Move all its outgoing links to the

temporary link table. Go to step 1.

4 Append the links in the temporary link table in reverse order to the clustered link table CL.

The TopoC achieves approximately topological clustering in three phases: Steps 1 and 2 remove

the acyclic portions of the graph. Step 3 breaks cycles by removing all out-going links of one selected

node. When the remaining graph is empty, step 4 appends the links in the temporary link table to

the resulting clustered link table.

As an example, Figure 6(a) shows a cyclic directed graph and its unclustered link table. We use

this graph to illustrate how the clustered link table is built step by step by the TopoC algorithm.

Figure 6(b) depicts the graph after TopoC moves root-links Lfc and Lfg into the clustered link

table. Since Figure 6(b) has no sink-links, TopoC skips step 2. In Figure 6(c), TopoC breaks a cycle

by moving link Lab into the temporary link table. Repeating step 1, Figure 6(d) depicts the graph

by moving root-links Lbd and Lbe to the clustered link table. Then step 2 removes sink-link Lca

from the graph into the temporary link table (Figure 6(e)). By breaking another cycle in Figure

6(f), link Lde is moved over to the temporary link table. Since the remaining graph at this time

is an acyclic graph, its links are topologically sorted by repeating step 1 to move root-links to the

2If the origin node of a link has no incoming link, this link is referred to as root-link.
3If the destination node of a link has no out-going link, and the origin node of this link does not belong to any of

the cycles, this link is referred to as sink-link.

18

(h) Step 4: Append temporary link

Unclustered

From To Wgt

(a) Example graph

3
2

5

4

9

6

5

3

2

4
e

a b

c
d

f g

a b 5
b d 4
b e 6
c a 2
d e 3
e g 2
f c 3
f g 5
g c 9
g d 4

From To Wgt

Temporary

2

5

4

9

6

3

2

4
e

a b

c
d

g

Unclustered

From To Wgt

Clustered

From To Wgt

f c 3
f g 5

a b 5
b d 4
b e 6
c a 2
d e 3
e g 2
g c 9
g d 4

(c) Step 3: break cycle (of node a)

2

4

9

6

3

2

4
e

a b

c
d

g

Temporary

From To Wgt

Clustered

From To Wgt

f c 3
f g 5

Unclustered

From To Wgt

a b 5b d 4
b e 6
c a 2
d e 3
e g 2
g c 9
g d 4

2

9

3

2

4
e

a

c
d

g

(d) Step 1: remove root−links (of node b)

Temporary

From To Wgt

a b 5

Clustered

From To Wgt

f c 3
f g 5
b d 4
b e 6

Unclustered

From To Wgt

c a 2
d e 3
e g 2
g c 9
g d 4

2

9 4
e

c
d

g

(f) Step 3: break cycle (of node d)

(g) Step 1: remove root−links

Unclustered

From To Wgt

Temporary

From To Wgt

Clustered

From To Wgt

f c 3
f g 5
b d 4
b e 6

a b 5
c a 2
d e 3

e g 2
g c 9
g d 4

(e) Step 2: remove sink−link (of node c)

Temporary

From To Wgt

2

9

3

4
e

c
d

g

Clustered

From To Wgt

f c 3
f g 5
b d 4
b e 6

Unclustered

From To Wgt

a b 5
c a 2

d e 3
e g 2
g c 9
g d 4

Unclustered

From To Wgt

Temporary

From To Wgt

a b 5
c a 2
d e 3

Clustered

From To Wgt

f c 3
f g 5
b d 4
b e 6
e g 2
g c 9
g d 4

Clustered

From To Wgt

f c 3
f g 5
b d 4
b e 6
e g 2
g c 9
g d 4
d e 3
c a 2
a b 5

(b) Step 1: remove root−links (of node f)

Figure 6: Example of Approximately Topological Clustering (TopoC) Algorithm.

clustered link table (Figure 6(g)). Finally, Figure 6(h) depicts the topologically clustered link table

by appending the links of the temporary link table in reverse order.

4.3 Random Clustering

Random Clustering (RandC) corresponds to a clustering of the link table in which the link tuples

are in random order with the exception that links of the same origin node are clustered together.

Random Clustering is included in our experimental evaluation as the straw-man to determine the

path query processing cost when no clustering strategy is deployed. In this paper, we compare its

19

performance in path query processing with those of all other clustering strategies.

