
A Compensation-based Approach for Materialized View

Maintenance in Distributed Environments ∗

Songting Chen, Xin Zhang and Elke A. Rundensteiner

Department of Computer Science

Worcester Polytechnic Institute

Worcester, MA 01609-2280

{chenst, xinz, rundenst}@cs.wpi.edu

Abstract

Data integration over multiple heterogeneous data sources has become increasingly important for modern
applications. The integrated data is usually stored in materialized views (MV) to allow better access, performance
and high availability. MV must be maintained after the data sources change. In a loosely-coupled environment,
such as the Data Grid, the data sources are autonomous. Hence the source updates can be concurrent and cause
erroneous maintenance results. State-of-the-art maintenance strategies apply compensating queries to correct
such errors, making the restricting assumption that all source schemata remain static over time. However, in
such dynamic environments, the data sources may change not only their data but also their schema, query
capabilities or semantics. Consequently, either the maintenance queries or compensating queries would fail.

In this paper, we propose a framework called DyDa that overcomes these limitations and handles both source
data updates and schema changes. First, we identify three types of maintenance anomalies, caused by either data
updates and/or rename and/or drop schema changes. We propose a compensation algorithm to solve the first
two types of anomalies. We identify that the third type of anomaly is caused by the violation of dependencies
between the maintenance processes. We propose a detection and correction algorithm to remove such anomalies
based on the formalisms of dependencies. A new view adaptation algorithm is designed to incrementally adapt
some complex updates introduced by the correction algorithm.

Put together, these algorithms are the first complete solution to the concurrency problems for MV mainte-
nance in loosely-coupled environments. We have implemented the DyDa system. The experimental results show
that our new concurrency handling strategy imposes a minimal overhead on normal data update processing while
allowing for the extended functionality to maintain the materialized views even under concurrent schema changes.

Keywords: View Maintenance, View Synchronization, View Adaptation, Complex Updates.

1 Introduction

1.1 Materialized Views in Dynamic Environments

With the information explosion on the World Wide Web, the transformation and integration of data from multiple

heterogeneous data sources is ubiquitous to many modern information systems and e-business applications. One

basic requirement is to integrate data with rich structures, such as relational, XML, spreadsheets, etc. There

∗This work is supported in part by several grants from NSF, namely, NSF NYI grant IIS-9796264, NSF CISE Instrumentation grant
IRIS 97-29878, and NSF grant IIS-9988776.
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is growing interest in the database community to focus on schema integration to achieve the interoperability

between such heterogeneous sources. One common technique is to use schema mappings [MBR01, MHH00] to

specify how the data of one schema is transformed to another. A view query is one way to specify such a

mapping. Schema mapping are used extensively in variety of applications, such as data integration, physical

database design like XML to relational mapping, or the semantic Web [LGMT03].

In dynamic environments like the WWW, the data sources may change their schema, semantics as well as

their query capabilities. In correspondence, the mapping or view definition must be maintained to keep consistent

[LNR02, VMP03]. Moreover, in a loosely-coupled environment, such as the Data Grid [JR03], the data sources

are typically owned by different providers and function independently from each other. Hence they may commit

update transactions without any concern about how those changes may affect the mapping or views defined

upon them. While in combination, the autonomous source schema restruction poses new challenges for data

integration.

Materialized view (MV), proven to be an excellent technique in decision support applications, would continue

to be useful in this scenario to preserve the integrated data to ensure better access, performance and high

availability. MV must be maintained when the sources change. This has been extensively studied in the past few

years [AASY97, SBCL00, ZGMHW95]. However, it is not sufficiently explored in this new dynamic environment.

As we will illustrate via examples in Section 2.2, when maintaining a source update, we may need to query the

data sources for more information by issuing maintenance queries [ZGMHW95]. However, the maintenance

queries may either return erroneous query results due to concurrent data updates or may even fail completely

due to concurrent schema changes. Such failure of maintenance remains unsolved.

While recent work [AASY97, SBCL00, ZGMHW95] proposed compensation-based solutions to remove the

effect of concurrent data updates from query results, we demonstrate that these existing solutions would fail

under source schema changes. The reason is that if the source schema has been concurrently changed, neither

maintenance nor compensation queries would get any query response from data sources due to the discrepancy of

the source schema with the schema required by the queries. Interleaving of concurrent source data and schema

changes even complicates the maintenance further.

1.2 State-of-the-Art Materialized View Maintenance Techniques

We distinguish between three MV maintenance tasks, namely, View Maintenance (VM), View Synchronization

(VS) and View Adaptation (VA) as explained below. VM [ZGMHW95, AASY97, SBCL00] maintains the view

extent under source data updates. In contrast to VM, VS [LNR02] aims at rewriting the view definition when

the schema of a source has been changed, or in a more general sense, evolving the schema mappings after schema

changes [VMP03]. Thereafter, View Adaptation (VA) [NR99, GMRR01] incrementally adapts the view extent
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to again match the newly changed view definition. We will review these algorithms in more detail in Section 2.1.

However, as indicated in Section 1.1, the data sources are autonomous and may undergo changes at any time.

Thus during the MV maintenance, other source updates may occur and conflict with the current maintenance

processes, causing the concurrency problems as will be illustrated by an example in Section 2.2. While such

concurrency problems have received increased attention in recent years, all existing work [ZGMHW95, AASY97,

SBCL00, ZRD01] is restricted to handle pure data updates only. They make the restricting assumption that

the schemata of all sources remain stable over time. As motivated extensively in Section 1.1, this is a rather

limiting and unrealistic assumption for many real world environments and applications. SDCC [ZR02] is the

first work to study the problem arising from the concurrency of both source data updates and schema changes.

The SDCC approach integrates existing VM, VS and VA algorithms into one system with a protocol that all

data sources must abide by to enable correct collaboration. This protocol however has the limitation of requiring

sources to fully cooperate by first announcing an intended schema change, then waiting for permission from

the maintenance modules to execute this schema change at their local database. In essence, the concurrency

problem is avoided at the cost of the autonomy of the sources. For many environments such full cooperation

and willingness to delay any update of a data source is too restrictive and often impractical. Hence, in such

environments, the SDCC solution is not applicable.

1.3 Contributions of this Work

In this paper, we propose a general approach for dynamic MV management, called the DyDa framework to

solve the concurrency problems. DyDa maintains the MV defined over distributed data sources without posing

any restrictions on any source update transactions. In other words, the restrictive assumption of requiring

cooperative data sources [ZR02] is dropped. In summary, the contributions of this work are:

(1) We identify all possible maintenance concurrency problems, namely, caused by source data updates, source

rename schema changes and source drop schema changes. We introduce DyDa framework to solve all these

anomalies while the data sources have the full autonomy to commit any types of transactions.

(2) We introduce a compensation algorithm to remove the effects of concurrent data updates and rename schema

changes to restore the correct maintenance query results.

(3) We formalize the anomalies caused by concurrent drop schema changes as the violations of dependencies

between the maintenance processes. We then develop algorithms to detect and correct any violated depen-

dencies. A novel view adaptation algorithm is proposed to process the resulting mixed data updates and

schema changes.

(4) We have implemented our techniques in our DyDa system which has been demonstrated at SIGMOD’ 2001

[CZC+01]. The experimental results show that our new concurrency handling strategy imposes a minimal

3



overhead on data update processing while allowing for the extended functionality to maintain the MV even

under concurrent schema changes.

(5) The conference paper of this work [CCZR04] discusses the general theory for solving anomalies caused by

schema changes. In this paper, we present an overall solution framework and a compenhensive performance

study for all types of anomalies. We also extend it by a different treatement for rename and drop schema

change, which further improves the performance. A more detailed VA algorithm for complex update

maintenance is presented. The proofs of the correctness of our approach are included here.

