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Abstract

Data warehousing and on-line analytical processing (OLAP) are essential for decision sup-
port applications. Common OLAP operations include for example drill down, roll up, pivot and
unpivot. Typically, such queries are fairly complex and are often executed over huge volumes
of data. The solution in practice is to use materialized views to reduce the query cost. Utiliz-
ing materialized views that incorporate not just traditional simple SELECT-PROJECT-JOIN
operators but also complex OLAP operators such as pivot and unpivot is crucial to improve
the OLAP query performance but as of now unexplored topic. In this work, we demonstrate
that the efficient maintenance of views with pivot and unpivot operators requires the definition
of more generalized operators, which we call GPIVOT and GUNPIVOT. We propose rewriting
rules, combination rules and propagation rules for such operators. We also design a novel view
maintenance framework for applying these rules to obtain an efficient maintenance plan. Exten-
sive experimental evaluation reveals the efficiency of our proposed maintenance techniques. Our
query transformation rules are thus dual purpose serving both view maintenance and query opti-
mization. This paves the way for the inclusion of the GPIVOT and GUNPIVOT into any DBMS
engine. Extensively performance study reveals the effectiveness of our proposed maintenance
strategies.

1 Introduction

Data warehousing and on-line analytical processing (OLAP) are essential for decision support ap-

plications and have been a focus by both the research and industrial communities [4]. A data ware-

house stores historical, summarized and consolidated data, important for complex trend analysis

applications. The data in the data warehouse is typically multidimensional. Example dimensions

for sales data are the product, location and time dimensions. Many complex transformations need

to be supported, including drill down, roll up, slice and dice and pivot, in order to perform online

analysis on such multidimensional data [4].

∗This work was supported in part by NSF grant #IIS 9988776.
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Relational database engines [15, 16] have been extended to natively support these OLAP op-

erations in order to achieve better performance. One well-known example is the extension of the

relational engine with CUBE and ROLLUP operators [10] to support multidimensional aggregation.

Making such operators explicit to a relational database engine provides excellent optimization op-

portunities [9]. Another example is the inclusion of PIVOT and UNPIVOT operators into Microsoft

SQL Server [8, 16] for efficient execution and optimization.

Beyond OLAP applications, such pivot and unpivot operators have also been shown to be useful

for sparse dataset processing by storing such data in vertical format [2].
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Figure 1: PIVOT and UNPIVOT Operators

For example, in Figure 1, the table ItemInfo stores the attributes of each auction. Since there

might be thousands of different item attributes while individual item may just have few of them, if

we were to store the ItemInfo table horizontally, i.e., devoting one column to each auction attribute,

we may have a table with thousands of columns filled with numerous NULL values. Hence, such

data are instead stored in the vertical format. In other words, the attribute names are treated

explicitly as data values and are stored pairwise with their corresponding attribute values.

The pivot operator transforms the vertical data into horizontal format. More precisely, we

pivot the column ‘Value’ by the column ‘Attribute’. Only the values of ‘Manufacturer’ and ‘Type’

are specified to be of interest indicated by the superscript ‘[Manufacturer, Type]’. They will be

converted into column names of the pivoted output table. ‘⊥’ means empty entry. The unpivot

operator converts column names into data values in a reverse fashion.

The benefits of native support of pivot and unpivot by the query engine are multi-fold [8].

One, we can optimize a query containing pivot/unpivot by moving these operators around the

algebra tree. Two, strategies for optimizing the execution of such operators can also be devised.
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Despite these execution and optimization strategies, these operators are still potentially costly to

evaluate especially when applied to huge volumes of data in data warehousing scenarios. Usage

of materialized views to further improve the query performance is a commonly accepted strategy.

However, one critical issue, the incremental maintenance of such views remains unsolved, making

the refresh cost (i.e., always recomputation) intolerable.

We propose to take an algebraic approach [11] towards the incremental maintenance of views

with pivot and unpivot operators. The benefits of tackling the incremental maintenance of such

ROLAP views at the algebra level are that first the result is not tied to any particular query

language. Second, the correctness of our solution can also easily be shown. In summary, the main

contributions of this work are:

• We propose a novel framework for incremental maintenance of views with pivot and unpivot

operators. We analyze the basic propagation rules for pivot and show how to obtain an

efficient maintenance plan. In order to achieve this, we demonstrate that the transformation

of the view query is a necessary step. To our knowledge, this is the first work on efficient

maintenance of views with pivot and unpivot, an important class of ROLAP views which are

of great interest in practice.

• In order to achieve such query transformation, we propose a generalized pivot operator GPIVOT,

which not only has more powerful semantics but also can be used to merge multiple pivot

operators based on our combination rules. These combination rules are useful for both view

maintenance and query optimization.

• We propose the pullup rules for GPIVOT operators in order to move the GPIVOT operators

to the top of the query tree. These rules as well as the corresponding pushdown rules are also

useful for both view maintenance and query optimization.

• We propose the propagation rules for GPIVOT and its reverse operator GUNPIVOT for the

maintenance of ROLAP views. The output of our techniques is a maintenance plan, which

can be optimized by a cost-based optimizer using our proposed query transformation rules.

• We demonstrate that these propagation rules may not be efficient when the GPIVOT interacts

with other operators in the view query, such as SELECT and GROUPBY. We design special
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propagation rules by taking such interactions into consideration to derive a more efficient

maintenance plan.

• We also propose the rewriting rules for GUNPIVOT, the reverse operator for GPIVOT.

• We formally prove the correctness of the rewriting and propagation rules for GPIVOT and

GUNPIVOT.

• The extensive performance evalutions confirms the effectiveness of our proposed techniques

for efficient view maintenance.

Overall, our solution fits nicely into the existing maintenance framework for aggregate views

[15, 17]. This makes our maintenance solution easily integrable into these systems. Our query

transformation rules serve a dual purpose, namely, both for view maintenance and for query opti-

mization. This paves the way to include the GPIVOT and GUNPIVOT operators into the query

engine.

The organization of the rest paper is as follows. Section 2 studies the basic propagation rules for

pivot. Section 3 presents the overview of our proposed solution for view maintenance. We define

the GPIVOT and GUNPIVOT operators and the combination rules in Section 4. The rewriting

rules for GPIVOT and GUNPIVOT are described in Section 5. We propose the propagation rules

for GPIVOT and GUNPIVOT and design a novel maintenance framework for applying these rules

to obtain an efficient maintenance plan in Section 6. Section 7 presents the results of performance

study. Section 8 reviews the related work and Section 9 concludes the paper.

2 Basis on PIVOT and UNPIVOT

2.1 PIVOT and UNPIVOT Operators

We first define the PIVOT and UNPIVOT operators. Assume V is a table with the schema (K,A,B)

where K denotes possibly multiple columns and A, B are one column each. The PIVOT operator

is defined in Equation (1) 1. It takes columns A and B as input parameters and [A1, ..., Am] as

output parameters, where Ai are values of column A. The result of PIVOT converts these column

1Except for the NULL handling, the PIVOT and UNPIVOT operators defined in this paper are similar to v2h/h2v
and FOLD/UNFOLD operators in [2, 8, 14].
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values Ai into column names.

PIVOT
[A1,...,An]
A on B (V ) = [=⊲⊳<n

i=1πK,B(σA=‘A′

i
(V ))] (1)

Here =⊲⊳< means full outerjoin and is used to find each Ai values for K. Such (K,Ai) value pair

may not always exist in table V , hence an outerjoin is required. The missing value will then be

denoted as ‘⊥’. An example of PIVOT is depicted in Figure 1. Note that in order to have the

results meaningful, the columns K,A together must form the key of table V . Then the key for the

pivoted output table is K.

Now we assume that the table H has the schema (K,A1, ..., An), where K denotes multiple

columns and each Ai is one column. The UNPIVOT is defined in Equation (2) with columns

[A1, ..., An] as the input parameters. K usually assumes to be the key of table H in practice al-

though it is not required for the applicability of unpivot.

UNPIVOT[A1,...,An](H) = [∪n
i=1πK,‘A′

i
,Ai

(σAi 6=⊥H)] (2)

One example of UNPIVOT is given in Figure 1, where the columns names ‘Manufacturer’ and

‘Type’ are converted into data values.
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Figure 2: A Sample ROLAP View
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Figure 2 depicts an example view composed of relational algebra and pivot operators. In this

example, the vertical table Payment stores the different types of payment information. It is first

pivoted to output the prices of type Credit and ByAir. Then an equi-join is performed with the

Product table. After that, we compute the total Credit and ByAir payments for each manufacturer

and type. For this, we use the notation F [9] to specify the group-by columns (Manu, Type) and

the aggregation list (sum(Credit), sum(ByAir)). The aggregate results are pivoted again in order to

provide a crosstab view of the summary data. We will show in this paper a strategy for generating

an efficient maintenance plan for complex ROLAP views such as this one.

2.2 Basic Propagation Rules

As a first step to study the incremental maintenance of views with pivot and unpivot operators,

Figure 3 depicts some rules for how to propagate changes through the pivot operator 2. Assume

some data were inserted into the ItemInfo table. The first rules, which we call insert/delete propa-

gation rules, propagate these changes through the pivot operator as one positive delta (insert) and

one negative delta (delete) to the original pivoted result. Here the negative delta are the old output

tuples affected by the source inserts. The positive delta are the new output tuples introduced by

the source inserts. The second rules, which we call update propagation rules, first perform a left

outer-join between the pivoted delta, PIVOT(∆I), and the original result, PIVOT(I). Then from

the join result, the unmatched tuples will be inserted and the matched tuples will be updated.

2.3 Discussion of Propagation Rules

We note that both propagation rules in Figure 3 access the original pivoted result, PIVOT(I).

If the pivot is an intermediate operator in the query plan, then re-evaluating this intermediate

result PIVOT(I) or even just partially re-evaluating it by predicate pushdown could still be fairly

expensive. Moreover, the update propagation rules are not applicable in this case unless the

intermediate results are materialized. This may be prohibitively expensive. In comparison, if

the pivot is the last operator in the query plan, then PIVOT(I) represents the materialized view

itself. In this case, we can avoid the re-evaluation of PIVOT(I). Instead we could perform a join

between the delta and the materialized view itself. Hence, these propagation rules can be more

2The propagation rules for unpivot are relatively simple and will be discussed in Section 6, together with the
detailed formalism.
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Figure 3: Propagating Changes through PIVOT

efficiently applied when the pivot is the last operator in the query plan.

Second, even when the pivot is the last operator in the query plan, there are still some differ-

ences between these two types of propagation rules. For the insert/delete rules, the tuples to be

deleted might be re-inserted again with just a few column changes. In Figure 3, (2,Panasonic,⊥)

and (3,⊥,VCR) are deleted and re-inserted as (2,Panasonic,DVD) and (3,Panasonic,VCR). In com-

parison, the update rules can make in-place changes of these rows by a SQL update statement.

Such deletion and then re-insertion generally introduces more CPU and I/O cost than the update

approach.

Based on the observations above, we conclude that in order to derive an efficient maintenance

plan, (1) the pivot should be the last operator in the query plan and (2) the update propagation

rules are preferred to the insert/delete propagation rules. In fact, similar heuristics have also been

employed in prior view maintenance work. For example, the propagation rules for GROUPBY can

also use either insert/delete or update operations [18]. The update propagation rules are preferable

as suggested in [18] and in fact are the ones incorporated into many commercial systems [3, 15].

The update propagation rules also require the GROUPBY to be the last operator in the query

plan. These heuristics for GROUPBY are the same as ours for pivot.
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3 Our Overall Approach

In this work, we propose a systematic way to efficiently and incrementally maintain both aggregate

or non-aggregate materialized views containing pivot and unpivot operators.

PIVOT

PIVOT
PIVOT
PIVOT

PIVOT’

PIVOT’

MV

Update Propagation Rules

∆

Step 1: Query Transformation Phase

Step 2: Maintenance Compile Phase

Maintenance Plan

Query Optimizer

Propagate

Apply

∆ ∆ ∆

Figure 4: Solution Overview

There might be multiple pivot operators in the query algebra tree (see the example query in Fig-

ure 2). Except for the top pivot in the tree, other intermediate pivot operators may not propagate

changes efficiently. Hence, as shown in Figure 4, the first step of our solution is to pull the pivot

operators up to the top of the algebra tree if possible by query rewriting rules and combine them

into a single extended pivot operator, which we call Generalized PIVOT (GPIVOT).

The second step is to construct the maintenance plan based on the transformed query algebra

tree. The resulting maintenance plan contains two phases. The propagate phase propagates the

deltas through each operator to the top of the tree to compute the final delta. Here, we can

apply the existing propagation rules for relational operators [11]. The apply phase applies the

update propagation rules for this extended pivot operator. Together, this two-phase processing of

propagate and apply phases fit nicely into the traditional aggregate view maintenance framework

[15, 17]. This makes our solution easily integrable into existing systems. Note that the result

of this compile phase is a maintenance query plan. Thus it is optimizable by a query optimizer.

For example, we now may want to push down or split the top pivot operator for execution. Such

decision can be made by a cost-based optimizer.

Note that for those intermediate pivot operators that cannot be pulled up, we have to apply the
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insert/delete propagation rules in order to be able to propagate the changes through them. The

resulting maintenance plan may still outperform the full recomputation approach. This also makes

our solution complete in the sense that it is capable of maintaining any ROLAP views.

4 Combining Multiple PIVOTs

4.1 GPIVOT and GUNPIVOT: Generalized PIVOT and UNPIVOT

In this section, we will first describe how to combine multiple pivot operators. We will show that

the resulting pivot operator, which we call Generalized PIVOT (GPIVOT), is a natural extension

of the simple pivot in Equation (1) with more powerful semantics. Its definition is in Equa-

tion (3). Here we assume that the table V has schema (K,A1, A2, ..., Am, B1, B2, ..., Bn), where

K denotes possibly multiple columns and Ai, Bj denote one column each 3. (K,A1, ..., Am) must

form a key for pivot applicability. Similar to the simple pivot operator, the input parameters for

GPIVOT are the columns [A1, ..., Am] and [B1, ..., Bn]. The output parameters for GPIVOT are

[(a1
1, ..., a

1
m), ..., (ap

1, ..., a
p
m)], which are values of columns (A1, ..., Am).