5 Extended Clustering Strategies

5.1 Combining Spatial Partitioning with Swapping (Hybrid)

One of the techniques commonly used in min-cut graph partitioning algorithms is node swapping

(see Section 3.1.1 for a detailed discussion). We develop a hybrid clustering approach that combines

the spatial partition clustering (Section 2.2) with the swapping technique (Section 3.1.1). We call

it the hybrid approach. This hybrid approach starts by performing the spatial partition clustering

on the graph, striving as before to reach high occupancy rate for each partition. In contrast to

the SPC approach where the page occupancy rate is approximately 100%, we allow the minimum

occupancy rate to be as low as 90% for the hybrid approach4. This relaxation on the occupancy

rate leaves some space on each page that can be used for more e�ective single-node swapping.

When the spatial partitioning process is complete, we perform single-node swapping with the

maximum occupancy rate set to 100%. This means that swapping cannot �ll a partition so as to

exceed the size of a page. We conduct such swapping for several iterations with the partitioning

objective based on minimum number of inter-partition links. Next, we continue by performing

pair-wise swapping for several more iterations. This is designed to give the partitions that are full

a chance to swap nodes with other partitions to reach a better cut. In contrast to the swapping in

the two-way partitioning approach in which each node has only one other partition to swap to (see

Section 4.1), the swapping in our hybrid approach has to consider all other partitions a node can

potentially swap to. This is because the spatial partitioning process creates many initial partitions.

It is to be expected (and our experiments con�rm) that the resulting clustered link table has a few

more pages than the SPC-clustered link table because of its slightly lowered occupancy rate, but

the number of inter-partition links could potentially be reduced by the swapping process.

5.2 Two-Way Partitioning Based on Link Weight (TWPC wgt)

In applying the two-way partitioning algorithm to graph clustering, our objective is to reduce the

number of cross-page links (TWPC con in Section 3.1). We believe such an approach will lead

4Our experiments showed that 90% is a good compromise between high occupancy rate and su�cient room for
subsequent node swapping.

20

graph-traversal path computation to traverse more intra-page links and less inter-page links since

the numbers of the latter are reduced. As a result, the page misses happening during path search

are likely to be reduced. We now extend the partitioning objective to include link weights also.

As before, we set our objective to �rst also minimize the number of total cross-page links.

However, if two or more possible cuts have the same number of reductions in terms of inter-

partition links, we break the tie by giving the swapping priority to the cut that results in the

maximum sum of weights of all cross-page links5. This objective is based on the fact that our

path search algorithm, the Dijkstra algorithm, is a priority search that gives priority to the node

with the minimum traversed weight so far. With everything else being equal, a link with a larger

weight is less likely to be favored by the Dijkstra algorithm to be traversed next than a link with

a smaller weight. Therefore, given an equal number of cross-page links, it can be expected that

a partition that has a larger total weight of all cross-page links could potentially further improve

the I/O e�ciency of path query computation based on the Dijkstra algorithm. Note that to reduce

the number of cross-page links is still the �rst priority because if we put the maximum sum of

all weights of all cross-page links as the �rst priority, the resulting cut will possibly have a large

number of cross-page links, making the partitioning ine�ective.

6 Testbed Environment

In this section, we �rst discuss our experimental testbed setup, followed by the graph representation,

and data sets, and then experimental parameters and measurements.

6.1 Experimental Testbed Setup

Our experimental testbed is implemented on a SUN Sparc-20 workstation running the Unix oper-

ating system. It includes the clustering algorithms presented in this paper, a heap-based Dijkstra

algorithm, an I/O bu�er manager, and many other supporting data structures. All programs are

written in C++.

5Note that for stable graph clustering that we consider in this paper, the link weight used in this partitioning
objective should not be an unstable link attribute that changes frequently.

21

6.2 Graph Representation

We use the link table to model the topology of the graph. Each link tuple in the link table models

a link in the graph. The path queries discussed in this paper are assumed to be path queries with

embedded constraints (see examples in Section 1). Because to resolve such constraints may require

the retrieval of link attributes in order to evaluate the validity of each link traversed during path

�nding, we must store relevant link attributes in their corresponding link tuples. In this paper, the

link tuple adopted in our experiments is set to 128 bytes. The reader can �nd a listing of possible

attributes that could be associated with such links. As discussed in Section 1, depending on the

type of query, the link attributes must be kept with the link itself in order to allow for the �ltering

of links from the candidate paths during path processing, such as for the spatial constraints in

query Q3 from Section 1.

