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Abstract

Data integration over multiple heterogeneous data
sources has become increasingly important for modern ap-
plications. The integrated data is usually stored in ma-
terialized views for better access, performance and
high availability. Such views must be maintained af-
ter the data sources change. In a loosely-coupled environ-
ment, such as the Data Grid, the source updates are au-
tonomous and may cause erroneous maintenance results.
State-of-the-art maintenance strategies apply compensat-
ing queries to correct such errors. However, they assume
that the source schema remain static. This is an unreal-
istic assumption for such dynamic environments, where
the data sources may change not only their data but also
their schema, query capabilities or semantics. Conse-
quently, either the maintenance or compensating queries
may fail. In this paper, first, we analyze the maintenance er-
rors and classify them into different classes of depen-
dencies. We then propose Dyno, a two-pronged strategy
composed of dependency detection and correction algo-
rithms to handle these new classes of concurrency. Our
techniques are not tied to specific maintenance algo-
rithms nor to a particular data model. To our knowledge,
this is the first complete solution to the view mainte-
nance concurrency problems for both data and schema
changes. Our experimental results illustrate that Dyno im-
poses an almost negligible overhead on existing mainte-
nance algorithms for data updates while now allowing for
this extended functionality.

1. Introduction

1.1. Materialized Views in Dynamic Environments

With the information explosion on the World Wide Web,
the transformation and integration of data from multiple
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heterogeneous data sources is ubiquitous to many modern
information systems and e-business applications. One basic
requirement is to integrate data with rich structures, such as
relational, XML, spreadsheets, etc. There is thus a growing
interest in the database community to focus on schema inte-
gration to achieve the interoperability between such hetero-
geneous sources. One common technique is to use schema
mappings [13, 14] to specify how the data of one schema is
transformed to another. A view query is one way to spec-
ify such a mapping. Schema mappings are used extensively
in a variety of applications, such as data integration, physi-
cal database design like XML to relational mapping, or the
semantic Web [10].

In dynamic environments like the WWW, the data
sources may change their schema, semantics as well as
their query capabilities. In correspondence, the map-
ping or view definition must be maintained to be kept
consistent [9, 17]. Moreover, in a loosely-coupled envi-
ronment, such as the Data Grid [8], the data sources are
typically owned by different providers and function in-
dependently from each other. Hence they may com-
mit update transactions without any concern about how
those changes may affect the mappings or views de-
fined upon them. Such autonomous source schema restruc-
turing poses new challenges for data integration.

Materialized views (MV), proven to be an excellent tech-
nique in decision support applications, continue to be use-
ful in this scenario to preserve the integrated data to ensure
better access, performance and high availability. Material-
ized views must be maintained when the sources change.
This has been extensively studied in the past few years
[1, 15, 20]. However, it is not sufficiently explored in this
new dynamic environment. As we will illustrate via exam-
ples in Section 1.2, when maintaining a source update, we
may need to query the data sources for more information by
issuing maintenance queries [20]. However, in these new
autonomous and dynamic environments, such queries may
either return erroneous results due to concurrent data up-
dates or may even fail completely due to concurrent schema
changes. Such failure of maintenance remains unsolved.

While recent work [1, 20] has proposed compensation-
based solutions to remove the effect of concurrent data up-
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Figure 1. View and Source Description

dates from query results, we demonstrate that these exist-
ing solutions fail under source schema changes. The reason
is that if the source schema has been concurrently changed,
neither maintenance nor compensation queries would get
any query response due to the discrepancy of the source
schema with the schema required by the queries. Interleav-
ing of concurrent source data and schema changes even
complicates the maintenance further.

1.2. Examples of Maintenance Anomalies

Example 1 Assume we want to integrate book data from
the Retailer and Library category to provide the user the
sales as well as the detailed book information (Figure 1).
The Retailer data, being in the XML format, is mapped into
the relational tables Store and Item as a relational wrap-
per view. The Library catalog of the detailed book infor-
mation can be accessed by a wrapper. The integrated view
BookInfo from both data sources is defined by Query (1).

Assume a new book is inserted into the Library cat-
alog. This new book is extracted by the wrapper as
“∆C = (‘Data Integration Guide’, ‘Adams’, ‘Engineer-
ing’, ‘Princeton’ ...)”. To determine its delta effect on
the view, an incremental maintenance query (Query (2))
[20] will be generated by decomposing the view query
(1) into individual source queries. Two different anoma-
lies can be distinguished:

CREATE VIEW BookInfo AS
SELECT Store, Book, I.Author, Price, Publisher, Cat-

egory, Review
FROM Store S, Item I, Catalog C
WHERE S.SID = I.SID

AND I.Book = C.Title
(1)

SELECT Store, Book, Author, Price
FROM Store S, Item I
WHERE Book =

′Data Integration Guide′

AND S.SID = I.SID

(2)

(a) Duplication Anomaly: Assume that before answer-
ing query (2), the Item table committed a data update ∆I =

insert (10, ‘Data Integration Guide’, ’Adams’, 35.99). This
new tuple would be included in the query result of query (2).
Thus one final tuple (’Amazon’, ‘Data Integration Guide’,
35.99, ’Adams’, ’Princeton’, ’Engineering’,...) will be in-
serted into the view. However, later when the view man-
ager processes ∆I , the same tuple would be inserted into
the view again. A duplication anomaly occurs due to con-
current data updates [20].

(b) Broken Query Anomaly: Now assuming the de-
signer may tune the XML-to-Relational mapping which re-
sults in one single table StoreItems in Figure 2. Query (2)
then faces a schema conflict and cannot succeed since both
Store or Item relations are no longer available.
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Figure 2. Change of Store Schema

This illustrates that the known view maintenance solu-
tions are not sufficient when the sources undergo schema
changes that invalidate the view definition. The reason is
that the maintenance queries are constructed by outdated
schema knowledge and would not return any query results.

