GPIVOT: Efficient Incremental Maintenance of
Complex ROLAP Views *

Songting Chen and Elke A. Rundensteiner
Department of Computer Science
Worcester Polytechnic Institute
Worcester, MA 01609-2280
(chenst | rundenst)@cs.wpi.edu

Abstract

Data warehousing and on-line analytical processing (OLAP) are essential for decision sup-
port applications. Common OLAP operations include for example drill down, roll up, pivot and
unpivot. Typically, such queries are fairly complex and are often executed over huge volumes
of data. The solution in practice is to use materialized views to reduce the query cost. Utiliz-
ing materialized views that incorporate not just traditional simple SELECT-PROJECT-JOIN
operators but also complex OLAP operators such as pivot and unpivot is crucial to improve
the OLAP query performance but as of now unexplored topic. In this work, we demonstrate
that the efficient maintenance of views with pivot and unpivot operators requires the definition
of more generalized operators, which we call GPIVOT and GUNPIVOT. We propose rewriting
rules, combination rules and propagation rules for such operators. We also design a novel view
maintenance framework for applying these rules to obtain an efficient maintenance plan. Exten-
sive experimental evaluation reveals the efficiency of our proposed maintenance techniques. Our
query transformation rules are thus dual purpose serving both view maintenance and query opti-
mization. This paves the way for the inclusion of the GPIVOT and GUNPIVOT into any DBMS
engine. Extensively performance study reveals the effectiveness of our proposed maintenance
strategies.

1 Introduction

Data warehousing and on-line analytical processing (OLAP) are essential for decision support ap-
plications and have been a focus by both the research and industrial communities [4]. A data ware-
house stores historical, summarized and consolidated data, important for complex trend analysis
applications. The data in the data warehouse is typically multidimensional. Example dimensions
for sales data are the product, location and time dimensions. Many complex transformations need
to be supported, including drill down, roll up, slice and dice and pivot, in order to perform online

analysis on such multidimensional data [4].

*This work was supported in part by NSF grant #IIS 9988776.

Relational database engines [15, 16] have been extended to natively support these OLAP op-
erations in order to achieve better performance. One well-known example is the extension of the
relational engine with CUBE and ROLLUP operators [10] to support multidimensional aggregation.
Making such operators explicit to a relational database engine provides excellent optimization op-
portunities [9]. Another example is the inclusion of PIVOT and UNPIVOT operators into Microsoft
SQL Server [8, 16] for efficient execution and optimization.

Beyond OLAP applications, such pivot and unpivot operators have also been shown to be useful

for sparse dataset processing by storing such data in vertical format [2].

ALictlonI D Nsli:yufacturer Ti/\f)e UNPIVOT Mot e, Tope]
> panasonic 0 AuctionID Attribute Value
3 D VCR 1 Type TV
[Manufactuzer, Type] 1 Manufacturer Sony
ItemInfo PIVOT Attribute on Value 2 Manufacturer Panasonic
AuctionID Attribute Value S Type VeR
1 Type v
1 Manufacturer Sony
1 Size 27
2 Used Y
2 Manufacturer Panasonic
3 Type VCR

Figure 1: PIVOT and UNPIVOT Operators

For example, in Figure 1, the table ItemIn fo stores the attributes of each auction. Since there
might be thousands of different item attributes while individual item may just have few of them, if
we were to store the ItemlInfo table horizontally, i.e., devoting one column to each auction attribute,
we may have a table with thousands of columns filled with numerous NULL values. Hence, such
data are instead stored in the vertical format. In other words, the attribute names are treated
explicitly as data values and are stored pairwise with their corresponding attribute values.

The pivot operator transforms the vertical data into horizontal format. More precisely, we
pivot the column ‘Value’ by the column ‘Attribute’. Only the values of ‘Manufacturer’ and ‘Type’
are specified to be of interest indicated by the superscript ‘(Manufacturer, Type|. They will be
converted into column names of the pivoted output table. ‘L’ means empty entry. The unpivot
operator converts column names into data values in a reverse fashion.

The benefits of native support of pivot and unpivot by the query engine are multi-fold [§].
One, we can optimize a query containing pivot/unpivot by moving these operators around the

algebra tree. Two, strategies for optimizing the execution of such operators can also be devised.

Despite these execution and optimization strategies, these operators are still potentially costly to
evaluate especially when applied to huge volumes of data in data warehousing scenarios. Usage
of materialized views to further improve the query performance is a commonly accepted strategy.
However, one critical issue, the incremental maintenance of such views remains unsolved, making
the refresh cost (i.e., always recomputation) intolerable.

We propose to take an algebraic approach [11] towards the incremental maintenance of views
with pivot and unpivot operators. The benefits of tackling the incremental maintenance of such
ROLAP views at the algebra level are that first the result is not tied to any particular query
language. Second, the correctness of our solution can also easily be shown. In summary, the main

contributions of this work are:

e We propose a novel framework for incremental maintenance of views with pivot and unpivot
operators. We analyze the basic propagation rules for pivot and show how to obtain an
efficient maintenance plan. In order to achieve this, we demonstrate that the transformation
of the view query is a necessary step. To our knowledge, this is the first work on efficient
maintenance of views with pivot and unpivot, an important class of ROLAP views which are

of great interest in practice.

e In order to achieve such query transformation, we propose a generalized pivot operator GPIVOT,
which not only has more powerful semantics but also can be used to merge multiple pivot
operators based on our combination rules. These combination rules are useful for both view

maintenance and query optimization.

e We propose the pullup rules for GPIVOT operators in order to move the GPIVOT operators
to the top of the query tree. These rules as well as the corresponding pushdown rules are also

useful for both view maintenance and query optimization.

e We propose the propagation rules for GPIVOT and its reverse operator GUNPIVOT for the
maintenance of ROLAP views. The output of our techniques is a maintenance plan, which

can be optimized by a cost-based optimizer using our proposed query transformation rules.

e We demonstrate that these propagation rules may not be efficient when the GPIVOT interacts

with other operators in the view query, such as SELECT and GROUPBY. We design special

propagation rules by taking such interactions into consideration to derive a more efficient

maintenance plan.
e We also propose the rewriting rules for GUNPIVOT, the reverse operator for GPIVOT.

e We formally prove the correctness of the rewriting and propagation rules for GPIVOT and

GUNPIVOT.

e The extensive performance evalutions confirms the effectiveness of our proposed techniques

for efficient view maintenance.

Overall, our solution fits nicely into the existing maintenance framework for aggregate views
[15, 17]. This makes our maintenance solution easily integrable into these systems. Our query
transformation rules serve a dual purpose, namely, both for view maintenance and for query opti-
mization. This paves the way to include the GPIVOT and GUNPIVOT operators into the query
engine.

The organization of the rest paper is as follows. Section 2 studies the basic propagation rules for
pivot. Section 3 presents the overview of our proposed solution for view maintenance. We define
the GPIVOT and GUNPIVOT operators and the combination rules in Section 4. The rewriting
rules for GPIVOT and GUNPIVOT are described in Section 5. We propose the propagation rules
for GPIVOT and GUNPIVOT and design a novel maintenance framework for applying these rules
to obtain an efficient maintenance plan in Section 6. Section 7 presents the results of performance

study. Section 8 reviews the related work and Section 9 concludes the paper.

2 Basis on PIVOT and UNPIVOT

2.1 PIVOT and UNPIVOT Operators

We first define the PIVOT and UNPIVOT operators. Assume V is a table with the schema (K, A, B)

where K denotes possibly multiple columns and A, B are one column each. The PIVOT operator

1

is defined in Equation (1) *. It takes columns A and B as input parameters and [Aq,..., A;,] as

output parameters, where A; are values of column A. The result of PIVOT converts these column

!Except for the NULL handling, the PIVOT and UNPIVOT operators defined in this paper are similar to v2h/h2v
and FOLD/UNFOLD operators in [2, 8, 14].

values A; into column names.
Al An n
PIVOTY 55 (V) = [0 i, (0 4=y (V)] (1)

Here o< means full outerjoin and is used to find each A; values for K. Such (K, A;) value pair
may not always exist in table V| hence an outerjoin is required. The missing value will then be
denoted as ‘1’. An example of PIVOT is depicted in Figure 1. Note that in order to have the
results meaningful, the columns K, A together must form the key of table V. Then the key for the
pivoted output table is K.

Now we assume that the table H has the schema (K, Aq,..., A;,), where K denotes multiple
columns and each A; is one column. The UNPIVOT is defined in Equation (2) with columns
[A1, ..., Ay] as the input parameters. K usually assumes to be the key of table H in practice al-

though it is not required for the applicability of unpivot.
UNPIVOT 4, 4, (H) = [UL1TK 7,4, (04,21 H)] (2)

One example of UNPIVOT is given in Figure 1, where the columns names ‘Manufacturer’ and

‘Type’ are converted into data values.

Manu TV**CreditSum TV**ByAirSum VCR**CreditSum VCR**ByAiIrSum
Sony 120 60 55 0
Panasonic 0 0 45 0
/ > Manu \
[TV, VCR] [TV, VCR]
PIVOT Type on CreditSum PIVOT Type on ByAirSum
T : T .
Manu, Type, CreditSum Manu, Type, ByAirSum
Manu, Type F Sum(Credit), Sum(ByAir)
3
> .
/ AuctionID
[Credit, ByAir]
PIVOTy, cnconprice
Payment /
AuctionID Payment Price Product
1 ByAir 40 :
th AuctionlD Manu Type
2 Credit 120
1 Sony v
2 ByAir 20
2 Sony TV
3 Credit 55
3 Sony VCR
3 Ground 10
4 Panasonic VCR
4 Credit 45

Figure 2: A Sample ROLAP View

Figure 2 depicts an example view composed of relational algebra and pivot operators. In this
example, the vertical table Payment stores the different types of payment information. It is first
pivoted to output the prices of type Credit and ByAir. Then an equi-join is performed with the
Product table. After that, we compute the total Credit and ByAir payments for each manufacturer
and type. For this, we use the notation F [9] to specify the group-by columns (Manu, Type) and
the aggregation list (sum(Credit), sum(ByAir)). The aggregate results are pivoted again in order to
provide a crosstab view of the summary data. We will show in this paper a strategy for generating

an efficient maintenance plan for complex ROLAP views such as this one.

2.2 Basic Propagation Rules

As a first step to study the incremental maintenance of views with pivot and unpivot operators,
Figure 3 depicts some rules for how to propagate changes through the pivot operator 2. Assume
some data were inserted into the ItemlInfo table. The first rules, which we call insert/delete propa-
gation rules, propagate these changes through the pivot operator as one positive delta (insert) and
one negative delta (delete) to the original pivoted result. Here the negative delta are the old output
tuples affected by the source inserts. The positive delta are the new output tuples introduced by
the source inserts. The second rules, which we call update propagation rules, first perform a left
outer-join between the pivoted delta, PIVOT(AI), and the original result, PIVOT(I). Then from

the join result, the unmatched tuples will be inserted and the matched tuples will be updated.

2.3 Discussion of Propagation Rules

We note that both propagation rules in Figure 3 access the original pivoted result, PIVOT(I).
If the pivot is an intermediate operator in the query plan, then re-evaluating this intermediate
result PIVOT(I) or even just partially re-evaluating it by predicate pushdown could still be fairly
expensive. Moreover, the update propagation rules are not applicable in this case unless the
intermediate results are materialized. This may be prohibitively expensive. In comparison, if
the pivot is the last operator in the query plan, then PIVOT(I) represents the materialized view
itself. In this case, we can avoid the re-evaluation of PIVOT(I). Instead we could perform a join

between the delta and the materialized view itself. Hence, these propagation rules can be more

2The propagation rules for unpivot are relatively simple and will be discussed in Section 6, together with the
detailed formalism.

PIVOT(I) Rule1: Insert & Delete Propagation Rules

AuctionlID Manufacturer Type Insert: 7 (PIVOT(AL) >, . PIVOT(I))
1 Sony v _
+)
2 Panasonic O (PIVOT(AI) D'<AucumIDI"IVOT(I))
3 0 VCR (2,Panasonic,DVD)

PIVOTMenufactures, Typel (3 Panasonic, VCR)(4,[], DVD)

I A on Ve Delete: PIVOT(I) o<,,..,,PIVOT(AL)
AuctionID Attribute Value .
(2,Panasonic,)

1 Type v

1 Manufacturer Sony (39 D, VCR)

1 Size 27

2 Used M Rule 2 : Update Propagation Rules

2 Manufacturer Panasonic -

3 Type VCR n,(PIVOT(I) ™, 0upPITVOT(D))

Insert: (4,0, VCR)
AIL: INSERT (2, Type, DVD),] .
(3,Manufacturer,Panasonic), Update: (2, Panasonic,]) - (2,Panasonic, DVD)
(4.Type,DVD) (3,0, VCR) - (3, Panasonic, VCR)

Note:
n, : Set pivoted output column from ' [I' to new value
All PIVOT operators have same parameters.

> Semijoin < Anti-Semijoin > Left Outer]Join
Figure 3: Propagating Changes through PIVOT

efficiently applied when the pivot is the last operator in the query plan.

Second, even when the pivot is the last operator in the query plan, there are still some differ-
ences between these two types of propagation rules. For the insert/delete rules, the tuples to be
deleted might be re-inserted again with just a few column changes. In Figure 3, (2,Panasonic,l)
and (3,1,VCR) are deleted and re-inserted as (2,Panasonic,DVD) and (3,Panasonic,VCR). In com-
parison, the update rules can make in-place changes of these rows by a SQL update statement.
Such deletion and then re-insertion generally introduces more CPU and I/O cost than the update
approach.

Based on the observations above, we conclude that in order to derive an efficient maintenance
plan, (1) the pivot should be the last operator in the query plan and (2) the update propagation
rules are preferred to the insert/delete propagation rules. In fact, similar heuristics have also been
employed in prior view maintenance work. For example, the propagation rules for GROUPBY can
also use either insert/delete or update operations [18]. The update propagation rules are preferable
as suggested in [18] and in fact are the ones incorporated into many commercial systems [3, 15].
The update propagation rules also require the GROUPBY to be the last operator in the query

plan. These heuristics for GROUPBY are the same as ours for pivot.

3 Our Overall Approach

In this work, we propose a systematic way to efficiently and incrementally maintain both aggregate

or non-aggregate materialized views containing pivot and unpivot operators.

PIVOT PIVOT’
PIVOT

A

Maintenance Plan
Query Optimizer

A Step 2: Maintenance Compile Phase

Figure 4: Solution Overview

There might be multiple pivot operators in the query algebra tree (see the example query in Fig-
ure 2). Except for the top pivot in the tree, other intermediate pivot operators may not propagate
changes efficiently. Hence, as shown in Figure 4, the first step of our solution is to pull the pivot
operators up to the top of the algebra tree if possible by query rewriting rules and combine them
into a single extended pivot operator, which we call Generalized PIVOT (GPIVOT).

The second step is to construct the maintenance plan based on the transformed query algebra
tree. The resulting maintenance plan contains two phases. The propagate phase propagates the
deltas through each operator to the top of the tree to compute the final delta. Here, we can
apply the existing propagation rules for relational operators [11]. The apply phase applies the
update propagation rules for this extended pivot operator. Together, this two-phase processing of
propagate and apply phases fit nicely into the traditional aggregate view maintenance framework
[15, 17]. This makes our solution easily integrable into existing systems. Note that the result
of this compile phase is a maintenance query plan. Thus it is optimizable by a query optimizer.
For example, we now may want to push down or split the top pivot operator for execution. Such
decision can be made by a cost-based optimizer.