6.3 Experimental Transportation Networks

We test two kinds of graphs: randomly generated graphs and a real (�ne-granularity) network

representing the streets of Ann Arbor City that has 5,596 nodes and 14,033 links. We experiment

with random graphs with 5,000 nodes and vary the average out-degree from 2 to 8. To create a

random graph with average out-degree d, we randomly select, for each node, from 1 to 2 � d � 1

outgoing links and, for each link, we randomly select a destination. The destination must be

di�erent from the origin of the same link, and the destinations of two di�erent outgoing links

from the same origin must be di�erent. The weight for each link is chosen to be a random integer

between 1 and 100. We also create two sets of such random graphs, one with high locality, and

the other with no locality. To control the locality of a random graph, we associate each node with

an x-coordinate and a y-coordinate value. For graphs of high locality, we allow a link to exist only

when its origin and destination are within a relatively close vicinity as compared to the total area.

For graphs of no locality, we set no such limitation.

The reason we experiment with random networks of both high and no locality is because more

advanced GIS applications such as Intelligent Transportation Systems need to model graphs beyond

the road transportation networks (such as the Ann Arbor city network). For example, the graphs

of airline
ight routes exhibit no planarity and locality therefore can be better modeled by random

graphs with no locality. An inter-modal network of both subway train and bus routes, however,

22

exhibits high locality without planarity, therefore can be modeled by random graphs with high

locality.

6.4 Clustering and Path Search Algorithms

In our experiments, we �rst prepare the network data using the various clustering techniques

proposed in this paper, namely SPC (Spatial Partition Clustering), Hybrid (the hybrid approach

that combines SPC and node swapping), TWPC con (Two-Way Partition Clustering based on

connectivity), TWPC wgt (Two-Way Partition Clustering based on stable link weights), TopoC

(Topological Clustering), and RandC (Random Clustering). The data then is layed out on disk

based on this preprocessing stage.

Thereafter, for each experiment, we apply the Dijkstra algorithm to conduct a single-source

shortest path search for randomly selected source nodes i to all other nodes in the network. Such

computation corresponds to the graph-traversal search for the shortest-path from node i to the one

node j that is the farthest away from i. Hence this set of experiments tests the worst-case scenario

in searching a shortest path from i.

6.5 Settings of Parameters

In this paper, the size of pages on disk and in the main memory bu�e is set to be 4 K bytes each.

The experiments are based on a bu�er containing up to 240 pages, i.e., varying the size of the bu�er

from 64 K bytes up to 960 K bytes. The size of the entire link table is about 2 M bytes, with a

small di�erence between the various clustering techniques.

Although the experiments presented in this paper are based on bu�er sizes up to 960 K bytes, the

adequate bu�er size for path query processing is proportional to the size of the underlying network.

The experimental networks in this paper (i.e., the Ann Arbor city network) are of medium sizes

(Section 6.3). The sizes of larger cities can be many times larger. For example, the Detroit road

network we are using for related research in this project has more than 50,000 links which is about

three times the size of the Ann Arbor map. Consequently, the bu�er requirement should increase

for larger maps. Second, resolving constraints embedded in the path queries may incur heavy I/O

activities which takes away the bu�er space from the path search process. Lastly, in a multi-user

and multi-tasking database system, one cannot assume that the entire resources such as the bu�er

23

space are available to one single query process. We therefore are motivated to �nd the clustering

strategy that can process path queries e�ciently while using as small a portion of the bu�er as

possible. Therefore, in reality, the bu�er requirement for processing constrained path �nding on

a large network in a multi-user database environment can be many times larger than the various

bu�er sizes depicted in our experimental evaluation in Section 7.