1.3. Our Contributions

In this paper, we propose a solution, called Dyno, ca-
pable of dealing with the new types of maintenance con-
flicts under both source data and schema changes. Dyno en-
ables data sources to autonomously commit all types of up-
dates. This provides great flexibility for data integration in
loosely-coupled environments, such as the Data Grid [8].
To our knowledge, Dyno is the first complete solution to the
view maintenance anomaly problems. In summary, the con-
tributions of this work are:

(1) We identify that the maintenance anomaly problem
is caused by the violation of dependencies between
source updates. We formally characterize and classify
these anomalies as dependencies.

(2) We propose several dependency detection strategies
to find the view maintenance anomalies at different
stages and experimentally evaluate their trade-offs.



(3) We propose dependency correction algorithm to adjust
the violated dependencies and consequently eliminate
the view maintenance anomalies.

(4) We design an overall framework called Dyno (DY-
Namic reOrdering) which integrates both dependency
detection and correction algorithms to ensure correct
view maintenance. While we use the relational model
in our implementation, our techniques are general and
independent of any data model.

(5) We have implemented the Dyno solution in our DyDa
[3] prototype system. Our experimental results confirm
that Dyno imposes an almost negligible overhead on
data update processing while now offering comprehen-
sive support for concurrency handling.

The paper is organized as follows. Section 2 introduces our
maintenance framework. Section 3 provides a formalism of
dependencies. Section 4 presents the complete Dyno solu-
tion. We sketch a view adaptation algorithm for support of
Dyno in Section 5. The experimental study is discussed in
Section 6. Section 7 reviews related work, while Section 8
concludes the paper.

2. View Management Framework

To set the context for our solution, we first introduce
the proposed view management framework in a loosely-
coupled environment (Figure 3). The remote source space
is composed of a large number of heterogeneous and au-
tonomous data sources. These sources join, leave, or change
their capabilities dynamically. A data source is “integrated”
into our framework via a wrapper that serves as a bridge be-
tween the source space and the view manager. The wrap-
per is assumed to be intelligent so that it extracts not only
raw data, but also metadata information, such as changes
at the schema level or relationships with other sources. The
view manager maintains the materialized view under these
source updates.

The view manager must accomplish three view mainte-
nance tasks, namely, View Maintenance (VM), View Syn-
chronization (VS) and View Adaptation (VA). A well stud-
ied process, VM [1, 15, 20] maintains the view extent under
source data updates. VS [9] aims at evolving the view defi-
nition when the source schema has been changed. Note that
a general-purpose mapping evolution module [17] could
also implement this function. Thereafter, View Adaptation
(VA) [7] incrementally adapts the view extent so that it
again matches the newly changed view definition. Our view
manager incorporates these general view management algo-
rithms. The Update Message Queue (UMQ) buffers the up-
dates from the data sources. The Query Engine executes the
maintenance queries generated by VM, VS or VA and as-

sembles the query results into one final result to be inte-
grated into the view.

Maintenance Algorithms 

View

VA

Update Message Queue (UMQ)

Wrapper Wrapper Wrapper

DS DS DS

View Space

View Manager Space

Query Engine

VS VM

Remote Source Space

Dyno

Figure 3. The View Management Framework

Most maintenance systems usually process the source
updates simply based on the order they arrive at the view
manager [1, 15, 20, 9]. This however might introduce main-
tenance anomaly problems as illustrated in Section 1.2. In
this paper, we propose a new strategy, called Dyno, to de-
tect concurrent updates and correct them by re-scheduling
their maintenance order. Dyno is a general concurrency con-
trol strategy independent of the choices of the particular
VM/VS/VA algorithms or the underlying data models. In
this paper, we will work with views defined using SQL to
keep the description simple.

3. Classes of Dependency Relationships

3.1. Types of Maintenance Anomaly

Definition 1 We first define the view maintenance pro-
cesses based on the types of source updates.

(1) Given a source data update (DU), a view main-
tenance (VM) algorithm first reads the view def-
inition, decomposes the view query into individ-
ual source queries, then probes each source and
finally refreshes the view. Without loss of general-
ity, we define this maintenance process as “M(DU) =
r(V D)r(DS1)r(DS2)...r(DSn)w(MV )c(MV )”,
where VD is the view definition, DSi is the data
source with index i, r(DSi) is the source query,
w(MV) and c(MV) are write and commit of the mate-
rialized view MV, respectively.

(2) Given a source schema change (SC), a view synchro-
nization (VS) or mapping evolution algorithm rewrites
the view definition to become well defined over the
changed data sources. Then view adaptation (VA)
adapts the view extent to again become consistent



with the new view definition. We denote this mainte-
nance process as “M(SC) = r(V D)w(V D)r(DS1)
r(DS2)... r(DSn)w(MV )c(MV )” 1.

Definition 2 Assume one update w(DSi) at source DSi,
one update w(DSj) at source DSj and a view V defined
upon both sources. The maintenance of V for neither up-
date has finished yet. We say that the update w(DSj) con-
flicts with the maintenance M(w(DSi)) iff the source up-
date w(DSj) is committed at DSj before the query r(DSj)
of M(w(DSi)) is answered. We call such a conflict view
maintenance anomaly. In particular, if w(DSj) is a schema
change, then we say the query r(DSj) is broken and call
this a broken query anomaly.

Note that a broken query anomaly may not always cause
the query fail. E.g., a schema change modifies only the at-
tributes not included in the query. Based on the type of
source update and maintenance process, there are four types
of anomalies:

(1) A data update DU1 conflicts with M(DU2);
(2) A data update DU1 conflicts with M(SC1);
(3) A schema change SC1 conflicts with M(DU1);
(4) A schema change SC1 conflicts with M(SC2).
The two anomalies in Examples 1.a and 1.b are of

type (1) and (3), respectively. The concurrent data updates,
namely, anomalies of type (1) and (2), modify the sources’
extent and thus may cause erroneous maintenance query re-
sults. Concurrent schema changes, namely, anomalies of
type (3) and (4), modify the sources’ schema which may
no longer match the schema specified in the maintenance
query. The latter two types are broken query anomalies.