In the next section, we present the background materials necessary for the remainder of the paper. Section

3 describes our proposed architecture of the DyDa framework and explains the overall concurrency control

strategies. Section 4 introduces a compensation algorithm to solve the concurrency caused by data updates and

rename schema changes. Section 5 formalizes the dependencies between the maintenance processes and their

relationship to the concurrency caused by drop schema change. An algorithm is proposed to detect and correct

the violated dependencies. Section 6 introduces a new view adaptation algorithm to adapt multiple distributed

schema changes and data updates required by the dependency correction algorithm. Section 7 discusses the

experimental results. Section 8 reviews related work, while Section 9 concludes the paper.

2 Background Materials

2.1 View Maintenance Techniques Revisited

We first briefly review and generalize three basic maintenance techniques, namely, View Maintenance (VM),

View Synchronization (VS) and View Adaptation (VA) for a single source update via an example below.

Example 1 Assume we want to integrate data from the book Retailer and Library category to provide the user

the sales as well as the detailed book information (Figure 1). The book Retailer data, being in the XML format,

is mapped into the relational tables Store and Item as a relational wrapper view. The Library catalog of the

detailed book information can be accessed by a general-purpose wrapper, which is used to execute a query and

extract source changes to notify the view manager. Now the integrated view BookInfo from both data sources can

be defined by the SQL query in Equation (1).

CREATE VIEW BookInfo AS

SELECT Store, Book, I.Author, Price, Pub-
lisher, Category, Review

FROM Store S, Item I, Catalog C
WHERE S.SID = I.SID

AND I.Book = C.Title
(1)

SELECT Book, Author, Price, Review

FROM Catalog C

WHERE Book = ′Data Integration Guide′
(2)

4



�������� 	�
���
���� ���� ����� ������ ���������


����
��

������ ���������
��

�
�������������������������

������������

����������������

����������������

�����������

��
����������������������

�� ����

	������!��

��""�!����������������


�������������

����������	
���

���	�


�����

#��""��

���$���������

����������������

#��""��

%�������������������� 	�
���������&����

����������������������������������������

Figure 1: Description of View and Data Sources

2.1.1 View Maintenance (VM)

View maintenance (VM) aims to incrementally maintain the view extent under a source data update (DU). The

basic idea is to send a maintenance query based on the DU to calculate the delta change on the view extent.

In Example 1, assume there is a new book to be inserted into the Item table. This new book is extracted by

the wrapper as “∆I = insert (10, ‘Data Integration Guide’, ‘Adams’, 35.99)”. To determine its delta effect

on the view, an incremental maintenance query (Query 2) [ZGMHW95] will be generated by decomposing the

view query (1) into individual source queries. In other words, we compute ∆V = ∆I 1 Store 1 Catalog. We

generalize this maintenance process M as “M(DU) = r(V D)r(DS1)r(DS2)...r(DSn)w(MV )c(MV )”, where V D

is the view definition, DSi is the data source with index i, r(DSi) is the query sent to DSi, w(MV ) and c(MV )

are write and commit of the MV, respectively.

2.1.2 View Synchronization (VS)

View Synchronization (VS) [NLR98, LNR02], on the other hand, aims at evolving the view definition when

the schema of the base relation has been changed. Note that, a general mapping adaptation technique could

also serve similar purpose [VMP03]. Two primitive types of source schema changes (SCs) that may affect the

view defined upon them are considered: the RenameSC that renames the source attributes or relations and the

DropSC that deletes attributes or relations. Note that add relations or attributes do not directly change the

views, but they will be put into some knowledge bases [NLR98, LNR02].

It is straightforward to handle RenameSC by just modifying the corresponding view definition. To handle

DropSC, the basic idea is to find some alternative sources to replace the dropped data. For example, assume the
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Review attribute is no longer considered important and kept in the Catalog relation. The view synchronization

process will locate some alternative table Comments in ReaderDigest data source for replacement based on the

containment information. The new integration and rewritten query are shown in Figure 2 and Query (3).
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Figure 2: View Synchronization for Drop Review Attribute

CREATE VIEW BookInfo AS

SELECT Store, Book, I.Author, Price, Pub-
lisher, Category, Comment as Re-
view

FROM Store S, Item I, Catalog C, Com-
ments M

WHERE S.SID = I.SID AND C.Title =
M.Article AND I.Book = C.Title

(3)

We generalize this algorithm using the notations in Table 1.

Notation Meaning

V Old view definition, defined as R1 1 R2 1 ... 1 Rn

V new New view definition, defined as Rnew

1 1 Rnew

2 1 ... 1 Rnew
n

Ri Relation with index i.

R′

i
Relation Ri after a number of updates.

Rnew

i
The relation Ri is replaced by Rnew

i
after view synchronization.

σ(Ri) State of relation Ri describing both its schema and data.

Table 1: Notations

Assume a relation Ri is dropped or some of its attributes are dropped, VS will find a replacement Rnew
i

based on the containment information for the dropped relation Ri [LNR02]. The view V is rewritten as V new =

R1... 1 Ri−1 1 Rnew
i 1 Ri+1... 1 Rn. Note that Rnew

i can be a join over several tables. In the above example,
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VS locates an alternative source table Comments that can be used to replace the Review attribute in the view

definition. A join is necessary between Catalog’ and Comments to avoid a cartesian product. The resulting join

Catalog′
1 Comments can be viewed as a replacement of the original Catalog relation, denoted as Catalognew.

We generalize this view synchronization process as M = r(V D)w(V D)c(MV ). Note that here the V D is an

in-memory data structure. The w(V D) is just to modify that in-memory view definition in order to generate

the maintenance query. The actual physical update of view definition (e.g., updating system catalog) is done in

the c(MV ). One important feature of the view synchronization process is that the rewriting of the view query is

not restricted to be equivalent to the original one in terms of their extent [LNR02, VMP03]. This is reasonable

for information integration over a large scale and dynamic data sources. However, such non-equivalent rewriting

makes the next step, view adaptation necessary.

2.1.3 View Adaptation (VA)

View Adaptation (VA) [NR99, GMRR01] incrementally adapts the view extent after the rewriting of the view

definition. Since RenameSC will not affect the view extent, there is no need to do any view adaptation work.

For DropSC, since the rewritten view definition may not be equivalent to the original one, adaptation of the view

extent to be consistent with the new view definition is mandatory. The basic idea in [NR99] is to first compute

the delta between the old relation and the new replaced relation.

Assume the original view V is defined as V = R1 1 ... 1 Ri−1 1 Ri 1 Ri+1... 1 Rn and the new view

V new = R1 1 ... 1 Ri−1 1 Rnew
i 1 Ri+1... 1 Rn. To incrementally compute V new from V , we computer

∆Ri = Rnew
i −Ri. The view delta change is then evaluated as ∆V = ∆Ri 1 R1... 1 Ri−1 1 Ri+1... 1 Rn.

In combination with the view synchronization, the full maintenance process for a DropSC is generalized as

“M(DropSC) = r(V D)w(V D)r(DS1)r(DS2)...r(DSn)w(MV )c(MV )”. The maintenance of a RenameSC is

generalized as ”M(RenameSC) = r(V D)w(V D)c(MV )”. Note that these high-level generalizations of various

maintenance processes in this section are independent of the particular VM, VS or VA algorithms or even the

underlying data model, which makes our proposed concurrency control strategy in this paper generally applicable

to these known work.