Given that we use the same search algorithm Dijkstra in our experiments, the CPU processing

costs are all fairly comparable whereas the number of disk pages that must be transferred between

the slower secondary storage device to the faster main memory system for processing, referred to

number of page input/output operations or in short I/Os, varies signi�cantly based on the placement

of link tuples on pages. In most systems, I/Os are on the order of 100-fold more expensive than

CPU operations, and hence the critical factor for determining system performance are the I/O and

not the CPU costs. Hence, we measure performance in our work in terms of number of I/Os, with

the actual total processing time being a multiplicative of this I/O count based on the average I/O

cost in the given system.

7 Experimental Evaluation

7.1 Experiments on Ann Arbor Road Network

In the �rst set of experiments, we use the Ann Arbor road network and conduct single-source

shortest path search for randomly selected nodes using the clustering techniques proposed in this

paper.

In the �rst set of experiments, we use the Ann Arbor road network. The results in Figure

7 show that Random clustering performs much worse than any other clustering, con�rming our

claim in this paper that proper graph clustering can be a key to e�cient path query processing.

Because the cost of the Random clustering is very high, making it hard to see the di�erence in

performance between the other �ve clustering approaches, we plotted Figure 8 without showing the

Random clustering results. In Figure 8, it is clear that SPC performs the best, followed by, in exact

order, TWPC wgt, TWPC con, Hybrid, and TopoC. It is surprising to see that although TopoC

has the worst performance among the �ve clustering optimizations, it is still much more e�ective

than RandC. This is contradictory to the suggestion in [37, 40] that topological clustering is not

e�ective for highly cyclic graphs such as our road network.

24

64 128 192 256 320 384 448 512 576 640
0

1000

2000

3000

4000

5000

6000

P
ag

e
I/O

 (
4K

B
yt

e/
P

ag
e)

Buffer Size (KByte)

SPC

Hybrid

TWPC_con

TWPC_wgt

TopoC

RandC

Figure 7: I/O Cost of Searching the Longest
Path on Ann Arbor Map.

192 256 320 384 448 512
500

700

900

1100

1300

1500

1700

1900

P
ag

e
I/O

 (
4K

B
yt

e/
P

ag
e)

Buffer Size (KByte)

SPC

Hybrid

TWPC_con

TWPC_wgt

TopoC

Figure 8: I/O Cost of Searching the Longest
Path (Excluding Random Clustering) on
Ann Arbor Map.

It is also interesting to note that the Hybrid approach performs worst than the SPC. This

indicates that the partitioning objective we set to minimize the cross-page links during the swapping

process may not be as relevant to highly interconnected near-planar graphs like the Ann Arbor

network as spatial proximity which SPC is based upon. This also helps to explain why SPC

performs better than TWPC wgt and TWPC con. The fact that TWPC wgt performs better than

TWPC con indicates that by incorporating link weights, the partitioning objective of TWPC wgt

catches the expansion behavior of the Dijkstra algorithm better than that of TWPC con. Note

that when the bu�er size is greater than 512 K bytes, all �ve clustering strategies perform the

same. This is because the size of the bu�er is large enough to contain the expansion locality of the

Dijkstra algorithm captured by all �ve clustering optimizations. Therefore, roughly one pass for

such a large bu�er would be su�cient to compute the single-source shortest paths.

7.2 Experiments on the High-Locality Random Graphs

The second set of experiments is based on a randomly generated graph with 5,000 nodes, average

out-degree of 3, and high locality. We conduct the same single-source path search experiments

described above. While the Ann Arbor network is very planar and interconnected, the high-locality

random graph does not guarantee planarity and high interconnection. The results in Figure 9 show

that RandC remains the distant worst, with the TopoC signi�cantly worse than the other four

25

clustering approaches.

128 192 256 320 384 448 512 576 640
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

P
ag

e
I/O

 (
4K

B
yt

e/
P

ag
e)

Buffer Size (KByte)

SPC

Hybrid

TWPC_con

TWPC_wgt

TopoC

RandC

Figure 9: I/O Cost of Searching the Longest
Path on the High-locality Random Graph.

256 320 384 448 512 576 640
500

1000

1500

2000

2500

3000

3500

P
ag

e
I/O

 (
4K

B
yt

e/
P

ag
e)

Buffer Size (KByte)

SPC

Hybrid

TWPC_con

TWPC_wgt

TopoC

Figure 10: I/O Cost of Searching the Longest
Path (Excluding Random Clustering) on
High-locality Random Graph.