Unlike traditional read-write conflicts in transaction the-
ory [2], the write (source update) in a loosely-coupled envi-
ronment is autonomous and out-of-the-control of the view
manager. Hence a locking mechanism is not an appropriate
solution in this environment. Prior efforts [1, 15, 20] pro-
pose special-purpose compensation algorithms to remove
the erroneous tuples from the query result. However they
only address the anomaly of type (1). We notice that the
anomaly of type (2) is similar to type (1), i.e., they are both
caused by concurrent data updates. Hence any compensa-
tion algorithms over distributed sources [1, 19, 11], can be
applied to solve these two anomalies by correcting any er-
rors from the maintenance query result. We omit the review
of these known algorithms. Instead, we focus on address-
ing the as of now unsolved broken query anomalies, i.e.,
type (3) and (4).

1 Note that the rewritten view is not restricted to be equivalent to the
original one [9, 17], making the adaptation step necessary. Second,
here the VD is an in-memory data structure. The w(VD) is just to
modify that in-memory view definition in order to generate the main-
tenance query. The actual physical rewrite of view definition, e.g., up-
dating system catalog, is done in the w(MV).

3.2. Concurrent Dependency

The anomalies of type (3) and (4) are caused by source
schema changes. Compensation algorithms [20, 1, 15] do
not work since the maintenance query may have no query
result returned at all, as illustrated by Example 1.b. We
observe that although such schema conflicts occur during
query processing at the sources, the cause are the read-write
conflicts of the view definition.

Assume a data update wDU (DSi) at source DSi

and a schema change wSC(DSj) at DSj , respectively.
Their maintenance processes are “M(wDU (DSi)) =
r1(V D)r1(DS1)r1(DS2)...r1(DSn)w1(MV )c1(MV )”
and “M(wSC(DSj)) = r2(V D)w2(V D)r2(DS1)r2(DS2)
...r2(DSn)w2(MV )c2(MV )” by Definition 1. By Def-
inition 2, the read r1(DSj) of the maintenance pro-
cess M(wDU (DSi)) may conflict with the schema change
wSC(DSj).

Notice that there is also a read-write conflict on the view
definition between these two maintenance processes, i.e.,
r1(V D)/w2(V D). Interestingly, this conflict on the view
definition is the reason for the conflict between r1(DSj)
and wSC(DSj). The rationale is that the query r1(DSj)
has been constructed based on the read of the view defi-
nition r1(V D). For instance, in Example 1.b, the mainte-
nance query (2) is constructed based on the view defini-
tion query (1) over Store and Item. If this view defini-
tion read r1(V D) conflicts with w2(V D), the constructed
query r1(DSj) may no longer reflect the actual schema of
DSj . Based on the observations above, we define a concur-
rent dependency between maintenance processes.

Definition 3 Let w(DSi) and w(DSj) denote two updates
committed on data sources DSi and DSj . The view man-
ager has not finished maintenance for either of them. We
say that maintenance process M(w(DSi)) is concurrent
dependent (CD) on the maintenance process M(w(DSj)),

denoted by M(w(DSi))
cd
←−M(w(DSj)) iff M(w(DSi))

contains read view definition VD while M(w(DSj)) con-
tains write VD.

Concurrency dependency defines the relationship be-
tween maintenance processes over the critical resource,
view definition. Unlike broken query anomaly, it is inde-
pendent of how and when the maintenance queries are pro-
cessed. Their relationship is explained in Section 3.4. There
are also several differences between the concurrent depen-
dencies and wait-for dependencies in traditional transac-
tions [2]. First, the conflict is on the view definition not
on the actual tuples. Second, even if the maintenance of
a sequence of updates is processed in a serial fashion, de-
pendencies between them may still occur. The rationale is
that the source updates are committed autonomously and
thus may conflict with any ongoing maintenance processes.



Third, the dependency direction is always from a write to
a read of the view definition since the concurrent schema
change may invalidate the old view definition and conse-
quently any ongoing maintenance processes.

3.3. Semantic Dependency

A materialized view is consistent if it reflects some
valid state of each data source. A valid state of DSi, de-
noted as σ(DSi), describes both its data content and meta-

data. Assume the state of DSi evolves as σ(DSi)
∆

1

−→

σ1(DSi)
∆

2

−→ σ2(DSi). It is important for MV to be re-
freshed by ∆1 before ∆2 in that order. If we maintain
∆2 first, then MV reflects the data source state σ′(DSi)

as σ(DSi)
∆

2

−→ σ′(DSi), which is neither σ1(DSi) nor
σ2(DSi). In this case, the Strong consistency [20] that MV
reflects the valid state of data sources in the same order can-
not be achieved. Furthermore, the MV consistency is not
even converging, i.e., the final state may be invalid too. For
instance, in Example 1, assume there is a data update ∆1

= insert into Item (10, ‘Data Integration Guide’, ’Adams’,
35.99) followed by a delete ∆2 = delete from Item (10,
‘Data Integration Guide’, ‘Adams’, 35.99). If we reverse the
maintenance order, we cannot find the tuple to delete. We
say that the maintenance M(∆2) is semantic dependent on
M(∆1). More formally,

Definition 4 Let ∆X and ∆Y denote two updates at
source DSi, then maintenance M(∆X) is semantic depen-

dent (SD) on M(∆Y ), denoted by M(∆X)
sd
←−M(∆Y ),

iff ∆Y is committed before ∆X .

Note that if there are other types of constraints between
maintenance processes, they can be treated similarly.

3.4. Dependency Properties

The two types of dependencies share an important prop-
erty, namely, both represent constraints on the processing
order between maintenance.

Definition 5 For two updates ∆X and ∆Y , we say the
maintenance M(∆X) is dependent on M(∆Y ), denoted by
M(∆X)←M(∆Y ), if M(∆X) is concurrent dependent on
M(∆Y ) by Definition 3 or M(∆X) is semantic dependent
on M(∆Y ) by Definition 4.