Note that for those intermediate pivot operators that cannot be pulled up, we have to apply the

insert/delete propagation rules in order to be able to propagate the changes through them. The
resulting maintenance plan may still outperform the full recomputation approach. This also makes

our solution complete in the sense that it is capable of maintaining any ROLAP views.

4 Combining Multiple PIVOTsSs

4.1 GPIVOT and GUNPIVOT: Generalized PIVOT and UNPIVOT

In this section, we will first describe how to combine multiple pivot operators. We will show that
the resulting pivot operator, which we call Generalized PIVOT (GPIVOT), is a natural extension
of the simple pivot in Equation (1) with more powerful semantics. Its definition is in Equa-
tion (3). Here we assume that the table V has schema (K, A;, Ag, ..., Ay, B1, Bo, ..., By,), where
K denotes possibly multiple columns and A;, B; denote one column each 3. (K, Ay, ..., Ap) must
form a key for pivot applicability. Similar to the simple pivot operator, the input parameters for
GPIVOT are the columns [4, ..., A,,] and [By, ..., B,]. The output parameters for GPIVOT are

[(a},...,ak), ..., (a},...,aB,)], which are values of columns (Aq, ..., Ay,).

GPIVOT il b (1) = (5?3 (04 ayat oty (V)] (3)

An example of GPIVOT is shown in Figure 5. Here ‘{Sony, Panasonic} x {TV,VCR}’ means that
any combination of the given manufacturer and type values will be output. Unlike the simple pivot,
the GPIVOT output column names now need special treatment. We use the simple protocol of
naming the pivoted output columns as ‘al **ab x*...x*a’, *xB;’ 5. Note that the GPIVOT operator
is able to pivot multiple measurements based on multiple dimensions, a rather common and highly
useful operation [7] for multi-dimensional databases.

The GUNPIVOT operator is designed to decode the column names in the reverse way (Equa-
tion (4)). Here we assume the table H has schema (K, a} **...al s xBy,...,al x*..al xxB,, ..., a} *
*...ab, * x By, ..., a} * *...aP, * xB,), where K can be multiple columns and each a} x *...a%, * xB; is

one column. One example is in Figure 5.

3This input table schema will be used in the rest paper for GPIVOT.

“For simplicity, we assume GPIVOT will output all (B, ..., B,) for each (al,...,a%,). We can add an additional
projection to remove unwanted columns. Such projection can be pushed into the GPIVOT execution for optimization.

5 Alternatively, we can use a separate table to store such column name information.

Sony Sony Sony Sony i i Panasonic
Country BTV TV **VCR **VCR TV TV VCR **VCR
*Price **Quantity ~ **Price *Quantity **Price **Quantity *Price **Quantity
USA 250 50 50 40 220 20 45 30
Japan 260 10 60 60 240 70 55 90
GUNPIVOT

[(Sony** TV **Pri

*FTV**Quantity),
y*¥VCR¥*Quantity),
asonic* *TV **Quantity),

GPIVQT {500 Panasonic}x(TV, VCR}] bt iy

[Manufacturer, Type] on [Price, Quantity] (Panasonic ¥V

a R s R**Quantity)]
T i
Country Manufacturer ~ Type Price Quantity
USA Sony TV 250 50
USA Sony VCR 50 40
USA Panasonic v 220 20
USA Panasonic VCR 45 30
Japan Sony TV 260 10
Japan Sony VCR 60 60
Japan Panasonic TV 240 70
Japan Panasonic VCR 55 90

Figure 5: Example for GPIVOT and GUNPIVOT

GUNPIVOT (g1 0,1

1 1
kDB ,.,a7 %% .ad, %% B),

H)

(af**...a%**Bl,...,af**...aﬁb**Bn)] (

at

_Qp ,
= [UizlﬂK,‘a;’ i

wk...ab, %% B1,...,at xx...al, xxBp,

[P
eenialy’y {

(Uany alxok...al, xxBj ;éJ_H)] (4)

Since PIVOT is a special case of GPIVOT and UNPIVOT a special case of GUNPIVOT, in the
rest of this paper we will only consider GPIVOT and GUNPIVOT. The results obviously apply to
PIVOT and UNPIVOT as well.

4.2 Combining Multiple GPIVOTs
4.2.1 Multicolumn PIVOT

The first combination rule for GPIVOT is called multicolumn pivot. Take the view in Figure 2 for
example, both the total sum of Credit and the total sum of ByAir are pivoted by first pivoting
each of them individually and then joining the respective results. We propose to combine these two
pivot operators into one that simply pivots both ‘CreditSum’ and ‘ByAirSum’ columns by ‘Type’
column as GPI VOTC[FE;VOZRHCT@ ditSum, By AirSum]" This combination rule for GPIVOT is formally

defined in Equation (5), assuming the same schema of table V.

10

[{(ai....ab,)}]
GPIVOT 4 0 sy (V) =
GPIVOT!{" ’m}’jﬂb Br) (UK AL A By, ,B, V) DA

[{(af,....a},)}]
GPIVOT[A ,1 Am] on [Bji1,. 7Bn](K7A17---7A77L7Bj+17---7B7LV) (5)

Proof for Equation (5): By GPIVOT definition in Equation (3), we have
GPIVOT{EG,P,AJ}L)O}L Buyooy) (T AL A By B, V) =
Oy TK By, B (T (A A= (ai rooaiy) (MK AL A, By, B; V)
GPIVOT{%“}’AM o Byt Ba) (TE AL A By, B V) =
DT By 1,0sBa (O (A A =(at o) (TE AL A Byt B V)
GPIVOT! (kA A V) =
A TK BB (O Ay o A)=(at i) (TR AL A, By B V)
In other words, we need to prove the following:
[Tk By B; (O A)=(ai o) (TE AL A, B B; V)]
DK [TIATE, By 1,0 Ba (T Ay Ay =(a o) (TK AL A, BB V)]

= [CATK BB (0 (4 A =(at a) (T AL A BB, V)] (5.1)

(1) Since both sides of Equation (5.1) have a key K in their output, we first show that both sides
output the same set of key values. The left side of Equation (5.1) outputs key set: dx (J(Al,...,Am):(a},...,a}n)
Ve (Ao Am)=(a?,....a%,) (V)), where § means project under set semantics (i.e., select distinct). The
right side of Equation (5.1) output key set: 5K(‘7(A17...7Am)=(a},...,a,ln)v...v(Al,...,Am):(af,...,a&)(V)) D
O (O(Ay o, Am)=(a oo ad VeV (AL Am) =(a?a) (V) = 0K (T (A, A)=(al ial VoV (A oo, A =(aP.ooia) (V)
Hence, both sides generate the same set of key values.

(2) Next we show that for a given value ki, both sides of Equation (5.1) yields the same
output tuple. Assume for a given K value ki, a set of rows {ri,...,r,} are defined as: r; =
TK,B1, B (O (A, Ap)= (al ,...ai,) AND K=k, (V). Note that there must be at most one such tuple in
V that satisfies the above condition, because (K, A1, ..., A,) forms the key of table V. If table V' does
not contain any tuple that satisfies the above condition, then we let r; = (k1, L, ..., L). Based on this
definition, for a given key value k1, the output of the right side of Equation (5.1) is>< {r; }. While the
output of the left side of Equation (5.1) is [{7k By, . 5;(ri)}] < < {7k B,B,(13)}] = > {ri}

since 7 B, ,...,B; (1i) X TK B;1,....B, (i) = 7. Hence for a given value k1, both sides of Equation (5.1)

11

yields the same output tuple.

By (1) and (2), we thus reach the conclusion that Equation (5) always holds.

4.2.2 PIVOT Composition

The second rule is to combine two adjacent GPIVOT operators, when all the pivoted output

columns of the first pivot are the input parameters of the second pivot. This may occur when the

user wants to pivot the measurements by more than one dimension. One simple example is shown

in Figure 6. On the left side of the figure, the second pivot takes all the output columns of the first

pivot as the columns to be further pivoted on. These two operators can also be combined into one

operator by combining their parameters as shown on the right side of the figure.

Sony Sony Sony Sony
Country ~ ®TV =TV *VCR *VCR =TV =TV *VCR VCR
“Price **Quantity **Price **Quantity **Price “Quantity **Price **Quantity
USA 250 50 50 40 220 20 45 30
Japan 260 10 60 60 240 70 55 90
GPIVQT!SomPanasonic]
[Manufacturer] on [TV**Price, TV**Quantity
'VCR**Price, VCR**Quantity]
‘[Sony, Panasonic} X{TV, VCR}]
GPIVOT S ! .
TV, VCR] [Manufacturer, Type] on [Price, Quantity]
GPIVOT"

Type on [Price, Quantity]

|

Country Manufacturer

Type Price

Quantity

USsA Sony

v 250

50

USA Sony

VCR 50

40

USA

Panasonic

TV 220

20

USA

Panasonic

VCR 45

30

Japan

Sony

v 260

10

Japan

Sony

VCR 60

60

Japan

Panasonic

v 240

70

Japan

Panasonic

VCR 55

90

Figure 6: Composition of GPIVOT

Equation (6) formally defines this rule. We assume the same table V and {(a},...,a})} as the

output values of (A1,...,4;) and {(aj,4,...,al,)} as the output values of (441, ..., Ap). Here the

second GPIVOT takes all the output columns of the first GPIVOT, i.e., ‘{(aj,,...,al,)} x {B;},

as the input parameters.

GPIVOT

Proof for Equation (6): We assume the output values for (41, ..., A;) are {(al, ...,a

ap?)}-

and the output values for (441, ..., A,) are {(a}, ;,

[{(afa)}x{(af; 1 5-a5m) }]
[Al7~~~7AL7AI+17---7A77L} on [B17"'7B7L]

V)

[A1,...,A1] on [{(a;+1,...,a2n)}><{BjH

(GPIVOT

al)

ceey Uy

12

yem (@45 e
l’

[{(ajymsai)}]
[Al+1,...,Am] on

p2

81,8, (V)

1
l

),

S

(1) Since both sides of Equation (6) have a key K in their output, we first show that both sides
output the same set of key values. The left side of Equation (6) outputs key set: dx (0(a,, . 4,)=

—(a%,...,all)

Ve V(AL A =@ s A(AL 1o Ar) =0 s Vo V(A1 Am) =(a22 o a22)] (V) Where § means project

under set semantics (1.e., select distinct). The right side of Equation (6) output key set: o (o (a,,.. 4,)=

(@b @ WV V(A s A =@ sl (O AL AT (4 A =(al, st VeV (A1 Am)=(al2, , a2y (V) BY
pushing down the selection, we get 5K(U[(A1,...,Al):(a%, L) Ve V(AL A) (@ @At 1, Am) =), 1 eoly)

VoV (ArptrnAm) =(?2),. apz)](V)). Hence, both sides generate the same set of key values.
LR +10%m
(2) Next we show that for a given value k;, both sides of Equation (6) yields the same output tu-

ple. A set of rows {ri1,...,7p, p, } are defined as: r;; = 7TK7BLW7B”(O’(Al7”'7Al):(azi7___7a;') AND (Art1sAn)
—(al,,al) AND K:kl(V)), where i = 1..p; and j = 1..po. If table V does not contain any tuple
that satisfies the above condition, then we let r;; = (k1,L,...,). Based on this definition, for a

given key value ki, the output of the left side of Equation (6) is b {r;;}. For the right side of

Equation (6), we have:

[{(aj,-..ap)}] [{(a},,a0n)}] .
GPIVOT[AL 7Al] on [{(a§+17 5a :rl)}X{B}](GPIVOT[I+15-- 7AWL} on [Blv"'an}(V)) -

Mp lﬂ-KCl, 7Cp2><n(0-(A1, ,Al) (a17 70,)[}4:172 17TKA1, ALB1,.. 7Bn((Al+1,...7An):(a{+17...,0,?,.1)(V))])‘

Here (4, ..., Cp,xn are the pivoted output columns for the first GPIVOT. By pushing down the

first selection, we get:

P1 P2
PLEATK 1 Cpn (PG T A0 B1 B (T4)=l) AND (v =(ad 0 (VD)D)

Hence, for a given K value ki, the output tuple is >t [qu 1 Tij] =><{ri;}. Thus both sides of
Equation (6) yield the same output tuple for any value of K.

By (1) and (2), we thus reach the conclusion that Equation (6) always holds. |}

4.2.3 Completeness of Combination Rules

We now study the combination rules for any two adjacent GPIVOT operators in general. In
particular, we consider the possible parameters for the second GPIVOT.

Assume the final output has schema (K, {A;}), where {A;} are the pivoted output columns. We

13

note that if the two adjacent GPIVOT operators can be combined into one, then the following three
observations must hold: (1) The key K in the final output table must be part of the key in the
original table based on the GPIVOT definition in Section 4.1; and (2) the pivoted output column
names must have the same structure as the GPIVOT definition in Section 4.1, i.e., ‘a}*..xxal, **xBj’;
and (3) the data values in the original table are not lost, i.e., they either still remain as data values

or become column names in the final pivoted output.

M N apb b [N a a ok k|[K M N b b [[K mN ma me
mom b kO |[m b b moO [k om om b O ||k nm b b
m o b0 k[bog mf[k m omog b [k m b b

1. 2. 3. 4.
[by,b,] [ky5k2] by,by] [m,]
GPIVOT: GPIVOT [y, GPIVOTES:| GPIVOT(

GPIVOT! ! K M N a a

Type on [A, B]
kl ml nl b] bZ

k2 my Ny b2 bl

K M N A B

Ky my N a b

k] my ny a bZ

ke M o0&y by

ko my N a b

Figure 7: Example for Combining Two Adjacent GPIVOTSs

Figure 7 depicts some examples for two adjacent GPIVOTs. In the first case, the pivoted output
column a; is used to pivot the column K. The key in the output is (M, N, az), which cannot
be part of the key in the original table since ao is not even a column there. More generally,
the pivoted output columns for the first GPIVOT must all be used for the second GPIVOT.
Otherwise, some of the pivoted output columns will form the key for the second GPIVOT. This
makes it impossible for the combination of these two GPIVOTs. The reason is that the pivoted
output columns are only data values in the original table and cannot form a key, which violates
observation (1) mentioned above. We can thus quickly determine that the second case in Figure 7 is
not possible for combination either, since the pivoted output columns of the first GPIVOT appear
as part of the key in the final output.

Now assume the second GPIVOT pivots columns (X7, ..., X;,,) by columns (Y7, ..., Y},). We know
that the pivoted output columns of the first GPIVOT must all be contained in {X;} and {Y}}. If
{X;} contains any of the pivoted output column as the third case in Figure 7, then their columns
names (which are part of the original data, such as a; in this example) will be lost in the final

output, which violates observation (3). We thus reach the conclusion that {Y;} must contain all

14

pivoted output columns of the first GPIVOT.

When {Y}} only contains all the pivoted output columns of the first GPIVOT, the two GPIVOTs
can be combined as in Equation (6). The last possibility is when {Y}} contains extra columns
besides all the previous pivoted output columns, as the fourth case in Figure 7. In this case, the
two GPIVOTSs cannot be combined either, since the pivoted output column names cannot have the
same structure, which violates observation (2).