2.2 View Maintenance Anomalies

2.2.1 Illustrative Examples

Using a motivating example, we now illustrate different types of the view maintenance anomalies that may arise

when the data sources are autonomous.

Example 2 We use the data sources and view in Example 1. As mentioned in Section 2.1.1, given a data
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update, “∆I = insert (10, ‘Data Integration Guide’, ‘Adams’, 35.99)”, the View Maintenance process will issue

an incremental view maintenance query Q defined in Query (2). Two different anomalies can be distinguished

during the processing of this maintenance query:

(a) Duplication Anomaly: Assume that before the execution of query (2), the Catalog table committed a

data update ∆C = (’Data Integration Guide’, ’Adams’, ’Engineering’, ’Princeton’ ...). This new tuple would

be included in the query result of query (2). Thus one final tuple (’Amazon’, ‘Data Integration Guide’, 35.99,

’Adams’, ’Princeton’, ’Engineering’) will be inserted into the view. However, later when the view manager

processes ∆C, the same tuple would be inserted into the view again. A duplication anomaly occurs due to

concurrent data updates [ZGMHW95].

(b) Broken Query Anomaly: Now assuming the Review attribute is no longer kept in the Catalog table

before query (2) is processed. Query (2) then faces a schema conflict and cannot succeed since the required column

Review is no longer available.

Hence the anomaly is caused by the autonomy of sources that may conflict with the view maintenance

process. A concurrent data update may result in an incorrect query result returned by a maintenance query

while a concurrent schema change may result in a query failed to be processed by the respective data source.

2.2.2 Types of Maintenance Anomalies

We formally define the anomalies below.

Definition 1 Assume one update w(DSi) at source DSi and one update w(DSj) at source DSj . Maintenance

of neither update has finished yet. We say that the update w(DSj) conflicts with the maintenance M(w(DSi))

iff the source update w(DSj) is committed at DSj before the query r(DSj) of M(w(DSi)) is answered. We call

such a conflict view maintenance anomaly.

Note that the anomaly would never occur for M(RenameSC) because it does not send any maintenance

queries (Section 2.1.3). While the anomaly could occur during either M(DU1) or M(DropSC1) due to another

concurrent DU2, RenameSC2 or DropSC2.

Based on the types of w(DSi) and w(DSj), there are three types of maintenance anomalies (six cases) as

listed in Table 2. Among them, the anomalies I are caused by concurrent DU , while the anomalies II are

caused by concurrent RenameSC. The anomalies of type III are due to concurrent DropSC. The two cases in

Example 2 are anomalies of type I and III, respectively.

Notice that for the anomalies I in Table 2, we still could get some query results returned, however the results

may be incorrect. For the anomalies of II and III in Table 2, we may not even be able to get any query result
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Type Cases

I A DU2 concurrent to the maintenance of M(DU1)

A DU concurrent to the maintenance of M(DropSC)

II A RenameSC concurrent to the maintenance of M(DU)

A RenameSC concurrent to the maintenance of M(DropSC)

III A DropSC concurrent to the maintenance of M(DU)

A DropSC2 concurrent to the maintenance of M(DropSC1)

Table 2: Three Types of Maintenance Anomalies.

back due to the schema inconsistency between the maintenance query and the underlying sources. In this paper,

we will introduce a comprehensive solution framework to solve all these anomalies.

3 The DyDa Framework

Figure 3 depicts the architecture of our DyDa view management system. The framework is divided into three

spaces: view space, view manager space and remote source space. The view space houses the extent of the MV.

It receives view deltas from the view manager space to refresh the MV. The remote source space is composed of

data sources and their corresponding wrappers. We assume that all data source transactions are local to their

respective sources and every data update and schema change at a data source is reported to the view manager

once committed at the data source (or the changes can be detected and extracted by the wrapper).

Maintenance Algorithms                                          

View

Update Message Queue (UMQ)

Wrapper Wrapper Wrapper

DS DS DS

View Space

View Manager Space

Query Engine

VS VM

Remote Source Space

Dyno

VA

Figure 3: Architecture of DyDa Framework

The view manager aims to maintain the MV under source updates. It consists of the general view management

algorithms, such as VS, VA and VM as introduced in Section 2.1. These three algorithms allow the system to
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handle individual data update and schema change. According to the type of source update, the view manager

may use either VS, VA, or VM algorithms to update the MV correspondingly. In this layer, there are also Update

Message Queue (UMQ) and the Query Engine. The UMQ collects and manages the committed updates from

the data sources, which are either data updates or schema changes. After maintaining the head update in the

queue, UMQ will remove it from the queue and start processing the next. The Query Engine is responsible for

query processing, namely, sending down maintenance queries to individual data sources and then collecting and

assembling the query results.

Furthermore, in Figure 3 we indicate all modules which contain extended functionalities in order to handle

the anomaly problems as described in Section 2.2.2 by shading them. We propose different strategies to handle

the three types of anomalies in Table 2. In particular, we distinguish between two categories of our concurrency

control strategies, namely, intra-maintenance process and inter-maintenance process.

Intra-maintenance process strategy solves the concurrency within one maintenance process. More precisely,

it solves the anomalies of type I and II by this technique. There has been extensive study in the literature

[ZGMHW95, AASY97, ZGMW96, SBCL00] to solve anomaly I, namely, the concurrency caused by data updates.

The basic idea is to use compensation to remove any erroneous tuples from the query result. We extend this

method to compensate the maintenance query when there also exists conflicting RenameSC. Query Engine

employs this algorithm when processing the maintenance query to solve the anomalies of type I and II within

one maintenance process (Section 4). The essence of this technique is that it solves the anomalies in a fine level

without affecting the whole maintenance process.

Inter-maintenance process strategy globally schedules the maintenance processes, which is particular im-

portant to solve anomaly of type III, i.e., concurrent DropSC. While the state-of-the-art view maintenance

algorithms assume the order of maintenance of updates simply based on their arrival order, however, such order

is no longer appropriate and may cause anomaly III. We formally identify that such anomalies are due to the

violation of dependencies between the maintenance processes. To solve this, we introduce a dynamic maintenance

scheduler (Dyno) to correct such anomalies by rescheduling the maintenance order (Section 5). An advanced

VA algorithm (Section 6) is designed to process the mixed batches of updates scheduled by Dyno.

In the rest of this paper, we will demonstrate how these two different level strategies maintain the MV

consistent with the data sources even all three anomalies occur in an interleaved fashion.

4 A Compensation Strategy for Anomalies I and II

In this section, we will introduce a compensation-based algorithm to solve the anomalies of type I and II when

processing a maintenance query r(DSi). First, we need to determine the updates < w(DSi) > that are concurrent

to this query. Similar to the prior work [AASY97, ZGMHW95], we rely this on a FIFO assumption.
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Assumption 1 The network communication between an individual data source and the view manager is FIFO.

Assumption 1 guarantees that when we receive the query result of r(DSi), all updates w(DSi) committed

prior than the answering of query r(DSi) have already arrived the view manager in UMQ. If there exists DU

among < w(DSi) >, then anomaly I occurs. If there exists RenameSC, then anomaly II occurs. If there exists

DropSC, then anomaly III occurs.

When the concurrent updates < w(DSi) > contain only DUs, a number of algorithms in the literature

[AASY97, ZGMHW95, ZGMW96] propose to use compensation queries to remove the erroneous tuples from

the query results. Take the SWEEP algorithm in [AASY97] for example, suppose the returned maintenance

query result r(DSi) is ∆Rj 1 R′
i instead of ∆Rj 1 Ri. This error query result can corrected by ∆Rj 1 R′

i -

∆Rj 1 ∆Ri, where ∆Ri =< w(DSi) >.