GPIVOT
[(a1

1
,...,a1

m),...,(ap
1
,...,a

p
m)]

[A1,...,Am] on [B1,...,Bn](V ) = [=⊲⊳<
p
i=1πK,B1,...,Bn(σ(A1,...,Am)=(ai

1
,...,ai

m)(V ))] 4 (3)

An example of GPIVOT is shown in Figure 5. Here ‘{Sony, Panasonic} × {TV, V CR}’ means that

any combination of the given manufacturer and type values will be output. Unlike the simple pivot,

the GPIVOT output column names now need special treatment. We use the simple protocol of

naming the pivoted output columns as ‘ai
1 ∗∗a

i
2 ∗∗...∗∗a

i
m ∗∗Bj ’

5. Note that the GPIVOT operator

is able to pivot multiple measurements based on multiple dimensions, a rather common and highly

useful operation [7] for multi-dimensional databases.

The GUNPIVOT operator is designed to decode the column names in the reverse way (Equa-

tion (4)). Here we assume the table H has schema (K,a1
1 ∗ ∗...a

1
m ∗ ∗B1, ..., a

1
1 ∗ ∗...a

1
m ∗ ∗Bn, ..., a

p
1 ∗

∗...ap
m ∗ ∗B1, ..., a

p
1 ∗ ∗...ap

m ∗ ∗Bn), where K can be multiple columns and each ai
1 ∗ ∗...a

i
m ∗ ∗Bj is

one column. One example is in Figure 5.

3This input table schema will be used in the rest paper for GPIVOT.
4For simplicity, we assume GPIVOT will output all (B1, ..., Bn) for each (ai

1, ..., a
i
m). We can add an additional

projection to remove unwanted columns. Such projection can be pushed into the GPIVOT execution for optimization.
5Alternatively, we can use a separate table to store such column name information.
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GUNPIVOT[(a1
1
∗∗...a1

m∗∗B1,...,a1
1
∗∗...a1

m∗∗Bn),

...

(ap
1
∗∗...ap

m∗∗B1,...,a
p
1
∗∗...ap

m∗∗Bn)](H)

= [∪p
i=1πK,‘ai

1

′
,...,‘ai

m
′
,ai

1
∗∗...ai

m∗∗B1,...,ai
1
∗∗...ai

m∗∗Bn

(σany ai
1
∗∗...ai

m∗∗Bj 6=⊥H)] (4)

Since PIVOT is a special case of GPIVOT and UNPIVOT a special case of GUNPIVOT, in the

rest of this paper we will only consider GPIVOT and GUNPIVOT. The results obviously apply to

PIVOT and UNPIVOT as well.

4.2 Combining Multiple GPIVOTs

4.2.1 Multicolumn PIVOT

The first combination rule for GPIVOT is called multicolumn pivot. Take the view in Figure 2 for

example, both the total sum of Credit and the total sum of ByAir are pivoted by first pivoting

each of them individually and then joining the respective results. We propose to combine these two

pivot operators into one that simply pivots both ‘CreditSum’ and ‘ByAirSum’ columns by ‘Type’

column as GPIV OT
[TV,V CR]
Type on [CreditSum,ByAirSum]. This combination rule for GPIVOT is formally

defined in Equation (5), assuming the same schema of table V .
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GPIVOT
[{(ai

1
,...,ai

m)}]

[A1,...,Am] on [B1,...,Bn](V ) =

GPIVOT
[{(ai

1
,...,ai

m)}]

[A1,...,Am] on [B1,...,Bj]
(πK,A1,...,Am,B1,...,Bj

V ) ⊲⊳K

GPIVOT
[{(ai

1
,...,ai

m)}]

[A1,...,Am] on [Bj+1,...,Bn](πK,A1,...,Am,Bj+1,...,BnV ) (5)

Proof for Equation (5): By GPIVOT definition in Equation (3), we have

GPIVOT
[{(ai

1
,...,ai

m)}]

[A1,...,Am] on [B1,...,Bj]
(πK,A1,...,Am,B1,...,Bj

V ) =

=⊲⊳<
p
i=1πK,B1,...,Bj

(σ(A1,...,Am)=(ai
1
,...,ai

m)(πK,A1,...,Am,B1,...,Bj
V ))

GPIVOT
[{(ai

1
,...,ai

m)}]

[A1,...,Am] on [Bj+1,...,Bn](πK,A1,...,Am,Bj+1,...,BnV ) =

=⊲⊳<
p
i=1πK,Bj+1,...,Bn(σ(A1,...,Am)=(ai

1
,...,ai

m)(πK,A1,...,Am,Bj+1,...,BnV ))

GPIVOT
[{(ai

1
,...,ai

m)}]

[A1,...,Am] on [B1,...,Bn](πK,A1,...,Am,B1,...,BnV ) =

=⊲⊳<
p
i=1πK,B1,...,Bn(σ(A1,...,Am)=(ai

1
,...,ai

m)(πK,A1,...,Am,B1,...,BnV ))

In other words, we need to prove the following:

[=⊲⊳<
p
i=1πK,B1,...,Bj

(σ(A1,...,Am)=(ai
1
,...,ai

m)(πK,A1,...,Am,B1,...,Bj
V ))]

⊲⊳K [=⊲⊳<
p
i=1πK,Bj+1,...,Bn(σ(A1,...,Am)=(ai

1
,...,ai

m)(πK,A1,...,Am,Bj+1,...,BnV ))]

= [=⊲⊳<
p
i=1πK,B1,...,Bn(σ(A1,...,Am)=(ai

1
,...,ai

m)(πK,A1,...,Am,B1,...,BnV ))] (5.1)

(1) Since both sides of Equation (5.1) have a key K in their output, we first show that both sides

output the same set of key values. The left side of Equation (5.1) outputs key set: δK(σ(A1,...,Am)=(a1
1
,...,a1

m)

∨...∨(A1,...,Am)=(ap
1
,...,a

p
m)(V )), where δ means project under set semantics (i.e., select distinct). The

right side of Equation (5.1) output key set: δK(σ(A1,...,Am)=(a1
1
,...,a1

m)∨...∨(A1,...,Am)=(ap
1
,...,a

p
m)(V )) ⊲⊳

δK(σ(A1,...,Am)=(a1
1
,...,a1

m)∨...∨(A1,...,Am) =(ap
1
,...,a

p
m)(V )) = δK(σ(A1,...,Am)=(a1

1
,...,a1

m)∨...∨(A1,...,Am)=(ap
1
,...,a

p
m)(V )).

Hence, both sides generate the same set of key values.

(2) Next we show that for a given value k1, both sides of Equation (5.1) yields the same

output tuple. Assume for a given K value k1, a set of rows {r1, ..., rp} are defined as: ri =

πK,B1,...,Bn(σ(A1,...,Am)=(ai
1
,...,ai

m) AND K=k1
(V )). Note that there must be at most one such tuple in

V that satisfies the above condition, because (K,A1, ..., Am) forms the key of table V . If table V does

not contain any tuple that satisfies the above condition, then we let ri = (k1,⊥, ...,⊥). Based on this

definition, for a given key value k1, the output of the right side of Equation (5.1) is ⊲⊳ {ri}. While the

output of the left side of Equation (5.1) is [⊲⊳ {πK,B1,...,Bj
(ri)}] ⊲⊳ [⊲⊳ {πK,Bj+1,...,Bn(ri)}] = ⊲⊳ {ri}

since πK,B1,...,Bj
(ri) ⊲⊳ πK,Bj+1,...,Bn(ri) = ri. Hence for a given value k1, both sides of Equation (5.1)
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yields the same output tuple.

By (1) and (2), we thus reach the conclusion that Equation (5) always holds.

4.2.2 PIVOT Composition

The second rule is to combine two adjacent GPIVOT operators, when all the pivoted output

columns of the first pivot are the input parameters of the second pivot. This may occur when the

user wants to pivot the measurements by more than one dimension. One simple example is shown

in Figure 6. On the left side of the figure, the second pivot takes all the output columns of the first

pivot as the columns to be further pivoted on. These two operators can also be combined into one

operator by combining their parameters as shown on the right side of the figure.
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Figure 6: Composition of GPIVOT

Equation (6) formally defines this rule. We assume the same table V and {(ai
1, ..., a

i
l)} as the

output values of (A1, ..., Al) and {(ai
l+1, ..., a

i
m)} as the output values of (Al+1, ..., Am). Here the

second GPIVOT takes all the output columns of the first GPIVOT, i.e., ‘{(ai
l+1, ..., a

i
m)} × {Bj}’,

as the input parameters.

GPIVOT
[{(ai

1
,...,ai

l
)}×{(ai

l+1
,...,ai

m)}]

[A1,...,Al,Al+1,...,Am] on [B1,...,Bn](V ) =

GPIVOT
[{(ai

1
,...,ai

l
)}]

[A1,...,Al] on [{(ai
l+1

,...,ai
m)}×{Bj}]

(GPIVOT
[{(ai

l+1
,...,ai

m)}]

[Al+1,...,Am] on [B1,...,Bn](V )) (6)

Proof for Equation (6): We assume the output values for (A1, ..., Al) are {(a1
1, ..., a

1
l ), ..., (a

p1

1 , ..., a
p1

l )}

and the output values for (Al+1, ..., An) are {(a1
l+1, ..., a

1
n), ..., (ap2

l+1, ..., a
p2
n )}.
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(1) Since both sides of Equation (6) have a key K in their output, we first show that both sides

output the same set of key values. The left side of Equation (6) outputs key set: δK(σ[(A1,...,Al)=(a1
1
,...,a1

l
)

∨...∨(A1,...,Al)=(a
p1
1

,...,a
p1
l

)]∧[(Al+1,...,Am)=(a1
l+1

,...,a1
m)∨...∨(Al+1,...,Am)=(a

p2
l+1

,...,a
p2
m )](V )), where δ means project

under set semantics (i.e., select distinct). The right side of Equation (6) output key set: δK(σ(A1,...,Al)=

(a1
1
,...,a1

l
)∨...∨(A1,...,Al)=(a

p1
1

,...,a
p1
l

)(δK,A1,...,Al
(σ(Al+1,...,Am)=(a1

l+1
,...,a1

m)∨...∨(Al+1,...,Am)=(a
p2
l+1

, ...,a
p2
m )(V )). By

pushing down the selection, we get δK(σ[(A1,...,Al)=(a1
1
,...,a1

l
) ∨...∨(A1,...,Al)=(a

p1
1

,...,a
p1
l

)]∧[(Al+1,...,Am)=(a1
l+1

,...,a1
m)

∨...∨(Al+1,...,Am) =(a
p2
l+1

,...,a
p2
m )](V )). Hence, both sides generate the same set of key values.

(2) Next we show that for a given value k1, both sides of Equation (6) yields the same output tu-

ple. A set of rows {r11, ..., rp1p2
} are defined as: rij = πK,B1,...,Bn(σ(A1,...,Al)=(ai

1
,...,ai

l
) AND (Al+1,...,An)

=(aj

l+1
,...,a

j
n) AND K=k1

(V )), where i = 1..p1 and j = 1..p2. If table V does not contain any tuple

that satisfies the above condition, then we let rij = (k1,⊥, ...,⊥). Based on this definition, for a

given key value k1, the output of the left side of Equation (6) is ⊲⊳ {rij}. For the right side of

Equation (6), we have:

GPIVOT
[{(ai

1
,...,ai

l
)}]

[A1,...,Al] on [{(ai
l+1

,...,ai
m)}×{Bj}]

(GPIVOT
[{(ai

l+1
,...,ai

m)}]

[Al+1,...,Am] on [B1,...,Bn](V )) =

=⊲⊳<
p1

i=1πK,C1,...,Cp2×n
(σ(A1,...,Al)=(ai

1
,...,ai

l
)[=⊲⊳<

p2

j=1πK,A1,...,Al,B1,...,Bn(σ
(Al+1,...,An)=(aj

l+1
,...,a

j
n)

(V ))]).

Here C1, ..., Cp2×n are the pivoted output columns for the first GPIVOT. By pushing down the

first selection, we get:

=⊲⊳<
p1

i=1πK,C1,...,Cp2×n
([=⊲⊳<

p2

j=1πK,A1,...,Al,B1,...,Bn(σ
(Al+1,...,An)=(aj

l+1
,...,a

j
n) AND (A1,...,Al)=(ai

1
,...,ai

l
)
(V ))]).

Hence, for a given K value k1, the output tuple is ⊲⊳
p1

i=1 [⊲⊳p2

j=1 rij] =⊲⊳ {rij}. Thus both sides of

Equation (6) yield the same output tuple for any value of K.

By (1) and (2), we thus reach the conclusion that Equation (6) always holds.

4.2.3 Completeness of Combination Rules

We now study the combination rules for any two adjacent GPIVOT operators in general. In

particular, we consider the possible parameters for the second GPIVOT.

Assume the final output has schema (K, {Ai}), where {Ai} are the pivoted output columns. We

13



note that if the two adjacent GPIVOT operators can be combined into one, then the following three

observations must hold: (1) The key K in the final output table must be part of the key in the

original table based on the GPIVOT definition in Section 4.1; and (2) the pivoted output column

names must have the same structure as the GPIVOT definition in Section 4.1, i.e., ‘ai
1∗∗..∗∗a

i
m∗∗Bj ’;

and (3) the data values in the original table are not lost, i.e., they either still remain as data values

or become column names in the final pivoted output.
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Figure 7: Example for Combining Two Adjacent GPIVOTs

Figure 7 depicts some examples for two adjacent GPIVOTs. In the first case, the pivoted output

column a1 is used to pivot the column K. The key in the output is (M,N, a2), which cannot

be part of the key in the original table since a2 is not even a column there. More generally,

the pivoted output columns for the first GPIVOT must all be used for the second GPIVOT.

Otherwise, some of the pivoted output columns will form the key for the second GPIVOT. This

makes it impossible for the combination of these two GPIVOTs. The reason is that the pivoted

output columns are only data values in the original table and cannot form a key, which violates

observation (1) mentioned above. We can thus quickly determine that the second case in Figure 7 is

not possible for combination either, since the pivoted output columns of the first GPIVOT appear

as part of the key in the final output.