As a final remark, we can apply the combination rules developed in this section in the query
graph in order to reduce the number of pivots. The combination rule in Section 4.2.1 increases the
columns (measurements) to be pivoted on, while the rule in Section 4.2.2 increases the columns
(dimensions) to be pivoted by. It is important to note that these combination rules not only help
for incremental view maintenance but are also beneficial for optimization of queries, even those

with only simple pivots.

4.3 Splitting GPIVOT

The split rules for GPIVOT can easily be derived based on the combination rules. For example,
the Equation (5) and (6) can be used to split the GPIVOT defined on the left side of the equation
to the expression on the right side.

There are also some interesting splitting rule for parallel processing of GPIVOT (similar to the
parallel processing of simple pivot in [8]). That is, we compute the GPIVOT sub-results for each
node and then combine them together to generate the final output. This is very similar to the
standard local/global aggregation for parallel aggregate processing. The GPIVOT sub-results at
each node can be combined using the propagation rules under insert case in Section 6.1, as we will

elaborate later.

5 Rewriting Rules for GPIVOT and GUNPIVOT

As motivated in Section 2.3, the efficient view maintenance requires us to pull the GPIVOT opera-
tors up the view query tree in order to apply the update propagation rules. In this section, we will
study the pullup as well as the pushdown rules for GPIVOT. We will also present the rewriting
rules for GUNPIVOT.

15

5.1 Pullup Rules for GPIVOT

Figure 8 describes one general principle for the GPIVOT pullup rules. Assume there is one operator
“Op” above the GPIVOT. Since the output of the pulled up GPIVOT’ must contain a key due to
the nature of pivot operators, a prerequisite for the pullup applicability is that the operator “Op”

must also preserve a key.

Preserve - - _» -

Key Op GPIVOT’

&=

Key

GPIVOT Op'

Figure 8: Prerequisite for GPIVOT Pullup: Key Preservation

5.1.1 Pullup GPIVOT through SELECT

While selection pushdown is trivial for most relational operators, it is complex for GPIVOT. If the
selection condition is defined on non-pivoted output columns, then we can push it down without
any changes such as the condition ocountry=vsa’ in Figure 9.

However, if the selection condition involves pivoted output columns and is null-intolerant (i.e., is
false when NULL), then pushing down the selection results in multiple self-joins. For instance, in
Figure 9, in order to push down the condition o gony««TVsxPrice>200, We first find the country with its
Sony TV price larger than 200 and then do a join with the original table to find other information
about these countries. That is: Tcountry(OManu=Sony A Type=TV A Price>200(V')) > V. More self-
joins are required if more pivoted output columns are involved. Formally, assume a selection predi-

(GPIVOT[E(“P <am))] (V).

cate over two pivoted output columns as: o i; I'on [Bi,...B
’ITL 1ty n

Qg Fk. am**Bll opa 25k, am**B

Here ‘op’ is any comparison operator. This predicate can be pushed down based on the rule below.

(GPIVOT[{(alv B m)}] (V)) —

T4i1 [A1,...,Am] on [Bi,...,Bn]

aq" xk. am**Bll op a1 *%, am**Blz

[{(a, 5a&,)}]
GPIVOT[! .yAm] on [Bi,.. ,Bn](

KOyt =@ ey (V) U= A BY op B2 T4y a)—@2,a2) (V)T P2V) (7)

Proof for Equation (7):

16

)

(o 7 A
...a”llBll op ay **...a,,%**Blz

1

(GPIVOT 3 s, (V)

ai [17---7Am] on

= (WK[O-(Al,...,Am):(ail,...,ag)(v) Mri=g2 A Bll1 op BLQ2 0(A1,...,Am):(a§2,...,af,%)(v)]) >

{(ai,....ai)}]
(GPIVOT[AL}',,A,,J on [Bi,...,Bn] (V))

By pushing down the join condition (since it is on key column), we have:

[{(af,--an)}]
- GPIVOT[Al,.l..,Am] on [Bl,...,Bn}(
WK[U(A1,...,Am):(ail,...,af}b)(v) Mriz=g2 A Bll1 op Bl22 O-(AL...,Am):(aiz,...,af%)(v)] ol V) I

Note that when iy = i, i.e., the columns have the same prefix, then the first join can be avoided

as GPIVOT (rx|o w i (V)] > V).
(Al---Am):(al Q) A Bll op Bl2
Sony Sony Panasonic ~ Panasonic Sony Sony Panasonic Panasonic
Country ~ *TV ~ *™VCR ®TV *VCR TV *VCR TV *VCR
**Price **Price **Price **Price **Quantity **Quantity **Quantity ~ **Quantity
[0 B

GPIVOT [{Sony,Lanasonic) x{TV, VCR}]

[Manu, Type] on [Price, Quantity] o

Country Manu Type Price Quantity
USA Sony v 250 50
USA Panasonic TV 45 30
Japan Sony VCR 260 10

Figure 9: Pullup through SELECT

The above rules can be easily extended to handle predicates with even more pivoted output
columns and complex conjunctive or disjunctive conditions. To handle more pivoted output
columns, we need to perform more self-joins. Each join is to find one pivoted output column.
The final join result provides the key values that satisfy the condition. Conjunctive and disjunctive
conditions can be achieved by unioning or intersecting these key values.

However, the benefit of pulling GPIVOT up is likely offset by such multiple self-joins since
propagating changes through multiple self-join expressions is non-trivial, i.e., generating multiple
join terms [12]. One alternative to address this potential performance problem is that for those
conditions that result in multiple self-joins if pushed down, we pull both the SELECT and GPIVOT
up the query tree and design special update propagation rules. We will describe this technique in

Section 6.3.2.

17

5.1.2 Pullup GPIVOT through PROJECT

In this work, we consider negative project, i.e., removal of columns. The project operator that drops
the non-pivoted output columns can be pushed down unless this project violates the prerequisite
of the key preservation. For example, the drop of the ‘Country’ column above the GPIVOT in
Figure 9 cannot be pushed down since the output no longer contains a key. We have to use the
insert/delete propagation rules for this pivot. The project operator that drops the pivoted output
columns need careful treatment. E.g., ﬂﬁVCR(GPIVOT%Z;‘Z?@R}DMC@) #+ GPIVOTE/ZQ on Price- Lhe
reason is that the left part of equation will output TV with L while the right part not. We may
need to use the insert/delete propagation rules for this GPIVOT. This in fact also suggest not to

remove the pivoted output columns in the materialized view definition, which also increases the

opportunities to utilize this view to answer queries.

5.1.3 Pullup GPIVOT through JOIN

Guided by the same principle, the join result should also preserve a key in order to pull up the
GPIVOT. In general, both operands having a key must hold. While this requirement seems restric-
tive, however in data warehousing senarios the majority of the joins are between the fact tables and
the dimension tables on their keys and foreign keys, respectively. Thus they fall into this category.

The rules of pulling up GPIVOT through the JOIN operator are similar to those for the SELECT
operator. If the join condition is not on the pivoted output columns, then we can pull up the
GPIVOT without change. An example is shown in Figure 10. That is, since the AuctionID is the
non-pivoted output column, the GPIVOT can be pulled up (the pullup through GROUPBY in the
figure will be explained later). When the join condition involves pivoted output columns, pushing
down the join operator results in multiple self-joins. This again is similar to the situation for the
SELECT operator.

Assume a join is GPIVOT(A) <4, A o, B, where o} is the join condition involving only non-
pivoted output columns of GPIVOT(A) and o3 is the join condition involving the pivoted output
columns. We can pull up the GPIVOT as 0o(GPIVOT(A > 01B)). Then we can pull both o9
and the GPIVOT up the algebra tree as in Section 5.1. Note that if the join condition oy is empty,
then the pullup of the GPIVOT results in a Cartesian product of the underlying tables. If the join

condition is o1 V o9, then we cannot split these two conditions. For those cases, we instead choose

18

Manufacturer Type Total

Sony TV 310
Panasonic O 55
T
Manufactur er, Type F Sum(Price) - X
USRI 5 S S .
N'QctionlD N
[Manufacturer, Type] _
/ GPIVO\T Attribute on Value
AuctionIlD Price AuctionIlD Attribute Value
1 220 1 Manufacturer Sony
2 90 1 Type TV
3 55 2 Manufacturer Sony
2 Type TV
3 Manufacturer Panasonic

Figure 10: Pullup through Join and GROUPBY

the insert/delete propagation rules for this GPIVOT.

5.1.4 Pullup GPIVOT through GROUPBY

The applicability of pulling up GPIVOT through GROUPBY depends on how the GROUPBY uses
the pivoted output columns. In particular, if the pivoted output columns are group-by columns,
then we cannot pullup the GPIVOT. If the pivoted output colomns are used to compute the
aggregate, then we can pullup the GPIVOT.

Figure 10 depicts an example when we cannot pullup the GPIVOT. While the GPIVOT in the
figure is successfully pulled upon through the join operator, it cannot be further pulled up through
the GROUPBY denoted by F in the figure. The reason is that the group-by columns, e.g., ‘Sony’
and ‘T'V’, are two values originating from the same column ‘Value’. There is no good way to achieve
such multi-value grouping on a single column.

The lower pivot in Figure 2 is an example that can be pulled up through the GROUPBY. That
is, the aggregate functions are over the pivoted output columns ‘Credit’ and ‘ByAir’. In this case,
we can pull up the GPIVOT by modifying both the GROUPBY and GPIVOT’s parameters, i.e.,
by adding the pivot parameter ‘Payment’ into the group-by columns and by aggregating over the
‘Price’ column. The rewritten GPIVOT will take the aggregate results as input parameters. The
lower part of the query tree up to the GROUPBY in Figure 2 can thus be rewritten as in Figure 11.

Formally, assume the same table V' and the same parameters for the GPIVOT. The GROUPBY

19

Manufacturer Type Credit**Sum ByAir**Sum

Sony TV 120 60
Sony VCR 55 O
Panasonic VCR 45 O

Payment on Sum

GPIVOT!CredisByair
t

Manu, Type, Payment J Sum(Price)
> auctioniD
Payment
AuctionID Payment Price Product
! ByAl 40 -
yAir AuctionlD Manu Type
2 Credit 120
! Sony v
2 ByAir 20
2 Sony v
3 Credit 55
3 Sony VCR
3 Ground 10
4 Panasonic VCR
4 Credit 45

Figure 11: Pullup through GROUPBY

operator F takes K’ C K as group-by columns and computes any aggregate function f over the

pivoted output columns {(ai,...,al,)} x {B;}. This pull up rule is given in Equation (8).

- {0 ai)} _
K F f({(ad i b (B (GPIVOT e s, 5 (V) =
[{(a} b))
GPIVOT, 8, o (4(80) e (8] (K At f(80) e (8) (V) ° ®)

Proof for Equation (8): (1) Since both sides of Equation (8) have a key K’ in their output, we
first show that both sides output the same set of key values. The left side of Equation (8) outputs key
set: O/ (0K (T(Ay,... Am)=(al ,oab VoV (A1 s i) =(a?oaB) (V) = ORI (O (), Ar)=(aboosab VoV (AL s Ag) =
(@.....at,)(V))), where § means project under set semantics (i.e., select distinct). The right side of
Equation (8) output key set: x/(0(a, .. An)=(al,.ady) VoV(Ar,sAm)=(a?....a0) OK7, A1, 4, (V) =
Ok (O(Ay o, Am)=(a) osad VooV (A1 Ap) =(a?,...a%,) (V). Hence, both sides generate the same set of
key values.

(2) Next we show that for any key value k] for K’, both sides of Equation (8) generate the
same row. We further assume that there are K values ki,...,k, in V that contains k] and k; €
5K(U(Al,...,Am):(a%7...7a},L)v...v(A17...7Am) ~(@a”,...a%)(V)), I = 1..p. Then for some i < m and j < n, we

let r; = 7mp, (O-K:kl/\(Al,...,Am):(a’i,...,afn)(V))’l = 1..p. If there is no satisfied row in V', we let r; =_L.

We first consider the left side of Equation (8). In particular, we consider the column f(a} *

5We assume that the aggregate function f will not take L into account, i.e., treat L as NULL value. Note that
special treatment is required for COUNT. That is, if the COUNT function encounters a group with all L value, it
should output L instead of 0.

20

xah... x xa’, x xBj) for a given kf. The data to be aggregated are {r;}, = 1..p, i.e., the column

outputs f({r;}).

Now we consider the right side of Equation (8), which equals MgzlﬂKl7f(B1),---,f(Bn) (0(A17___7A

m):(ai 7~~~7a§n)

(KA1 A F 1B, fB) (VD)) = DCL TR 1(B1),f (Ba) (KA AT 1B, fBa) (O Ay A)=(at i) V)

)

Hence, for a given value k{ and (ai, ...,al,), the inner GROUPBY for column B; computes

Fm B (Okr—ki Ay Am)=(ai a3,y (V). Here, we note that oper_pa(a,, . An)=(ai...ai,) (V) must
equal to UJID:I(UK=sz(A1,...,Am):(ai,...,ain) (V). Otherwise, if there exists an extra row (kpi1,al, ...,al,, ..)
in V, where k,1; also contains &/, this row will then qualify the definition of {k;} and thus should
have already been included.
Hence, the inner GROUPBY for column B; actually computes: f(7p; (UfZI(O-K:kl/\(Al,...,Am):(ai,...,afn) ())).
Or in other words, the output is f(o,,»«1{r}). The next GPIVOT will output either f(o,,1{r})
or L if oy, {r} is empty.
Thus if the aggregate function f disregards L value, then f({r;}) = f(or,21{r}). A special
requirement is that when all {r;} is L, f({r;}) should output L. For COUNT, this means that it
should output L instead of 0.

By (1) and (2), we thus establish the proof for Equation (8). |

5.1.5 Pullup GPIVOT through GUNPIVOT

Given two adjacent GPIVOT and GUNPIVOT, if the unpivot takes all pivoted output columns as
input parameters, then these two operators may cancel each other. For example, in the first case of
Figure 12, these two operators cancel each other, replaced by a simple select condition. Formally,

we have:

X;
GUN PIVOTy(x,x g,y (GPIVOTY), o (V) = (0:(V) T (9)

Proof for Equation (9): First, obviously, the GUNPIVOT outputs the table schema same as
table V. Next, for each row (k1,a1,...,am,b1,....,b,) in V., 1) if (aq, ..., an,) does not equal to any
X, then both sides of Equation (9) will not include it. 2) if (a1, ..., a,,) does equal to some X;, then

GPIVOT outputs (k1,...,b1, ..., by, ...), with column name for column b; as ‘aq * *.. * xa,, * *b;’. The

"Here (X; x {B;}) are all the pivoted output columns with (A1, ..., A;) value as X;. o5 is a disjunctive predicate
on (A1...Am), i.e., they equal to any Xj;.

