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Abstract

Adaptive operator scheduling algorithms for continuous
query processing are usually designed to serve a single per-
formance objective, such as minimizing memory usage or
maximizing query throughput. We observe that different
performance objectives may sometimes conflict with each
other. Also due to the dynamic nature of streaming envi-
ronments, the performance objective may need to change
dynamically. Furthermore, the performance specification
defined by users may itself be multi-dimensional. There-
fore, utilizing a single scheduling algorithm optimized for
a single objective is no longer sufficient. In this paper,
we propose a novel adaptive scheduling algorithm selection
framework named AMoS. It is able to leverage the strengths
of existing scheduling algorithms to meet multiple perfor-
mance objectives. AMoS employs a lightweight learning
mechanism to assess the effectiveness of each algorithm.
The learned knowledge can be used to select the algorithm
that probabilistically has the best chance of improving the
performance. In addition, AMoS has the flexibility to add
and adapt to new scheduling algorithms, query plans and
data sets during execution. Our experimental results show
that AMoS significantly outperforms the existing scheduling
algorithms with regard to satisfying both uni-objective and
multi-objective performance requirements.

1 Introduction

An increasing number of modern applications need to
process streaming data, including sensor network monitor-
ing [14], online transaction processing [22] and network in-
trusion detection [21]. Correspondingly, stream processing
systems, such as Aurora [1], CAPE [18], NiagaraCQ [7],
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STREAM [17], TelegraphCQ [6], Raindrop [20] to just
name a few, have been designed and developed to process
long-running continuous queries on potentially infinite data
streams and produce query results in a real-time fashion.

A continuous query system may execute a large num-
ber of concurrent continuous queries. This raises the prob-
lem of allocating processing resources to query operators,
i.e., how to schedule the execution of the operators. To
have fine-grained control over the query processing, rather
than randomly selecting operators to execute or leaving the
scheduling task to the underlying operating system, contin-
uous query systems employ scheduling algorithms to deter-
mine the order in which the operators will be executed.

1.1 Issues with Operator Scheduling in Continu-
ous Query Processing

Due to the dynamic nature of the streaming environ-
ments, it is imperative to employ adaptivity in operator
scheduling. The stream characteristics may change signifi-
cantly in terms of both arrival rates and value distributions.
Also queries can be dynamically inserted to or deleted from
the system [7]. As a consequence, the resources available
for executing each individual operator may differ greatly
over time. The traditional scheduling algorithms borrowed
directly from the operating system realm [8, 24], such as
FIFO and Round Robin, do not adjust their behavior ac-
cording to these runtime variations. Hence they may not
perform well in a volatile streaming environment.

Several newly proposed operator scheduling algorithms
for continuous query processing, such as Chain [3] and
Train [5], can adapt their runtime behavior due to changes in
the streaming environments. These adaptive scheduling al-
gorithms areuni-objective, meaning each algorithm aims to
satisfy a single performance objective. For example, Chain
aims to minimize the intermediate queues. The Train algo-
rithm has three variations and each aims at improving just
one of the following performance requirements: average tu-
ple delay, query throughput or total queue size.



The uni-objective scheduling algorithms can be insuf-
ficient for continuous query processing due to the follow-
ing reasons. First, different performance objectives may be
correlated with each other, and this correlation can be ei-
ther positive or negative. By targeting just one performance
metric, the gains in this metric may have the side effect of
degradating another metric. This may inversely have a neg-
ative effect on the targeted metric. For example, an algo-
rithm aiming to minimize the total queue size may tend to
process the part of the query that generates the most tuples.
This may possibly cause an increase in average tuple de-
lay, which may impair the effect of minimizing queue sizes.
Therefore, even though only a single performance objective
is explicitly specified, multiple objectives may need to be
considered by a scheduling algorithm.

Secondly, the performance objective of query processing
may also vary due to the change of application requirements
and system resource availability. For example, the work-
load in a query system may fluctuate greatly over time. Un-
der a light workload and with abundant memory resources,
maximizing the throughput may be the most desirable opti-
mization objective. However, under heavy query workload,
minimizing memory overhead may become the most criti-
cal optimization task in order to prevent memory overflow.
As a result, a scheduling algorithm needs to have the ability
to adapt its optimization objective dynamically. This, how-
ever, is not supported by the existing scheduling algorithms.

Lastly, in many cases the desired performance of a query
may already contain multiple objectives. For example, to
run several time-critical queries in a memory-limited ma-
chine, two optimization goals should be targeted – mini-
mum result latency and minimum memory overhead. These
two objectives are conflicting to some degree. A good bal-
ance must be achieved between them by setting priorities
to these objectives. Another example of needingprioritized
multiple objectivesis the processing of network intrusion
detection queries, which may focus on getting results in real
time with relatively relaxed requirements on memory usage,
assuming the processing is done at a high-end machine.