Now assume the second GPIVOT pivots columns (X1, ...,Xm) by columns (Y1, ..., Yn). We know

that the pivoted output columns of the first GPIVOT must all be contained in {Xi} and {Yj}. If

{Xi} contains any of the pivoted output column as the third case in Figure 7, then their columns

names (which are part of the original data, such as a1 in this example) will be lost in the final

output, which violates observation (3). We thus reach the conclusion that {Yj} must contain all
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pivoted output columns of the first GPIVOT.

When {Yj} only contains all the pivoted output columns of the first GPIVOT, the two GPIVOTs

can be combined as in Equation (6). The last possibility is when {Yj} contains extra columns

besides all the previous pivoted output columns, as the fourth case in Figure 7. In this case, the

two GPIVOTs cannot be combined either, since the pivoted output column names cannot have the

same structure, which violates observation (2).

As a final remark, we can apply the combination rules developed in this section in the query

graph in order to reduce the number of pivots. The combination rule in Section 4.2.1 increases the

columns (measurements) to be pivoted on, while the rule in Section 4.2.2 increases the columns

(dimensions) to be pivoted by. It is important to note that these combination rules not only help

for incremental view maintenance but are also beneficial for optimization of queries, even those

with only simple pivots.

4.3 Splitting GPIVOT

The split rules for GPIVOT can easily be derived based on the combination rules. For example,

the Equation (5) and (6) can be used to split the GPIVOT defined on the left side of the equation

to the expression on the right side.

There are also some interesting splitting rule for parallel processing of GPIVOT (similar to the

parallel processing of simple pivot in [8]). That is, we compute the GPIVOT sub-results for each

node and then combine them together to generate the final output. This is very similar to the

standard local/global aggregation for parallel aggregate processing. The GPIVOT sub-results at

each node can be combined using the propagation rules under insert case in Section 6.1, as we will

elaborate later.

5 Rewriting Rules for GPIVOT and GUNPIVOT

As motivated in Section 2.3, the efficient view maintenance requires us to pull the GPIVOT opera-

tors up the view query tree in order to apply the update propagation rules. In this section, we will

study the pullup as well as the pushdown rules for GPIVOT. We will also present the rewriting

rules for GUNPIVOT.
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5.1 Pullup Rules for GPIVOT

Figure 8 describes one general principle for the GPIVOT pullup rules. Assume there is one operator

“Op” above the GPIVOT. Since the output of the pulled up GPIVOT’ must contain a key due to

the nature of pivot operators, a prerequisite for the pullup applicability is that the operator “Op”

must also preserve a key.

Op

GPIVOT

Key
Preserve

Key

Op'

GPIVOT’

Figure 8: Prerequisite for GPIVOT Pullup: Key Preservation

5.1.1 Pullup GPIVOT through SELECT

While selection pushdown is trivial for most relational operators, it is complex for GPIVOT. If the

selection condition is defined on non-pivoted output columns, then we can push it down without

any changes such as the condition σCountry=‘USA′ in Figure 9.

However, if the selection condition involves pivoted output columns and is null-intolerant (i.e., is

false when NULL), then pushing down the selection results in multiple self-joins. For instance, in

Figure 9, in order to push down the condition σSony∗∗TV ∗∗Price>200, we first find the country with its

Sony TV price larger than 200 and then do a join with the original table to find other information

about these countries. That is: πCountry(σManu=Sony ∧ Type=TV ∧ Price>200(V )) ⊲⊳ V . More self-

joins are required if more pivoted output columns are involved. Formally, assume a selection predi-

cate over two pivoted output columns as: σ
a

i1
1
∗∗...a

i1
m∗∗Bl1

op a
i2
1
∗∗...a

i2
m∗∗Bl2

(GPIV OT
[{(ai

1
,...,ai

m)}]

[A1,...,Am] on [B1,...,Bn](V )).

Here ‘op’ is any comparison operator. This predicate can be pushed down based on the rule below.

σ
a

i1
1
∗∗...a

i1
m∗∗Bl1

op a
i2
1
∗∗...a

i2
m∗∗Bl2

(GPIV OT
[{(ai

1
,...,ai

m)}]

[A1,...,Am] on [B1,...,Bn](V )) =

GPIV OT
[{(ai

1
,...,ai

m)}]

[A1,...,Am] on [B1,...,Bn](

πK [σ
(A1,...,Am)=(a

i1
1

,...,a
i1
m)

(V ) ⊲⊳K1=K2 ∧ B1
l1

op B2
l2

σ
(A1,...,Am)=(a

i2
1

,...,a
i2
m)

(V )] ⊲⊳ V ) (7)

Proof for Equation (7):
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σ
a

i1
1
∗∗...a

i1
m∗∗Bl1

op a
i2
1
∗∗...a

i2
m∗∗Bl2

(GPIV OT
[{(ai

1
,...,ai

m)}]

[A1,...,Am] on [B1,...,Bn](V )).

= (πK [σ
(A1,...,Am)=(a

i1
1

,...,a
i1
m)

(V ) ⊲⊳K1=K2 ∧ B1
l1

op B2
l2

σ
(A1,...,Am)=(a

i2
1

,...,a
i2
m)

(V )]) ⊲⊳

(GPIV OT
[{(ai

1
,...,ai

m)}]

[A1,...,Am] on [B1,...,Bn](V )).

By pushing down the join condition (since it is on key column), we have:

= GPIV OT
[{(ai

1
,...,ai

m)}]

[A1,...,Am] on [B1,...,Bn](

πK [σ
(A1,...,Am)=(a

i1
1

,...,a
i1
m)

(V ) ⊲⊳K1=K2 ∧ B1
l1

op B2
l2

σ
(A1,...,Am)=(a

i2
1

,...,a
i2
m)

(V )] ⊲⊳ V ).

Note that when i1 = i2, i.e., the columns have the same prefix, then the first join can be avoided

as GPIV OT (πK [σ
(A1...Am)=(a

i1
1

...a
i1
m) ∧ Bl1

op Bl2

(V )] ⊲⊳ V ).
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Figure 9: Pullup through SELECT

The above rules can be easily extended to handle predicates with even more pivoted output

columns and complex conjunctive or disjunctive conditions. To handle more pivoted output

columns, we need to perform more self-joins. Each join is to find one pivoted output column.

The final join result provides the key values that satisfy the condition. Conjunctive and disjunctive

conditions can be achieved by unioning or intersecting these key values.

However, the benefit of pulling GPIVOT up is likely offset by such multiple self-joins since

propagating changes through multiple self-join expressions is non-trivial, i.e., generating multiple

join terms [12]. One alternative to address this potential performance problem is that for those

conditions that result in multiple self-joins if pushed down, we pull both the SELECT and GPIVOT

up the query tree and design special update propagation rules. We will describe this technique in

Section 6.3.2.
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5.1.2 Pullup GPIVOT through PROJECT

In this work, we consider negative project, i.e., removal of columns. The project operator that drops

the non-pivoted output columns can be pushed down unless this project violates the prerequisite

of the key preservation. For example, the drop of the ‘Country’ column above the GPIVOT in

Figure 9 cannot be pushed down since the output no longer contains a key. We have to use the

insert/delete propagation rules for this pivot. The project operator that drops the pivoted output

columns need careful treatment. E.g., π¬V CR(GPIV OT
[TV,V CR]
Type on Price) 6= GPIV OT

[TV ]
Type on Price. The

reason is that the left part of equation will output TV with ⊥ while the right part not. We may

need to use the insert/delete propagation rules for this GPIVOT. This in fact also suggest not to

remove the pivoted output columns in the materialized view definition, which also increases the

opportunities to utilize this view to answer queries.

5.1.3 Pullup GPIVOT through JOIN

Guided by the same principle, the join result should also preserve a key in order to pull up the

GPIVOT. In general, both operands having a key must hold. While this requirement seems restric-

tive, however in data warehousing senarios the majority of the joins are between the fact tables and

the dimension tables on their keys and foreign keys, respectively. Thus they fall into this category.

The rules of pulling up GPIVOT through the JOIN operator are similar to those for the SELECT

operator. If the join condition is not on the pivoted output columns, then we can pull up the

GPIVOT without change. An example is shown in Figure 10. That is, since the AuctionID is the

non-pivoted output column, the GPIVOT can be pulled up (the pullup through GROUPBY in the

figure will be explained later). When the join condition involves pivoted output columns, pushing

down the join operator results in multiple self-joins. This again is similar to the situation for the

SELECT operator.

Assume a join is GPIV OT (A) ⊲⊳σ1 ∧ σ2
B, where σ1 is the join condition involving only non-

pivoted output columns of GPIV OT (A) and σ2 is the join condition involving the pivoted output

columns. We can pull up the GPIVOT as σ2(GPIV OT (A ⊲⊳ σ1B)). Then we can pull both σ2

and the GPIVOT up the algebra tree as in Section 5.1. Note that if the join condition σ1 is empty,

then the pullup of the GPIVOT results in a Cartesian product of the underlying tables. If the join

condition is σ1 ∨ σ2, then we cannot split these two conditions. For those cases, we instead choose
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Figure 10: Pullup through Join and GROUPBY

the insert/delete propagation rules for this GPIVOT.

5.1.4 Pullup GPIVOT through GROUPBY

The applicability of pulling up GPIVOT through GROUPBY depends on how the GROUPBY uses

the pivoted output columns. In particular, if the pivoted output columns are group-by columns,

then we cannot pullup the GPIVOT. If the pivoted output colomns are used to compute the

aggregate, then we can pullup the GPIVOT.

Figure 10 depicts an example when we cannot pullup the GPIVOT. While the GPIVOT in the

figure is successfully pulled upon through the join operator, it cannot be further pulled up through

the GROUPBY denoted by F in the figure. The reason is that the group-by columns, e.g., ‘Sony’

and ‘TV’, are two values originating from the same column ‘Value’. There is no good way to achieve

such multi-value grouping on a single column.

The lower pivot in Figure 2 is an example that can be pulled up through the GROUPBY. That

is, the aggregate functions are over the pivoted output columns ‘Credit’ and ‘ByAir’. In this case,

we can pull up the GPIVOT by modifying both the GROUPBY and GPIVOT’s parameters, i.e.,

by adding the pivot parameter ‘Payment’ into the group-by columns and by aggregating over the

‘Price’ column. The rewritten GPIVOT will take the aggregate results as input parameters. The

lower part of the query tree up to the GROUPBY in Figure 2 can thus be rewritten as in Figure 11.

Formally, assume the same table V and the same parameters for the GPIVOT. The GROUPBY
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Figure 11: Pullup through GROUPBY

operator F takes K ′ ⊆ K as group-by columns and computes any aggregate function f over the

pivoted output columns {(ai
1, ..., a

i
m)} × {Bj}. This pull up rule is given in Equation (8).

K ′Ff({(ai
1
,...,ai

m)}×{Bj})
(GPIV OT

[{(ai
1
,...,ai

m)}]

[A1...Am] on [B1...Bn](V )) =

GPIV OT
[{(ai

1
,...,ai

m)}]

[A1,...,Am] on [f(B1),...,f(Bn)](K ′,A1,...,Am
Ff(B1),...,f(Bn)(V )) 6 (8)

Proof for Equation (8): (1) Since both sides of Equation (8) have a key K ′ in their output, we

first show that both sides output the same set of key values. The left side of Equation (8) outputs key

set: δK ′(δK(σ(A1,...,Am)=(a1
1
,...,a1

m)∨...∨(A1,...,Am)=(ap
1
,...,a

p
m)(V )) = δK ′(σ(A1,...,Am)=(a1

1
,...,a1

m)∨...∨(A1,...,Am)=

(ap
1
,...,a

p
m)(V )), where δ means project under set semantics (i.e., select distinct). The right side of

Equation (8) output key set: δK ′(σ(A1,...,Am)=(a1
1
,...,a1

m) ∨...∨(A1,...,Am)=(ap
1
,...,a

p
m)(δK ′,A1,...,Am

(V )) =

δK ′(σ(A1,...,Am)=(a1
1
,...,a1

m)∨...∨ (A1,...,Am) =(ap
1
,...,a

p
m)(V )). Hence, both sides generate the same set of

key values.

(2) Next we show that for any key value k′
1 for K ′, both sides of Equation (8) generate the

same row. We further assume that there are K values k1, ..., kp in V that contains k′
1 and kl ∈

δK(σ(A1,...,Am)=(a1
1
,...,a1

m)∨...∨(A1,...,Am) =(ap
1
,...,a

p
m)(V )), l = 1..p. Then for some i ≤ m and j ≤ n, we

let rl = πBj
(σK=kl∧(A1,...,Am)=(ai

1
,...,ai

m)(V )), l = 1..p. If there is no satisfied row in V , we let rl =⊥.

We first consider the left side of Equation (8). In particular, we consider the column f(ai
1 ∗

6We assume that the aggregate function f will not take ⊥ into account, i.e., treat ⊥ as NULL value. Note that
special treatment is required for COUNT. That is, if the COUNT function encounters a group with all ⊥ value, it
should output ⊥ instead of 0.
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∗ai
2... ∗ ∗ai

m ∗ ∗Bj) for a given k′
1. The data to be aggregated are {rl}, l = 1..p, i.e., the column

outputs f({rl}).

Now we consider the right side of Equation (8), which equals =⊲⊳<
q
i=1πK ′,f(B1),...,f(Bn)(σ(A1,...,Am)=(ai

1
,...,ai

m)

(K ′,A1,...,Am
F f(B1),...,f(Bn)(V ))) = =⊲⊳<

q
i=1πK ′,f(B1),...,f(Bn)(K ′,A1,...,Am

F f(B1),...,f(Bn)(σ(A1,...,Am)=(ai
1
,...,ai

m)V )).

Hence, for a given value k′
1 and (ai

1, ..., a
i
m), the inner GROUPBY for column Bj computes

f(πBj
(σK ′=k′

1
∧(A1,...,Am)=(ai

1
,...,ai

m)(V ))). Here, we note that σK ′=k′

1
∧(A1,...,Am)=(ai

1
,...,ai

m)(V ) must

equal to ∪p
l=1(σK=kl∧(A1,...,Am)=(ai

1
,...,ai

m)(V )). Otherwise, if there exists an extra row (kp+1, a
i
1, ..., a

i
m, ..)

in V , where kp+1 also contains k′
1, this row will then qualify the definition of {kl} and thus should

have already been included.