21

next GUNPIVOT outputs row (k1, a1, ..., am, b1, .., by) &. Hence both sides of Equation (9) contain

that row. By 1),2), Equation (9) always holds. |

G U NP IVOT [(Sony**TV **Price, Sony**TV **Quantity),
(Sony**VCR **Price, Sony**VCR **Quantity),
(Panasoni¢*TV **Price, Panasonic*TV **Quantity),
(Panasoni¢*VCR **Price, Panasonic*VCR **Quantity)] o
(Manufacturer = Sony or
Manufacturer = Panasonic)
[{Sony, Panasonic} x{TV, VCR}] AND (Type =TV or Type = VCR)
GPIVOT [Manufacturer, Type] on [Price, Quantity]

G U NP IVOT[(Sony**Tv **Price, Sony**TV **Quantity)]

GPIV T S Passonic <17, Vi) ——> Cannotchangeorder
[Manufacturer, Type] on [Price, Quantity]

[TV, VCR]
GUNPIVOT [Country, Manufacturer] Can changeorder GPIVOT [Type] on[Price, Quantity]
>
G PIVOTgy;‘:;ﬁsgl:nce,(;)uannty] GUNPIVOT [Country, Manufacturer]
Country Manufacturer Type Price Quantity
USA Sony TV 250 50
USA Sony VCR 50 40
USA Panasonic v 220 20
Japan Sony VCR 60 60
Japan Panasonic TV 240 70

Figure 12: Pullup through GUNPIVOT

In the second case, note that the GUNPIVOT now only partially uses the pivoted output columns.
Their order cannot be changed, since GUNPIVOT has to use the output of GPIVOT. Also the
semantics of such operations is problematic in practice. As can be seen in the figure, the result will
have some ‘Sony’ as column names and some as column values.

Finally, if the parameters between GPIVOT and GUNPIVOT have no overlap, as the third
case in Figure 12, then their order can be reversed. Formally, we assume table V has schema
(K,G1,....,G1, Ay, ..., Ay, By, ... By), where K denotes possibly multiple columns while G;,A4; and

B; denote one column each. (K,G1,...,Gj, A1, ..., Ap,) together form the key of table V.

GUNPIVOTqy(GPIVOTTY, o 5 5 (V) =
{X:}]
GPIVOTIY, | 5, 5 (GUNPIVOTyGy (V) (10

Proof of Equation (10): Assume arow in V as v = (k1,91, ..., 91,1, .o, G, b1, ...y by). We further
assume that applying GUN PIV OT{;g,y) on this row will output p rows (k1,hi, ..., h;, A1y eeey Oy D1y oy O)y,

(]{71, hii), ceey h{l’,al, coey Ay bl, ceey bn)

8We assume not all (b1, ...,bn) are L. If not, the predicate os should be extended to choose those rows whose {B;}
not all L.

22

Hence, for this row v, the right side of Equation (10) will first output p rows (ki, hi, ..., h;, A1y eeey Ay D1y oy b))
ey (k1, BY oy hb,ai, ..., am, b1, ..., bp). The next GPIVOT also outputs p rows as (k1, hi, ..., hé, vy b1y ey by),
ey (k1, WY oy hb,...;b1, ..., by, ...), with each b; column’s name as ‘a;™*..a;,**B;’.

The left side of Equation (10) will first output (k1, g1, ..+, g1y .-y b1, «vy by, ..), With each b; column’s
name as ‘a;**..a,,,**B;’. The next GUNPIVOT outputs p rows as (k‘l,h%,...,hé,..., b1y ooy by enr),
ey (K1, WY, oy hBy b1, oy by, o). The reason is that the output of GUNPIVOT is determined by
(9152 1)

Thus, both sides of Equation (10) generates same output for each input row v. Hence Equa-

tion (10) always holds. [|
5.2 Pushdown Rules for GPIVOT

5.2.1 Push GPIVOT Down SELECT

We now present the rules for pushing GPIVOT down the SELECT operator. Similarly, if the select
condition is on key column, such as ‘Ocountry=sa’ in Figure 13, then we can push GPIVOT down

the SELECT operator without change.

Sony Sony Panasonic ~ Panasonic ~ Sony Sony Panasonic Panasonic
Country TV **VCR TV **VCR TV **VCR TV *VCR
**Price **Price **Price **Price **Quantity **Quantity **Quantity **Quantity

GPIVOT [{Sony, Panasonic} X{TV, VCR}]

[Manu, Type] on [Price, Quantity] .

!
Oy
T <
Country Manu Type Price Quantity
UsA Sony v 250 50
USA Panasonic TV 45 30
Japan Sony VCR 260 10

Figure 13: Pulldown through SELECT

If the select condition is on the columns to be pivoted by, such as ‘orype—7v’, then the pushdown

results in a PROJECT, which turns all ‘VCR’ related columns into L, followed by a SELECT, which

9

removes the rows that contain only ‘L’ columns. More precisely, it becomes ‘Gpot air 1 (Teountry,

SonyxxTV sxPrice,Sony+xT'V*xQuantity, Panasonic**TV**Price,Panasonic**TV**Quantity,J_,J_,J_,J_)’-
If the select condition is on the columns to be pivoted on, such as ‘o pyice—250’, then the pushdown
results in a PROJECT, which sets the ‘s x Price’ column and the “x Quantity’ column with the same

prefix to L if the “«xPrice’ column does not equal 250, followed by a SELECT, which also removes the

23

rows that contain only L columns. More precisely, it becomes Gyt a1t (Teountry, case(Sony#+TVsxPrice,

9
SonyxxTVxxQuantity), case(Sony++xV C RxxPrice,Sony++xV CRxxQuantity), case(PanasonickxTV x*Price, PanasonicxxTV

)

xxQuantity), case(SonyxxV CRxxPrice,SonyxxV C RxxQuantity)) *

Formally, we have the following pushdown rule in Equation (11), assuming the same table schema
V. Here the case expression, case(al® * *... xall * Bi, ..., a’! % *... ¥ xail * ¥By,), outputs (a’' * ... * xa'l
¥B1, ..., all % % % xall % xB,) only when ail =z Aal' * ... % xail x +B, = y. Otherwise, it outputs (L, ..., L).

Note that here ‘aif = 2’ is a higher order predicate that the column name should contain z.

(@l st}
GPIVOT " o (0 au=ens,=y(V)) =

[{(af,..ai,)}]
GPIVOT[AL}"’Am] on [Bl,...,Bn}(V)) (11)

%

Onot all L (TrK,{case(ail**___**af,lL **Bl,...,all**.__**af,ll**Bn)})(

Proof for Equation (11): (1) First we prove that both sides of Equation (11) generate the same
set of key values. The left side outputs key value set as: dx(04,—2nB,—y(V)). Or in other words,
it outputs a key value k; iff there exists at least one row in V' that satisfies g—p,n4,—2AB,=y-

The right side outputs a key value k; iff there exists at least one column ai! * x... x xa’L * B, that
satisfies o't = 2 and a* % *... x *a’t *B, = y. The original row in V that corresponds to this column
must then satisfy K = k; A A, = 2 A B, = y. Hence, both sides generate the same set of key values.

(2) Next we prove that for each key value k1, both sides generate the same row. For any column

ait#*..xxalh+xB;, the left side of Equation (11) outputs 7, (V).

-)))
K=kiAAr=a{lA..AAy=a.} :zc.A./\Am:a:%/\BU:y(

1 (V). Hence,

o) .
:z/\BU:y)(K:kl/\Alza;I /\.4./\Au:a7111 .4./\Am:a2

The right side of Equation (11) outputs nz, (0,1
both sides output the same value for any column a* ... x xail * B;.

By (1) and (2), we know that Equation (11) always holds. |}

Note that this rule can also easily be extended to handle more complex conditions, such as

disjunctive conditions. For example, if the condition in left side of Equation (11) is 04, =zvB,=y(V),

then the condition in case expression on the right side becomes ai} = xV al! % *... x xal * xB, = y.

5.2.2 Push GPIVOT Down PROJECT

Similarly, we also consider negative project, i.e., removal of columns. One example is shown in

Figure 14. As can be seen, if the GPIVOT is pushed down, then there are two rows regarding ‘USA’.

9Here case(columnl, column2) is a case expression that if columnl does not equal to 250, then it outputs (L, L),
otherwise it outputs (columnl,column2).

24

In comparison, if the GPIVOT is not pushed down, then there is one row regarding ‘USA’. Hence,
GPIVOT generally cannot be pushed down project, unless the removed columns are functionally

determined, e.g., if ‘Country — Year’ holds, then we can pushdown the GPIVOT.

Sony Sony Panasonic ~ Panasonic ~ Sony Sony Panasonic Panasonic
Country TV **VCR TV **VCR TV **VCR TV *VCR
**Price **Price **Price **Price **Quantity **Quantity **Quantity **Quantity

GPIVOT Loy, Panasonic} X{TV, VCR)] -

[Manu, Type] on [Price, Quantity]

T

Syear —
P
!
Country Year Manu Type Price Quantity
USA 1991 Sony v 250 50
USA 1992 Panasonic v 45 30
Japan 1991 Sony VCR 260 10

Figure 14: Pushdown through PROJECT

5.2.3 Push GPIVOT Down JOIN

Clearly, if GPIVOT takes parameter columns from both of the join tables, then we have to perform
GPIVOT after the join. Now assume GPIVOT(Vi<,, A), where o7 is the join condition. We further
assume the same table schema (K, Ay, ..., A,, B1, ..., By,) for V, (K9, X,Y) for A and the GPIVOT
takes all parameter columns from table V. In this case, the pushdown rules are quite similar to
those in Section 5.2.1

First, if the join condition oy is on the key column K of table V', e.g., K = K>, then we can push
GPIVOT down the join without change. Second, if the join condition ¢y is on the column to be piv-
oted on of table V', e.g., Bo = X, then the pushdown result is 7TK7{Case(a§**__a3L**Bl7___%**__ail**Bm)LKz7X7Y(
GPIVOT(V) DUyl k. ad wx By= X V... VaPxx..ab wx By=X A). More precisely, we apply a check between each
al * x.a’, * *By column and X column. If a} * *..a!, x xBy # X, then we set all a * *..al, x *B;
columns to L (the case expression). Finally, if the join condition o is on the column to be pivoted
by of table V, e.g., A1 = Y, then after we push down the GPIVOT, we need to apply a check
between the column name a} * *..a’, * xB; and the column value Y. This however requires the query

language extended with such a higher order feature [14].

25

5.2.4 Push GPIVOT Down GROUPBY

Now assume the GROUPBY operator has group by columns {4;}, aggregate columns {B;} with
functional dependency {A;}—{B;}. Due to this functional dependency, the GPIVOT operator has
to pivot some A; columns on B; columns for applicability.

We also note that the input to the GROUPBY operator may contain duplicates. In this case,
we cannot push GPIVOT down GROUPBY, since GPIVOT requires the input to contain a key.
When there is a key in the input to the GROUPBY operator, Equation (8) can be applied in a

reverse fashion in order to push down the GPIVOT.

5.2.5 Push GPIVOT Down GUNPIVOT

Given two adjacent GUNPIVOT and GPIVOT, they may also cancel each other when the GPIVOT
takes the GUNPIVOT output columns as parameters. As can be seen in the first case in Figure 15,
these two operators also cancel each other, resulting in a simple selection. Formally, assume table
H has schema (K, a} *x..al, % By, ..., a} **..a2, x*B,,), where K denotes possibly multiple columns

and is the key.

GPIvOT i (GUNPIVOTY (st oy et ey (H)) = (0u(H) 10 (12)
Proof for Equation (12): First, obviously, the GUNPIVOT outputs the table schema same as
table H. Next, for each row h = (ky,c1, ..., ¢pp) in H, 1) if (¢q, ..., ¢pp) all equal to L, then both sides
of Equation (12) will not include it. 2) if not all (c1, ..., ¢pn) equal to L, then GPIVOT outputs a
set of rows {(k1,al,...,ak,, b1,...,by)| if not all b; equals L,i=1..p }. The next GPIVOT takes these
rows as input and outputs row (ki,c1, ..., ¢pn). Hence both sides of Equation (12) contain that row.
By 1),2), Equation (12) always holds. |}

In the second case of Figure 15, note that the GPIVOT now only partially uses the pivoted output
columns. Their order cannot be changed, since GPIVOT has to use the output of GUNPIVOT.

Finally, if the parameters between GPIVOT and GUNPIVOT have no overlap, as the third
case in Figure 15, then their order can be reversed. This essentially is the reverse application of

Equation (10) in Section 5.1.5.

OHere o, is a disjunctive predicate on al % xal, * *B1, ..., al * *a’, * *B,, i.e., they do not all equal L.

26

G P |VOT [Price,Quantity]

Measuremen on Value
> O (price 0) 0(Quantity#) V)
GUNPIVOT

[Price, Quantity]

GPIVOT TV VCR]

Type on Value

——> Cannotchangeorder
GUNPIVOT

[Price, Quantity]
GPIVOT [USA, Japan]))
Country on[Price, Quantity] Can changeorder GUNPIVOT [Manufacturer Type]
[USA, Japan]
, Japan
GUNPIVOT [Manufacturer,Type] GPIVOT Country on[Price, Quantity]
Country Manufacturer Type Price Quantity
USA Sony TV 250 50
USA Sony VCR 50 40
USA Panasonic v 220 20
Japan Sony VCR 60 60
Japan Panasonic TV 240 70

Figure 15: Push GPIVOT down GUNPIVOT

5.3 Pullup Rules for GUNPIVOT

In this section, we will present the rules for pulling up GUNPIVOT. We assume the input to

GUNPIVOT contains a key, as such key usually exists in practice.

5.3.1 Pull GUNPIVOT through SELECT

There are three cases for pulling GUNPIVOT through SELECT. We now refer the unpivoted
output columns that originated from column values as wvalue columns and refer the unpivoted
output columns that originated from column names as name columns. For example, in Figure 16,
‘Type’ is name column while ‘Price’ is value column.

First, if the selection condition is defined on non-unpivoted output columns, then we can push
it down without any changes such as the condition ocountry=s54 in Figure 16.

Second, if the select condition is on the value column, e.g., 0price—=150, then pushing this se-

lect down results in a project that changes the columns. In the above example, it becomes

T Country,case(Sony*+TV *xPrice),

case(Sony*xV C RxxPrice),case(PanasonickxTV s Price),case(PanasonicxxV C RxxPrice) Here case(columnl) 18

a case expression that outputs columnl if columnl = 150, otherwise it outputs L.
Third, if the select condition is on the name column, e.g., o7ype—1v, then pushing this select down

results in a project that removes columns. In the above example, it becomes 7 (gonyssVCRexPrice,

27

|Country Manu Type Price

GUNPIVOT

[Sony**TV **Price,Sony**VCR **Price, ;
Panasonic*TV **Price, Panasonic*VCR **Price] .~

e

Sony Sony Panasonic Panasonic
Country TV *VCR TV *VCR

**Price **Price **Price **Price
USA 220 60 150 O
Japan 240 70 OJ 45

Figure 16: Pull GUNPIVOT through SELECT

PanasonicxxV C RxxPrice)-

Formally, we assume table H with schema (K, a} **...al, #* By, ...,ad x*...al *xB,,, ..., a} *x...aE,

B1, ..., a} x...aP, xxB,,), where K can be multiple columns and each af xx...a’, *xB; is one column.
We further assume a selection predicate as: 0.4,—xaB,=y(GUNPIVOT (i s ai By,a0 vx...aiy +¢Bn))] (H)).