However, if there exists RenameSC in < w(DSi) >, this basic compensation idea fails because the mainte-

nance query r(DSi) faces a schema conflict and fails to return any query results. But since the underlying data

is still available and the only difference is the names, we can rewrite the query r(DSi) by specifying the new

names of DSi. The high-level abstraction of this algorithm is shown in Figure 4.
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Figure 4: Compensation Algorithm for Anomalies I and II

We employ a name mapping table which describes the metadata name in the view definition and its current

name. These two names are initially equivalent. As mentioned early, the Query Engine is used to execute

the maintenance query which is decomposed from the view definition by either VM or VA. This maintenance
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query will first be rewritten using the current name of data sources. Then we apply our proposed compensation

algorithm to correct the maintenance query results if no anomaly III, i.e., DropSC occurs 1.

Our extended compensation algorithm first collects the concurrent source updates in line 1 by the FIFO

assumption. If there is no concurrent RenameSC, we can apply any of the existing compensating algorithm

[AASY97, ZGMHW95, ZGMW96] for data updates in line 2. If the concurrent RenameSC does occur, we need

to update the name mapping table to change the current metadata name and re-execute this query.

Theorem 1 Assume the data source state σ(DSi) evolves to the state σ(DS ′
i) by updates {w(DSi)}. The

maintenance query result r(σ(DS ′
i)) can be compensated to r(σ(DSi)) by our compensation algorithm iff w(DSi)

is either DU or RenameSC.

Proof: First, we define σD(DSi) as the data state and σS(DSi) as the schema state of DSi. By definition, we

have σ(DSi) = (σD(DSi), σS(DSi)). Since σ(DSi)
{w(DSi)}
−→ σ(DS′

i), we have (σD(DSi), σS(DSi))
{w(DSi)}
−→

(σD(DS′
i), σS(DS′

i)). Next, the query r(σ(DSi)) can also be precisely defined as r(σD(DSi), σS(DSi)) =

P (σD(DSi)). That is the query r is written based on the schema state of σS(DSi) and executed predicates

P on data state σD(DSi).

1). We first consider the case when all w(DSi) are data updates {DUi}, i.e., σS(DSi) = σS(DS′
i). Hence

r(σD(DS′
i), σS(DSi)) = r(σD(DS′

i), σS(DS′
i)) = P (σD(DS′

i)). This is a known problem and a number of

existing solutions [AASY97, SBCL00, ZGMHW95], generalized as function Comp that can generate the query

result P (σD(DSi)) by Comp(P (σD(DS′
i)), {DUi}).

2). Next, we consider the case when in addition to {DUi}, {w(DSi)} also contains RenameSC, i.e.,

{w(DSi)} = {DUi} ∪ {RenameSCi}. We have σD(DSi)
{DUi}
−→ σD(DS′′

i ) and σS(DSi)
{Renamei}
−→ σS(DS′′

i ).

The original query r(σD(DS′′
i ), σS(DSi)) is not valid, because the data state and schema state is not consistent.

The rewritten query r(σD(DS′′
i ), σS(DS′′

i )) returns the result P (σD(DS′′
i )).

An important property of RenameSC is that it only modifies the schema name not the actual data, i.e.,

σD(DS′
i) = σD(DS′′

i ). Hence we back to first case by applying P (σD(DSi)) = Comp(P (σD(DS′′
i )), {DUi}) =

Comp(P (σD(DS′
i)), {DUi}). Note that this technique does not work for DropSC since the data state is also

changed by DropSC.

5 Detection and Correction of Anomaly III

Section 4 guarantees that if there is no concurrent DropSC, the compensation solution can successfully generate

the correct maintenance query result. However, if there exists any concurrent DropSC, i.e., anomalies of type

1The DropSCF lag is an important optimization as we will see later.
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III, the solution no longer works. In this section, we describe that the reasons for this are the violations of de-

pendencies between maintenance processes. We first formalize the dependencies and point out their relationship

to the anomalies III then propose algorithms to solve them.

5.1 Dependencies among Maintenance Processes

5.1.1 Concurrent Dependency

There are two cases for anomalies III, namely, the maintenance process M(DU1) or M(DropSC2) conflicts with

another DropSC3. More formally, assume the DU1 or DropSC2 occurs at source DSi and the DropSC3 occurs at

DSj , respectively. Their maintenance processes are generalized as “M(DU1) = r1(V D)r1(DS1)r1(DS2)...r1(DSn)

w1(MV )c1(MV )”, “M(DropSC2) = r2(V D)w2(V D)r2(DS1)r2(DS2)...r2(DSn)w2(MV )c2(MV )” and “M(DropSC3)

= r3(V D) w3(V D)r3(DS1) r3(DS2)...r3(DSn)w3(MV )c3(MV )” in Section 2.1. By Definition 1, there is conflict

between r1(DSj)/DropSC3 or r2(DSj)/DropSC3.

Notice that there is also a read-write conflict on the view definition between these maintenance processes, i.e.,

r1(V D)/w3(V D) and r2(V D)/w3(V D). Interestingly, this conflict on the view definition is the reason for the

conflict between r1(DSj)/DropSC3 or r2(DSj)/DropSC3. The rationale is that the query r1(DSj), r2(DSj) has

been constructed based on the read of the view definition r1(V D), r2(V D). For instance, in Example 1.b, the

maintenance query (2) is constructed based on the view definition query (1) over Catalog. If this view definition

read r1(V D), r2(V D) conflicts with w3(V D), the constructed query r1(DSj), r2(DSj) may no longer reflect the

actual schema of DSj .

Definition 2 Let w(DSi) and w(DSj) denote two updates committed on data sources DSi and DSj , where

w(DSi) is either a DU or DropSC. The view manager has not finished maintenance for either of them. We say

that maintenance process M(w(DSi)) is concurrent dependent (CD) on maintenance process M(w(DSj)),

denoted by M(w(DSi))
cd
←− M(w(DSj)) iff M(w(DSi)) contains read view definition and w(DSj) is a DropSC

that M(w(DSj)) contains write view definition.

Concurrency dependency defines the relationship between maintenance processes over critical resource view

definition. There is a close relationship between concurrent dependency and anomaly of type III as will be

explained in Section 5.2. Note that there are several differences between the concurrent dependencies and wait-

for dependencies in traditional transactions [BHG87]. First, the conflict is on the view definition not on the actual

tuples. Second, even if the maintenance of a sequence of updates is processed in a serial fashion, dependencies

between them may still occur. The rationale is that the source updates are committed autonomously and thus

may conflict with any ongoing maintenance processes. Third, the dependency direction is always from a write

to a read of the view definition since the concurrent schema change may invalidate the old view definition and
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consequently any ongoing maintenance processes. The concurrency of the second case of Example 2 in Section

2.2.1 is of type “DU
cd
←− DropSC”. An example of “DropSC1

cd
←− DropSC2” will be given in Section 5.3.

5.1.2 Semantic Dependency

The MV is maintained consistent if it reflects some valid state of each data source, σ(DSi). Assume the state of

DSi evolves as σ(DSi)
∆1

−→ σ(DS1
i )

∆2

−→ σ(DS2
i ). It is important for MV to maintain ∆1 and ∆2 in that order.

If the MV maintains ∆2 first, then MV reflects the data source state σ(DS ′
i) as σ(DSi)

∆2

−→ σ(DS′
i), which is

neither σ(DS1
i ) nor σ(DS2

i ). In this case, Strong consistency [ZGMHW95] that MV reflects the valid state of

data sources in the same order cannot be achieved. Furthermore, the MV consistency may not even converge,

i.e., the final state may be invalid too. For example, assume that there are two updates from the same relation,

either an insert tuple A followed by a delete A, or a rename B to C and then rename C to D. If we reverse their

maintenance order, we cannot correctly maintain the MV.