Hence, the inner GROUPBY for column Bj actually computes: f(πBj
(∪p

l=1(σK=kl∧(A1,...,Am)=(ai
1
,...,ai

m)(V ))).

Or in other words, the output is f(σrl 6=⊥{rl}). The next GPIVOT will output either f(σrl 6=⊥{rl})

or ⊥ if σrl 6=⊥{rl} is empty.

Thus if the aggregate function f disregards ⊥ value, then f({rl}) = f(σrl 6=⊥{rl}). A special

requirement is that when all {rl} is ⊥, f({rl}) should output ⊥. For COUNT, this means that it

should output ⊥ instead of 0.

By (1) and (2), we thus establish the proof for Equation (8).

5.1.5 Pullup GPIVOT through GUNPIVOT

Given two adjacent GPIVOT and GUNPIVOT, if the unpivot takes all pivoted output columns as

input parameters, then these two operators may cancel each other. For example, in the first case of

Figure 12, these two operators cancel each other, replaced by a simple select condition. Formally,

we have:

GUNPIV OT[(Xi×{Bj})](GPIV OT
[{Xi}]
[A1...Am] on [B1...Bn](V )) = (σs(V )) 7 (9)

Proof for Equation (9): First, obviously, the GUNPIVOT outputs the table schema same as

table V . Next, for each row (k1, a1, ..., am, b1, ..., bn) in V , 1) if (a1, ..., am) does not equal to any

Xi, then both sides of Equation (9) will not include it. 2) if (a1, ..., am) does equal to some Xi, then

GPIVOT outputs (k1, ..., b1, ..., bn, ...), with column name for column bi as ‘a1 ∗ ∗.. ∗ ∗am ∗ ∗bi’. The

7Here (Xi × {Bj}) are all the pivoted output columns with (A1, ..., Ai) value as Xi. σs is a disjunctive predicate
on (A1...Am), i.e., they equal to any Xi.
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next GUNPIVOT outputs row (k1, a1, ..., am, b1, ..., bn) 8. Hence both sides of Equation (9) contain

that row. By 1),2), Equation (9) always holds.
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Figure 12: Pullup through GUNPIVOT

In the second case, note that the GUNPIVOT now only partially uses the pivoted output columns.

Their order cannot be changed, since GUNPIVOT has to use the output of GPIVOT. Also the

semantics of such operations is problematic in practice. As can be seen in the figure, the result will

have some ‘Sony’ as column names and some as column values.

Finally, if the parameters between GPIVOT and GUNPIVOT have no overlap, as the third

case in Figure 12, then their order can be reversed. Formally, we assume table V has schema

(K,G1, ..., Gl, A1, ..., Am, B1, ...Bn), where K denotes possibly multiple columns while Gi,Ai and

Bi denote one column each. (K,G1, ..., Gl, A1, ..., Am) together form the key of table V .

GUNPIV OT[{Gi}](GPIV OT
[{Xi}]
[A1...Am] on [B1...Bn](V )) =

GPIV OT
[{Xi}]
[A1...Am] on [B1...Bn](GUNPIV OT[{Gi}](V )) (10)

Proof of Equation (10): Assume a row in V as v = (k1, g1, ..., gl, a1, ..., am, b1, ..., bn). We further

assume that applying GUNPIV OT[{Gi}] on this row will output p rows (k1, h
1
1, ..., h

1
q , a1, ..., am, b1, ..., bn),...,

(k1, h
p
1, ..., h

p
q , a1, ..., am, b1, ..., bn).

8We assume not all (b1, ..., bn) are ⊥. If not, the predicate σs should be extended to choose those rows whose {Bi}
not all ⊥.
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Hence, for this row v, the right side of Equation (10) will first output p rows (k1, h
1
1, ..., h

1
q , a1, ..., am, b1, ..., bn),

..., (k1, h
p
1, ..., h

p
q , a1, ..., am, b1, ..., bn). The next GPIVOT also outputs p rows as (k1, h

1
1, ..., h

1
q , ..., b1, ..., bn, ...),

..., (k1, h
p
1, ..., h

p
q , ..., b1, ..., bn, ...), with each bi column’s name as ‘a1**..am**Bi’.

The left side of Equation (10) will first output (k1, g1, ..., gl, ..., b1, ..., bn, ...), with each bi column’s

name as ‘a1**..am**Bi’. The next GUNPIVOT outputs p rows as (k1, h
1
1, ..., h

1
q , ..., b1, ..., bn, ...),

...,(k1, h
p
1, ..., h

p
q , ..., b1, ..., bn, ...). The reason is that the output of GUNPIVOT is determined by

(g1, ..., gl).

Thus, both sides of Equation (10) generates same output for each input row v. Hence Equa-

tion (10) always holds.

5.2 Pushdown Rules for GPIVOT

5.2.1 Push GPIVOT Down SELECT

We now present the rules for pushing GPIVOT down the SELECT operator. Similarly, if the select

condition is on key column, such as ‘σcountry=USA’ in Figure 13, then we can push GPIVOT down

the SELECT operator without change.
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Figure 13: Pulldown through SELECT

If the select condition is on the columns to be pivoted by, such as ‘σType=TV ’, then the pushdown

results in a PROJECT, which turns all ‘V CR’ related columns into ⊥, followed by a SELECT, which

removes the rows that contain only ‘⊥’ columns. More precisely, it becomes ‘σnot all⊥(πcountry,

Sony∗∗TV ∗∗Price,Sony∗∗TV ∗∗Quantity, Panasonic∗∗TV ∗∗Price,Panasonic∗∗TV ∗∗Quantity,⊥,⊥,⊥,⊥)’.

If the select condition is on the columns to be pivoted on, such as ‘σPrice=250’, then the pushdown

results in a PROJECT, which sets the ‘∗ ∗Price’ column and the ‘∗ ∗Quantity’ column with the same

prefix to ⊥ if the ‘∗∗Price’ column does not equal 250, followed by a SELECT, which also removes the
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rows that contain only ⊥ columns. More precisely, it becomes ‘σnot all⊥(πcountry,case(Sony∗∗TV ∗∗Price,

Sony∗∗TV ∗∗Quantity),
9

case(Sony∗∗V CR∗∗Price,Sony∗∗V CR∗∗Quantity), case(Panasonic∗∗TV ∗∗Price,Panasonic∗∗TV

∗∗Quantity), case(Sony∗∗V CR∗∗Price,Sony∗∗V CR∗∗Quantity))’.

Formally, we have the following pushdown rule in Equation (11), assuming the same table schema

V . Here the case expression, case(ai1
1 ∗ ∗... ∗ ∗ai1

m ∗ ∗B1, ..., a
i1
1 ∗ ∗... ∗ ∗ai1

m ∗ ∗Bn), outputs (ai1
1 ∗ ∗... ∗ ∗ai1

m ∗

∗B1, ..., a
i1
1 ∗ ∗... ∗ ∗ai1

m ∗ ∗Bn) only when ai1
u = x∧ a

i1
1 ∗ ∗... ∗ ∗ai1

m ∗ ∗Bv = y. Otherwise, it outputs (⊥, ...,⊥).

Note that here ‘ai1
u = x’ is a higher order predicate that the column name should contain x.

GPIV OT
[{(ai

1
,...,ai

m)}]

[A1,...,Am] on [B1,...,Bn](σAu=x∧Bv=y(V )) =

σnot all ⊥(π
K,{case(a

i1
1
∗∗...∗∗a

i1
m∗∗B1,...,a

i1
1
∗∗...∗∗a

i1
m∗∗Bn)}

)(GPIV OT
[{(ai

1
,...,ai

m)}]

[A1,...,Am] on [B1,...,Bn](V )) (11)

Proof for Equation (11): (1) First we prove that both sides of Equation (11) generate the same

set of key values. The left side outputs key value set as: δK(σAu=x∧Bv=y(V )). Or in other words,

it outputs a key value k1 iff there exists at least one row in V that satisfies K=k1∧Au=x∧Bv=y.

The right side outputs a key value k1 iff there exists at least one column a
i1
1 ∗ ∗... ∗ ∗ai1

m ∗ ∗Bv that

satisfies ai1
u = x and a

i1
1 ∗ ∗... ∗ ∗ai1

m ∗ ∗Bv = y. The original row in V that corresponds to this column

must then satisfy K = k1 ∧ Au = x ∧ Bv = y. Hence, both sides generate the same set of key values.

(2) Next we prove that for each key value k1, both sides generate the same row. For any column

a
i1
1 ∗∗...∗∗ai1

m∗∗Bj, the left side of Equation (11) outputs πBj
(σ

K=k1∧A1=a
i1
1

∧...∧Au=a
i1
u =x...∧Am=a

i1
m∧Bv=y

(V )).

The right side of Equation (11) outputs πBj
((σ

a
i1
u =x∧Bv=y

)(σ
K=k1∧A1=a

i1
1

∧...∧Au=a
i1
u ...∧Am=a

i1
m

(V ))). Hence,

both sides output the same value for any column a
i1
1 ∗ ∗... ∗ ∗ai1

m ∗ ∗Bj.

By (1) and (2), we know that Equation (11) always holds.

Note that this rule can also easily be extended to handle more complex conditions, such as

disjunctive conditions. For example, if the condition in left side of Equation (11) is σAu=x∨Bv=y(V ),

then the condition in case expression on the right side becomes ai1
u = x ∨ a

i1
1 ∗ ∗... ∗ ∗ai1

m ∗ ∗Bv = y.

5.2.2 Push GPIVOT Down PROJECT

Similarly, we also consider negative project, i.e., removal of columns. One example is shown in

Figure 14. As can be seen, if the GPIVOT is pushed down, then there are two rows regarding ‘USA’.

9Here case(column1, column2) is a case expression that if column1 does not equal to 250, then it outputs (⊥,⊥),
otherwise it outputs (column1,column2).
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In comparison, if the GPIVOT is not pushed down, then there is one row regarding ‘USA’. Hence,

GPIVOT generally cannot be pushed down project, unless the removed columns are functionally

determined, e.g., if ‘Country → Year’ holds, then we can pushdown the GPIVOT.
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Figure 14: Pushdown through PROJECT

5.2.3 Push GPIVOT Down JOIN

Clearly, if GPIVOT takes parameter columns from both of the join tables, then we have to perform

GPIVOT after the join. Now assume GPIVOT(V⊲⊳σ1
A), where σ1 is the join condition. We further

assume the same table schema (K,A1, ..., An, B1, ..., Bm) for V , (K2,X, Y ) for A and the GPIVOT

takes all parameter columns from table V . In this case, the pushdown rules are quite similar to

those in Section 5.2.1

First, if the join condition σ1 is on the key column K of table V , e.g., K = K2, then we can push

GPIVOT down the join without change. Second, if the join condition σ1 is on the column to be piv-

oted on of table V , e.g., B2 = X, then the pushdown result is πK,{case(ai
1
∗∗..ai

n∗∗B1,...,ai
1
∗∗..ai

n∗∗Bm)},K2,X,Y (

GPIV OT (V ) ⊲⊳a1
1
∗∗..a1

n∗∗B2=X∨...∨a
p
1
∗∗..ap

n∗∗B2=X A). More precisely, we apply a check between each

ai
1 ∗ ∗..ai

n ∗ ∗B2 column and X column. If ai
1 ∗ ∗..ai

n ∗ ∗B2 6= X, then we set all ai
1 ∗ ∗..ai

n ∗ ∗Bj

columns to ⊥ (the case expression). Finally, if the join condition σ1 is on the column to be pivoted

by of table V , e.g., A1 = Y , then after we push down the GPIVOT, we need to apply a check

between the column name ai
1 ∗∗..a

i
n ∗∗Bj and the column value Y . This however requires the query

language extended with such a higher order feature [14].
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5.2.4 Push GPIVOT Down GROUPBY

Now assume the GROUPBY operator has group by columns {Ai}, aggregate columns {Bi} with

functional dependency {Ai}→{Bi}. Due to this functional dependency, the GPIVOT operator has

to pivot some Ai columns on Bi columns for applicability.

We also note that the input to the GROUPBY operator may contain duplicates. In this case,

we cannot push GPIVOT down GROUPBY, since GPIVOT requires the input to contain a key.

When there is a key in the input to the GROUPBY operator, Equation (8) can be applied in a

reverse fashion in order to push down the GPIVOT.

5.2.5 Push GPIVOT Down GUNPIVOT

Given two adjacent GUNPIVOT and GPIVOT, they may also cancel each other when the GPIVOT

takes the GUNPIVOT output columns as parameters. As can be seen in the first case in Figure 15,

these two operators also cancel each other, resulting in a simple selection. Formally, assume table

H has schema (K,a1
1 ∗∗..a

1
m ∗∗B1, ..., a

p
1 ∗∗..a

p
m ∗∗Bn), where K denotes possibly multiple columns

and is the key.

GPIV OT
[{ai

1
,...,ai

m}]

[A1...Am] on [B1...Bn](GUNPIV OT[{(ai
1
∗∗ai

m∗∗B1,...,ai
1
∗∗ai

m∗∗Bn)}](H)) = (σs(H)) 10 (12)

Proof for Equation (12): First, obviously, the GUNPIVOT outputs the table schema same as

table H. Next, for each row h = (k1, c1, ..., cpn) in H, 1) if (c1, ..., cpn) all equal to ⊥, then both sides

of Equation (12) will not include it. 2) if not all (c1, ..., cpn) equal to ⊥, then GPIVOT outputs a

set of rows {(k1, a
i
1, ..., a

i
m, b1, ..., bn)| if not all bj equals ⊥,i=1..p }. The next GPIVOT takes these

rows as input and outputs row (k1, c1, ..., cpn). Hence both sides of Equation (12) contain that row.

By 1),2), Equation (12) always holds.

In the second case of Figure 15, note that the GPIVOT now only partially uses the pivoted output

columns. Their order cannot be changed, since GPIVOT has to use the output of GUNPIVOT.