1

O-Ap:X/\quy(GUNPIVOT[{(ai**...aﬁn**Bl,...,ai**...aﬁn**Bn)}](H)) =

GUNP[VOT[{(aZi**..**X..ain**Bl,...,a’i**..**X..ain**Bn)}](

) .)) 11
TrK,{case(all**..**X..aﬁn**Bl jeens@ywk kX al, +xBr) } (H)) (13)

Proof of Equation (13): The proof of this rule is straightforward. The left side of Equation (13)
outputs arow r = (k1, a1, ag, ..., am, b1, ..., by) iff a, = X Aby = y. On the right side of Equation (13),
the case expression actually removes the rows that do not satisfy a, = X A b, = y. Hence they are
equivalent. |

If the condition is disjunctive, e.g., 05,ve,, then we can first rewrite it to o, (GUNPIVOT) U
05, (GUNPIVOT). After that, we push the two select conditions down individual GUNPIVOT

using the above rules.

5.3.2 Pull GUNPIVOT through PROJECT

Similarly, we also consider negative project, i.e., removal of columns. There are also three cases
for pulling GUNPIVOT through PROJECT. First, if the project is to remove the non-unpivoted

columns, such as m—country in Figure 17, we can push the project down without changes.

"Here case(a] *x..xxX..ay, **B1, ...,a] *x*..x*xX..a,, **By) is a case expression that if aj **.. x*X..a;, **Bq = v,

28

lCountry Year Manu Type Price Quantity[

Ty oo
GUNPIVOT [Sony**TV **Price,Sony**VCR **Price, J
Panasonic*TV **Price, Panasonic*VCR **Price] .~
T Ve
Sony Sony Panasonic Panasonic Sony Sony Panasonic Panasonic
Country Year *TV *VCR MTV *VCR TV FVYCR* RTV** *HVCR**
*“*Price **Price **Price **Price Quantity Quantity — Quantity Quantity
USA 1993 210 80 145 O 210 80 145 O
USA 1992 220 60 150 O 220 60 150 O
Japan 1991 240 70 O 45 240 70 0 45

Figure 17: Pull GUNPIVOT through PROJECT

Second, if the project is to remove the value column from the GUNPIVOT output, e.g., T—price in
Figure 17, then pulling up GUNPIVOT results in a project that removes all price related columns,
Le., —(Sony**TV x* Price,Sony+xV C R+ Price, Panasonicx*TV sx Price, Panasonicx*V C Rxx Price)

Third, if the project is to remove the name column from the GUNPIVOT output, e.g., T-aranu
in Figure 17, then pulling up GUNPIVOT requires to modify the column names, i.e., removing

‘Sony’ and ‘Panasonic’ from the column names.

5.3.3 Pull GUNPIVOT through JOIN

The rules for pulling GUNPIVOT above JOIN is quite similar to those for SELECT in Section 5.3.1.
First, if the join predicate is on the non-unpivoted columns, then we can pull GUNPIVOT above
the join without changes.

Second, if the join predicate is on the value columns from the output of GUNPIVOT, then the
GUNPIVOT pullup results in a join followed by a project. Formally, we assume table H with
schema (K, af **...al, **By, ...,a} ¥ x...al, **By, ...,a} **...al xxBy, ...,a} * *...al, x xB,,), where K
can be multiple columns and each a} *x...a’, *+B; is one column. Table T has schema (K7, K). As
usual, we assume the output of GUNPIVOT(H) has schema (K, Ay, ..., Ay, B1, ..., By,). We further
assume a join predicate as: GUNP[VOT[{(ag**...a;‘n**Bl,...,ai woai)} (H) XM=k, T

1

GUNP[VOT[{(ai**...afn**Bl,...,ai **afn**Bn)}}(H) ™XB,=K T =

1

GUNPIVOTy

alsk..al #xBy,...,al%x...al, *xBp)}] (TrK,{case(a’i**...a;in**Bl,...,a’i**...ain**Bn)},Kl,Kz (

12
H Ma% wk.al #xBi=K1V..Val*x...ah, xxBj=K1 T)) (14)

then output (aj * *.. x *X..a,, * *B1,...,a] * *.. *x xX..a}, * *By), otherwise output (L,...,L).
12Here case(a] * *...ap, * *B1,...,a] * *...a,, * *By) is a case expression that if aj * x...a;, * *B; = K1, then output

29

Proof of Equation (14): The proof of this rule is straightforward. The left side of Equation (14)
outputs a row r = (k,a1,a2, ..., am, b1, ..., by, k1, ko) iff by = k1. On the right side of Equation (14),
the case expression actually removes the rows that do not satisfy b; = k1. Hence we conclude that
they are equivalent. |

Third, if the join predicate is on the name columns from the output of GUNPIVOT, e.g., A; = Ko
in the above example. Then the pullup of GUNPIVOT requires a join between the column value
K> and the column name ‘a} ... x xa’, x xB;’. This also requires a higher order feature of the

query language [14].

5.3.4 Pull GUNPIVOT through GROUPBY

By first unpivoting a table and then performing aggregation, we are able to do horizontal aggregation
[14]. As can be seen from the example in Figure 18, all the prices regarding ‘USA’ have been summed

up even they appear as several columns in the same row.

F

Country, Type” Sum(pricesm)

[(Sony**TV **Pricesum,
Sony**VCR **Pricesum,
Panasonic*TV **Pricesum,
Panasonic*VCR **Pricesum}

Country, Type TSum(Price) GUNPIVOT

—>

G U N P IVOT [Sony**TV **Price Sony**VCR **Price, Sum(Sony *TV **Price),
Panasonic*TV **Price, Panasonic*VCR **Price] Countr)ﬂ: Sum(Sony *VCR **Price),
Sum(Panaguc**TV **Price),
Sum(Panasuc* *VCR **Price)
Sony Sony Panasonic Panasonic
Country Year *TV *WCR *TV *VCR
**Price **Price **Price **Price
USA 1993 210 80 145 D
USA 1992 220 60 150 D
Japan 1991 240 70 O 45

Figure 18: Pull GUNPIVOT through GROUPBY

In this case, pulling up GUNPIVOT results in a two-level aggregation as shown in Figure 18.
In particular, we first aggregate all price-related columns and then unpivot individual sum totals
and finally re-aggregate over these subtotals. This rule is formally described in Equation (15),
assuming the same table schema H, K’ as a subset of columns (K, Ay,...,A,,) and K" = KN K.

For simplicity, we also assume here f is sum or count. We can easily extend f to distributive or

algebraic functions [10].

(a] * *...ap, * *B1, ..., a] * *...ay, * *By), otherwise output (L,..., L).

30

K’ff(Bj)(GUNP[VOT[{(ai**...aﬁn**Bl,...,a’i**...aﬁn**Bn)}} (H)) =

K’j:f(FBj)(GUNPIVOT[{(a%**...a}n**FBj,...,af**...afn**FBj)}](K” f{f(ai**...afn**Bj) as ‘ai**...ain**FB;}(H)) (15)

Proof of Equation (15): Assume the groupby columns are K’ = (K", Ay, ..., A;,), with K" C
K and A;, € {A;,...,Ay}. On the right side of Equation (15), the inner groupby computes
ai * *..al, * «F Bj;, which is equivalent to compute f group by (K", Ai,...,A,) on the unpiv-
oted data. Note that since (K", Ay,..., Ay,) is a superset of the next group by columns, namely,

(K", Ay, ..., Ay,), such a two-level aggregation is already known in [5]. |

Next, note that even if the groupby operator does not use any output columns of GUNPIVOT,
we still cannot remove the GUNPIVOT operator because it will affect the cardinality of the input.
Finally, if the groupby operator aggregates over the name columns from the GUNPIVOT output,
e.g., maz(Type) in the above example, then we cannot push it down since we are not able to aggre-
gate over column names. If the groupby operator takes the value columns from the GUNPIVOT
output, e.g., group by Price in the above example, then we also cannot push it down since we

cannot group same values in different columns.

5.4 Pushdown Rules for GUNPIVOT
5.4.1 Push GUNPIVOT down SELECT

There are two cases for pushing GUNPIVOT down SELECT. First, if the select condition on the
non-unpivoted columns, then we can push the GUNPIVOT operator down without changes, such
as OCountry=UsA in Figure 19.

Second, if the select condition is on the columns to be unpivoted, €.g., 0Sonys+TVsxPrice=220,
then pushing GUNPIVOT down results in a self-join, i.e., Tcountry(0SonysxTVisPrice=220(T")) >
GUNPIVOT(T). Formally, assume a selection predicate over two output columns to be un-

pivoted as: GUNPIVOT[{(ai**...aﬁn**Bl,...,ai**...aﬁn**Bn)}](Uail**___airll**Bll op a?**...af%**Blz (H)). Here

‘op’ is any comparison operator.

{(ai**“'ain**Bl7---7‘1%**"'“%**371)}}(O-ail **...ai}b**Bll op a?**...ai%**Blz (H)) -

(H)) b GUNPIVOTy,

GUNPIVOT,

ﬂ.K(O’ail **...ai}l**Bll op a? **...afﬁ**BlQ (adsx...al, %% Bu,...,a% %*...ak, s+ Bn)}] (H) (16)

31

|Country Manu Type Price

!

G U N P IVOT [Sony**TV **Price Sony**VCR **Price,

Panasonic*TV **Price, Panasonic*VCR **Price] _

? X oo
Sony Sony Panasonic Panasonic
Country TV */CR TV **VCR
**Price **Price **Price **Price
USA 220 60 150 0
Japan 240 70 0 45

Figure 19: Push GUNPIVOT Down SELECT

Proof of Equation (16): The proof of this rule is straightforward. On the right side of Equa-
tion (16), since the join is on the key K, by Section 5.3.3, we can push it in as:

GUNPIVOTY (i ... esBa cctpons-atyes BN T O i o o e, (H)) = (H)) =
GUNPIVOT

ai**---flin**Bl7---,ai**~--a£n**Bn)H (O-ail **...ai}b**Bll op a?**...aig**Blz (H)) I

5.4.2 Push GUNPIVOT down PROJECT

Similarly, we also consider negative project, i.e., removal of columns. Note that the GUNPIVOT
operator will not take the removed columns as parameters. Hence it is always possible to push the
GUNPIVOT down. For example, we can pull 7—country up in Figure 20. Note that we can also
pull T gonysxTVixPrice up. The reason is that in this case, this ‘Sony**TV**Price’ column will not

appear in the GUNPIVOT parameter column list.

|C0untry Year Manu Type Pricel

!

G U N P lVOT [Sony**TV **Price , Sony**VCR **Price,

Panasonic*TV **Price, Panasonic*VCR **Price] _

7‘; X T
Sony Sony Panasonic Panasonic
Country Year TV **VCR TV **VCR
**Price **Price **Price **Price
USA 1993 210 80 145 O
USA 1992 220 60 150 |:|
Japan 1991 240 70 O 45

Figure 20: Push GUNPIVOT Down PROJECT

32

5.4.3 Push GUNPIVOT down JOIN

There are two cases for pushing GUNPIVOT down JOIN. First, if the join condition is on the
non-unpivoted columns, then we can push GUNPIVOT down the join.

Second, if the join condition is on the columns to be unpivoted, then the pushdown results in
self-joins. Formally, assume the same table schema H and table T with schema (K7, K»).
GUNPIVOT[{(ai**...ain**Bl,...,ai**...ai **Bn)}}(H >

i

o T)=
1
) > GUNPIVOﬂ{(a wx...ab #%B1,.. 7‘11**---0%**Bn)}] (H) (17)

sok...anb xk By =K1

(H [><]al1 *%, am**Bl K,
Proof of Equation (17): The proof of this rule is straightforward. On the right side of Equa-
tion (17), since the join is on the key K, by Section 5.3.3, we can push it in as:

a wk...ab, %% B .. ,al** .al **Bn)}}(ﬂ-K(H Mall** am**Bl K,

GUNPIVOT[{(H a4

alsx...al, *xB1,.. ,al**...aﬁn**Bn)}}(aytwk. flm**Bl K, T) I

5.4.4 Push GUNPIVOT down GROUPBY

First, if GUNPIVOT unpivots the aggregate columns as shown in Figure 21, then we can push GUN-
PIVOT down the groupby. Formally, assume the groupby operator computes, (K, f(B1), f(Ba), ..., f(By)),
where K are the group by columns and f(B;) is to compute function f over column B;. The GUN-

PIVOT unpivots (f(B1), f(Bs2), ..., f(By)) and outputs name columns Cy, values columns Cy .

GUNPIVOTi (5,1 (cF 5503 (T)) =K.Cx Fisen}(GUNPIVOTypy(T) ¥ (18)

Proof of Equation (18): Assume for a given group by value k1, there are a set of rows {t1,...,t, }=
{(k1,b1,..,bL), oy (K, B, ... BE) } in T with that group value (we ignore other columns). The left side
of Equation (18) first computes (k1, f(b), ., f(b)) and unpivots to a set of rows as {(k1, ¢, f(bg))},
where ¢, are the corresponding name columns.

The right side of Equation (18) first unpivots {t1, ..., t,} to {(k1, ¢, b1), ..., (k1,c?,bL), ..., (k1, ¢k, ..., b)),

vy (K1, ..., BP)} (note that some row may not exist if bg =1). The next group by on (ki, c}) com-

rvn

BFunction f should disregard L.

33

putes {(k1, ¢, f(b]))}, same as the left side. |

GUNPlvo%[[-SumPriceSquuam}ﬂ Country, Type, Measurg Sum(Value

Country, TypeﬂTr Sum(Price)sum(Quanty) ~ GUN PIVO'TI['F,rice ouanity]

Country Manu Type Price Quantity
USA Sony ™v 250 50
USA Panasonic TV 45 30
Japan Sony VCR 260 10

Figure 21: Push GUNPIVOT Down GROUPBY

Second, if GUNPIVOT unpivots any groupby columns, e.g., [Country,Type|, then we cannot
push it down. The reason is that after pushing GUNPIVOT down, we cannot perform groupby on
multi-values from the same column. Note that this is overall quite similar to the rules for pulling

up GPIVOT in Section 5.1.4.

6 Incremental View Maintenance

We now propose the propagation rules for GPIVOT and GUNPIVOT. In particular, we will show
how to utilize the combination, rewriting and propagation rules together to obtain an efficient

maintenance plan.

6.1 Types of ROLAP Views

In this work, we consider both aggregate and non-aggregate views containing GPIVOT and GUN-
PIVOT operators. We assume a key exists in the materialized view as prerequisite for enabling
efficient maintenance. The reason is that if we can successfully move the GPIVOT operator to the
top of the query tree (or a SELECT/GPIVOT pair on top of the query tree), then a key can be
obtained from the output of GPIVOT 4. Actually most existing view maintenance work [12, 17]
also has this assumption. If there is no key in the view, i.e., it contains duplicates, the count algo-
rithm [12] maintains the multiplicity of each tuple. This is equivalent to have a GROUPBY ALL
operator on top of the view query. The key then would correspond to all columns. In addition,

when there is a key in the view, we can use SQL update/delete statement to apply the changes

'Tn fact, our insert/delete propagation rules for GPTVOT and GUNPIVOT can be used to maintain views with
duplicates. Hence this requirement is just for efficiency purposes.

34

efficiently. Most commercial DBMSs [3, 15] require the views to contain a key (or using rowid to
arbitrarily form a key) for the above reasons. Hence our proposed techniques are applicable to the
majority of the views in practice.