The close-up results in Figure 10 show that the Hybrid and SPC perform better than TWPC con

and TWPC wgt, with the Hybrid having a slight edge. This is di�erent from the experimental

results on the Ann Arbor network where the Hybrid is worse than the other three. This indicates

that the partitioning objective of minimizing cross-page links does help in bringing down the I/O

cost incurred by the Dijkstra path search for high-locality graphs without high interconnection

and planarity. The superior performance of both the Hybrid and SPC over the TWPC con and

TWPC wgt indicates that each partition created by our proposed SPC partitioning algorithm is

tailored to �t perfectly into a bu�er page. Therefore the resulting graph partitions are better,

in terms of both page occupancy rate and expansion locality exhibited by the Dijkstra algorithm,

than the partitions created by the TWPC approaches that use divide-and-conquer to distribute

partitions into pages.

7.3 Experiments on the Low-Locality Random Graphs

In the third set of experiments, we test a randomly generated graph with 5,000 nodes, average

out-degree of 3, and no locality. Interestingly, the results in Figure 11 show that RandC and

SPC are equally the worst. This can be explained by the fact that without locality, the spatial

proximity is irrelevant for proper partitioning. Consequently, the SPC performs the same as the

26

192 256 320 384 448 512 576 640
3000

3200

3400

3600

3800

4000

4200

4400

4600

4800

P
ag

e
I/O

 (
4K

B
yt

e/
P

ag
e)

Buffer Size (KByte)

SPC

Hybrid

TWPC_con

TWPC_wgt

TopoC

RandC

Figure 11: I/O Cost of Searching the Longest Path on the Low-locality Random Graph.

RandC on graphs with no locality. The swapping process in the Hybrid approach tries to correct the

irrelevant spatial partitioning, but its performance is still worse than the TWPC approaches, and

even worse than the TopoC for some bu�er sizes. The results also show that TWPC wgt has the

best performance, followed by TWPC con. This indicates that the two TWPC approaches are not

locality-dependent, therefore have better performance than the SPC and the Hybrid approaches on

graphs with no locality. The link-weights based partitioning objective in TWPC wgt that we have

proposed is an e�ective optimization over the pure connectivity based objective in TWPC con. We

note however that the TWPC wgt has the limitation that the link weight used as the partitioning

objective must be stable.

7.4 Experiments on Paths of Di�erent Length

So far, our experiments focus on the worst-case scenario, i.e., the cost of computing the longest

among all shortest-paths to all possible destinations. We now explore the path search performance

on paths of di�erent length, namely short paths, medium paths, and long paths. We de�ne the

direct distance between the farthest node-pair as dmax, and the direct distance between the two

end nodes of a path as dshort for short paths, dmedium for medium paths, and dlong for long paths.

Then the following relations hold:

dshort < (dmax=3), and

(dmax=3) � dmedium < (dmax � 2=3), and

dlong � (dmax � 2=3)

27

long med short
10

100

1000

4000

P
ag

e
I/O

 (
4K

B
yt

e/
P

ag
e)

Path Length

SPC

Hybrid

TWPC_con

TWPC_wgt

TopoC

RandC

Figure 12: I/O Cost By Length of Paths on
the Ann Arbor Network.

long med short
0

100

200

300

400

500

600

700

800

900

1000

P
ag

e
I/O

 (
4K

B
yt

e/
P

ag
e)

Path Length

SPC

Hybrid

TWPC_con

TWPC_wgt

TopoC

Figure 13: I/O Cost By Length of Paths (Ex-
cluding Random Clustering) on the Ann Ar-
bor Network.

Because such a direct-distance based classi�cation is only meaningful if the graph has locality and

is highly inter-connected, we conduct this set of experiments on the real Ann Arbor city map only.

We randomly select a number of node-pairs from each category, conduct path search, and collect

the average results. The bu�er size is set to 256 K bytes. Because the performance for RandC

is much worse than any other clustering approach, we use the log scale in Figure 12. Figure 13

shows the results in linear scale without RandC. In Figure 13, we can see more clearly that SPC

consistently has the best performance for all three kinds of paths, while TopoC generally has the

worst performance.