Notice that transitivity holds, i.e., if M(∆X)←M(∆Y )
and M(∆Y )←M(∆Z), then M(∆X)←M(∆Z). Further-
more if M(∆X) is dependent on M(∆Y ), then the main-
tenance M(∆Y ) must be processed before M(∆X). For
a semantic dependency, such required order is obvious as
discussed in Section 3.3. For a concurrent dependency, as
shown in Section 3.2, the write view definition operation

has to be done first to solve the read-write conflict on the
view definition. The concurrent schema change invalidates
the view definition, hence rewriting it becomes critical.

Definition 6 Given two updates ∆X and ∆Y in the Up-
date Message Queue (UMQ). We denote “pos(∆X , UMQ)
≺ pos(∆Y , UMQ)” if ∆X precedes ∆Y in the UMQ. This
presents their sequential maintenance order. We define the
dependency relationship between maintenance processes
M(∆X) and M(∆Y ) to be:

1. independent iff there is no dependency between ∆X
and ∆Y by Definition 5.

2. safe dependent iff pos(∆X , UMQ) ≺ pos(∆Y , UMQ)
and all dependencies between M(∆X) and M(∆Y ) by
Definition 5 are M(∆Y )←M(∆X).

3. unsafe dependent iff pos(∆X , UMQ) ≺ pos(∆Y ,
UMQ) and there is at least one dependency
M(∆X)←M(∆Y ).

For example, the concurrent dependency of the broken

query anomaly in Example 1.b is M(DU)
cd
←−M(SC). Since

pos(DU, UMQ) ≺ pos(SC, UMQ), this dependency is un-
safe by Definition 6.

Theorem 1 A maintenance query r(DSi) of a maintenance
process M(∆X) is broken only if at least one unsafe depen-
dency M(∆X)←M(∆Y ) exists, where ∆Y is from DSi.

A broken query implies an unsafe dependency, but not
vice versa. The proof of Theorem 1 can be found in [4].
Hence if we find a processing order that makes all depen-
dencies safe, then no broken query anomaly would occur.

3.5. Cyclic Dependencies

A set of dependencies may comprise a cycle as illus-
trated by the example below. This is similar to the dead-
lock in serializability theory [2]. Given the source setting
from Example 1, let us refer to the XML document change
in Example 1.b as SC1. Now assume the Review attribute
of the library Catalog table is no longer considered impor-
tant and dropped. We refer this change as SC2.

Assume these schema changes SC1 and SC2 have al-
ready been committed at their data sources. If we process
SC1 first, the view definition is rewritten into Query (3).
However, this new view definition is no longer consistent
with the sources since the attribute Review is no longer
available due to SC2. Similarly, if we process SC2 first, the
view definition may be rewritten into Query (4) by locat-
ing some alternative data source ReaderDigest for replace-
ment [9]. Again, the view definition is not valid since the
tables Store and Item are no longer available due to SC1.
Hence the maintenance query constructed based on either
of these two view definitions would fail.



CREATE VIEW BookInfo’ AS
SELECT Store, Book, S.Author, Price, Publisher,

Category, Review
FROM StoreItems S, Catalog C
WHERE S.Book = C.Title

(3)

CREATE VIEW BookInfo’ AS
SELECT Store, Book, S.Author, Price, Publisher,

Category, R.Comments as Review
FROM Store S,Item I, Catalog C, ReaderDigest R
WHERE S.SID = I.SID

AND I.Book = C.Title
AND C.Title = R.Article

(4)

Each of these two maintenance processes involves a read
and a write of the view definition. Hence there are de-
pendencies M(SC1)←M(SC2) and M(SC2)←M(SC1) by
Definition 3. This comprises a cycle. Intuitively, such cyclic
dependencies may result in a deadlock in the sense that we
have maintenance processes waiting for each other. To han-
dle such cyclic dependencies, aborting some of the main-
tenance processes as often used to resolve the deadlock in
traditional databases is not feasible since the source updates
have already been autonomously committed and cannot be
aborted. We have to develop some alternative solution to ad-
dress this maintenance deadlock problem as will described
in Section 4.

Definition 7 Given a set of updates, any order of mainte-
nance is called a legal order if all dependencies are safe by
Definition 6.

Having all dependencies safe, by Theorem 1, means no
broken query anomalies would occur. Definition 7 thus es-
tablishes the correctness criterion for solving the broken
query anomalies.

4. Dyno: A Dynamic Scheduler

4.1. Detection of Unsafe Dependencies

4.1.1. Dependency Graph. Our dependency detection al-
gorithm has two steps. One, we construct a dependency
graph, where each node represents a maintenance process
for each update in the UMQ and the directed edges are ei-
ther concurrent dependencies or semantic dependencies be-
tween these processes. Two, we check if there are any un-
safe dependencies in the graph as defined by Definition 6.

Given a sequence of updates, we determine the concur-
rent dependency between the maintenance of two updates
M(∆X) and M(∆Y ) as follows. If ∆Y is a schema change
and modifies any metadata, such as attribute or relation, that
is included in the view query, then we draw a concurrent

dependency edge, namely M(∆X)
cd
←− M(∆Y ) by Defini-

tion 3. The reason is that M(∆X) will read the view def-
inition which has been invalidated by the update ∆Y . It
is also straightforward to identify semantic dependencies.
That is, each pair of maintenance processes of two adjacent

updates to the same relation is assigned a semantic depen-
dency edge.

We now examine the complexity of building such a de-
pendency graph. First, the complexity of identifying con-
current dependencies between maintenance processes is
O(mn), where m is the number of schema changes and n
is the number of updates. The reason is that each concur-
rent dependency involves at least one schema change. In
the worst case, one schema change would have one concur-
rent dependency with all other updates. Second, the com-
plexity of building semantic dependencies between updates
is O(n), where n is the number of updates. To achieve this,
we can create one bucket for each data source and scan the
list of updates once. Thus the complexity of building a de-
pendency graph is O(mn) + O(n), i.e., O(mn).