Finally, if the parameters between GPIVOT and GUNPIVOT have no overlap, as the third

case in Figure 15, then their order can be reversed. This essentially is the reverse application of

Equation (10) in Section 5.1.5.

10Here σs is a disjunctive predicate on ai
1 ∗ ∗a

i
m ∗ ∗B1, ..., a

i
1 ∗ ∗ai

m ∗ ∗Bn, i.e., they do not all equal ⊥.
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Figure 15: Push GPIVOT down GUNPIVOT

5.3 Pullup Rules for GUNPIVOT

In this section, we will present the rules for pulling up GUNPIVOT. We assume the input to

GUNPIVOT contains a key, as such key usually exists in practice.

5.3.1 Pull GUNPIVOT through SELECT

There are three cases for pulling GUNPIVOT through SELECT. We now refer the unpivoted

output columns that originated from column values as value columns and refer the unpivoted

output columns that originated from column names as name columns. For example, in Figure 16,

‘Type’ is name column while ‘Price’ is value column.

First, if the selection condition is defined on non-unpivoted output columns, then we can push

it down without any changes such as the condition σCountry=‘USA′ in Figure 16.

Second, if the select condition is on the value column, e.g., σPrice=150, then pushing this se-

lect down results in a project that changes the columns. In the above example, it becomes

πCountry,case(Sony∗∗TV ∗∗Price),

case(Sony∗∗V CR∗∗Price),case(Panasonic∗∗TV ∗∗Price),case(Panasonic∗∗V CR∗∗Price). Here case(column1) is

a case expression that outputs column1 if column1 = 150, otherwise it outputs ⊥.

Third, if the select condition is on the name column, e.g., σType=TV , then pushing this select down

results in a project that removes columns. In the above example, it becomes π¬(Sony∗∗V CR∗∗Price,

27



*Price]**VCRPanasonic* *Price,**TVPanasonic*  
*Price,**VCR*Sony*Price,**TV*[Sony GUNPIVOT

PriceTypeManuCountry

4570240Japan

15060220USA 

Panasonic
**VCR
**Price

Panasonic
**TV
**Price

Sony
**VCR
**Price

Sony
**TV
**Price

Country

xσ

⊥
⊥

Figure 16: Pull GUNPIVOT through SELECT

Panasonic∗∗V CR∗∗Price).

Formally, we assume table H with schema (K,a1
1 ∗∗...a

1
m ∗∗B1, ..., a

1
1 ∗∗...a

1
m ∗∗Bn, ..., a

p
1 ∗∗...a

p
m ∗

∗B1, ..., a
p
1 ∗∗...a

p
m ∗∗Bn), where K can be multiple columns and each ai

1∗∗...a
i
m ∗∗Bj is one column.

We further assume a selection predicate as: σAp=X∧Bq=y(GUNPIV OT[{(ai
1
∗∗...ai

m∗∗B1,...,ai
1
∗∗...ai

m∗∗Bn)}](H)).

σAp=X∧Bq=y(GUNPIV OT[{(ai
1
∗∗...ai

m∗∗B1,...,ai
1
∗∗...ai

m∗∗Bn)}](H)) =

GUNPIV OT[{(ai
1
∗∗..∗∗X..ai

m∗∗B1,...,ai
1
∗∗..∗∗X..ai

m∗∗Bn)}](

πK,{case(ai
1
∗∗..∗∗X..ai

m∗∗B1,...,ai
1
∗∗..∗∗X..ai

m∗∗Bn)}(H)) 11 (13)

Proof of Equation (13): The proof of this rule is straightforward. The left side of Equation (13)

outputs a row r = (k1, a1, a2, ..., am, b1, ..., bn) iff ap = X∧bq = y. On the right side of Equation (13),

the case expression actually removes the rows that do not satisfy ap = X ∧ bq = y. Hence they are

equivalent.

If the condition is disjunctive, e.g., σσ1∨σ2
, then we can first rewrite it to σσ1

(GUNPIV OT ) ∪

σσ2
(GUNPIV OT ). After that, we push the two select conditions down individual GUNPIVOT

using the above rules.

5.3.2 Pull GUNPIVOT through PROJECT

Similarly, we also consider negative project, i.e., removal of columns. There are also three cases

for pulling GUNPIVOT through PROJECT. First, if the project is to remove the non-unpivoted

columns, such as π¬Country in Figure 17, we can push the project down without changes.

11Here case(ai
1 ∗ ∗.. ∗ ∗X..ai

m ∗ ∗B1, ..., a
i
1 ∗ ∗.. ∗ ∗X..ai

m ∗ ∗Bn) is a case expression that if ai
1 ∗ ∗.. ∗ ∗X..ai

m ∗ ∗Bq = y,
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Figure 17: Pull GUNPIVOT through PROJECT

Second, if the project is to remove the value column from the GUNPIVOT output, e.g., π¬Price in

Figure 17, then pulling up GUNPIVOT results in a project that removes all price related columns,

i.e., π¬(Sony∗∗TV ∗∗Price,Sony∗∗V CR∗∗Price,Panasonic∗∗TV ∗∗Price,Panasonic∗∗V CR∗∗Price).

Third, if the project is to remove the name column from the GUNPIVOT output, e.g., π¬Manu

in Figure 17, then pulling up GUNPIVOT requires to modify the column names, i.e., removing

‘Sony’ and ‘Panasonic’ from the column names.

5.3.3 Pull GUNPIVOT through JOIN

The rules for pulling GUNPIVOT above JOIN is quite similar to those for SELECT in Section 5.3.1.

First, if the join predicate is on the non-unpivoted columns, then we can pull GUNPIVOT above

the join without changes.

Second, if the join predicate is on the value columns from the output of GUNPIVOT, then the

GUNPIVOT pullup results in a join followed by a project. Formally, we assume table H with

schema (K,a1
1 ∗ ∗...a

1
m ∗ ∗B1, ..., a

1
1 ∗ ∗...a

1
m ∗ ∗Bn, ..., a

p
1 ∗ ∗...a

p
m ∗ ∗B1, ..., a

p
1 ∗ ∗...a

p
m ∗ ∗Bn), where K

can be multiple columns and each ai
1 ∗∗...a

i
m ∗∗Bj is one column. Table T has schema (K1,K2). As

usual, we assume the output of GUNPIVOT(H) has schema (K,A1, ..., Am, B1, ..., Bn). We further

assume a join predicate as: GUNPIV OT[{(ai
1
∗∗...ai

m∗∗B1,...,ai
1
∗∗...ai

m∗∗Bn)}](H) ⊲⊳Bl=K1
T .

GUNPIV OT[{(ai
1
∗∗...ai

m∗∗B1,...,ai
1
∗∗...ai

m∗∗Bn)}](H) ⊲⊳Bl=K1
T =

GUNPIV OT[{(ai
1
∗∗...ai

m∗∗B1,...,ai
1
∗∗...ai

m∗∗Bn)}](πK,{case(ai
1
∗∗...ai

m∗∗B1,...,ai
1
∗∗...ai

m∗∗Bn)},K1,K2
(

H ⊲⊳a1
1
∗∗...a1

m∗∗Bl=K1∨...∨a
p
1
∗∗...ap

m∗∗Bl=K1
T )) 12 (14)

then output (ai
1 ∗ ∗.. ∗ ∗X..ai

m ∗ ∗B1, ..., a
i
1 ∗ ∗.. ∗ ∗X..ai

m ∗ ∗Bn), otherwise output (⊥,...,⊥).
12Here case(ai

1 ∗ ∗...ai
m ∗ ∗B1, ..., a

i
1 ∗ ∗...ai

m ∗ ∗Bn) is a case expression that if ai
1 ∗ ∗...ai

m ∗ ∗Bl = K1, then output
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Proof of Equation (14): The proof of this rule is straightforward. The left side of Equation (14)

outputs a row r = (k, a1, a2, ..., am, b1, ..., bn, k1, k2) iff bl = k1. On the right side of Equation (14),

the case expression actually removes the rows that do not satisfy bl = k1. Hence we conclude that

they are equivalent.

Third, if the join predicate is on the name columns from the output of GUNPIVOT, e.g., Al = K2

in the above example. Then the pullup of GUNPIVOT requires a join between the column value

K2 and the column name ‘ai
1 ∗ ∗... ∗ ∗ai

m ∗ ∗Bj ’. This also requires a higher order feature of the

query language [14].

5.3.4 Pull GUNPIVOT through GROUPBY

By first unpivoting a table and then performing aggregation, we are able to do horizontal aggregation

[14]. As can be seen from the example in Figure 18, all the prices regarding ‘USA’ have been summed

up even they appear as several columns in the same row.
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Figure 18: Pull GUNPIVOT through GROUPBY

In this case, pulling up GUNPIVOT results in a two-level aggregation as shown in Figure 18.

In particular, we first aggregate all price-related columns and then unpivot individual sum totals

and finally re-aggregate over these subtotals. This rule is formally described in Equation (15),

assuming the same table schema H, K ′ as a subset of columns (K,A1, ..., Am) and K ′′ = K ∩ K ′.

For simplicity, we also assume here f is sum or count. We can easily extend f to distributive or

algebraic functions [10].

(ai
1 ∗ ∗...a

i
m ∗ ∗B1, ..., a

i
1 ∗ ∗...ai

m ∗ ∗Bn), otherwise output (⊥, ...,⊥).
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K ′Ff(Bj )(GUNPIV OT[{(ai
1
∗∗...ai

m∗∗B1,...,ai
1
∗∗...ai

m∗∗Bn)}](H)) =

K ′Ff(FBj )(GUNPIV OT[{(a1
1
∗∗...a1

m∗∗FBj ,...,a
p
1
∗∗...ap

m∗∗FBj)}]
(K ′′ F{f(ai

1
∗∗...ai

m∗∗Bj) as ‘ai
1
∗∗...ai

m∗∗FB′

j
}(H)) (15)

Proof of Equation (15): Assume the groupby columns are K ′ = (K ′′, Al1 , ..., Alp), with K ′′ ⊆

K and Ali ∈ {A1, ..., Am}. On the right side of Equation (15), the inner groupby computes

ai
1 ∗ ∗...ai

m ∗ ∗FBj , which is equivalent to compute f group by (K ′′, A1, ..., Am) on the unpiv-

oted data. Note that since (K ′′, A1, ..., Am) is a superset of the next group by columns, namely,

(K ′′, Al1 , ..., Alp), such a two-level aggregation is already known in [5].

Next, note that even if the groupby operator does not use any output columns of GUNPIVOT,

we still cannot remove the GUNPIVOT operator because it will affect the cardinality of the input.

Finally, if the groupby operator aggregates over the name columns from the GUNPIVOT output,

e.g., max(Type) in the above example, then we cannot push it down since we are not able to aggre-

gate over column names. If the groupby operator takes the value columns from the GUNPIVOT

output, e.g., group by Price in the above example, then we also cannot push it down since we

cannot group same values in different columns.

5.4 Pushdown Rules for GUNPIVOT

5.4.1 Push GUNPIVOT down SELECT

There are two cases for pushing GUNPIVOT down SELECT. First, if the select condition on the

non-unpivoted columns, then we can push the GUNPIVOT operator down without changes, such

as σCountry=USA in Figure 19.

Second, if the select condition is on the columns to be unpivoted, e.g., σSony∗∗TV ∗∗Price=220,

then pushing GUNPIVOT down results in a self-join, i.e., πCountry(σSony∗∗TV ∗∗Price=220(T )) ⊲⊳

GUNPIV OT (T ). Formally, assume a selection predicate over two output columns to be un-

pivoted as: GUNPIV OT[{(ai
1
∗∗...ai

m∗∗B1,...,ai
1
∗∗...ai

m∗∗Bn)}](σa
i1
1
∗∗...a

i1
m∗∗Bl1

op a
i2
1
∗∗...a

i2
m∗∗Bl2

(H)). Here

‘op’ is any comparison operator.

GUNPIV OT[{(ai
1
∗∗...ai

m∗∗B1,...,ai
1
∗∗...ai

m∗∗Bn)}](σa
i1
1
∗∗...a

i1
m∗∗Bl1

op a
i2
1
∗∗...a

i2
m∗∗Bl2

(H)) =

πK(σ
a

i1
1
∗∗...a

i1
m∗∗Bl1

op a
i2
1
∗∗...a

i2
m∗∗Bl2

(H)) ⊲⊳ GUNPIV OT[{(ai
1
∗∗...ai

m∗∗B1,...,ai
1
∗∗...ai

m∗∗Bn)}](H) (16)
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Figure 19: Push GUNPIVOT Down SELECT

Proof of Equation (16): The proof of this rule is straightforward. On the right side of Equa-

tion (16), since the join is on the key K, by Section 5.3.3, we can push it in as:

GUNPIV OT[{(ai
1
∗∗...ai

m∗∗B1,...,ai
1
∗∗...ai

m∗∗Bn)}](πK(σ
a

i1
1
∗∗...a

i1
m∗∗Bl1

op a
i2
1
∗∗...a

i2
m∗∗Bl2

(H)) ⊲⊳ (H)) =

GUNPIV OT[{(ai
1
∗∗...ai

m∗∗B1,...,ai
1
∗∗...ai

m∗∗Bn)}](σa
i1
1
∗∗...a

i1
m∗∗Bl1

op a
i2
1
∗∗...a

i2
m∗∗Bl2

(H)).

5.4.2 Push GUNPIVOT down PROJECT

Similarly, we also consider negative project, i.e., removal of columns. Note that the GUNPIVOT

operator will not take the removed columns as parameters. Hence it is always possible to push the

GUNPIVOT down. For example, we can pull π¬Country up in Figure 20. Note that we can also

pull π¬Sony∗∗TV ∗∗Price up. The reason is that in this case, this ‘Sony**TV**Price’ column will not

appear in the GUNPIVOT parameter column list.
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Figure 20: Push GUNPIVOT Down PROJECT
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5.4.3 Push GUNPIVOT down JOIN

There are two cases for pushing GUNPIVOT down JOIN. First, if the join condition is on the

non-unpivoted columns, then we can push GUNPIVOT down the join.