7.5 Experiments on Average Out-degree

In this last set of experiments, we randomly generated graphs with 5,000 nodes, varying the average

out-degrees from 2 to 8. We set the bu�er size to 960 K bytes in order to accommodate graphs

with large average out-degree. The purpose of the experiments is to �nd out which clustering

strategies work better for graphs of various average out-degrees. Because graphs of high out-

degrees automatically lose locality with evenly distributed nodes, we only generate graphs with no

locality for this set of experiments.

The experimental results in Figure 14 show that both TWPC wgt and TWPC con perform

28

2 3 4 5 6 7 8
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

P
ag

e
I/O

 (
4K

B
yt

e/
P

ag
e)

Out Degree

SPC

Hybrid

TWPC_con

TWPC_wgt

TopoC

RandC

Figure 14: I/O Cost By Average Out-degree
on the Random Graphs.

2 3 4 5
500

1000

1500

2000

2500

3000

3500

4000

4500

P
ag

e
I/O

 (
4K

B
yt

e/
P

ag
e)

Out degree

SPC

Hybrid

TWPC_con

TWPC_wgt

TopoC

RandC

Figure 15: I/O Cost By Average Out-degree
on the Random Graphs (Close-up).

better as the average out-degree increases. Although TWPC wgt has a better performance than

TWPC con, the performance curve of TWPC con actually becomes (i.e., drops) more favorably as

the average out-degree increases. The other four clustering approaches all fair poorly as the average

out-degree goes up. Figure 15 is a close-up of Figure 14 with average out-degrees from 2 to 5. In

Figure 15, the performance of TopoC is much better than the others when the average out-degree is

2. This is because when the average out-degree is small, there are primarily acyclic components in

the graph. The TopoC strategy is extremely e�cient for the acyclic graphs and therefore performs

much better when there are many acyclic subgraphs in the graph.

8 Conclusions

E�cient path query processing over transportation networks is important for many GIS applica-

tions. In this paper, we consider the optimization of path query processing using graph clustering

techniques. Clustering optimization is attractive because it does not incur any run-time cost, nor

does it require auxiliary data structures that demand memory. More importantly, it is compli-

mentary to many of the existing path query solutions typically at the data structure or at the

algorithmic level.

In this paper, we �rst propose a new clustering technique, called the spatial partition clustering

(SPC), for path query optimization for transportation networks. Next, three other graph clus-

29

tering techniques, namely the two-way partitioning clustering, topological clustering, and random

clustering, are identi�ed from the literature, �ne-tuned for GIS path query optimization, and then

implemented in our uniform testbed. In addition, based on the spatial partition clustering and

the two-way partitioning clustering, we develop two extensions, called the hybrid approach and the

two-way partitioning based on link weight respectively.

This paper presents an extensive experimental evaluation of the comparative performance of

the above six graph clustering techniques. Our experiments are based on three kinds of networks.

They are the Ann Arbor city road map; randomly generated graphs with high locality modeling

GIS maps such as inter-modal bus and subway routes; randomly generated graphs with no locality

modeling GIS networks such as airline routes. The experiments are conducted by varying testing

parameters such as memory bu�er size, path length, locality, and average out-degree. The exper-

imental results show that our spatial partition clustering performs the best for the real network;

the hybrid approach has the best performance for random graphs with high locality; whereas the

two-way partitioning based on link weights works the best for random graphs with no locality.

Such experimental results are important, representation a foundation for establishing guidelines in

the selection of the best clustering technique based on the type of network prevalent in a given

application.

For future work, e�ective graph clustering techniques can also be extended to solve more general

path problems such as recursive query processing. Results from this paper can also be exploited for

further optimization of complex path query processing with embedded constraints. For instance, our

exploration of a framework of spatial path queries [18] is based on the SPC solution �rst introduced

in this paper. Lastly, clustering techniques could be explored to take into account knowledge about

in which s spatial location paths with certain properties can be found. Such knowledge could be

utilized to constrain the search and also to adjust the clustering of links for origin-destination pairs

that meet this particular class of queries.

References

[1] Agrawal, R., Dar, S., and Jagadish, H. V., \Direct Transitive Closure Algorithms: Design and
Performance Evaluation," ACM Transactions on Database Systems, Vol. 15, No. 3, Sep. 1990,
pp. 427 { 458.

[2] Agrawal, R. and Jagadish, H. V., \E�cient Search in Very Large Databases," Proc. of the
14th VLDB Conf., Los Angeles, California, 1988, pp. 407 { 418.