Thus it is necessary to preserve the processing order of updates from shared resources such as the same tuple,

the same attribute or the same relation in the examples above. For simplicity, we employ the idea of the same

relation here. We now formally define this as a semantic dependency (SD).

Definition 3 Assume two updates w1(DSi) and w2(DSi) from data source DSi, then M(w2(DSi)) is semantic

dependent (SD) on M(w1(DSj)), denoted by: M(w2(DSi))
sd
←− M(w1(DSi)) iff w1(DSi) is committed before

w2(DSi).

5.2 Dependency Properties

The two types of dependencies, concurrent dependency and semantic dependency share an important property,

namely, both represent constraints on the maintenance order between updates. Hence we now abstract them as

one common concept.

Definition 4 For two updates m1 and m2, we define M(m2) is dependent on M(m1), denoted by M(m2)←

M(m1) if either M(m2) is concurrent dependent on M(m1) by Definition 2 or M(m2) is semantic dependent

on M(m1) by Definition 3.

Definition 5 Given two updates m1 and m2 in the UMQ. If m1 precedes m2 in the Update Message Queue

(UMQ), then we denote this by “pos(m1, UMQ) ≺ pos(m2, UMQ)”. We define the dependency relationship

between M(m1) and M(m2) to be:

1. independent iff there is no dependency between M(m1) and M(m2) by Definition 4.

2. safe dependent iff pos(m1, UMQ) ≺ pos(m2, UMQ) and all dependency orders between M(m1) and

M(m2) by Definition 4 are M(m2)←M(m1).
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3. unsafe dependent iff pos(m1, UMQ) ≺ pos(m2, UMQ) and there is at least one dependency M(m1) ←

M(m2).

Consider the second case of Example 1. The concurrent dependency is DU
cd
←− DropSC. However, since

the pos(DU, UMQ) ≺ pos(DropSC, UMQ), this dependency is unsafe by Definition 5. It is obvious that if

M(m2) is dependent on M(m1), then the maintenance M(m1) must be processed before M(m2). For a semantic

dependency, the required order is obvious as discussed in Section 5.1.2. For a concurrent dependency, as shown

in Section 5.1.1, the write view definition operation has to be done first to solve the read-write conflict on view

definition. The concurrent schema change invalidates the view definition, hence rewriting it becomes critical.

Theorem 2 An anomaly III occurs during the maintenance M(w(DSi)) only if there is at least one unsafe

concurrent dependency M(w(DSi))
cd
←−M(w(DSj)).

An anomaly of type III implies an unsafe dependency, but not vice versa. The proof is straightforward. If

an anomaly III occurs during the maintenance of w(DSi), by Definition 1, then there is a DropSC denoted

as w(DSj) that conflicts with M(w(DSi)). By Definition 2, there is concurrent dependency M(w(DSi))
cd
←−

M(w(DSj)). Since M(w(DSi)) is scheduled before M(w(DSj)), this concurrent dependency is unsafe.

Since the two types of dependencies both represent constraints between maintenannce processes, we now put

them together in a common structure.

Definition 6 A Dependency Graph is a directed graph G=(V,E) with the set of nodes V denoting all updates

mi in the UMQ and with the set of directed edges E denoting the dependencies e(mi, mj) between two updates

mi and mj iff a concurrent dependency or a semantic dependency exists between M(mi) and M(mj).

The complexity of identifying concurrent dependencies between maintenance processes is O(mn), where m

is the number of DropSC and n is the number of updates. The reason is that each concurrent dependency

involves at least one DropSC. In the worst case, one DropSC would have one concurrent dependency to all

other updates. Second, the complexity of building semantic dependencies between updates is O(n), where n

is the number of updates. To achieve this, we can create one bucket for each data source and scan the list of

updates once. Thus the time complexity of building a dependency graph is O(mn) + O(n), i.e., O(mn).

5.3 Cyclic Dependencies

A set of dependencies may comprise a cycle as illustrated by the example below. This is similar to the deadlock

in serializability theory [BHG87]. Given the source relations from Example 1, let us refer to the drop of Review

attribute as SC1. Now assume the Bookstore tunes the mapping of the XML documents as shown in Figure 5,

which we refer as SC2.
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Figure 5: Concurrent Tuning of XML Mapping

Assume these schema changes SC1, SC2 have already been committed at their data sources. If we process

SC1 first, the view definition may be rewritten into Query (3) (Section 2.1.2). However, this new view definition

is no longer consistent with the sources since the table Store or Item is no longer available due to SC2. Similarly,

if we process SC2 first, the view definition may be rewritten into Query (4). Again, the view definition is not

valid since the attribute Review is no longer available due to SC1. Hence the maintenance query constructed

based on either of these two view definitions would fail. We call such situation a cyclic dependency.

CREATE VIEW BookInfo′
AS

SELECT Store, Book, S.Author, Price, Publisher, Category, Review

FROM StoreItems S, Catalog C

WHERE S.Book = C.T itle

(4)

By Definition 2, there are concurrent dependencies M(SC1)
cd
←− M(SC2) and M(SC2)

cd
←− M(SC1). This

comprises a cycle. Intuitively, the reason is that all these updates in a “cycle” modify the source schema. If the

view manager rewrites the view definition based on a subset of them, the view definition is still not consistent

with the underlying sources. To handle such cyclic dependencies, aborting some of the source updates as often

used to resolve the deadlock in traditional databases is not feasible since the source updates have already been

autonomously committed and cannot be aborted. A viable idea is to consider all these updates at the same time

as we will elaborate later.

5.4 Dyno: Detection and Correction of Unsafe Dependencies

After we detect an unsafe dependency between the maintenance processes, we need to reschedule the maintenance

processes to turn the unsafe dependencies into safe ones (or equivalently speaking, we need to reorder the updates
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in the UMQ). We achieve this by sorting the dependency graph constructed during the detection phase.

Theorem 3 Given a fixed number of updates, if the dependency graph is acyclic, we can obtain a maintenance

order with all dependencies safe.

Theorem 3 holds since given an acyclic dependency graph, we can simply apply a topological sort algorithm

[Tar72] to obtain a partial order of nodes. The complexity is O(n+e), where n is the number of nodes (updates)

and e is the number of edges (dependencies). This way we obtain an order of updates that has all dependencies

in their safe direction.

However, if the dependency graph is cyclic as shown in Section 5.3, the topological sort algorithm cannot

generate a partial order [Tar72]. For this, we first identify all cycles in the dependency graph (similar to

identifying strong connected components in [Tar72], with complexity also O(n + e)). Traditional transaction

processing [BHG87] breaks the cycle (or deadlock) by removing one of the nodes in the cycle, in other words,

aborting one of the transactions. However, this strategy is not appropriate here because the source update is

autonomous and hence not abortable. Instead of removing one node, we propose to merge these nodes (updates)

into a merged one to be processed at a time. The intuition of the merge operation is that since we cannot

process these updates separately, we instead process them in one atomic batch. This however requires a new

view adaptation algorithm capable of processing such combined batches of updates which we will describe in

Section 6. After removing all cycles in the dependency graph, we can apply topological sort again to the now

acyclic dependency graph to obtain a maintenance order with all dependencies safe.