Second, if the join condition is on the columns to be unpivoted, then the pushdown results in

self-joins. Formally, assume the same table schema H and table T with schema (K1,K2).

GUNPIV OT[{(ai
1
∗∗...ai

m∗∗B1,...,ai
1
∗∗...ai

m∗∗Bn)}](H ⊲⊳
a

i1
1
∗∗...a

i1
m∗∗Bl=K1

T ) =

πK(H ⊲⊳
a

i1
1
∗∗...a

i1
m∗∗Bl=K1

T ) ⊲⊳ GUNPIV OT[{(ai
1
∗∗...ai

m∗∗B1,...,ai
1
∗∗...ai

m∗∗Bn)}](H) (17)

Proof of Equation (17): The proof of this rule is straightforward. On the right side of Equa-

tion (17), since the join is on the key K, by Section 5.3.3, we can push it in as:

GUNPIV OT[{(ai
1
∗∗...ai

m∗∗B1,...,ai
1
∗∗...ai

m∗∗Bn)}](πK(H ⊲⊳
a

i1
1
∗∗...a

i1
m∗∗Bl=K1

T ) ⊲⊳ (H)) =

GUNPIV OT[{(ai
1
∗∗...ai

m∗∗B1,...,ai
1
∗∗...ai

m∗∗Bn)}](H ⊲⊳
a

i1
1
∗∗...a

i1
m∗∗Bl=K1

T ).

5.4.4 Push GUNPIVOT down GROUPBY

First, if GUNPIVOT unpivots the aggregate columns as shown in Figure 21, then we can push GUN-

PIVOT down the groupby. Formally, assume the groupby operator computes, (K, f(B1), f(B2), ..., f(Bn)),

where K are the group by columns and f(Bi) is to compute function f over column Bi. The GUN-

PIVOT unpivots (f(B1), f(B2), ..., f(Bn)) and outputs name columns CN , values columns CV .

GUNPIV OT[{f(Bi)}](KF{f(Bi)}(T )) =K,CN
F{f(CV )}(GUNPIV OT[{Bi}](T )) 13 (18)

Proof of Equation (18): Assume for a given group by value k1, there are a set of rows {t1, ..., tp}=

{(k1, b
1
1, ..., b

1
n), ..., (k1, b

p
1, ..., b

p
n)} in T with that group value (we ignore other columns). The left side

of Equation (18) first computes (k1, f(bj
1), ..., f(bj

n)) and unpivots to a set of rows as {(k1, c
i
v , f(bj

i ))},

where ci
v are the corresponding name columns.

The right side of Equation (18) first unpivots {t1, ..., tp} to {(k1, c
1
v , b

1
1), ..., (k1, c

n
v , b1

n), ..., (k1, c
1
v, ..., b

p
n),

..., (k1, c
n
v , ..., bp

n)} (note that some row may not exist if b
j
i =⊥). The next group by on (k1, c

i
v) com-

13Function f should disregard ⊥.

33



putes {(k1, c
i
v, f(bj

i ))}, same as the left side.
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Figure 21: Push GUNPIVOT Down GROUPBY

Second, if GUNPIVOT unpivots any groupby columns, e.g., [Country,Type], then we cannot

push it down. The reason is that after pushing GUNPIVOT down, we cannot perform groupby on

multi-values from the same column. Note that this is overall quite similar to the rules for pulling

up GPIVOT in Section 5.1.4.

6 Incremental View Maintenance

We now propose the propagation rules for GPIVOT and GUNPIVOT. In particular, we will show

how to utilize the combination, rewriting and propagation rules together to obtain an efficient

maintenance plan.

6.1 Types of ROLAP Views

In this work, we consider both aggregate and non-aggregate views containing GPIVOT and GUN-

PIVOT operators. We assume a key exists in the materialized view as prerequisite for enabling

efficient maintenance. The reason is that if we can successfully move the GPIVOT operator to the

top of the query tree (or a SELECT/GPIVOT pair on top of the query tree), then a key can be

obtained from the output of GPIVOT 14. Actually most existing view maintenance work [12, 17]

also has this assumption. If there is no key in the view, i.e., it contains duplicates, the count algo-

rithm [12] maintains the multiplicity of each tuple. This is equivalent to have a GROUPBY ALL

operator on top of the view query. The key then would correspond to all columns. In addition,

when there is a key in the view, we can use SQL update/delete statement to apply the changes

14In fact, our insert/delete propagation rules for GPIVOT and GUNPIVOT can be used to maintain views with
duplicates. Hence this requirement is just for efficiency purposes.
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efficiently. Most commercial DBMSs [3, 15] require the views to contain a key (or using rowid to

arbitrarily form a key) for the above reasons. Hence our proposed techniques are applicable to the

majority of the views in practice.

In this work, we also assume the GPIVOT above the GROUPBY is to pivot the aggregate results

based on the group-by columns, e.g., pivot the total sales for each product type. This is common

for most OLAP applications since the user often pivots the measurements by various dimensions

[4]. In comparison, pivoting product type based on total sales is often problematic. The reason is

that the functional dependency, measurements → dimensions, often does not hold. This makes the

pivot not applicable.

6.2 Propagation Rules for GPIVOT and GUNPIVOT

The insert/delete propagation rules for GPIVOT and GUNPIVOT are depicted in Figure 22. Here

‘1.’ means the first join operand and ‘2.’ means the second join operand. These propagation

rules are applicable to any parameters. The update propagation rules for GPIVOT are depicted

in Figure 23. Note that we assume bag semantics in this paper, i.e., ⊎ as bag insert and −·− as bag

delete.
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Figure 22: Insert/Delete Propagation Rules for GPIVOT and GUNPIVOT

Proofs for Propagation Rules in Figure 22 and 23: We first prove the rules in Figure 22.

The correctness of the GUNPIVOT rules can be shown as follows:

(1) GUNPIV OT[(a1
1
∗∗...a1

m∗∗B1,...,a1
1
∗∗...a1

m∗∗Bn),...,(ap
1
∗∗...ap

m∗∗B1,...,a
p
1
∗∗...ap

m∗∗Bn)](H ⊎△H)
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Figure 23: Update Propagation Rules for GPIVOT

= [∪p
i=1πK,‘ai

1

′
,...,‘ai

m
′
,ai

1
∗∗...ai

m∗∗B1,...,ai
1
∗∗...ai

m∗∗Bn
(σany ai

1
∗∗...ai

m∗∗Bj 6=⊥(H ⊎△H))

= [∪p
i=1πK,‘ai

1

′
,...,‘ai

m
′
,ai

1
∗∗...ai

m∗∗B1,...,ai
1
∗∗...ai

m∗∗Bn
(σany ai

1
∗∗...ai

m∗∗Bj 6=⊥(H)]⊎

[∪p
i=1πK,‘ai

1

′
,...,‘ai

m
′
,ai

1
∗∗...ai

m∗∗B1,...,ai
1
∗∗...ai

m∗∗Bn
(σany ai

1
∗∗...ai

m∗∗Bj 6=⊥(△H)]

= GUNPIV OT[(a1
1
∗∗...a1

m∗∗B1,...,a1
1
∗∗...a1

m∗∗Bn),...,(ap
1
∗∗...ap

m∗∗B1,...,a
p
1
∗∗...ap

m∗∗Bn)](H)

⊎ GUNPIV OT[(a1
1
∗∗...a1

m∗∗B1,...,a1
1
∗∗...a1

m∗∗Bn),...,(ap
1
∗∗...ap

m∗∗B1,...,a
p
1
∗∗...ap

m∗∗Bn)](△H)

Similarly, we can prove the GUNPIVOT rules under delete case.

(2.1) Next, we show the correctness of the rules for GPIVOT. We first prove the insert case. Given

a key value k1, we define a set of rows {ri} as ri = πK,B1,...,Bn(σ(A1,...,Am)=(ai
1
,...,ai

m) AND K=k1
(V ⊎

△V )). If there is no row that satisfies the condition for a particular i, we set ri = (k1,⊥, ...,⊥). We

also define other two sets of rows {pi} and {qi} as pi = πK,B1,...,Bn(σ(A1,...,Am)=(ai
1
,...,ai

m) AND K=k1
(V ))

and qi = πK,B1,...,Bn(σ(A1,...,Am)=(ai
1
,...,ai

m) AND K=k1
(△V )). Similarly, we also set pi or qi as (k1,⊥

, ...,⊥) if no row satisfies. Based on the above definition, the following function f must hold for any

i: ri = f(pi, qi), where f(pi, qi) equals either pi if qi = (k1,⊥, ...,⊥) or equals qi if qi 6= (k1,⊥, ...,⊥).

The reason is that (K,A1, ..., Am) forms the key, thus at most one row exists in either V or △V ,

but not both.

Based on the above definition, the output of GPIV OT (V ⊎ △V ) for key k1 is ⊲⊳ {ri}. The

output of GPIV OT (V ) for key k1 is ⊲⊳ {pi}. The output of GPIV OT (△V ) for key k1 is ⊲⊳ {qi}.

If {pi} contain only (k1,⊥, ...,⊥) tuples, then the original output does not contain such a row

with key k1 based on the GPIVOT definition. In this case, if {qi} contain any non-empty tuples,

then ⊲⊳ {ri} = ⊲⊳ {f(pi, qi)} = ⊲⊳ {qi}. This proves the anti-join in Figure 22.

If both {pi} and {qi} contain any non-empty tuples, then ⊲⊳ {ri} =⊲⊳ {f(pi, qi)}. This proves

the join term for generating new row in Figure 22. Obviously, the original row with key k1 has to
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be deleted in this case. This proves the delete term in Figure 22.

Hence the propagation rules hold under the insert case.

(2.2) We now prove the propagation rules for GPIVOT under the delete case. Given a key value k1,

we define a set of rows {ri} as ri = πK,B1,...,Bn(σ(A1,...,Am)=(ai
1
,...,ai

m) AND K=k1
(V −·− ▽V )). If there

is no row that satisfies the condition for a particular i, we set ri = (k1,⊥, ...,⊥). We also define

other two sets of rows {pi} and {qi} as pi = πK,B1,...,Bn(σ(A1,...,Am)=(ai
1
,...,ai

m) AND K=k1
(V )) and

qi = πK,B1,...,Bn(σ(A1,...,Am)=(ai
1
,...,ai

m) AND K=k1
(▽V )). Similarly, we also set pi or qi as (k1,⊥, ...,⊥)

if no row satisfies. Based on the above definition, the following function g must hold for any

i: ri = g(pi, qi), where g(pi, qi) equals either pi if qi = (k1,⊥, ...,⊥) or equals (k1,⊥, ...,⊥) if

qi 6= (k1,⊥, ...,⊥). The reason is that since (K,A1, ..., Am) forms the key, if one row is deleted from

V , then the same row no longer exists in V −·− ▽V .

If both {pi} and {qi} contain any non-empty tuples, then the resulting row becomes ⊲⊳ {ri} =⊲⊳

{g(pi, qi)}. The original row with key k1 has to be deleted in this case. This proves the delete term

in Figure 22. We insert the new row only when not all {ri} equal (k1,⊥ ...,⊥). This proves the

insert term in Figure 22.

Hence the propagation rules also hold under the delete case.

(3) The correctness of the update propagation rules in Figure 23 can be proven by showing that

they are equivalent to the insert/delete propagation rules.

Figure 24 describes a simple example to show how to use our rewriting rules and propagation

rules to obtain an efficient maintenance plan. Assume a materialized view is defined that first

pivots the ‘Items’ table and then joins the results with the ‘Payment’ table.

First let us assume two tuples are inserted into the ‘Items’ table. Figure 25 depicts the change

propagation by naively applying the insert/delete rules for GPIVOT. We can see that the propaga-

tion of GPIVOT generates one insert delta and one delete delta. Each of them will be joined with

the ‘Payment’ table. The final maintenance plan is shown at the bottom of the figure. It involves

several GPIVOT and joins. Also the results show that we have to delete existing view tuples and

reinsert them with a few column changes.

Figure 26 depicts an alternative maintenance plan achieved by our GPIVOT pullup techniques.

First, the GPIVOT operator is pulled up above the join and becomes the top of the query tree.
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Figure 24: A Simple View with GPIVOT

The propagation phase propagates the source deltas through JOIN (∆I ⊲⊳ P ) and then GPIVOT

to compute the final delta (GPIV OT (∆I ⊲⊳ P )). The apply phase uses the update propagation

rules for GPIVOT by evaluating a left outer-join between the final delta and the view (MV) to

insert new tuples and make appropriate changes. The final plan (depicted at the bottom of the

figure) is obviously more efficient than the one in Figure 25. Note that such GPIVOT pullup is

only necessary when the GPIVOT is on the delta propagation path. For example, the maintenance

of some inserts on ‘Payment’ table need not pull up the GPIVOT.
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Figure 25: Maintenance without GPIVOT Pullup
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Figure 26: Maintenance with GPIVOT Pullup

6.3 Update Propagation Rules for Multiple Operators

Note that the propagation rules in Section 6.2 can be used to maintain any arbitrary view expres-

sions. However, the update propagation rules for GPIVOT in Figure 23 require (1) the GPIVOT to

be at the top of the algebra tree, and (2) the insert/delete changes to the input ∆V to be available.

For some views, it might be either expensive to move the GPIVOT to top of the algebra tree or

too expensive to compute the delta changes to the input. In this section, we propose to solve this

problem by developing some alternative update propagation rules.

6.3.1 Update Propagation Rules for GPIVOT over GROUPBY

When GPIVOT is above a GROUPBY operator, then the input ∆V to GPIVOT is no longer trivial

to compute. The reason is that we have to use the insert/delete propagation rules for GROUPBY

[18]. This is inefficient since we may need to recompute some groups.

We propose to combine the GPIVOT update propagation rules and GROUPBY update propaga-

tion rules as depicted in Figure 27. Here we assume F(V) has schema (K,A1, ..., Am, B1, B2, ...Bn),

where K,A1, ..., Am are group by columns, B1, ..., Bn are aggregate function columns including

count(∗). For simplicity, we only consider SUM and COUNT in this paper. It is not hard to

extend to support AVG or other algebraic functions [10]. The GPIVOT operator is assumed to

pivot B1, ..., Bn by A1, ..., Am as described in Section 6.1.