30

[3] Agrawal, R. and Jagadish, H. V., \Materialization and Incremental Update of Path Informa-
tion", IEEE 5th Int. Conf. on Data Engineering, 1989, pp. 374 { 383.

[4] Agrawal, R. and Jagadish, H. V., \Hybrid Transitive Closure Algorithms," Proc. of the 16th
VLDB Conf., Brisbane, Australia, 1990, pp. 326 { 334.

[5] Agrawal, R. and Kiernan, J., \An Access Structure for Generalized Transitive Closure
Queries", IEEE 9th Int. Conf. on Data Engineering, 1993, pp. 429 { 438.

[6] Banerjee, J., Kim, W., Kim, S.J., and Garza, J.F., \Clustering a DAG for CAD Databases,"
IEEE Trans. on Software Engineering, Vol. 14, No. 11, 1988.

[7] Bancilhon, F., \Naive Evaluation of Recursively De�ned Relations", In On Knowledge Base
Management Systems { Integrating Database and AI systems, M. Brodie and J, Mylopoulos,
Eds., Springer-Verlag, New York, 1985

[8] Bancilhon, F. and Ramakrishnan, R., \An Amateur's Introduction to Recursive Query Pro-
cessing Strategies," Proc. of the 1986 ACM SIGMOD Int. Conf. on Management of Data,
1986.

[9] Brinkho�, T., Kriegel, H., Schneider, R., and Seeger, B., \Multi-Step Processing of Spatial
Joins", Proc. of the 1994 ACM SIGMOD Int. Conf. on Management of Data, 1994, pp. 197 {
208.

[10] Carey, M.R., Johnson, D.S., and Stockmeyer, L., \Some Simpli�ed NP-Complete Graph Prob-
lems," Theoretical Computer Science, 1976, pp. 237 { 267.

[11] Cheng, C.K. and Wei, T.C., \An Improved Two-Way Partitioning Algorithm with Stable
Performance," IEEE Trans. on Computer-Aided Design, Vol. 10, No. 12, Dec. 1991, pp. 1502
{ 1511.

[12] Dijkstra, E. W. \A Note on Two Problems in Connection with Graphs", Numer. March, 1959,
pp. 269 { 271.

[13] Ebert, J., \A Sensitive Transitive Closure Algorithm", Information Processing Letters, 12. ,
1981, pp. 255 { 258.

[14] Fiduccia, C.M. and Mattheyses, R.M., \A Linear Time Heuristic for Improving Network Par-
titions", Proc. ACM/IEEE 19th Design Automat. Conf., 1982, pp. 175 { 181.

[15] M. F. Goodchild, \Tiling large geograhical databases", In A. Buchmann, O. G|nther, T.R.
Smith and Y.-F. Wang, editors, Design and Implementation of Large Spatial Databases. New
York: Springer-Verlag, 137-146. 1990.

[16] M. F. Goodchild, and Y. Shiren, A Hierarchical Spatial Data Structure for Global Geographic
Information Systems, Computer Vision, Graphics and Image Processing: Graphical Models
and Image Processing 54 (1): 31-44. 1992.

[17] Huang, Y. W., Jones, M.C., and Rundensteiner, E.A., \Symbolic Intersect Detection: A
Method for Improving Spatial Intersect Joins," Journal of GeoInformatica, Special issue on
Spatial Database Systems, 2:2, 149-174 (1998), Kluwer Aca. Pub.

[18] Huang, Y. W., Jing, N. and Rundensteiner, E., \Integrated Query Processing Strategies for
Spatial Path Queries." IEEE Int Conf. on Data Engineering, 1997: pp. 477-486.

[19] Huang, Y. W., Jing, N. and Rundensteiner, E., Yun-Wu Huang, Matthew C. Jones, Elke A.
Rundensteiner: \Improving Spatial Intersect Joins Using Symbolic Intersect Detection." SSD
Conf., 1997: pp. 165-177.

[20] Huang, Y. W., Jing, N. and Rundensteiner, E., \A Cost Model for Estimating the Performance
of Spatial Joins Using R-trees." SSDBM, 1997: pp. 30-38.