Concurrency Dependency              Semantic Dependency

SC1 SC2DU1
SC1 SC2DU1

Figure 6: Examples of Unsafe Dependency Correction

Figure 6 depicts this dependency correction algorithm for our running example. Assume in the view (1) of

Example 1, three updates occur, namely, one data update DU1 (∆I in Example 2) then two schema changes

(SC1 and SC2 in Section 5.3), in that order. Since DU1 and SC2 are from the same source, there is a seman-

tic dependency between them. Several concurrent dependencies are unsafe initially, such as DU1←−SC1 and

SC1←−SC2. Figure 6 illustrates the merge step of these three nodes into one big node to make the dependency

graph acyclic. The final schedule is to maintain these updates altogether in one batch.

We now introduce a dynamic maintenance scheduler Dyno utilizing the above basic idea for solving the

anomaly of type III. Figure 7 details the Dyno algorithm. Dyno checks the DropSCF lag in line 1 before

the maintenance processing. If there is no new DropSC after the last correction, we can avoid the detection

and correction steps because the newly arriving DUs or RenameSCs will not introduce any additional unsafe
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Figure 7: Dyno: DYNmaic reOrdering Algorithm

dependencies. If a DropSC did occur, Dyno will construct the dependency graph (line 2) and correct all unsafe

dependencies (line 3) in the UMQ. After that, Dyno starts to maintain the update (line 6). If no anomaly of

type III occurs during maintenance, then the head update will be removed and Dyno proceeds to process the

next update. Recall that the anomalies I and II will be solved within one maintenance process. If the anomaly

III did occur, Dyno kicks off the correction algorithms in line 1-3 to reschedule the maintenance order. It is

straightforward to prove that since Dyno provides a maintenance order having all the dependencies safe, no

anomaly of type III would occur.

Theorem 4 Given a number of updates, ∆X1, ..., ∆Xm, the anomaly of type III caused by ∆Xi will not occur

under the maintenance order scheduled by Dyno.

6 A Novel VA Algorithm for Processing Complex Updates

In Section 5.4, the correction algorithm generates a maintenance order for a number of updates. However, if there

is any cycle in the dependency graph, some updates will be merged. Such combined updates now could contain

both schema and data updates over different data sources. To our knowledge, state-of-the-art view maintenance

algorithms [AASY97, SBCL00, LNR02] cannot maintain such mixed updates in one maintenance process. Below

we introduce a batch extension of previous view maintenance algorithms for processing such merged updates.
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6.1 Preprocessing Step of the Source Updates

After merging cyclic dependent updates as described in Section 5.4, we have a complex update containing updates

from multiple sources. We first partition these updates based on the data source DSi that they originate from.

After that, we further partition the updates from the same data source DSi into two subgroups, namely, the

data updates group defined as < DUi >, and the schema changes group defined as < SCi >. Without loss of

generality, we define such a merged update as: U = {(< SC1 >, < DU1 >), (< SC2 >, < DU2 >), ..., (< SCn >

, < DUn >)}, where n is the number of data sources.

For such a merged update, first, the schema changes in < SCi > can sometimes be combined, e.g., if rename

A to B and then B and C occur in the same data source, we could simply rename A to C. Second, the data

updates may be inconsistent with their schema due to some schema changes in between. For example, assume

two inserts into the same relation with a drop attribute in between, the latter tuple will have fewer columns.

Thus our first step is to preprocess these updates in U from the same source to adjust these differences and to

enable us to maintain them in one batch.

Unifying Schema Changes: Given a group of schema changes < SCi > from one data source DSi, we rewrite

< SCi > to an equivalent group. This would optimize the maintenance, because those removed SCi need not

be processed.

Table 3 shows all possible combinations T(SC1, SC2) between two SCs (SC1, SC2) with SC1 the row entry

and SC2 the column entry. Here R, S, T represent relations, R.a, R.b, R.c represent attributes. If the entry of

the combination in Table 3 is empty, then it means that the combination of the two operations has no effect on

each other. Hence the combined result will keep both of them.

S → T drop R R.b→ R.c drop R.b

R→ S R→ T drop R - -

R.a→ R.b - - R.a→ R.c drop R.a

Table 3: Combination Rules between Two SCs

Finally we define < SC ′
i > as the schema changes set after combining the schema changes in < SCi >

pairwisely using the rules above.

Unifying Data Updates: We then try to combine the data updates in < DUi >, some of which might be

of different schemata. To achieve this, we define: < DU ′
i >= Πattr(Ri)∩attr(R′

i
)(< DUi >). That is, we project

on the common attributes of both the original relation Ri and the new relation R′
i. These common attributes

are actually the original Ri’s attributes minus the dropped ones. The purpose of this projection is to make the
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< DU ′
i > schemata consistent with each other while still correct for maintenance. We justify this below.

Lemma 1 All DU ′
i must have the same schemata.

Proof: We prove this by contradiction. Suppose that one tuple A contains one more attribute than another

tuple B. This extra attribute must be either an added attribute of A or a dropped attribute of B. Note that the

added attribute would only appear in the new state of relation R′
i, while the dropped attribute will only appear

in the old state of relation Ri. Thus such attribute will not appear in attr(R′
i) ∩ attr(Ri).

Example 3 Assume a view V(A,B,C) defined as R1(A, B) 1 R2(A, C). Suppose relation R2(A, C) has updates:

+(3,4), add attribute D, +(4,5,6), drop attribute C, and -(5,7). We have R2(A,C) and R′
2(A,D) and attr(R2) 1

attr(R′
2) = {A}. We get < DU ′

2 >= ΠA < DU2 >=< +(3), +(4),−(5) >, which are schemata consistent.

Now let’s examine the new view definition V new, a possible rewriting might be V new(A, B, C) = R1(A, B) 1

ΠA,C(ΠAR′
2(A, D) 1 R3(A, C)). Since only attribute A of R′

2 is involved in the view definition V new, we

confirm that < DU ′
2 > is sufficient for the view maintenance.

Using the process described above, we can convert U into U ′ = {(< SC ′
1 >, < DU ′

1 >), (< SC ′
2 >, < DU ′

2 >),

..., (< SC ′
n >, < DU ′

n >)}. We characterize the relationship between {SC ′
i} and {DU ′

i} as follows:

• If < SC ′
i > contains “Drop Relation Ri”, then < DU ′

i >= ∅ and < SC ′
i > = Drop Relation Ri.

• If < SC ′
i > contains a “Drop Attribute” operation, then both < SC ′

i > and < DU ′
i > might not be empty.

• If < SC ′
i > contains no DropSC, < DU ′

i > = < DUi >.

In the next section, we will show that we can also safely have < DU ′
i >= ∅ when < SC ′

i > contains a “Drop

Attribute”.

6.2 Incremental View Adaptation Step

Now we are ready to incorporate these modified updates U ′ into the MV. Recall that the view manager process

involves two steps to incorporate schema changes, namely, view rewriting (VS) and then view adaptation (VA).

Below we describe how to maintain U ′ by these two steps.

1. View Rewriting by View Synchronization: We first apply view synchronization (VS) to all < SC ′
i > in

U ′, i=1..n. Note that we rewrite the view definition for each schema change in < SC ′
i > by the VS techniques

described in Section 2.1.2. Here we denote the old view definition as V = R1 1 R2 1 ... 1 Rn and the new view

definition as V new = Rnew
1 1 Rnew

2 1 ... 1 Rnew
n .