In this work, we also assume the GPIVOT above the GROUPBY is to pivot the aggregate results
based on the group-by columns, e.g., pivot the total sales for each product type. This is common
for most OLAP applications since the user often pivots the measurements by various dimensions
[4]. In comparison, pivoting product type based on total sales is often problematic. The reason is
that the functional dependency, measurements — dimensions, often does not hold. This makes the

pivot not applicable.

6.2 Propagation Rules for GPIVOT and GUNPIVOT

The insert/delete propagation rules for GPIVOT and GUNPIVOT are depicted in Figure 22. Here
‘1. means the first join operand and ‘2. means the second join operand. These propagation
rules are applicable to any parameters. The update propagation rules for GPIVOT are depicted
in Figure 23. Note that we assume bag semantics in this paper, i.e., W as bag insert and — as bag

delete.

GUNPIVOT(H!AH) = GUNPIVOT(H)!! GUNPIVOT(AH)
GUNPIVOT(H ~[H) = GUNPIVOT(H)~ GUNPIVOT(UH)

GPIVOT(VHAV) = GPIVOT(V)
+ GPIVOT(V) = (GPIVOT(AV)
B Ty ¢ @x20(GPIVOT(AV) = (GPIVOT(V))
¥ GPIVOT(AV) = . GPIVOT(V)
GPIVOT(V ~[IV) = GPIVOT(V)
+ GPIVOT(V) < GPIVOT(OV)
1 6, (g g2 (GPIVOT(@V) = GPIVOT(V)))

f(1.X,2.X) : case when1.X ='[I' then 2.X else 1.X end (Xis pivoted output column)

g(1.% 2.%) : case when1.x #' (' then ' (' else 2.X end (Xis pivoted output column)

° y: Gany pivoted output column X ' [

Figure 22: Insert/Delete Propagation Rules for GPIVOT and GUNPIVOT

Proofs for Propagation Rules in Figure 22 and 23: We first prove the rules in Figure 22.
The correctness of the GUNPIVOT rules can be shown as follows:

(1) GUNPIVOT[(a}**...a}n**Bl,...,a}**...a}n**Bn),...,(af**...afn**Bl,...,ap**...aﬁl**Bn)} (H 4 AH)

1

35

GPIVOT(VHAV):
T=GPIVOT(AV) = ,GPIVOT(V)

insert: 7. (6, rsnurr (T))

update: 2.x = f 1.x2.x Where 2K IsSNOTNULL

GPIVOT(V =0V):
T=GPIVOT(UV) ~ (GPIVOT(V)
update: 2.x = g.x2.%)

delete:anzx="0r

Figure 23: Update Propagation Rules for GPIVOT

P ,
- [Ui:1FK7‘ail7"'7‘

*x ;AJ_(H & AH))

al,',abwx..al %% By ,...,a %%, .al By \T any apxk..an,

P
[UZ=17TK,‘a’1l,...,‘a§n',all**...aﬁn**Bl,...,a’l**...agn**Bn (Oany aj**...al, xxB; #J_(H)]U
[Ui:17TK,‘a”i’,...,‘a%’,aﬁ**...a:n**Bl,...,ai**...a:n**Bn (Uany afjk...ap, xxB; #J-(AH)]

= GUNP[VOCT[(a%**...a}n**Bl,...,a%**...a}n**Bn)7___7(a11’**___aﬁl**317.__7ap**...afn**Bn)] (H)

1
W GUNPIVOT (1 s ab 4xBs....als.abys5Bn) oo @V 0By 5By .saPet by By Y] (O H)

Similarly, we can prove the GUNPIVOT rules under delete case.
(2.1) Next, we show the correctness of the rules for GPIVOT. We first prove the insert case. Given
a key value ki, we define a set of rows {ri} as ri = 7x.B,....B.(0(a, ... A,)=(ai...ai,) AND K=k (V' ¥
AV)). If there is no row that satisfies the condition for a particular 4, we set r; = (k1, L, ..., L). We
also define other two sets of rows {p; } and {¢; } as p; = WKvBh---,Bn(U(A1,...,Am)=(a’i,...,a£n) AND K=k (V)
and i = Tk, Bi,..., B, (O(A,,... Ap)=(aiai,) AND K=k, (AV)). Similarly, we also set p; or ¢; as (ki, L
, ...y L) if no row satisfies. Based on the above definition, the following function f must hold for any
i: i = f(pi,q), where f(p;,q;) equals either p; if ¢; = (k1, L, ..., L) or equals ¢; if ¢; # (k1, L, ..., L).
The reason is that (K, Ay, ..., A;;,) forms the key, thus at most one row exists in either V or AV,
but not both.

Based on the above definition, the output of GPIVOT(V W AV) for key ki is > {r;}. The
output of GPIVOT (V) for key k; is > {p;}. The output of GPIVOT(AV) for key k1 is > {¢;}.

If {p;} contain only (ki,L,..., L) tuples, then the original output does not contain such a row
with key k1 based on the GPIVOT definition. In this case, if {¢;} contain any non-empty tuples,
then 0 {r;} = < {f(pi,qi)} = > {g;}. This proves the anti-join in Figure 22.

If both {p;} and {¢;} contain any non-empty tuples, then > {r;} =< {f(p;,q;)}. This proves

the join term for generating new row in Figure 22. Obviously, the original row with key k; has to

36

be deleted in this case. This proves the delete term in Figure 22.

Hence the propagation rules hold under the insert case.

(2.2) We now prove the propagation rules for GPIVOT under the delete case. Given a key value ky,
we define a set of rows {ri} as r; = Tx,B,....B, (0(4, ... An)=(aiai,) AND K=k (V = V). If there
is no row that satisfies the condition for a particular i, we set r; = (k1,L,..., L). We also define
other two sets of rows {p;} and {¢;} as p; = WK,B17---7B7L(U(A17...7A7,L)=(a§,...,a;'n) AND K=k, (V) and
qi = 7TK’BL”,7B"(O’(A17...7Am):(a§’m’ain) AND K=k (VV)). Similarly, we also set p; or ¢; as (k1, L, ..., L)
if no row satisfies. Based on the above definition, the following function g must hold for any
i: i = g(pi,q;), where g(p;,q;) equals either p; if ¢; = (k1,L,..., L) or equals (ki,L,..., L) if
qi # (k1,L,..., L). The reason is that since (K, Ay, ..., Ay,) forms the key, if one row is deleted from
V', then the same row no longer exists in V' — 7V.

If both {p;} and {¢;} contain any non-empty tuples, then the resulting row becomes i {r;} =
{9(pi,qi)}. The original row with key k; has to be deleted in this case. This proves the delete term
in Figure 22. We insert the new row only when not all {r;} equal (k1, L ..., L). This proves the
insert term in Figure 22.

Hence the propagation rules also hold under the delete case.

(3) The correctness of the update propagation rules in Figure 23 can be proven by showing that

they are equivalent to the insert/delete propagation rules. |

Figure 24 describes a simple example to show how to use our rewriting rules and propagation
rules to obtain an efficient maintenance plan. Assume a materialized view is defined that first
pivots the ‘Items’ table and then joins the results with the ‘Payment’ table.

First let us assume two tuples are inserted into the ‘Items’ table. Figure 25 depicts the change
propagation by naively applying the insert/delete rules for GPIVOT. We can see that the propaga-
tion of GPIVOT generates one insert delta and one delete delta. Each of them will be joined with
the ‘Payment’ table. The final maintenance plan is shown at the bottom of the figure. It involves
several GPIVOT and joins. Also the results show that we have to delete existing view tuples and
reinsert them with a few column changes.

Figure 26 depicts an alternative maintenance plan achieved by our GPIVOT pullup techniques.

First, the GPIVOT operator is pulled up above the join and becomes the top of the query tree.

37

AuctionID Manufacturer Type Credit ByAir —a
1 Sony | 200 15 cpifor
2 O VCR 300 20
3 Panasonic TV 100 10 Items Payment
>
[Manufacturer, Type]
GP IVOTAm—ibutc on Value
Items T Payment
AuctionID Attribute Value AuctionID Credit ByAir
1 Manufacturer Sony 1 200 15
2 Type VCR 2 300 20
3 Manufacturer ~ Panasonic 3 100 10
3 Type TV

Figure 24: A Simple View with GPIVOT

The propagation phase propagates the source deltas through JOIN (Al > P) and then GPIVOT
to compute the final delta (GPIVOT(AI <1 P)). The apply phase uses the update propagation
rules for GPIVOT by evaluating a left outer-join between the final delta and the view (MV) to
insert new tuples and make appropriate changes. The final plan (depicted at the bottom of the
figure) is obviously more efficient than the one in Figure 25. Note that such GPIVOT pullup is
only necessary when the GPIVOT is on the delta propagation path. For example, the maintenance

of some inserts on ‘Payment’ table need not pull up the GPIVOT.

AV =(1,Sony, TV, 200,15)

(2, Panasonic, VCR,300,20)
OV =(1,Sony, [J, 200,15)
(Z,D,VCR,SOQZO)T Ty e :

AV = A, =P
i ! =0,>p
By =T, (GPIVOT(AD™ GPIVOT(D): > V0T
et
] GPIVOT(AI) GPIVOT(I) |
=(1,S0ny, TV), GPIYOT
(2, Panasonic, VCR) 1
0, = GPIVOT(I)>< GPIVOT(AI) |
=(1,Sony, [)(2, [, VCR) ! ltems Payment

Al = (1, Type, TV)

(2, Manufactur er, Panasonic)

Maintenance Plan:
AV = (n_(GPIVOT(ALP< GPIVOT(I))

[l GPIVOT(AI)< GPIVOT(I))>Payment
0V = (GPIVOT(I)>< GPIVOT(AI))~« Payment

Figure 25: Maintenance without GPIVOT Pullup

38

INSERT MV =(1,Sony, [, 200,15)
UPDATE N (2,0, VCR,30020)
Y (3, Panasonic, TV,100,10)

FinalDelta=(1, 0, TV, 200,15)
(2,Panasonic, [1,30020) GPIVOT

Iltems Payment

(Al = (1, Type, TV)

i (2, Manufacturer, Panasonicj
Maintenance Plan:
GPIVOT (AL ™ P)>*MV

Figure 26: Maintenance with GPIVOT Pullup

6.3 Update Propagation Rules for Multiple Operators

Note that the propagation rules in Section 6.2 can be used to maintain any arbitrary view expres-
sions. However, the update propagation rules for GPIVOT in Figure 23 require (1) the GPIVOT to
be at the top of the algebra tree, and (2) the insert/delete changes to the input AV to be available.
For some views, it might be either expensive to move the GPIVOT to top of the algebra tree or
too expensive to compute the delta changes to the input. In this section, we propose to solve this

problem by developing some alternative update propagation rules.

6.3.1 Update Propagation Rules for GPIVOT over GROUPBY

When GPIVOT is above a GROUPBY operator, then the input AV to GPIVOT is no longer trivial
to compute. The reason is that we have to use the insert/delete propagation rules for GROUPBY
[18]. This is inefficient since we may need to recompute some groups.

We propose to combine the GPIVOT update propagation rules and GROUPBY update propaga-
tion rules as depicted in Figure 27. Here we assume F (V) has schema (K, Ay, ..., A, B1, Be,...By),
where K, Aq,..., A, are group by columns, By, ..., B, are aggregate function columns including
count(x). For simplicity, we only consider SUM and COUNT in this paper. It is not hard to
extend to support AVG or other algebraic functions [10]. The GPIVOT operator is assumed to
pivot By, ..., B, by A4, ..., A, as described in Section 6.1.

Note that when the count column, al * *...a%, x *B; = 0, i.e., B; is count(*) column, then all the

output columns with the same prefix af * *...a’, become empty, i.e., a% * *...a%, * By, =1 for any

39

GPIVOT(#(VHAV)):
T = GPIVOT(¥ (AV)) > ,GPIVOT(¥(V))
insert : nl.* (GZ.K ISNULL (T));

update: 2.x =1.x+ 2xwherezK 1sNoTNULL

GPIVOT(£(V ~0OV)):
T =GPIVOT(#(1V)) = (GPIVOT(¥ (V))
update :case when2.a, **..a, **B, ~1a **.a **B, #0
then2.a, * *..a, **B_ =24 **.a, **B_-la, **.a **B,
clse 2., **..a) **B, ='end;

delete : anz.x='0r

Assume Bi is count(*); Xis pivoted output columns

Figure 27: Update Propagation Rules for GPIVOT over GROUPBY

k. The reason is that no more item exists for this subgroup. When all the output columns become

L, i.e., all subgroups are deleted, then this row should be deleted from the view.

Proofs for Propagation Rules in Figure 27: We first prove the insert case.

(1) Given a key value ki, we define a set of rows {r;} as r; =g ¢, ¢, f(J(Al,...,Am)=(a§,m,a;"n) AND
K=k (VBAV)), where each f; is an aggregate function. If there is no row that satisfies the condition
for a particular i, we set r; = (k1, L, ..., L). We also define other two sets of rows {p;} and {¢;} as
Pi =K 1ot F(O(ay,. Ap)=(ai...ai,) AND K=k (V) and @i =g 5, g0 F(O(,, A)=(ai....ai) AND
K=k (AV)). Similarly, we also set p; or ¢; as (k1,L,..., L) if no row satisfies.

Based on the above definition, the output of GPIVOT(F(V W AV)) for key ky is > {r;}. The
output of GPIVOT (F(V)) for key ky is > {p;}. The output of GPIVOT(F(AV)) for key ky is
> {gi}.

By applying the propagation rules for GROUPBY in [18], we have: if p; = (k1,L,..., L), then
r; = qi; if p; # (k1, L, ..., L), then r; = (k1,pi-f1 + @-f1, s Di-fn + G- fn), assuming each aggregate
function f; is either sum or count.

If {p;} contains only (k1,L,... L) tuples, then the original output does not contain such a row
with key kq. In this case, if {¢;} contains any non-empty tuples, then x {r;} = {¢;}. This proves
the insert term in Figure 27.

If both {p;} and {¢;} contain any non-empty tuples, then < {r;} =>< {(k1,p;.f1+ai-f1, s Pi-fn+

gi-fn)}. This proves the update term for generating new row in Figure 27.

40

Hence the propagation rules hold under the insert case.

(2) Next, we prove the delete case. Given a key value k1, we define a set of rows {r;} asr; =k ¢, . #,
‘7:(0(:41,---,Am)z(a§7---7a2n) AND K=k (V = V), where each f; is an aggregate function. If there is
no row that satisfies the condition for a particular i, we set r; = (k1,L,...,L). We also define
other two sets of rows {p;} and {qi} as pi =k fi,...f» F(O(a,,.. . Am)=(ai....ai) AND K=ki(V)) and
G =K.f1,rfo T (O, A)=(ai....ai) AND K=hk:(VV)). Similarly, we also set p; or g; as (ky, L, ..., L)
if no row satisfies.

Based on the above defintion, the output of GPIVOT(F(V — 7V)) for key ky is > {r;}. The
output of GPIVOT(F(V)) for key k; is > {p;}. The output of GPIVOT (F(57V)) for key k; is
> {gi}-

By applying the propagation rules for GROUPBY in [18], we have r; = (k1,pi-f1—qi-f1, s Di-frn—
¢i-fn), assuming each aggregate function f; is either sum or count. Furthermore, if the count(*)
column, say p;.f; —¢;.f; =0, then r; = (k1, L, ..., L).