31

[21] Huang, Y.W., Jing, N. and Rundensteiner, E.A., \A Hierarchical Path View Model for Path
Finding in Intelligent Transportation Systems," Journal of GeoInformatica, 1:2, pp. 125-159
(1997), Kluwer Aca. Pub..

[22] Huang, Y. W., Jing, N. and Rundensteiner, E., \Spatial Joins Using R-trees: Breadth-First
Traversal with Global Optimizations" VLDB 1997, pp. 396-405.

[23] Huang, Y.W., Jing N. and Rundensteiner, E. A., \Query Processing Strategies for Spatial
Path Queries," IEEE Int. Conf. on Data Engineering, (ICDE-13), April 1997, England.

[24] Huang, Y.W., Jing, N., and Rundensteiner, E. A., \Path View Algorithm for Transportation
Networks: The Dynamic Reordering Approach," ACM Workshop on Geographic Information
Systems (ACM GIS'96), Washington, D.C., Nov. 1996.

[25] Huang, Y. W., Jing, N. and Rundensteiner, E., \Evaluation of Hierarchical Path Finding
Techniques for ITS Route Guidance," Proc. of ITS-America, Houston, April, 1996.

[26] Huang, Y. W., Jing, N. and Rundensteiner, E., \E�ective Graph Clustering for Path Queries
in Digital Map Databases," Proc. 5th Int'l Conf. CIKM, 1996, pp. 215 { 222. Washington
D.C., Nov., 1996.

[27] Ioannidis, Y. E., \On the Computation of the Transitive Closure of Relational Operators,"
Proc. 12th Int'l Conf. VLDB, Aug. 1986, pp. 403 { 411.

[28] Ioannidis, Y. E. and Ramakrishnan, R., \An E�cient Transitive Closure Algorithm," Proc.
14th Int'l Conf. VLDB, Aug.-Sep. 1988, pp. 382 { 394.

[29] Ioannidis, Y. E., Ramakrishnan, R., and Winger, L., \Transitive Closure Algorithms Based
on Graph Traversal," ACM Transactions on Database Systems, Vol. 18, No. 3, Sep. 1993, pp.
512 { 576.

[30] Jing, N., Huang, Y.W., and. Rundensteiner, E.A., \Hierarchical Encoded Path Views for Path
Query Processing: An Optimal Model and Its Performance Evaluation", IEEE Transactions
of Knowledge and Data Eng.,, 10(3): 409-432 (1998).

[31] Jing, N., Huang, Y. W., and Rundensteiner, E., \Hierarchical Optimization of Optimal Path
Finding for Transportation Applications," Proc. 5rd Int'l Conf. CIKM, 1996. pp. 261-268.

[32] Larson, P.A. and Deshpande, V., \A File Structure Supporting Traversal Recursion," Proc. of
the 1989 ACM SIGMOD Int. Conf. on Management of Data, May 1989, pp. 243 { 252.

[33] Kernighan, B.W. and Lin, S., "An E�cient Heuristic Procedure for Partitioning Graphs," Bell
Syst. Tech. J., vol. 49, no. 2 Feb. 1970, pp. 291 { 307.

[34] Preparata, F.P. and Shamos, M.I., \Computational Geometry," Springer, 1985.

[35] Schmitz, I., \An Improved Transitive Closure Algorithm," Computing 30, 1983, pp. 359 { 371.

[36] Shamos, M.I. and Hoey, D.J., \Geometric Intersection Problems," Proc. 17th Annual Conf.
on Foundations of Computer Science, 1976, pp. 208 { 215.

[37] Shekhar, S. and Liu, D.R., \CCAM: A Connectivity-Clustered Access Method for Aggregate
Queries on Transportation Networks : A Summary of Results," IEEE 11th Int. Conf. on Data
Engineering, 1995, pp. 410 { 419.

[38] Wei, Y.-C. and Cheng, C.-K, \Ratio Cut Partitioning for Hierarchical Designs," Tech. Rep.
CS90-164, Univ. California, San Diego, Jan. 1990.

[39] Zhan and Noon, Shortest path algorithms: an evaluation using real road networks, Trans-
portation Science 32, pp. 65-73, 1998.

[40] Zhao, J.L. and Zaki, A., \Spatial Data Traversal in Road Map Databases: A Graph Indexing
Approach," proc. 3rd Int'l Conf. CIKM, 1994, pp. 355 { 362.

32