Note that when the count column, ai
1 ∗ ∗...a

i
m ∗ ∗Bj = 0, i.e., Bj is count(*) column, then all the

output columns with the same prefix ai
1 ∗ ∗...a

i
m become empty, i.e., ai

1 ∗ ∗...a
i
m ∗ ∗Bk =⊥ for any
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Figure 27: Update Propagation Rules for GPIVOT over GROUPBY

k. The reason is that no more item exists for this subgroup. When all the output columns become

⊥, i.e., all subgroups are deleted, then this row should be deleted from the view.

Proofs for Propagation Rules in Figure 27: We first prove the insert case.

(1) Given a key value k1, we define a set of rows {ri} as ri =K,f1,...,fn
F(σ(A1,...,Am)=(ai

1
,...,ai

m) AND

K=k1
(V ⊎△V )), where each fj is an aggregate function. If there is no row that satisfies the condition

for a particular i, we set ri = (k1,⊥, ...,⊥). We also define other two sets of rows {pi} and {qi} as

pi =K,f1,...,fn
F(σ(A1,...,Am)=(ai

1
,...,ai

m) AND K=k1
(V )) and qi =K,f1,...,fn

F(σ(A1,...,Am)=(ai
1
,...,ai

m) AND

K=k1
(△V )). Similarly, we also set pi or qi as (k1,⊥, ...,⊥) if no row satisfies.

Based on the above definition, the output of GPIV OT (F(V ⊎ △V )) for key k1 is ⊲⊳ {ri}. The

output of GPIV OT (F(V )) for key k1 is ⊲⊳ {pi}. The output of GPIV OT (F(△V )) for key k1 is

⊲⊳ {qi}.

By applying the propagation rules for GROUPBY in [18], we have: if pi = (k1,⊥, ...,⊥), then

ri = qi; if pi 6= (k1,⊥, ...,⊥), then ri = (k1, pi.f1 + qi.f1, ..., pi.fn + qi.fn), assuming each aggregate

function fj is either sum or count.

If {pi} contains only (k1,⊥, ... ⊥) tuples, then the original output does not contain such a row

with key k1. In this case, if {qi} contains any non-empty tuples, then ⊲⊳ {ri} =⊲⊳ {qi}. This proves

the insert term in Figure 27.

If both {pi} and {qi} contain any non-empty tuples, then ⊲⊳ {ri} =⊲⊳ {(k1, pi.f1+qi.f1, ..., pi.fn+

qi.fn)}. This proves the update term for generating new row in Figure 27.
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Hence the propagation rules hold under the insert case.

(2) Next, we prove the delete case. Given a key value k1, we define a set of rows {ri} as ri =K,f1,...,fn

F(σ(A1,...,Am)=(ai
1
,...,ai

m) AND K=k1
(V −·− ▽V )), where each fj is an aggregate function. If there is

no row that satisfies the condition for a particular i, we set ri = (k1,⊥, ...,⊥). We also define

other two sets of rows {pi} and {qi} as pi =K,f1,...,fn
F(σ(A1,...,Am)=(ai

1
,...,ai

m) AND K=k1
(V )) and

qi =K,f1,...,fn
F(σ(A1,...,Am)=(ai

1
,...,ai

m) AND K=k1
(▽V )). Similarly, we also set pi or qi as (k1,⊥, ...,⊥)

if no row satisfies.

Based on the above defintion, the output of GPIV OT (F(V −·− ▽V )) for key k1 is ⊲⊳ {ri}. The

output of GPIV OT (F(V )) for key k1 is ⊲⊳ {pi}. The output of GPIV OT (F(▽V )) for key k1 is

⊲⊳ {qi}.

By applying the propagation rules for GROUPBY in [18], we have ri = (k1, pi.f1−qi.f1, ..., pi.fn−

qi.fn), assuming each aggregate function fj is either sum or count. Furthermore, if the count(*)

column, say pi.fj − qi.fj = 0, then ri = (k1,⊥, ...,⊥).

Thus, ⊲⊳ {ri} =⊲⊳ {(k1, pi.f1 − qi.f1, ..., pi.fn − qi.fn)}. If the count(*) column ri.fj = pi.fj −

qi.fj = 0, then we need to set ri = (k1,⊥, ...,⊥). This proves the update term in Figure 27. If the

resulting {ri} contain only (k1,⊥ ...,⊥) tuples, then we should delete this row from the pivoted

output based on the GPIVOT definition. This proves the delete term in Figure 27.

Hence the propagation rules also hold under the delete case.

We now use the motivating example (Figure 2) in Section 2.1 to describe how to use these

update propagation rules to efficiently maintain this view. We first pullup and combine multiple

pivot operators in the query. For example, the top two pivots can be combined into one operator,

denoted as G1 = GPIV OT
[TV,V CR]
Type on [CreditSum,ByAirSum] as described in Section 4.2. The lower pivot

can be pulled up through JOIN and GROUPBY denoted as G2 = GPIV OT
[Credit,ByAir]
Payment on [Sum] using

the rewriting rules in Section 5. Then we combine G1 and G2 using the composition rules in

Section 4.3. Since the original view only contains SUM, we also need to add COUNT(*) into the

view definition in order to make the view incrementally maintainable (Figure 28).

Then we construct the maintenance plan based on this rewritten view query. We can propagate

the changes through the algebra tree (propagation phase) and apply the GPIVOT/GROUPBY

update propagation rules in Figure 27 (apply phase) in order to maintain the view. Note that in
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Figure 28 since the resulting VCR**Credit**Cnt for Panasonic equals 0, both VCR**Credit**Cnt

and VCR**Credit**Sum will be set to ⊥. Consequently, since all the pivoted output columns of

‘Panasonic’ become empty, this row can be deleted from the view. In comparison, the update

propagation rules in Figure 23 require significant recomputation of the group-by operator.
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Figure 28: Maintenance of View in Figure 2

6.3.2 Update Propagation Rules for SELECT over GPIVOT

As mentioned, the other problem with the update propagation rules in Figure 23 is that it might

be expensive to move the GPIVOT to the top of the algebra tree. For example, the rewriting

rules in Section 5.1 show that the pullup of GPIVOT through SELECT may result in multiple

self-joins. The propagation through multiple self-joins generates multiple join terms. This can be

quite inefficient (Section 7). In this section, we propose alternative update propagation rules for

SELECT (σc) on top of a GPIVOT as depicted in Figure 29.

We first describe the simple delete case. Figure 30 depicts a simple view query with a SELECT

above the GPIVOT. To maintain the deletes on the ‘Items’ table as shown in Figure 31, the pullup

of GPIVOT above this selection generates multiple self-joins. Alternatively, as described in Section

5.1, we pull both SELECT and GPIVOT up to the top of the query tree. Then we propagate

the changes below the GPIVOT operator. The apply phase uses the update propagation rules in

Figure 29. It first performs a join between the final delta and the view. We delete the view tuple

that no longer satisfies the select condition. This is stricter than deleting the view tuple with all
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Figure 29: Update Propagation Rules for SELECT over GPIVOT

entries empty as in Figure 23. For example, the resulting tuple (3,Panasonic,⊥,300,20) will be

deleted from the view since it no longer satisfies the condition. Such tuple will be retained if there

is no such SELECT on top of GPIVOT.

The intuition behind this idea is that the deleted source tuples may cause an existing view tuple

to no longer satisfy the condition, which can be removed by the postponed selection filtering during

the apply phase, such as the auction 3 in our example. Or they may cause an existing view tuple

to update some of its columns but still satisfy the condition, such as auction 1. Lastly, they may

affect some pivot output tuples that originally do not satisfy the condition hence are not in the

view, such as auction 2. An important observation is that if an original pivot output tuple does not

satisfy the condition, then after some deletion it still will not satisfy the condition (if the condition

is null-intolerant). The join between the delta and the view, as a side product, effectively removes

such tuples.
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Figure 30: Views with SELECT over GPIVOT

In comparison, the source inserts may cause an originally unsatisfied tuple to now satisfy the
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Figure 31: Maintenance with SELECT over GPIVOT

select condition. If so, we have to find some other tuples that are not in the view originally in order

to construct a new view tuple. E.g., in order to maintain the insert (2,Manufacturer, Sony), we

have to locate the source tuple (2, T ype, V CR) to generate a new view tuple. The maintenance

plan generated based on the rules in Figure 29 is shown below.

GPIV OT ((πID(σc′(∆I) ⊲⊳ P ) ⊲⊳ I ⊎ ∆I) ⊲⊳ P )=⊲⊳MV ,

where σc′ = σ(Attribute=Type∧V alue=TV )∨(Attribute=Manufacturer∧V alue=Sony).

Note that here σ′
c is to push some of simple selection predicates down in order to reduce the join

size. The rationale is that only those deltas that are related to the columns referenced in the select

predicate may change the result of the predicate, and consequently generate new view tuples. We

now formally prove these rules below.

Proofs for Propagation Rules in Figure 29: We first prove the delete case.

(1) Given a key value k1, we define a set of rows {ri} as ri = πK,B1,...,Bn(σ(A1,...,Am)=(ai
1
,...,ai

m)

AND K=k1
(V −·− ▽V )). If there is no row that satisfies the condition for a particular i, we set ri =

(k1,⊥, ...,⊥). We also define two other sets of rows {pi} and {qi} as pi = πK,B1,...,Bn(σ(A1,...,Am)=(ai
1
,...,ai

m)

AND K=k1
(V )) and qi = πK,B1,...,Bn(σ(A1,...,Am)=(ai

1
,...,ai

m) AND K=k1
(▽V )). Similarly, we also set pi

or qi as (k1,⊥, ...,⊥) if no row satisfies.

Based on the above definition, the output of GPIV OT (V −·− ▽V ) for key k1 is ⊲⊳ {ri}. The
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output of GPIV OT (V ) for key k1 is ⊲⊳ {pi}. The output of GPIV OT (▽V ) for key k1 is ⊲⊳ {qi}.

Similar to the proof for the rules in in Figure 22, the following function g must hold: ⊲⊳ {ri} = ⊲⊳

{g(pi, qi)}.

Then we consider the following two cases:

i) If the original row ⊲⊳ {pi} satisfies the condition σc, then σc(⊲⊳ {pi}) = ⊲⊳ {pi}, since ⊲⊳ {pi}

represents one row. Or in other words, the original output contains the row ⊲⊳ {pi}. Hence, we

can compute the new row by σc(⊲⊳ {ri}) = σc(⊲⊳ {g(pi, qi)}), If the resulting row ⊲⊳ {ri} statisfies

the condition σc, then we perform updates using function G. If the resulting row ⊲⊳ {ri} no longer

satisfies the condition σc, then we delete this row from the result. This exactly corresponds to the

rules in Figure 29.

ii) If the original row ⊲⊳ {pi} does not satisfies the condition σc, then the resulting row ⊲⊳ {ri} will

not satisfy the condition either, since the condition is null-intolerant. In this case, σc(⊲⊳ {pi}) ⊲⊳

(⊲⊳ {qi}) evaluates to empty result and will not make any changes.

Hence we proved that this update propagation rule always holds under the delete case.

(2) Next, we prove the insert case. Given a key value k1, we define a set of rows {ri} as ri =

πK,B1,...,Bn(σ(A1,...,Am)=(ai
1
,...,ai

m) AND K=k1
(V ⊎△V )). If there is no row that satisfies the condition

for a particular i, we set ri = (k1,⊥, ...,⊥). We also define two other sets of rows {pi} and {qi}

as pi = πK,B1,...,Bn(σ(A1,...,Am)=(ai
1
,...,ai

m) AND K=k1
(V )) and qi = πK,B1,...,Bn(σ(A1,...,Am)=(ai

1
,...,ai

m)

AND K=k1
(△V )). Similarly, we also set pi or qi as (k1,⊥, ...,⊥) if no row satisfies.

Based on the above definition, the output of GPIV OT (V ⊎△V ) for key k1 is ⊲⊳ {ri}. The output

of GPIV OT (V ) for key k1 is ⊲⊳ {pi}. The output of GPIV OT (△V ) for key k1 is ⊲⊳ {qi}. Similar to

the proof for the rules in in Figure 22, the following function f must hold: ⊲⊳ {ri} = ⊲⊳ {f(pi, qi)}.

Then we consider the following two cases:

i) If the original row ⊲⊳ {pi} satisfies the condition σc, then σc(⊲⊳ {pi}) =⊲⊳ {pi}, since ⊲⊳ {pi}

represents one row. Or in other words, the original output contains row ⊲⊳ {pi}. Hence we can

compute the new row by σc(⊲⊳ ri) = σc(⊲⊳ f(pi, qi)). Note that in this case the resulting row ⊲⊳ {ri}

must still satisfy the condition σc. The reason is that if ⊲⊳ {ri} did not satisfy the condition, then

turning some of its columns to null, i.e., ⊲⊳ {pi}, still should not satisfy the condition (if σc is

null-intolerant). We thus only need to perform updates using function F , as the update term in
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Figure 29.

ii) If the original row ⊲⊳ {pi} does not satisfy the condition σc, the resulting ⊲⊳ {ri} may now

satisfy the condition. Hence, in this case, we have to recompute ⊲⊳ {ri}, since the original output

does not contain the row ⊲⊳ {pi}. The recomputation can be evaluated as GPIV OT (πK(△V ) ⊲⊳

(V ⊎△V )). We then insert these new rows that now satisfy the condition, σc(GPIV OT (πK(△V ) ⊲⊳

(V ⊎△V ))).

Furthermore, we observe that only when those rows in △V that related to the columns referenced

in σc may change the resulting row now satisfy σc. Hence, we can add σc′ to reduce the join size as

in Figure 29, where σc′ is of the form (A1, ..., Am) = (ai1
1 , ..., ai1

m) ∨ ... ∨ (A1, ..., Am) = (ail
1 , ..., ail

m).

Hence we proved that this update propagation rule always holds under the insert case.

7 Experimental Evaluation

In this section, we will experimentally evaluate the effectiveness of our proposed techniques for

incremental view maintenance. In particular, we will evaluate the performance of the maintenance

plans constructed by various propagation rules proposed in Section 6.