Thus, > {r;} =>x {(k1,pi-fi — ¢i-f1, s Pi-fn — @i-fn)}. If the count(*) column r;.f; = p;.f; —
¢i-fj = 0, then we need to set r; = (k1, L, ..., L). This proves the update term in Figure 27. If the
resulting {r;} contain only (k1, L ..., L) tuples, then we should delete this row from the pivoted
output based on the GPIVOT definition. This proves the delete term in Figure 27.

Hence the propagation rules also hold under the delete case. |

We now use the motivating example (Figure 2) in Section 2.1 to describe how to use these
update propagation rules to efficiently maintain this view. We first pullup and combine multiple
pivot operators in the query. For example, the top two pivots can be combined into one operator,
denoted as G; = GPIVOT. %ZZ@‘ZZRHCM ditSum, By AirSum] 85 described in Section 4.2. The lower pivot
can be pulled up through JOIN and GROUPBY denoted as Gy = GPI VOTILZZZZZZZfZI:i?}Gum} using
the rewriting rules in Section 5. Then we combine G; and G5 using the composition rules in
Section 4.3. Since the original view only contains SUM, we also need to add COUNT(*) into the
view definition in order to make the view incrementally maintainable (Figure 28).

Then we construct the maintenance plan based on this rewritten view query. We can propagate

the changes through the algebra tree (propagation phase) and apply the GPIVOT/GROUPBY

update propagation rules in Figure 27 (apply phase) in order to maintain the view. Note that in

41

Figure 28 since the resulting VCR**Credit**Cnt for Panasonic equals 0, both VCR**Credit**Cnt
and VCR**Credit**Sum will be set to L. Consequently, since all the pivoted output columns of
‘Panasonic’ become empty, this row can be deleted from the view. In comparison, the update

propagation rules in Figure 23 require significant recomputation of the group-by operator.

Manufact Tv**Credit TV**Credit TV**ByAir TV*ByAir VCR**Credit VCR**Credit VCR*ByAir VCR*ByAir
g P **Cnt

urer **Sum **Cnt **Sum Cnt *Sum Cnt **Sum
Sony 120 2 60 2 55 1 O [}
Panasonic O O O O 45 1 O O
UPDATE/DELETE
[(TV, VCR) X(Credit, ByAir)] b
GPIVOT [Type, Payment] on [Sum, Cnt]
t {(Sony, 1, 1 402,00, 0, 00, 00)
Manu, Type, paymem,'}’ Sum(Price) , Count(¥) E(Panasonic, 0,0,0,0,
>) i 451,0,0)
AuctionlD -
Payment \ Product
AuctionID Payment Price AuctionID Manu Type
1 ByAir 40 1 Sony TV
2 Credit 120 2 Sony v
2 ByAir 20 3 Sony VCR
3 Credit 55 4 Panasonic VCR
3 Ground 10
4 Credit 45 n
Maintenance Plan:
0P = (1, ByAir,40) GPIVOT(F (OP><Product))>= MV
(4, Credit,45)

Figure 28: Maintenance of View in Figure 2

6.3.2 Update Propagation Rules for SELECT over GPIVOT

As mentioned, the other problem with the update propagation rules in Figure 23 is that it might
be expensive to move the GPIVOT to the top of the algebra tree. For example, the rewriting
rules in Section 5.1 show that the pullup of GPIVOT through SELECT may result in multiple
self-joins. The propagation through multiple self-joins generates multiple join terms. This can be
quite inefficient (Section 7). In this section, we propose alternative update propagation rules for
SELECT (o.) on top of a GPIVOT as depicted in Figure 29.

We first describe the simple delete case. Figure 30 depicts a simple view query with a SELECT
above the GPIVOT. To maintain the deletes on the ‘Items’ table as shown in Figure 31, the pullup
of GPIVOT above this selection generates multiple self-joins. Alternatively, as described in Section
5.1, we pull both SELECT and GPIVOT up to the top of the query tree. Then we propagate
the changes below the GPIVOT operator. The apply phase uses the update propagation rules in
Figure 29. It first performs a join between the final delta and the view. We delete the view tuple

that no longer satisfies the select condition. This is stricter than deleting the view tuple with all

42

6. (GPIVOT(V HAV)):
T = GPIVOT (ni (0. (AV)) =V HAV) > 6. (GPIVOT(V))
insert : 6, (7,4 (6 2 rsnvure (T))s

update : 2.x = f (.x2.x) where 2.k sNOTNULL

6. (GPIVOT(V =[0V)):
T =GPIVOT(OV) ™ (6.(GPIVOT(V))
update : 2.x = g.x2.%3
delete: o, (m,. (T))

Figure 29: Update Propagation Rules for SELECT over GPIVOT

entries empty as in Figure 23. For example, the resulting tuple (3,Panasonic,1,300,20) will be
deleted from the view since it no longer satisfies the condition. Such tuple will be retained if there
is no such SELECT on top of GPIVOT.

The intuition behind this idea is that the deleted source tuples may cause an existing view tuple
to no longer satisfy the condition, which can be removed by the postponed selection filtering during
the apply phase, such as the auction 3 in our example. Or they may cause an existing view tuple
to update some of its columns but still satisfy the condition, such as auction 1. Lastly, they may
affect some pivot output tuples that originally do not satisfy the condition hence are not in the
view, such as auction 2. An important observation is that if an original pivot output tuple does not
satisfy the condition, then after some deletion it still will not satisfy the condition (if the condition
is null-intolerant). The join between the delta and the view, as a side product, effectively removes

such tuples.

AuctionID Manufacturer Type Credit ByAir -
1 Sony VCR 200 15 o
3 Panasonic TV 100 10 GPIYOT
4 Sony 0 150 15 Items Payment
>
O rype=TV

['Manufacturer=Sony

GPIVOQTMenufacturer, Typel

Attribute on Value

Items T Payment

AuctionID Attribute Value AuctionID Credit ByAir
1 Manufacturer Sony 1 200 15

1 Type VCR 2 300 20

2 Type VCR 3 100 10

3 Manufacturer ~ Panasonic 4 150 15

3 Type Y

4 Manufacturer Sony

Figure 30: Views with SELECT over GPIVOT

In comparison, the source inserts may cause an originally unsatisfied tuple to now satisfy the

43

DELETE tupe not saisfy o
UPDATE

\ MYV =(1,Sony, VCR, 200,15
GPIVOT(OI> P)>= MV i
Final Delta (3, Panasonic, TV,30020)
(1,0, VCR,200,15) (4,Sony, [J,15015)
: L
@OVveRI2) Cmgew
3,0, TV,300,20)
"""""""""" ' GPIVOT
f Dr=p
>
Item/ Payment
I =(, Type, VCR)(2, Type, VCR)
(3, Type, TV)

Maintenance Plan:
GPIVOT(I> Py<~MV

Figure 31: Maintenance with SELECT over GPIVOT

select condition. If so, we have to find some other tuples that are not in the view originally in order
to construct a new view tuple. E.g., in order to maintain the insert (2, Manufacturer, Sony), we
have to locate the source tuple (2, Type, VCR) to generate a new view tuple. The maintenance

plan generated based on the rules in Figure 29 is shown below.

GPIVOT((r;p(0u(AI) 1 P) 1 T & AI) sa P) =MV,

where o = O (Attribute=TypeAV alue=TV)V (Attribute=Manu facturer AV alue=Sony)-

Note that here o7, is to push some of simple selection predicates down in order to reduce the join
size. The rationale is that only those deltas that are related to the columns referenced in the select
predicate may change the result of the predicate, and consequently generate new view tuples. We

now formally prove these rules below.

Proofs for Propagation Rules in Figure 29: We first prove the delete case.

(1) Given a key value ki, we define a set of rows {r;} as r; = WKvBh---,Bn(0(A1,...,Am)=(a§,...,a:’n)
AND K=k (V = vV)). If there is no row that satisfies the condition for a particular i, we set r; =
(k1,L,..., L). We also define two other sets of rows {p; } and {¢; } as p; = 7TK7317___7B7L(J(Al7.“7Am):(a§,...’a%)
AND K=k, (V) and gi = 7k B, ...B.(0(4, ... Ap)=(ai ...ai,) AND K=k (VV')). Similarly, we also set p;

or ¢; as (ki, L, ..., L) if no row satisfies.

Based on the above definition, the output of GPIVOT(V — 7V) for key k; is b {r;}. The

44

output of GPIVOT (V) for key k; is > {p;}. The output of GPIVOT(7V) for key ki is < {g;}.
Similar to the proof for the rules in in Figure 22, the following function g must hold: > {r;} = <
{9(pi,qi)}-

Then we consider the following two cases:

i) If the original row < {p;} satisfies the condition o, then o.(x {p;}) = < {p;}, since > {p;}
represents one row. Or in other words, the original output contains the row <t {p;}. Hence, we
can compute the new row by o.(x {r;}) = o.(x {g(ps, i) }), If the resulting row > {r;} statisfies
the condition o., then we perform updates using function G. If the resulting row < {r;} no longer
satisfies the condition o., then we delete this row from the result. This exactly corresponds to the
rules in Figure 29.

ii) If the original row 1 {p; } does not satisfies the condition o, then the resulting row > {r; } will
not satisfy the condition either, since the condition is null-intolerant. In this case, o.(x {p;}) <
(=1{¢}) evaluates to empty result and will not make any changes.

Hence we proved that this update propagation rule always holds under the delete case.

(2) Next, we prove the insert case. Given a key value ki, we define a set of rows {r;} as r; =
TK, By, Bu (O (Ay .., Am)=(al ,....a,) AND K=k (V'@ AV)). If there is no row that satisfies the condition
for a particular i, we set r; = (k1,L,...,L). We also define two other sets of rows {p;} and {¢;}

as p; = 7TK,317,,,7Bn(J(A17...7Am):(azi,m’ai AND K:kl(V)) and qi = 7TK,B1,...,Bn(U(A1,...,Am):(ag,...,ain)

n)
AND K=k (AV)). Similarly, we also set p; or ¢; as (ki,L,..., L) if no row satisfies.

Based on the above definition, the output of GPIVOT (VWAV) for key k; is b< {r;}. The output
of GPIVOT (V) for key kj is > {p;}. The output of GPIVOT(AV') for key k; is > {¢;}. Similar to
the proof for the rules in in Figure 22, the following function f must hold: > {r;} = > {f(pi, q:)}-

Then we consider the following two cases:

i) If the original row < {p;} satisfies the condition o., then o.(x {p;}) =< {p;}, since 1 {p;}
represents one row. Or in other words, the original output contains row > {p;}. Hence we can
compute the new row by o.(<17;) = 0.(< f(pi,¢;)). Note that in this case the resulting row < {r;}
must still satisfy the condition o.. The reason is that if > {r;} did not satisfy the condition, then

turning some of its columns to null, i.e., > {p;}, still should not satisfy the condition (if o, is

null-intolerant). We thus only need to perform updates using function F, as the update term in

45

Figure 29.

ii) If the original row > {p;} does not satisfy the condition o, the resulting < {r;} may now
satisfy the condition. Hence, in this case, we have to recompute > {r;}, since the original output
does not contain the row < {p;}. The recomputation can be evaluated as GPIVOT (rx(AV)
(VWAV)). We then insert these new rows that now satisfy the condition, o.(GPIVOT (rg(AV')
(Vi AV))).

Furthermore, we observe that only when those rows in AV that related to the columns referenced
in o, may change the resulting row now satisfy o.. Hence, we can add o~ to reduce the join size as
in Figure 29, where o is of the form (Ay, ..., Ap) = (a2, ...,a) V ...V (A1, ..., Ap) = (a%, ..., alt).

Hence we proved that this update propagation rule always holds under the insert case. |

7 Experimental Evaluation

In this section, we will experimentally evaluate the effectiveness of our proposed techniques for
incremental view maintenance. In particular, we will evaluate the performance of the maintenance

plans constructed by various propagation rules proposed in Section 6.

7.1 Setup

We choose a non-intrusive implementation [14, 2] of the GPIVOT operator on top of a commerical
DBMS (Oracle 10g [1]). In particular, similar to [8], we implement GPIVOT using the following
SQL GROUPBY subquery:

SELECT K, {maz(case((A, .. (at,...,at), By, 1)),

o Ap) = m
max(case((A1, ..., Ap) = (ai,...,al,), B, 1)),

77'7:;],%(00,86((141, e Ap) = (d,...,at), By, 1))}

FROM V
WHERE (A1, ..., Ap) in {(ai,...,a%,)}
GROUP BY K

Note that the maintenance plan constructed by our method contains the propagation phase and
the apply phase (Section 3). The propagate phase computes the final delta. The apply phase first
evaluates a join between the final delta and materialized view. Based on the join results, INSERT,
DELETE or UPDATE will be applied to the view. It is important to apply these DML in one

statement in order to avoid materializing any temporary results. For this, we will use the MERGE

46

operation [1] to achieve this. In particular, the MERGE operation inserts a row if there is no match
between the final delta and the materialized view, updates a row in the materialized view if there
is such a match, and deletes a row if the updated row now contains only L entries or no longer
satisfies the select condition.

We run our experiments on a TPC-H [20] database with scale factor 1.0, i.e., total around
1 Gigabyte data. All the experiments are conducted on a two 540MHZ-CPU machine with 1G
memory, running Linux. We allocate 200M memory for buffer cache and 200M memory for Sort

and Hashjoin.

7.2 Maintaining Non-aggregate Views

Our experiments focus on different types of views, different sizes and characteristics of the source
changes and how different maintenance methods perform under these conditions. We first consider

non-aggregate views.

7.2.1 Without SELECT on TOP of GPIVOT

Figure 32 gives the algebra definition of a non-aggregate materialized view. As can be seen, it first
pivots the Lineitem table and then joins with the Orders and Customer tables. The size of this

view is 1,500,000 rows.

T |_orderkeyo_custkey;_nationkg,
itm1,itm2,itm3,itm4,itm5,itm6,itm7

|
X

N/

GPIVOTH 2340

|_linenumber on|_extendegbric

T |_orderkey|_linenumber,|_extendegrice

/

lineitem Orders Customer

Figure 32: Materialized View Definition (1)

We first consider the delete case on Lineitem table. The following three methods can be used
to refresh the view. The first method is to perform full recomputation. The second method

is to perform incremental maintenance using the insert/delete propagation rules for GPIVOT in

47

Figure 22, while the third method is to first pullup GPIVOT to the top of the algebra tree and

then apply the update propagation rules in Figure 23.

Time (s)
400
350 /
300
250 / —e— Full-Recomp
200 .
—4— Ins/Del Maint
150 —
100 ://- /;7 3 —a— Update Maint
50 p———
0 } } } % Deletion on
1% 5% 10% 15% Lineitem Table

Figure 33: Maintenance of View (1) under Deletion

Figure 33 depicts the maintenance results. Here y-axis denotes the maintenance cost in seconds.
x-axis denotes the percentages of deletion on Lineitem table. As can be seen from the figure,
the maintenance method using the update rules considerably outperforms the method using the
insert/delete rules by order of magnitude. This is due to the costly maintenance plan generated by
the insert/delete rules, which can be easily seen from two examples in Figure 25 and 26.