If there are only data updates, then there is no concurrent
dependency. Since all the semantic dependencies are safe
initially, we can optimize the detection by setting a schema
change flag indicating whether any schema changes have
been logged into the UMQ. If only data updates have oc-
curred thus far, we can avoid building the dependency graph
altogether - thus reducing the complexity to O(1).

4.1.2. Timing of Detection Execution. The detection al-
gorithm in Section 4.1.1 can have different modes in terms
of when it is executed, namely, pre-exec detection and in-
exec detection modes. The pre-exec static detection mode
detects the unsafe dependency before the maintenance be-
gins in order to avoid any potential conflicts. For instance,
for the broken query anomaly case in Example 1.b, be-
fore the view manager processes the insert, it discovers that
the drop Store operation has already been buffered into the
UMQ which forms an unsafe concurrent dependency with
the insert. Thus we need not attempt to maintain the in-
sert now by sending down a maintenance query (2) to probe
the tables Store and Item. This query will surely be bro-
ken. Our goal is to avoid such computation waste, which
we call abort cost, that would have to be discarded later.
On the other hand, the in-exec dynamic detection mode de-
tects any unsafe dependencies during the maintenance us-
ing the broken query scheme. That is, whenever a query
fails, the Query Engine (in Figure 3) is responsible to de-
tect such failure. Then there must exist an unsafe depen-
dency by Theorem 1.

4.1.3. Pessimistic vs. Optimistic Strategies. We de-
signed two complete detection strategies in a dynamic
context based on the detection modes discussed in Sec-
tion 4.1.2, namely, optimistic and pessimistic strategy. Both
produce correct final maintenance results. The choice of
strategy is largely based on the frequency and types of con-
currency among these updates.

1. Pessimistic detection strategy: A pessimistic solu-
tion aims to anticipate and ideally prevent any bro-



ken query anomaly and its overhead during mainte-
nance. For this, we utilize the detection algorithm from
Section 4.1.1 in a pre-exec detection mode to detect
all unsafe dependencies that may occur before main-
tenance starts, hence named pessimistic. The pre-exec
detection by itself is not sufficient, because a schema
change that occurs after the pre-exec detection phase
but while the maintenance process is ongoing could
still break that maintenance process. Hence, we need
to also employ the in-exec detection mode as supple-
mentary method to assure correctness.

2. Optimistic detection strategy: An optimistic solution
aims to avoid any regular detection overhead during
maintenance. To achieve this, we just employ the de-
tection algorithm in the in-exec detection mode. Com-
pared to previous pessimistic detection, it saves the
pre-exec detection cost. However, it cannot prevent any
broken query anomaly that could have been avoided
by pessimistic detection and hence may endure more
abort costs. Our experimental study comparing these
two strategies is described in Section 6.4.

4.2. Static Correction of Unsafe Dependencies

After we detect an unsafe dependency between the main-
tenance processes, we need to reschedule the maintenance
processes to turn the unsafe dependencies into safe ones
(or equivalently speaking, we need to reorder the updates
in the UMQ). We achieve this by sorting the dependency
graph. This strategy assumes a fixed number of updates,
hence named static correction. We will extend this to the
dynamic context in Section 4.3.

Theorem 2 Given a set of updates, if the dependency graph
is acyclic, a legal order of maintenance exists.

Theorem 2 holds since given an acyclic dependency
graph, we can apply topological sort algorithm [16] to ob-
tain a partial order of nodes. The time complexity is O(n+e),
where n is the number of nodes (updates) and e is the num-
ber of edges (dependencies). Thus we obtain an order of up-
dates that has all dependencies in their safe direction.

However, if the dependency graph is cyclic as shown in
Section 3.5, the topological sort algorithm cannot generate
a partial order. For this, we first identify all cycles in the
dependency graph (similar to identifying strong connected
components [16]) with time complexity also O(n+e). Tradi-
tional transaction processing [2] breaks the cycle (or dead-
lock) by removing one node in the cycle, in other words,
aborting one transaction. However, this strategy is not ap-
propriate here because the source updates are autonomous
and already committed at the sources. Instead of removing
one node, we propose to merge these nodes (updates) into
a merged one to be processed at one time. The intuition of

merge is that since we cannot process these updates sepa-
rately, we instead process them in one atomic batch. This
requires a view adaptation algorithm capable of processing
such combined batches of updates (see Section 5). After re-
moving all cycles, we can apply topological sort to the now
acyclic dependency graph to obtain a legal order.

An alternative simplistic solution may be to merge all the
updates whenever there is a broken query anomaly. We ar-
gue that this is not a good solution. First, more intermedi-
ate MV states would be missing due to such a blind merge.
Second, since it is more costly to process a big update than
a small one, correspondingly, the abort cost of such a large
maintenance will also increase and in fact it would be more
likely to occur due to the extended duration of the main-
tenance process. In comparison, our solution maintains the
updates in the smallest possible granularity and refreshes
the view as quickly as possible.

Assume in the view (1) of Example 1, three updates oc-
cur, namely, one data update DU1 (∆C in Example 1.(a),
then two schema changes (SC1 and SC2 in Section 3.5),
in that order. The initial dependency graph is shown on
the left part of Figure 4. Since DU1 and SC2 are from
the same source, there is a semantic dependency between
them. Several concurrent dependencies are unsafe initially,
such as DU1←−SC1 and SC1←−SC2. Figure 4 illustrates
the merge step of these three nodes into one big node to
make the dependency graph acyclic. The final schedule is
to maintain these updates altogether in one batch (see Sec-
tion 5). Figure 5 shows a more complex example of depen-
dency correction.

Concurrency Dependency              Semantic Dependency

SC1 SC2DU1
SC1 SC2DU1

Figure 4. Unsafe Dependency Correction for
View (1)

4.3. Dyno Solution: Pulling It All Together

The correction algorithm in Section 4.2 assumes a static
dependency graph. We now extend this algorithm into a dy-
namic context by taking newly arriving updates into con-
sideration. Our proposed solution Dyno combines the pes-
simistic detection strategy in Section 4.1.3 and the static de-
pendency correction algorithm in Section 4.2. We will ex-
plain this decision experimentally in Section 6.