7.1 Setup

We choose a non-intrusive implementation [14, 2] of the GPIVOT operator on top of a commerical

DBMS (Oracle 10g [1]). In particular, similar to [8], we implement GPIVOT using the following

SQL GROUPBY subquery:

SELECT K, {max(case((A1, ..., Am) = (ai
1, ..., a

i
m), B1,⊥)),

max(case((A1, ..., Am) = (ai
1, ..., a

i
m), B2,⊥)),

...
max(case((A1, ..., Am) = (ai

1, ..., a
i
m), Bn,⊥))}

FROM V
WHERE (A1, ..., Am) in {(ai

1, ..., a
i
m)}

GROUP BY K

Note that the maintenance plan constructed by our method contains the propagation phase and

the apply phase (Section 3). The propagate phase computes the final delta. The apply phase first

evaluates a join between the final delta and materialized view. Based on the join results, INSERT,

DELETE or UPDATE will be applied to the view. It is important to apply these DML in one

statement in order to avoid materializing any temporary results. For this, we will use the MERGE
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operation [1] to achieve this. In particular, the MERGE operation inserts a row if there is no match

between the final delta and the materialized view, updates a row in the materialized view if there

is such a match, and deletes a row if the updated row now contains only ⊥ entries or no longer

satisfies the select condition.

We run our experiments on a TPC-H [20] database with scale factor 1.0, i.e., total around

1 Gigabyte data. All the experiments are conducted on a two 540MHZ-CPU machine with 1G

memory, running Linux. We allocate 200M memory for buffer cache and 200M memory for Sort

and Hashjoin.

7.2 Maintaining Non-aggregate Views

Our experiments focus on different types of views, different sizes and characteristics of the source

changes and how different maintenance methods perform under these conditions. We first consider

non-aggregate views.

7.2.1 Without SELECT on TOP of GPIVOT

Figure 32 gives the algebra definition of a non-aggregate materialized view. As can be seen, it first

pivots the Lineitem table and then joins with the Orders and Customer tables. The size of this

view is 1,500,000 rows.

lineitem Orders Customer

,6,7][1,2,3,4,5
pricel_extendedon er l_linenumb GPIVOT

pricel_extendeder,l_linenumb,l_orderkey
�

itm7itm6,itm5,itm4,itm3,itm2,itm1,
y,c_nationkeo_custkey,,l_orderkey

�

Figure 32: Materialized View Definition (1)

We first consider the delete case on Lineitem table. The following three methods can be used

to refresh the view. The first method is to perform full recomputation. The second method

is to perform incremental maintenance using the insert/delete propagation rules for GPIVOT in
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Figure 22, while the third method is to first pullup GPIVOT to the top of the algebra tree and

then apply the update propagation rules in Figure 23.
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�� �� ��� ���

��		
�����������	 �� ��������� �����
� �� �  !"

� # �$�% �&' &'( �' ��% �� � )* $�
Figure 33: Maintenance of View (1) under Deletion

Figure 33 depicts the maintenance results. Here y-axis denotes the maintenance cost in seconds.

x-axis denotes the percentages of deletion on Lineitem table. As can be seen from the figure,

the maintenance method using the update rules considerably outperforms the method using the

insert/delete rules by order of magnitude. This is due to the costly maintenance plan generated by

the insert/delete rules, which can be easily seen from two examples in Figure 25 and 26.

Next, we consider the insert case on Lineitem table. In particular, we distinguish between two

extreme cases. The first case is that the insert of the source data causes only updates to the

view. Under this scenario, the update propagation rules likely will significantly outperform the

insert/delete propagation rules as the former can avoid deleting the view tuples and re-inserting

them again. The second case is that the insert of the source data causes only inserts to the view.

Under this scenario, the insert/delete rules may perform better since such deletion and re-insertion

would not ever occur. The goal of this experiment is to justify if the update propagation rules are

always preferable choices.

Figure 34 depicts the maintenance results for the first case when the source changes result in only

view updates. As can be seen, the maintenance using the update propagation rules significantly

outperforms the other two alternatives as the costly deletion and then re-insertion is avoided. The

results are quite similar to the delete case.

Figure 35 depicts the maintenance performance for the second case when the source changes

result in only view insertions. Under this scenario, the maintenance using the insert/delete rules

perform much better than the former case. The reason is that we need not delete any existing
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Figure 34: Maintenance of View (1) under Insertion (Only View Updates)

rows in the view and re-insert them again. However, the maintenance using the update rules still

outperform the maintenance using the insert/delete rules.

,-,.,,.-,/,,/-,
.0 -0 .,0 .-0 /,0
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Figure 35: Maintenance of View (1) under Insertions (Only View Insertions)

The reason is that the insert/delete rules need to access the original pivot result, i.e., GPIVOT(lineitem),

as in Figure 22. Even if we can push down the join predicate so as to partially compute GPIVOT(lineitem),

still it can be a significant cost. In comparison, by first pulling up GPIVOT and then applying the

update propagation rules, we can avoid computing any portion of GPIVOT(lineitem). Instead a

join with the materialized view will be performed, which is less costly. Hence, in conclusion, the

experiments in Figure 33, 34 and 35 confirm our basic heuristics that the update rules are always

preferable choices than the insert/delete rules.

7.2.2 With SELECT on TOP of GPIVOT

Figure 36 gives the algebra definition of another type of view, namely, non-aggregate materialized

view with a SELECT on top of GPIVOT. As can be seen, it first pivots the Lineitem table and
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then chooses these rows whose first item price is greater than 30000. The results are then joined

with the Orders and Customer tables. The size of this view is 890,000 rows.

lineitem Orders Customer

,6,7][1,2,3,4,5
pricel_extendedon er l_linenumb GPIVOT

pricel_extendeder,l_linenumb,l_orderkey
�

itm7itm6,itm5,itm4,itm3,itm2,itm1,
y,c_nationkeo_custkey,,l_orderkey

�
30000itm1 

�
>

Figure 36: Materialized View Definition (2)

We first consider the delete case on Lineitem table. The following four methods can be used

to refresh the view. The first method is to perform full recomputation. The second method

is to perform incremental maintenance using the insert/delete propagation rules for GPIVOT in

Figure 22. The third method is to pullup GPIVOT to the top of the algebra tree, i.e., pushing

SELECT down GPIVOT, in order to apply the update rules in Figure 23. The fourth method

is to pull both SELECT and GPIVOT up and apply the combined update propagation rules in

Figure 29.
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Figure 37: Maintenance of View (2) under Deletion

Figure 37 depicts the maintenance results. Here y-axis denotes the maintenance cost in seconds.

x-axis denotes the percentages of deletion on Lineitem table. As can be seen from the figure, the

maintenance method using our combined update rules (in Figure 29) considerably outperforms

all three alternatives. While moving GPIVOT to the top of algebra tree by pushing down SE-

LECT outperforms the method using insert/delete rules, it still generates more costly maintenance
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plan compared to the method using our combined update rules. This can be easily seen by com-

paring the maintenance plans generated by these two methods. The maintenance plan by the

SELECT/GPIVOT combined update propagation rules is

(GPIV OT (▽L) ⊲⊳ C ⊲⊳ O) ⊲⊳ MV 15.

In comparison, the maintenance by pushing down the SELECT operator is

((GPIV OT (πl orderkey(σc′ ▽ L) ⊲⊳ (L −·− ▽L) ⊎ πl orderkey(σc′L) ⊲⊳ ▽L) ⊲⊳ O ⊲⊳ C) ⊲⊳ MV 16.

Obviously, propagating changes through multiple self-joins is non-trivial, as it generates multiple

join terms [12]. Note that when the select condition involves more pivoted output columns, then

more self-joins will be generated when pushing down the select operator. Hence, the select pushdown

method will likely perform even worse in this case.

Next, we consider the insert case on Lineitem table. Figure 38 depicts the maintenance results.
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Figure 38: Maintenance of View (2) under Insertion

We find that our combined update propagation rules again outperform all other alternatives.

Here the maintenance plan generated by combined update rules is

((GPIV OT (πl orderkey(σc′(△L)) ⊲⊳ L ⊎△L) ⊲⊳ O ⊲⊳ C) ⊲⊳ MV .

In comparison, the maintenance plan by SELECT pushdown is

((GPIV OT (πl orderkey(σc′(△L)) ⊲⊳ (L ⊎△L) ⊎ πl orderkey(σc′L) ⊲⊳ △L) ⊲⊳ O ⊲⊳ C) ⊲⊳ MV .

Clearly, the latter plan generates more join terms and will generate even more join terms when the

select condition is more complex. In conclusion, our combined update rules are always preferable

choices.

15Here L denotes Lineitem table, O denotes Orders table, C denotes Customer table, ▽L denotes deletion on
Lineitem table and MV denotes materialized view.

16Here c′ is σl linenumber=1∧l extendedprice>30000
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7.3 Maintaining Aggregate Views

Figure 39 gives the algebra definition of an aggregate materialized view. As can be seen, it first

joins the Lineitem, Orders and Customer tables and then computes total price and count for each

customer, nationality and year. After that, the summary data is pivoted by year on both sum and

cnt in order to provide a crosstab view. The size of this view is 100,000 rows with 12 columns.

Lineitem Orders Customer

,1996],1994,1995[1992,1993
cnt][sum,on year  GPIVOT

FFFFc_custkey, n_nationkey,
year(l_shipdate)

sum(l_extendedprice), count(*)

Figure 39: Aggregate Materialized View Definition (3)

We first consider the delete case on Lineitem table. The following three methods can be used

to refresh the view. The first method is to perform full recomputation. The second method is to

perform incremental maintenance using update rules for GPIVOT and using insert/delete rules for

GROUPBY. The third method is to use combined update propagation rules for both GPIVOT and

GROUPBY as in Figure 27.
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Figure 40: Maintenance of View (3) under Deletion

Figure 40 depicts the maintenance results. Here y-axis denotes the maintenance cost in seconds.

x-axis denotes the percentages of deletion on Lineitem table. As can be seen from the figure, the
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maintenance method using our combined update rules (in Figure 27) considerably outperforms the

one using the insert/delete rules for GROUPBY [18] by order of magnitude. The reason is that

the insert/delete rules for GROUPBY [18] are non-trivial, which involve costly identification and

then recomputation of affected groups. Our combined update rules avoid using insert/delete rules

for both GPIVOT and GROUPBY. Hence they perform much better.
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Figure 41: Maintenance of View (3) under Insertion

Next, Figure 41 depicts the maintenance results under insertion case. As can be seen, the

results are similar to the deletion case. The maintenance using combined update rules performs

significantly better. In conclusion, our combined update rules are always preferable choices for

maintaining aggregate views.

8 Related Work

Incremental view maintenance has received considerable attentions from the database community

for the last few years [12, 11, 17, 6, 19]. In [12], the authors propose algorithms for incremental

view maintenance under bag semantics and also support recursive views in Datalog. In [11], the

authors establish an algebraic framework for propagating deltas through each operator, which is

more robust and extensible to new language constructs. In this work, we propose to extend this

framework to also support pivot and unpivot operators.

PIVOT is similar to GROUPBY in many ways [8]. In [18], the authors propose the insert/delete

and update propagation rules for GROUPBY operator. They also show that it is more preferable

to use the latter rules. However, unlike the PIVOT operator, the GROUPBY operator loses the
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detailed data. Hence the combination and pullup rules for GROUPBY are fairly restrictive. As a

result, most commercial database systems only support SQJ+GROUPBY views. Fortunately, the

pivot operator has a lot of interesting properties since it keeps the detailed data. As shown in this

paper, they can be combined in many ways, resulting in a generalized pivot operator. They can

also be pulled up in the query algebra tree, which is more flexbile than that for group by operator.

As a result, it is possible to derive an efficient maintenance plan.

In [8], the authors propose the optimization and execution strategies for pivot and unpivot in

Microsoft SQL Server. In fact, similar techniques can also be applied to include the GPIVOT

and GUNPIVOT into the query engine as also briefly mentioned by the authors. In this paper,

we address another important aspect of the pivot and unpivot operators, i.e., incremental view

maintenance. We also show the necessity of GPIVOT definition for efficient view maintenance as

well as for the optimization of queries with even just simple pivots.

The PIVOT operator defined in [8] has slight semantic difference than the definition here, namely,

if we shall keep the pivot rows with all columns ⊥ or not. One primary difference for the incremental

maintenance of such a PIVOT operator are the propagation rules in the delete case. That is, when

we have a maintained pivoted tuple as (K,⊥, ...,⊥), we cannot simply delete it because there might

still exist other K tuples in the underlying table. One solution is to create an auxiliary view which

computes count(∗) for each K. We delete the view tuple (K,⊥, ...,⊥) only when its count of K

becomes 0. Clearly, the combination rules defined in this paper can help reduce the number of such

auxiliary views.

The pivot and unpivot operators studied in this paper are basically first-order, since the in-

put/output columns are predetermined in the query. In [14], the authors propose the SchemaSQL

language with FOLD and UNFOLD operators which are very similar to pivot and unpivot op-

erators. However, these two operators are high-order since the output columns are dynamically

determined. The incremental maintenance SchemaSQL views was first studied in [13]. However, the

technique is primarily tuple-based and not efficient for batch updates. The resulting maintenance

plan is also not ready for a query optimizer. In this paper, though we study the first-order version

of such operators, we are able to derive efficient maintenance plans. It is interesting future work

to extend our proposed algorithms to support the maintenance of high-order pivot and unpivot

operators.
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9 Conclusions

In this paper, we propose a novel framework for view maintenance with pivot and unpivot opera-

tors. We find that a generalized pivot operator, GPIVOT, not only has more powerful semantics

but is also crucial for incremental view maintenance. We propose the combination rules, pullup

rules and various propagation rules for GPIVOT and GUNPIVOT in order to derive an efficient

maintenance plan. Extensive performance evaluations confirm the effectiveness of various update

propagation rules. There are a number of promising future directions, e.g., optimization and execu-

tion of GPIVOT/GUNPIVOT in RDBMS, maintenance of source updates in order to avoid always

to decompose them into inserts and deletes, maintenance of pivot that includes all null tuples,

maintenance of high-order pivot and unpivot operators and query matching for such views.
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