In particular, we have the following possible rewritings for each relation Ri. If the updates contain drop

relation, then by Section 6.1 we know that < SC ′
i > has only that drop relation after merging the schema
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changes. Thus the rewriting is just to find an alternative table for replacement. If the updates contain drop

attributes, alternative tables and additional joins may be needed as described in Section 2.1.2. If the updates

do not contain any DropSC, then there might be only name changes on the view definition by RenameSC. In

summary, we have each new source relation as:

Rnew
i =



















ΠRi
Rnew

i : Drop−Rel

ΠRi
(R′

i 1 R1
i 1 R2

i ... 1 Rm
i ) : Drop−Attr

R′
i : No−DropSC

The meanings of Rnew
i , R′

i and Ri are described in Table 1. Here we assume a valid view rewriting exists.

Otherwise the MV would become invalid and cannot be maintained. Take the cyclic dependency example in

Section 5.3, the correct view definition taking both SC1 and SC2 into consideration should be:

CREATE VIEW BookInfo AS

SELECT Store, Book, S.Author, Price, Pub-
lisher, Category, Comment as Re-
view

FROM StoreItem S, Catalog C, Com-
ments M

WHERE S.Book = C.Title AND C.Title =
M.Article

(5)

2. Incremental View Adaptation: In order to incrementally adapt the view extent, we need to determine

the delta change. Here the old view extent is V = R1 1 R2 1 ... 1 Rn and the new view extent is V new =

Rnew
1 1 Rnew

2 1 ... 1 Rnew
n = (R1 + ∆R1) 1 (R2 + ∆R2) 1 ... 1 (Rn + ∆Rn). Comparing the old and the new

view extent, the delta change is:

∆V = ∆R1 1 R2 1 ... 1 Ri 1 ... 1 Rn (6)

+ Rnew
1 1 ∆R2 1 R3 1 ...... 1 Ri 1 ... 1 Rn + ...

+ Rnew
1 1 ... 1 Rnew

i−1 1 ∆Ri 1 Ri+1 1 ... 1 Rn + ...

+ Rnew
1 1 ... 1 Rnew

i 1 ... 1 Rnew
n−1 1 ∆Rn.

The ∆Ri is defined as

4Ri =







∏

attr(Ri)
(R1

i )−Ri : Drop−Rel
∏

attr(Ri)
(R′

i ./ R1
i ./ · · · ./ Rm

i )−Ri : Drop−Attr

< DUi > : No−DropSC

If there is no DropSC, then the delta changes are only the data updates. If there is a “drop relation”, since
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only pre-state Ri is interested, we can safely discard < DU ′
i >. Moreover, since some of Ri data is already

dropped, we instead compute the above set-difference by replacing Ri with ΠRi
V [NR99]. However, if there is

“drop attribute”, then < DU ′
i > might not be empty. We prove that we can also need not explicitly consider

< DU ′
i > since its delta effect is implicitly evaluated in Πattr(Ri)(R

′
i 1 R1

i 1 R2
i ... 1 Rm

i ). The reason is simply

because Π(attr(Ri)∩attr(R′

i
))(R

′
i) = Π(attr(Ri)∩attr(R′

i
))Ri + Π(attr(Ri)∩attr(R′

i
) < DU ′

i > . Thus whenever there is

DropSC in < SCi >, we can safely discard any < DUi >, which further simplifies our preprocessing step in

Section 6.1.

Theorem 5 Assume the complex updates U include ∆R1, ..., ∆Rn, which evolves each table state as: σ(Ri)
∆Ri−→

σ(R′
i). The MV state that reflects each individual table state is maintained from (σ(R1), ..., σ(Rn)) to (σ(R′

1), ...,

σ(R′
n)) by our adaptation algorithm.

Proof: Assume the updates to be maintained in a batch are ∆R1, ∆R2, ..., ∆Rn. Each ∆Ri includes two

update sets, namely, {DUi} and {SCi}. Correspondingly, the state of the relation (σD(Ri), σS(Ri)) evolves to

(σD(R′
i), σS(R′

i)) by {DUi} and {SCi}. The original view schema state reflects each of the original table schema

state. More formally, σS(V ) = (σS(R1), ..., σS(Rn)). The original view data state state reflects each of the

original table data state, formally as σD(V ) = (σD(R1), ..., σD(Rn))

The unifying step for {SCi} in Section 6.1 is trivial, i.e., the resulting {SC ′
i} is equivalent to {SCi}. The

view definition V is then rewritten to V new by V
V Si({SC′

i
})

−→ V new , i.e., employ VS algorithm for each SC ′
i. Since

σS(Ri)
{SC′

i
}

−→ σS(R′
i), we have σS(V new) = (σS(R′

1), ..., σS(R′
n)). In other words, the new view definition reflects

the new schema state of the sources.

Next, we consider the data state of the view. Assume the rewritten view as V new = Rnew
1 1 Rnew

2 1 ... 1

Rnew
n . To incrementally maintain the V new from V = R1 1 R2 1 ... 1 Rn, it is known to compute ∆Rnew

i as

the set difference between Rnew
i and Ri then apply Equation 6 to correctly compute ∆V .

We now prove that σD(V new) = (σD(R′
1), ..., σD(R′

n)).

1) If ∆Ri does not contain DropSC, then ∆Rnew
i = {DUi} (RenameSC will not change data.); 2) If Ri is

dropped, then σD(R′
i) = ∅. Since Ri is replaced by Rnew

i , the V new no longer reflects any state of Ri; 3) If some

of the Ri’s attributes are dropped, the Rnew
i is in the form of (R′

i 1 R1
i 1 R2

i ... 1 Rm
i ) = (Ri + {DUi}) 1 R1

i 1

R2
i ... 1 Rm

i . In the first the third case, the {DUi} are both considered in ∆Rnew
i , while the second case is trivial.

Hence σD(V new) reflects the new data state of each σD(R′
i).

Theorem 6 The proposed techniques achieve strong consistency for MV maintenance.

Proof: The proof of the overall correctness is basically a combination of the theorems we have already developed.

We start with the static case assuming there are n source updates ∆U1, ..., ∆Un. The Dyno technique in Section 5

will schedule these maintenance processes that is free of anomaly III (Theorem 4). Assume the resulting order of
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updates for maintenance is ∆U ′
1, ..., ∆U ′

m. The correctness of each maintenance M(∆U ′
i) without any anomalies

is guaranteed by Theorem 5, which will generate a number of maintenance queries. Moreover, even if there are

anomalies I and II when processing these maintenance queries, they can be compensated by Theorem 1. Hence,

MV reflects the correct states after each M(∆U ′
i). Finally, given the semantic dependency constraints posed

by Dyno, there is a partial order between ∆U ′
i . Thus the MV achieves strong consistency but not complete

consistency because some of the intermediate states may be missing due to the merge step.

Now we consider dynamic case, i.e., new updates occur during the maintenance. If the new updates are

DUs or RenameSCs, then they can be compensated by Theorem 1. If the new updates are DropSCs, then the

maintenance is aborted and Dyno reschedules the whole processes. We then back to the static case.

7 Experimental Evaluation

7.1 Experiment Testbed

We have implemented the above techniques in our DyDa [CZC+01] system, using Java as development language

and Oracle8i as view servers and data source servers. In our experimental setting, there are six sources evenly

distributed over three different source servers with one relation each. Each relation has four attributes and

contains 100, 000 tuples. There is one materialized one-to-one join view defined upon these six source relations

containing all twenty four attributes, residing on a fourth server. All experiments are conducted on four Pentium

III PCs with 256MB memory each, running Windows NT and Oracle8i.

7.2 Individual Update Processing

We first study the individual update processing of view maintenance. We distinguish between two classes

of updates, i.e., data update and schema change. We further distinguish between RenameSC and DropSC,

because we expect that they have significant differences in maintenance costs.