Figure 6 details the Dyno algorithm. Dyno checks the
schema change flag (see Section 4.1.1) in line 1 before the
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Figure 5. Complex Example of Dependency
Correction

maintenance processing. If no new schema change has oc-
curred after the last correction, we can avoid the detection
and correction steps because the newly arriving data updates
will not introduce any additional unsafe dependencies 2. If
a schema change did occur, Dyno will construct the depen-
dency graph (line 4) and correct all unsafe dependencies
(line 5) in the UMQ. After that, Dyno starts to maintain the
update (line 9). If no broken query occurs during mainte-
nance, then the head update will be removed and Dyno pro-
ceeds to process the next update. If a broken query did oc-
cur, Dyno kicks off the correction algorithms in lines 1-5
to obtain a new legal order. Thereafter, Dyno processes the
head update in the UMQ in line 9.

Figure 7 presents some maintenance-related background
processes. The UMQ Manager() enqueues any newly arriv-
ing update and sets the schema change flag. Query Engine()
will be called by the View Maintenance() during the main-
tenance. Once a maintenance query is broken, it will be de-
tected by the in-exec detection mechanism and View Main-
tenance() will be aborted.

4.4. Termination and Correctness of Dyno

Correctness of Dyno. We now argue that Dyno can al-
ways obtain a legal order. A new schema change ∆X that
conflicts with the current maintenance M(∆Y ) may occur in
three different periods. First, it may happen before the cur-
rent maintenance process and thus can be detected by the
pre-exec detection. The conflicts will then be corrected by
obtaining a new legal order. Or it may occur during the on-
going maintenance and cause a broken query. Dyno would
detect it by the in-exec detection strategy and again correct
it. In either case, the view manager will have a legal order of
updates and no broken query anomaly would occur by Sec-
tion 4.2. Finally, if ∆X occurs after the maintenance com-
mits, then ∆X does not conflict with the maintenance pro-

2 Hence this flag not only helps in a data update only environment as in
Section 4.1.1, but also helps in a mixed update context to reduce the
number of executions of dependency detection.

GLOBAL DATA

UMQ: Queue;   /* Update Message Queue */
NewSchemaChangeFlag = FALSE: Boolean; /* Flag for new schema change, set true by UMQ_Manager */ 
BrokenQueryFlag = FALSE: Boolean; /* Broken query flag, set true by Query_Engine */

PROCESS Dyno()

VAR X: UpdateMessage;
BEGIN

LOOP (FOREVER)
// Pessimistic detection strategy: pre-exec detection 

1:           IF Test_If_True_Set_False (NewSchemaChangeFlag) THEN 
2:                 // If no new SC, we can avoid detection because new DUs will not introduce unsafe dependencies
3: // otherwise, we atomically test&set the flag and start detection and correction algorithms.
4:                UMQ.Build_Dependency_Graph(); // Build dependency graph as in Section 5.1.1
5:                UMQ.Topological_Sort_with Cycle_Merge(); // Static Correction as in Section 5.1.2
6:          ENDIF
7:          X = UMQ.GetHead();
8:          BrokenQueryFlag = FALSE;
9:          View_Maintenance(X);  // Start maintenance of update X and commit to the view if succeed.
10: // It will call Query_Engine() to process query. If broken query occurs, the maintenance will abort. 
11:        IF BrokenQueryFlag = FALSE THEN // If no broken query occurs during View_Maintenance();
12:           UMQ.RemoveHead();

// If broken query occurs, it will be corrected in the next loop;
ENDLOOP

END

Figure 6. Dyno: DYNmaic reOrdering Algo-
rithm

PROCESS UMQ_Manager()

VAR X: UpdateMessage;
BEGIN

LOOP (FOREVER)

1: UMQ.Receive_Update(X); /* receive and enqueue the updates from sources*/

2:      IF X.type = SC THEN Set_True(NewSchemaChangeFlag); /* if a new SC arrives */
ENDLOOP

END

PROCESS Query_Engine(Query Q)
VAR Success: Boolean;

QR: QueryResult;
BEGIN
1:      Success = ExecuteQuery(Q, &QR); /* Execute Query, in-exec detection of broken query */
2:      IF Success = TRUE THEN return (QR);
3:      ELSE
4:           BrokenQueryFlag = TRUE; /* Broken query occurs */
5:           return (NULL);
END

Figure 7. Background Processes

cess M(∆Y ). See [4] for the proof that our proposed solu-
tion achieves strong consistency [20].

Termination of Dyno. The only possibility that may
cause Dyno to loop infinitely without any view refreshs is
that continuously new schema changes escape the pre-exec
detection and always break the ongoing maintenance. How-
ever, such case is unlikely, because for a view never to be re-
freshed by any update, it would require (1) a frequent and
continuing stream of source schema changes, and (2) the
schema change to always arrive after the pre-exec detection
phase. We experimentally study this in Section 6.4.

5. Processing of Merged Updates

Part of our correction strategy as outlined in Section 4.2
is that if there is any cycle in the dependency graph, some
updates will be merged into a batch node. Such batch node



would contain both schema and data updates from differ-
ent data sources. We have developed an algorithm capable
of maintaining such view update batches [4]. While this al-
gorithm and details are beyond the scope of this paper, we
briefly sketch its intuition below.

The first step is to preprocess the updates. We first par-
tition these updates into n groups for each DSi. Then
we further partition the updates from the same source
DSi into two subgroups, namely, the data update sub-
group {DUi} and the schema change subgroup {SCi}. We
combine schema changes in {SCi}. For example, the up-
date sequence “rename A to B” then “rename B to C”
can be combined to “rename A to C”. The data up-
dates in {DUi} may be schema inconsistent if there are
schema changes between them. For example, given “in-
sert (3,4)”, “drop first attribute”, “insert (5)”, we have two
data updates with different schemata. We solve that by pro-
jecting only the attributes in the rewritten view definition.
Now we have “insert (4),(5)”, which are homogeneous up-
date tuples that can be merged.