Next, we consider the insert case on Lineitem table. In particular, we distinguish between two
extreme cases. The first case is that the insert of the source data causes only updates to the
view. Under this scenario, the update propagation rules likely will significantly outperform the
insert/delete propagation rules as the former can avoid deleting the view tuples and re-inserting
them again. The second case is that the insert of the source data causes only inserts to the view.
Under this scenario, the insert/delete rules may perform better since such deletion and re-insertion
would not ever occur. The goal of this experiment is to justify if the update propagation rules are
always preferable choices.

Figure 34 depicts the maintenance results for the first case when the source changes result in only
view updates. As can be seen, the maintenance using the update propagation rules significantly
outperforms the other two alternatives as the costly deletion and then re-insertion is avoided. The
results are quite similar to the delete case.

Figure 35 depicts the maintenance performance for the second case when the source changes
result in only view insertions. Under this scenario, the maintenance using the insert/delete rules

perform much better than the former case. The reason is that we need not delete any existing

48

Tine (s)

500

400
—— Full-Recomp

R0y —+—Ins/Del Maint

200 —s—[pdate Maint

-/ﬁ”"./ w % Insertion on

1% 5% 10% 15% 20% Lineiten Table

100

Figure 34: Maintenance of View (1) under Insertion (Only View Updates)

rows in the view and re-insert them again. However, the maintenance using the update rules still

outperform the maintenance using the insert/delete rules.

Time (s)
250

200

—e— Full-Recomp

150 0/‘/‘//0
/‘ —— Ins/Del Maint

100
—a—[pdate Maint
50 T
0 f f f f % Tnsertion on
1% 5% 10% 15% 20% Lineitem Table

Figure 35: Maintenance of View (1) under Insertions (Only View Insertions)

The reason is that the insert /delete rules need to access the original pivot result, i.e., GPIVOT (lineitem),
as in Figure 22. Even if we can push down the join predicate so as to partially compute GPIVOT (lineitem),
still it can be a significant cost. In comparison, by first pulling up GPIVOT and then applying the
update propagation rules, we can avoid computing any portion of GPIVOT(lineitem). Instead a
join with the materialized view will be performed, which is less costly. Hence, in conclusion, the
experiments in Figure 33, 34 and 35 confirm our basic heuristics that the update rules are always

preferable choices than the insert/delete rules.

7.2.2 With SELECT on TOP of GPIVOT

Figure 36 gives the algebra definition of another type of view, namely, non-aggregate materialized

view with a SELECT on top of GPIVOT. As can be seen, it first pivots the Lineitem table and

49

then chooses these rows whose first item price is greater than 30000. The results are then joined

with the Orders and Customer tables. The size of this view is 890,000 rows.

n |_orderkey,o_custkeyc_nationkey,
itm1,itm2,itm3,itm4,itm>5,itm6,itm7

|
X
N/

O itm1>30000
GPIVOT{ 73

|_linenumberon|_extendegbrice

T |_orderkey,|_linenumber,|_extendegrice

lineitem Orders Customer

Figure 36: Materialized View Definition (2)

We first consider the delete case on Lineitem table. The following four methods can be used
to refresh the view. The first method is to perform full recomputation. The second method
is to perform incremental maintenance using the insert/delete propagation rules for GPIVOT in
Figure 22. The third method is to pullup GPIVOT to the top of the algebra tree, i.e., pushing
SELECT down GPIVOT, in order to apply the update rules in Figure 23. The fourth method
is to pull both SELECT and GPIVOT up and apply the combined update propagation rules in

Figure 29.

Time (s)
350

300 A —e— Full-Recomp
207 // —— Ins/Del Maint
200
150 Q/. —a— SEL. Pushdown
100 A—>¥/ - / —»—Comb. Update
%0 w

| I } } % Deletion on Lineitem

Table

1% 5% 10% 15% 20%

Figure 37: Maintenance of View (2) under Deletion

Figure 37 depicts the maintenance results. Here y-axis denotes the maintenance cost in seconds.
x-axis denotes the percentages of deletion on Lineitem table. As can be seen from the figure, the
maintenance method using our combined update rules (in Figure 29) considerably outperforms
all three alternatives. While moving GPIVOT to the top of algebra tree by pushing down SE-

LECT outperforms the method using insert /delete rules, it still generates more costly maintenance

50

plan compared to the method using our combined update rules. This can be easily seen by com-
paring the maintenance plans generated by these two methods. The maintenance plan by the
SELECT/GPIVOT combined update propagation rules is

(GPIVOT (L) =<1 Cx O) s MV 15

In comparison, the maintenance by pushing down the SELECT operator is

(GPIVOT (m_orderkey(0c 7 L) <0 (L = VL) W T orderkey(0e L) 517 L) 51 O 1 C) b MV 16,

Obviously, propagating changes through multiple self-joins is non-trivial, as it generates multiple
join terms [12]. Note that when the select condition involves more pivoted output columns, then
more self-joins will be generated when pushing down the select operator. Hence, the select pushdown

method will likely perform even worse in this case.

Next, we consider the insert case on Lineitem table. Figure 38 depicts the maintenance results.

Time (s)

250

200 T —e— Full-Recomp
150 // —— Ins/Del Maint

—»— SEL Pushdown

100 W
/:/./ —s— Comb. Update

50

% Insertion on
Lineitem Table

1% 5% 10% 15% 20%

Figure 38: Maintenance of View (2) under Insertion

We find that our combined update propagation rules again outperform all other alternatives.
Here the maintenance plan generated by combined update rules is

((GPIVOT (m_orderkey(0e (AL)) > LW AL) <1 O > C) > MV

In comparison, the maintenance plan by SELECT pushdown is

((GPIVOT (m_orderkey(0c (AL)) > (L W AL) W T _orderkey(0er L) D AL) > O 1 C) b MV

Clearly, the latter plan generates more join terms and will generate even more join terms when the

select condition is more complex. In conclusion, our combined update rules are always preferable

choices.

Here L denotes Lineitem table, O denotes Orders table, C' denotes Customer table, 7L denotes deletion on
Lineitem table and MV denotes materialized view.
16Here Cl is Ol _linenumber=1Al_extendedprice>30000

ol

7.3 Maintaining Aggregate Views

Figure 39 gives the algebra definition of an aggregate materialized view. As can be seen, it first
joins the Lineitem, Orders and Customer tables and then computes total price and count for each
customer, nationality and year. After that, the summary data is pivoted by year on both sum and

cnt in order to provide a crosstab view. The size of this view is 100,000 rows with 12 columns.

G P IVOT[1992,19931994,19951996]

yearon[sum.cnt]

c_custkey, n_nationkey, ¥ sum(l_extendedprice), count(*)
year(l_shipdate) D‘Q

X
Lineitem Orders Customer

Figure 39: Aggregate Materialized View Definition (3)

We first consider the delete case on Lineitem table. The following three methods can be used
to refresh the view. The first method is to perform full recomputation. The second method is to
perform incremental maintenance using update rules for GPIVOT and using insert/delete rules for
GROUPBY. The third method is to use combined update propagation rules for both GPIVOT and
GROUPBY as in Figure 27.

Time (s)
350
a
300 e
250 e
=7 —— Full-Recomp.
200 -
7 --»--Ins/Del GB
150 I T Maint.
100 = * 73 - ---m--- Comb. Update
50 o =
. -
0 e 1 1 | % Deletion on
1% 5% 10% 15% 20% Lineitem Table

Figure 40: Maintenance of View (3) under Deletion

Figure 40 depicts the maintenance results. Here y-axis denotes the maintenance cost in seconds.

x-axis denotes the percentages of deletion on Lineitem table. As can be seen from the figure, the

92

maintenance method using our combined update rules (in Figure 27) considerably outperforms the
one using the insert/delete rules for GROUPBY [18] by order of magnitude. The reason is that
the insert/delete rules for GROUPBY [18] are non-trivial, which involve costly identification and
then recomputation of affected groups. Our combined update rules avoid using insert/delete rules

for both GPIVOT and GROUPBY. Hence they perform much better.

Time (s)
350
300 =
250 —
- —— Full-Recomp.
200 =
m
o . --=--1Ins/Del GB
150 e Maint.
100 ---m--- Comb. Update
50 e =
..... L
0 Lo ; ; % Inserion on
1% 5% 10% 15% 20% Lineitem Table

Figure 41: Maintenance of View (3) under Insertion

Next, Figure 41 depicts the maintenance results under insertion case. As can be seen, the
results are similar to the deletion case. The maintenance using combined update rules performs
significantly better. In conclusion, our combined update rules are always preferable choices for

maintaining aggregate views.

8 Related Work

Incremental view maintenance has received considerable attentions from the database community
for the last few years [12, 11, 17, 6, 19]. In [12], the authors propose algorithms for incremental
view maintenance under bag semantics and also support recursive views in Datalog. In [11], the
authors establish an algebraic framework for propagating deltas through each operator, which is
more robust and extensible to new language constructs. In this work, we propose to extend this
framework to also support pivot and unpivot operators.

PIVOT is similar to GROUPBY in many ways [8]. In [18], the authors propose the insert/delete
and update propagation rules for GROUPBY operator. They also show that it is more preferable

to use the latter rules. However, unlike the PIVOT operator, the GROUPBY operator loses the

93

detailed data. Hence the combination and pullup rules for GROUPBY are fairly restrictive. As a
result, most commercial database systems only support SQJ+GROUPBY views. Fortunately, the
pivot operator has a lot of interesting properties since it keeps the detailed data. As shown in this
paper, they can be combined in many ways, resulting in a generalized pivot operator. They can
also be pulled up in the query algebra tree, which is more flexbile than that for group by operator.
As a result, it is possible to derive an efficient maintenance plan.

In [8], the authors propose the optimization and execution strategies for pivot and unpivot in
Microsoft SQL Server. In fact, similar techniques can also be applied to include the GPIVOT
and GUNPIVOT into the query engine as also briefly mentioned by the authors. In this paper,
we address another important aspect of the pivot and unpivot operators, i.e., incremental view
maintenance. We also show the necessity of GPIVOT definition for efficient view maintenance as
well as for the optimization of queries with even just simple pivots.

The PIVOT operator defined in [8] has slight semantic difference than the definition here, namely,
if we shall keep the pivot rows with all columns | or not. One primary difference for the incremental
maintenance of such a PIVOT operator are the propagation rules in the delete case. That is, when
we have a maintained pivoted tuple as (K, L, ..., L), we cannot simply delete it because there might
still exist other K tuples in the underlying table. One solution is to create an auxiliary view which
computes count(x) for each K. We delete the view tuple (K, L,..., L) only when its count of K
becomes 0. Clearly, the combination rules defined in this paper can help reduce the number of such
auxiliary views.

The pivot and unpivot operators studied in this paper are basically first-order, since the in-
put/output columns are predetermined in the query. In [14], the authors propose the SchemaSQL
language with FOLD and UNFOLD operators which are very similar to pivot and unpivot op-
erators. However, these two operators are high-order since the output columns are dynamically
determined. The incremental maintenance SchemaSQL views was first studied in [13]. However, the
technique is primarily tuple-based and not efficient for batch updates. The resulting maintenance
plan is also not ready for a query optimizer. In this paper, though we study the first-order version
of such operators, we are able to derive efficient maintenance plans. It is interesting future work
to extend our proposed algorithms to support the maintenance of high-order pivot and unpivot

operators.

o4

9 Conclusions

In this paper, we propose a novel framework for view maintenance with pivot and unpivot opera-
tors. We find that a generalized pivot operator, GPIVOT, not only has more powerful semantics
but is also crucial for incremental view maintenance. We propose the combination rules, pullup
rules and various propagation rules for GPIVOT and GUNPIVOT in order to derive an efficient
maintenance plan. Extensive performance evaluations confirm the effectiveness of various update
propagation rules. There are a number of promising future directions, e.g., optimization and execu-
tion of GPIVOT/GUNPIVOT in RDBMS, maintenance of source updates in order to avoid always
to decompose them into inserts and deletes, maintenance of pivot that includes all null tuples,
maintenance of high-order pivot and unpivot operators and query matching for such views.
Acknowledgement We would like to thank Latha S. Colby at IBM Almaden Research Center

for many valuable suggestions.

References

[1] Oracle 9i. http://www.oracle.com.

[2] R. Agrawal, A. Somani, and Y. Xu. Storage and Querying of E-Commerce Data. In Proceedings
of VLDB, pages 149-158, 2001.

3] R. G. Bello, K. Dias, A. Downing, J. J. F. Jr., J. L. Finnerty, W. D. Norcott, H. Sun,
A. Witkowski, and M. Ziauddin. Materialized Views in Oracle. In Proceedings of VLDB,
pages 659-664, 1998.

[4] S. Chaudhuri and U. Dayal. An Overview of Data Warehousing and OLAP Technology.
SIGMOD Record, 26(1):65-74, 1997.

[5] S. Chaudhuri and K. Shim. Query Optimization in the Presence of Foreign Functions. In
Proceedings of VLDB, pages 529-542, 1993.

[6] L.S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and H. Trickey. Algorithms for Deferred View
Maintenance. In Proceedings of SIGMOD, pages 469—480, 1996.

95

[7]

[13]

[14]

[16]

[17]

[20]

N. Colossi, W. Malloy, and B. Reinwald. Relational Extensions for OLAP. IBM System
Journal, Vol 41, No 4, 2002.

C. Cunningham, G. Graefe, and C. A. Galindo-legaria. PIVOT and UNPIVOT: Optimization
and Execution Strategies in an RDBMS. In Proceedings of VLDB, pages 998-1009, 2004.

R. Elmasri and S. B. Navathe. Fundamental of Database Systems. Benjamin/Cummings, 1989.

J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-Tab, and Sub-Total. In Proceedings of ICDFE, pages
152-159, 1996.

T. Griffin and L. Libkin. Incremental Maintenance of Views with Duplicates. In Proceedings

of SIGMOD, pages 328-339, 1995.

A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining Views Incrementally. In
Proceedings of SIGMOD, pages 157-166, 1993.

A. Koeller and E. A. Rundensteiner. Incremental Maintenance of Schema-Restructuring Views.

In Proceedings of EDBT, pages 354-371, 2002.

L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian. On Efficiently Implementing
SchemaSQL on an SQL Database System. In Proceedings of VLDB, pages 471-482, 19909.

W. Lehner, R. Sidle, H. Pirahesh, and R. Cochrane. Maintenance of Automatic Summary
Tables. In Proceedings of SIGMOD, pages 512-513, 2000.

Microsoft SQL Server (Yukon). http://www.microsoft.com/sql/yukon.

I. Mumick, D. Quass, and B. Mumick. Maintenance of Data Cubes and Summary Tables in a

Warehouse. In Proceedings of SIGMOD, pages 100-111, May 1997.

D. Quass. Maintenance Expressions for Views with Aggregation. In Proceedings of the Work-

shop on Materialized Views: Techniques and Applications, pages 110-118, 1996.

K. Salem, K. S. Beyer, R. Cochrane, and B. G. Lindsay. How To Roll a Join: Asynchronous

Incremental View Maintenance. In Proceedings of SIGMOD, pages 129-140, 2000.

TPC. Benchmark standard specification. May 1995.

o6