Figure 8 depicts the average view maintenance cost under our basic experimental setting, measured in seconds

(depicted on the y-axis) for different types of updates. We find that the cost for DU maintenance is the least

while the cost of DropSC maintenance is significant. This is because the latter invokes both VS and VA modules.

This observation provides us some intuition that it is more costly to abort and re-process a DropSC.

In the next three experiments, we will study the system performance under various kinds of anomalies

described in Section 2.2.2, all of which are supported in our DyDa system.
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Figure 8: Comparison of Individual Update Processing Types

7.3 Study of Compensation for Anomaly I

Note that our DyDa system extends the ordinary view manager functionality to also deal with concurrent schema

changes. We first study the overhead that such extended functionality may bring to the normal system’s data

update processing. We examine our compensation algorithm in Figure 4. Since we employ a DropSCF lag to

indicate any concurrent DropSC, when there are only data updates, we can avoid the construction of dependency

graph and correction step. Thus the extra cost to the existing data update maintenance algorithms is only O(1).

In this experiment, we compare DyDa to SWEEP [AASY97] as the VM algorithm under a number of concurrent

data updates from distributed sources to measure the extra overhead that the DyDa framework may be imposing.
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Figure 9: SWEEP vs. DyDa on Data Update Processing

Figure 9 depicts the total view maintenance cost measured in seconds (depicted on the y-axis) under different

numbers of source data updates (depicted on the x-axis). From the result, we find that the extra cost is almost

neglectable (less than 3%) for a number of data updates in our environmental settings. We thus conclude that
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the DyDa system imposes little extra cost on data update processing while offering added support for concurrent

schema change processing.

7.4 Abort Cost of Anomalies II and III

Recall that a maintenance query may fail due to the existence of some concurrent schema changes, i.e., anomalies

II and III. Once a concurrent DropSC causes the query failure, the view manager has to abort all previous

maintenance work and redo it again imposing some extra cost on the view maintenance process. While in

comparison, if a concurrent RenameSC occurs, we simply rewrite the query using new names and try the new

query again without aborting any prior effort as described in Figure 4. The extra abort cost of anomaly II is

thus less than that of the anomaly III.

In this experiment, we study the cost of all four cases of anomalies II and III. To observe the exact abort

cost, we employ controlled cases here, i.e., one data update processing aborted by one schema change and one

schema change processing conflicts with another one. Two different environment settings are compared. First,

we measure the maintenance cost of all updates by spacing them far enough so that each source update occurs

after the completion of the previous view maintenance step. This way they will not interfere with each other,

which can be considered to be the minimum cost as no concurrency handling cost would arise. Second, we allow

the anomalies to occur by spacing the updates close enough and measure the cost.
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Figure 10: Abort Cost for Anomaly II and III

Figure 10 depicts the total view maintenance cost in terms of seconds (depicted on the y-axis) for the different

types of anomalies II and III. We find that the extra cost of aborting M(DropSC) by another DropSC is more

significant than any others. The reason is the complete abort of M(DropSC), which is the most expensive

maintenance process as observed in Section 7.1.

We also find that the abort cost of anomalies type II is small because the loss is just one maintenance query.

All other maintenance efforts completed to that point can be kept since we can simply rewrite the query and
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try again. Finally, since data update maintenance is the least costly process, even if it’s completely aborted and

redone again, the cost is still insignificant.

7.5 Mixed Update Processing

We now study how DyDa performs in an environment composed of a random mixture of both data updates and

schema changes.

We employ a mixture of updates with three DropSC, three RenameSC and one hundred data updates over

all six sources. We apply a worst case study here, i.e., there is no schema changes could be combined and no data

updates could be discarded as described in Section 6.2.1. If so, the performance should be better than we will

find here. In this experiment, we vary the time interval between the DropSC, RenameSC and data updates.

Figure 11 depicts the abort cost and the overall maintenance cost (which includes the abort cost) when

only varying the time interval between DropSC from 0s to 45s. 0s means that all updates flood into the view

manager before any maintenance kicks in. From Figure 11, we see that this case has the best performance. This

is because the system is able to correct all unsafe dependencies at once for all updates, thus no anomalies type

III would occur during maintenance processing. When the time interval between DropSC increases, the new

DropSC could break the ongoing maintenance work, hence the cost increases. The cost reaches a high peak

when the new DropSC always occurs near the end of the current M(DropSC), resulting in the maximum abort

cost. After the interval is larger than the maintenance time, there is no conflicts between the DropSC. Hence

the cost significantly decreases.
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Figure 11: Varying Time Interval between DropSCs
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Figure 12: Varying Time Interval between DUs and Re-
nameSCs

Next, we fix the time interval between the DropSC to 10s, but vary the time interval between data updates

and RenameSC, respectively. Figure 12 depicts the abort cost and the overall maintenance cost for both

cases. From the figure, we see that the system performance as well as the abort cost remain stable because the
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concurrency between DropSC is not affected. Although the rate of the other two types of concurrency may vary,

it seems not to affect the system performance much as observed in Section 7.3 and 7.4.

8 Related Work

Schema mapping [MBR01, MHH00] specifies how to map the data from one schema to another to achieve

interoperability of heterogeneous data sources. A variety of modern applications requires schema mapping as

foundations, such as data integration for heterogeneous sources, XML to relational mapping or semantic Web

[LGMT03]. With the popular usage of WWW, the application environment becomes increasingly complex

and dynamic. The data sources may change their schema, semantics as well as their query capabilities. In

correspondence, the mapping or view definition must be maintained to keep consistent. In EVE [LNR02] system,

the view definition evolves after the source schema changes. In [VMP03] the authors propose to incrementally

adapts the schema mapping to the new source or target schema or constraints.

In a loosely-coupled environment, such as the Data Grid [JR03], the data sources may wish to contribute

some of their sources but also want to keep autonomous such that they may commit update transactions without

any concern of how those changes may affect the mapping or views defined upon them [ZGMHW95].

Materialized views, as proven to be a big success in the decision support applications, would continue to

be effective in this scenario. Materialized views must be maintained when the source changes, which has been

extensively studied in the past few years [AASY97, SBCL00, ZGMHW95, CGL+96, GL95, LMSS95]. However,

most of these work assume a static schema, which is no longer a valid assumption in the dynamic environment.

While in [AASY97, SBCL00, ZGMHW95], the authors proposed compensation-based solutions to remove the

effect of concurrent data updates from query results, these solutions would fail under source schema changes.

[ZR02] assumes a fixed synchronization protocol between the view manager and data sources to resolve the

concurrency problem. This restricts the autonomy of sources in that the sources have to wait before applying

any schema change. Our proposed solution successfully drops this restricting assumption. [CCR02] employs a

multiversion concurrency control algorithm to avoid anomalies assuming there are enough system resources to

materialize auxiliary data.

9 Conclusions

To our knowledge, our work is the first to address the view maintenance anomaly problem under both concurrent

source data updates and schema changes without placing any restrictions on the sources. We first identify three

types of potential maintenance anomalies. We prove our compensation solution is able to handle both concurrent

data and rename scheme changes. In the case of concurrent drop schema changes, we propose to remove such
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anomaly by re-scheduling the maintenance order and use our new view adaptation algorithm to maintain the

resulting complex update. With our proposed approach, the view manager is able to handle any type of anomalies.

The data sources in our environment achieve complete autonomy in that they can commit either data updates

or schema changes without coordinating with the view manager.

We have implemented our DyDa system. The experimental results show that our new concurrency handling

strategy imposes a minimal overhead on normal data update processing while still allowing for the extended

functionality to maintain the view even under concurrent schema change processing. We also extensively study

the concurrency handling cost for different type of anomalies and the overall system performance in a mixed

updates environment.
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