After preprocessing, we rewrite the view definition based
on the combined schema changes. A general view synchro-
nization [9] algorithm can accomplish this task. As a re-
sult, the old view definition V = R1 ./ R2 ./ ... ./ Rn is
rewritten into some (possibly not equivalent) V ′ = Rnew

1 ./
Rnew

2 ./ ... ./ Rnew
n , where Rnew

i represents either the new
state of relation Ri after one or more updates or a replaced
relation if Ri has been dropped. For the cyclic dependency
example in Section 3.5, the view rewriting will take both
schema changes into consideration. The final view defini-
tion is given in Query (5).

CREATE VIEW BookInfo’ AS
SELECT Store, Book, S.Author, Price, Publisher,

Category, R.Comments as Review
FROM StoreItems S, Catalog C, ReaderDigest R
WHERE S.Book = C.Title

AND C.Title = R.Article
(5)

The final step is to incrementally adapt the view extent to
be consistent with the new view definition. Here we repre-
sent the new view as V ′ = Rnew

1 ./ Rnew
2 ./ ... ./ Rnew

n =
(R1 + ∆R1) ./ (R2 + ∆Rn) ./ ... ./ (Rn + ∆Rn), where
∆Ri stands for data updates or the difference between the
old and the replaced relation. With Ri, R

new
i , ∆Ri, we are

able to calculate ∆V using Equation 6 and adapt the view.

∆V = ∆R1 ./ R2 ./ ... ./ Ri ./ ... ./ Rn (6)
+ Rnew

1 ./ ∆R2 ./ ...... ./ Ri ./ ... ./ Rn + ...

+ Rnew
1 ./ ... ./ Rnew

i−1 ./ ∆Ri ./ Ri+1... ./ Rn + ...

+ Rnew
1 ./ ... ./ Rnew

i ./ ... ./ Rnew
n−1 ./ ∆Rn

6. Experimental Evaluation

6.1. Experimental Testbed

We have implemented the Dyno algorithm and embed-
ded it into the DyDa [3] system. DyDa integrates VM, VS
and VA algorithms in order to maintain the materialized
views under both data and schema changes. In DyDa, we
apply SWEEP [1] algorithm to compensate for concurrent
data updates to solve the anomalies (1) and (2). With the
integration of Dyno, the DyDa system solves the anoma-
lies (3) and (4) and is now capable of handling any con-
current data or schema changes. The prototype system is
implemented in JAVA, using JDBC to connect to view and
source servers. In our experimental setting, there are six re-
lations evenly distributed over three different source servers
with two relations each. Each relation has four attributes and
contains 100,000 tuples. The materialized view resides on a
fourth view server. The view is defined as a one-to-one join
among six relations and includes all twenty four attributes.
All experiments are conducted on four Pentium III PCs with
256MB memory each, running Windows NT and Oracle8i.

6.2. Study of Data Update Processing

We first study Dyno’s overhead for data update process-
ing. Clearly, any extra cost would be caused by the overhead
of detection. Since broken queries will not occur without the
presence of schema changes, we can avoid the construction
of a dependency graph during the pre-exec detection (Sec-
tion 4.1.1). This reduces the time complexity to O(1). The
in-exec detection strategy are never launched since aborts
would never be caused by data updates.
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Figure 8. DU Processing and Detection

Figure 8 depicts the total view maintenance cost measured
in seconds (depicted on y-axis) with or without detection
enabled for different numbers of source data updates (de-
picted on x-axis). The overhead of detection is almost un-
observable in all cases. Since the detection cost is trivial,
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i.e., O(1), we predict that such cost would remain small un-
der a larger number of data updates. We conclude that Dyno
imposes little extra cost on data update processing.

6.3. Cost of Broken Query

The broken query anomaly is caused by the existence
of concurrent schema changes. Once a query is broken, the
view manager has to drop previous maintenance work 3 and
redo it. This imposes wasted effort on view maintenance,
which we call abort cost.

In this experiment, we study the abort cost under dif-
ferent types of anomalies, namely, type (3) and (4) as de-
fined in Section 3.1. Two workloads have been chosen. The
first is one data update followed by one conflicting drop
attribute schema change. The second is one drop attribute
schema change followed by a conflicting rename relation
schema change. In both cases, the second schema change
may cause the maintenance query of the first update to fail.
Here three different environmental settings are compared.
First, we measure the maintenance cost 4 of all updates by
spacing them far apart, so they won’t interfere with each
other since each next update occurs after the completion
of the previous maintenance. This represents the minimum
cost as no concurrency handling is needed (grey bar in Fig-
ure 9). Second, we apply the pessimistic strategy to discover
any potential concurrency conflicts before processing. This
tries to avoid the occurrence of any broken query (black bar
in Figure 9). Third, we apply the optimistic strategy (de-
picted by a white bar in Figure 9). Thus only after the bro-
ken query occurs and is detected, do we resolve the con-
flicts and restart the maintenance. Clearly, more aborts may
occur.

In Figure 9 the cost of aborting schema change process-
ing is significant compared to that of data update process-
ing. That is, the white bar of “one SC + one SC” (where the

3 This abort is just to discard any temporary query results.
4 The maintenance cost includes the abort cost throughout our experi-

ments.

abort of the schema change maintenance occurs) is much
higher than the other two. The reason is that the schema
change processing is time consuming compared to data up-
date processing. It is thus costly to redo the schema change
maintenance process. Secondly, we find that the pessimistic
strategy does indeed help to reduce the expensive abort.
Based on the observations in Section 6.2 and 6.3, we have
chosen to employ the pessimistic strategy in Dyno.

6.4. Mixed Update Processing

We have observed that the most expensive extra cost
is the abort of schema change processing. Using the fo-
cused experimental scenario in Figure 9, we were able to
determine that the pessimistic strategy does help to reduce
this expensive abort cost. However, a broken query may
still occur even when employing the pessimistic strategy
when the newly incoming update breaks the ongoing main-
tenance work. We now study under what conditions the bro-
ken query would occur and to what degree the pessimistic
strategy helps to avoid this in mixed update environments.

6.4.1. Effects of Schema Changes on Abort. We study
the effects of schema changes on the abort cost, in partic-
ular, the time interval between the schema changes and the
number of schema changes. First, we employ a mixture of
200 data updates and one drop attribute operation and nine
rename relation operations, both randomly generated over
all six relations. The schema changes may abort the ongo-
ing maintenance processes. In this experiment, we vary the
time interval between two adjacent schema changes.
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Figure 10 depicts the maintenance costs for the optimistic
and pessimistic strategies and their respective abort costs,
when varying the delay between the schema changes from
0s to 45s (as depicted on X-axis). 0s means that all schema
changes flood into the view manager before any mainte-
nance kicks in. From Figure 10, we see that this case has
the best performance for both strategies. This is because the
system is able to correct all unsafe dependencies at once for
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all updates. Thus no broken query would occur during the
maintenance processing. When the time interval between
schema changes increases, new updates could break the on-
going maintenance work. Thus the cost of both strategies
increases. When the interval reaches a particular range, the
cost reaches a high peak when the new schema change al-
ways occurs near the end of the current maintenance pro-
cess. After the interval is larger than the maintenance time,
the cost charted is only pure maintenance and no more due
to aborts.

Differences between these two strategies can be ob-
served. When a broken query happens, the optimistic strat-
egy is able to correct the unsafe dependencies of all updates
in the UMQ so far. The corrected plan for these updates is
static in the sense that it fails to respond to any newly con-
flicting updates and has to endure the abort. In contrast, the
pessimistic strategy with pre-exec detection has the poten-
tial to avoid this break and consistently performs better.

We then study the effects of the number of schema
changes on performance. Setting the time interval between
two schema changes to 25 seconds, Figure 11 depicts the
maintenance and abort costs (depicted on the y-axis) with
optimistic and pessimistic strategies, respectively. We vary
the number of schema changes from 5 to 25, randomly gen-
erated over six relations. In particular, one drop operation is
followed by several rename operations. Each rename oper-
ation may break the ongoing maintenance of the drop op-
eration. As the number of schema changes increases, the
abort cost increases as well for both strategies since more
schema changes would introduce more conflicts between
them. As expected, the system with pessimistic strategies
still performs better due to its ability to avoid some aborts.

6.4.2. Effects of Data Updates on Abort. We now study
how data updates affect the system performance, in partic-
ular, the broken query problems. We have a fixed number
of schema changes, i.e., one drop attribute followed by four
rename schema changes, and we fixed the time interval be-
tween them to be 25sec. We now vary the number of data

updates. We measure the maintenance and abort costs for
both optimistic and pessimistic strategies in Figure 12.
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From Figure 12, we can see that the abort cost remains con-
sistent. Thus we conclude that the abort cost is not signif-
icantly affected by the data updates. This confirms that the
major cause for the abort cost are schema changes as dis-
cussed in Figures 10 and 11. Finally, recall the potential in-
finite wait (or infinite number of aborts) of Dyno as stated
in Section 4.4 is highly unlikely to occur in practice. First,
there must be a continuous stream of new schema changes.
However, in reality, schema changes are likely to be less fre-
quent than data updates. Second, Figure 10 shows that the
chance of abort is small when the schema changes are ei-
ther close together (occurred altogether) or far apart from
one another (not affecting each other at all). The abort cost
reaches a high peak only when the time interval between
schema changes is similar to the maintenance time of one
schema change, which is a particular narrow range. Hence
the infinite wait is highly unlikely to arise.

7. Related Work

Schema mapping [13, 14] specifies how to map the data
from one schema to another to achieve interoperability of
heterogeneous data sources. A variety of modern applica-
tions requires schema mapping as foundations, such as data
integration for heterogeneous sources, XML to relational
mapping or semantic Web [10]. With the popular usage of
WWW, the application environment becomes increasingly
complex and dynamic. The data sources may change their
schema, semantics as well as their query capabilities. In cor-
respondence, the mapping or view definition must be main-
tained to keep consistent. In EVE [9] system, the view def-
inition evolves after the source schema changes. In [17] the
authors propose to incrementally adapts the schema map-
ping to the new source or target schema or constraints.



Maintenance of materialized view has been extensively
studied in the past few years [1, 15, 20, 5, 6, 12]. How-
ever, most of these works assume a static schema. This is
no longer a valid assumption in the dynamic environment.
While in [1, 15, 20], the authors proposed compensation-
based solutions to remove the effect of concurrent data up-
dates from query results, these solutions would fail under
source schema changes. [18] assumes a fixed synchroniza-
tion protocol between the view manager and data sources to
resolve the concurrency problem. This restricts the auton-
omy of sources in that the sources have to wait before ap-
plying any schema change. Our proposed solution success-
fully drops this restricting assumption.

In this paper, we identify that the new concurrency prob-
lems are caused by the read-write conflicts on the view def-
inition. Unlike traditional serializability theory [2] that has
full control to schedule the read/write operations to resolve
the conflicts, in our context, the write (source update) is
autonomous and hence locking is not an appropriate tech-
nique. Since the write is unabortable, we propose to process
the related updates altogether to resolve the deadlock us-
ing a novel view adaptation algorithm.

8. Conclusions

In this paper, we illustrate that the materialized view
maintenance anomaly problems in a loosely-coupled envi-
ronment correspond to the problem of unsafe dependencies
between source updates. We categorize the different types
of dependency relationships that cause the anomaly prob-
lem. Then we propose a suite of detection methods for un-
safe dependencies. We also introduce a dependency correc-
tion solution to eliminate unsafe dependencies. Finally we
propose Dyno that combines both detection and correction
strategies into one integrated solution. We show the correct-
ness of Dyno, namely, that it enables the integrator to han-
dle concurrent data and schema changes in a dynamic con-
text. Dyno is a general strategy for handling view mainte-
nance concurrency problems independent from the specific
view maintenance algorithms, and thus has the potential to
be plugged into any view system.
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