In summary, scheduling algorithms need to support the
following features: (1) adapting to changing stream char-
acteristics, (2) supporting multipleprioritized optimization
goals, and (3) being able to dynamically change the opti-
mization objective. The current uni-objective scheduling
algorithms lack features (2) and (3). This now is the focus
of our work presented in this paper.

1.2 Our Approach: Adaptive Scheduling Selec-
tion Framework

We propose AMoS, anAdaptive Multi-objective
Scheduling selection framework. AMoS is able to lever-
age the strengths of each scheduling algorithm and avoid

its weaknesses, especially in the presence of multiple pri-
oritized performance objectives. AMoS can be viewed as
a “meta-scheduler”. Given several scheduling algorithms,
AMoS employs a lightweight learning mechanism to empir-
ically learn the behavior of the scheduling algorithms over
time. It then uses the learned knowledge to continuously se-
lect the algorithm that has statistically performed the best.
Our work contributes to continuous query processing in the
following ways:

• To the best of our knowledge, we are the first to con-
sider a general scheduling framework for continuous
query processing with several prioritized performance
objectives. We propose a measure to quantify such
comprehensive objectives so to effectively assess how
well each scheduling algorithm meets these objectives.

• We experimentally study the performance of a variety
of state-of-the-art scheduling algorithms in an actual
continuous query system named CAPE [18] to exam-
ine their strengths and weaknesses under varying per-
formance objectives and query workloads.

• The framework is designed to learn the behavior of the
scheduling algorithms with very little processing over-
head. No apriori information of the scheduling algo-
rithms, query plans or data sets is needed.

• We build AMoS in the CAPE system to make decisions
on operator scheduling. We also equip AMoS with a
library of scheduling algorithms for it to utilize.

• We conduct an experimental study that supports our
claim that AMoS can in fact leverage the strengths of
several existing scheduling algorithms to improve the
overall performance of the query execution given a set
of (possibly changing) performance objectives.

1.3 Roadmap

This paper is organized as follows. In Section 2, we de-
scribe a motivating example and present results of experi-
mental evaluation of existing scheduling algorithms. Sec-
tion 3 describes the architecture and the key components
of AMoS. In Section 4, we present an experimental study
that confirms the effectiveness of AMoS. We review related
work in Section 5 and conclude our paper in Section 6.

2 Analysis of Existing Scheduling Algo-
rithms

To further illustrate the scheduling problem that mo-
tivates our work on AMoS, we now analyze commonly
adopted scheduling algorithms in continuous query systems



to show that there is indeed no “one size fits all” algorithm.
Note that this knowledge about the scheduling algorithms,
however, is not required by AMoS because AMoS is able to
empirically learn this knowledge during the execution.

2.1 Scheduling Algorithms

Round Robin (RR). Round Robin is perhaps the most
basic scheduling algorithm. It is used as a default scheduler
by many continuous query systems such as [7]. It places all
runnable operators in a circular queue and allocates a fixed
time slice to each. Round Robin’s most desirable quality is
the avoidance of starvation. However, Round Robin does
not adapt to changing stream conditions.

First In First Out (FIFO). FIFO operates on the oldest
tuples first to push them through the query plan. FIFO re-
duces the result latency because the older tuples are given a
higher priority over newer ones. But it has the same draw-
backs as Round Robin - no adaptability and no considera-
tion of operator properties.

Most Tuples in Queue (MTIQ). MTIQ assigns a prior-
ity to each operator equivalent to the number of the tuples in
its input queue(s). It is a simplified batch scheduler, similar
to Train [5]. Operators typically have a start-up cost associ-
ated with their execution. The batch scheduler can amortize
this cost over a larger group of tuples. The most obvious
advantage of MTIQ is the minimization on total queue size.

Chain. Chain [3] is a recently proposed variation of
greedy scheduling. Each operator is assigned a priority that
is based on its selectivity, processing cost, and the priori-
ties of neighboring operators. By analyzing the prioritiesof
neighboring operators, “Chains” of operators can be sched-
uled to run together. Chain is shown in [3] to excel in keep-
ing total queue size to a minimum. It may however suffer
from poor response time during times of bursty arrivals.

2.2 A Running Example

To gain some intuition on how different scheduling al-
gorithms impose different effects on query processing per-
formance, let us consider the query plan in Figure 1. The
plan contains three filter operatorsOp1 throughOp3. The
input stream has an average arrival rate of 1 tuple per time
unit. However, to simulate the bursty arrival pattern that is
commonly observed in a streaming system, we assume the
tuple arrival rate is 2 tuples per time unit for the first 3 time
units, and no tuple arrives for the next 3 time units. So the
average tuple arrival rate in the first 6 time units is (3× 2
+ 3 × 0) / 6 = 1. At time unit 0, all queues are assumed to
be empty. Each operator has two parameters:σ andt. σ

represents the selectivity of operator.t refers to the average
time the operator takes to process one tuple.
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t = 0.5
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Figure 1. Selectivity σ and Average Tuple Pro-
cessing Time t for the example query plan.

Time Queue
Size (Q1)

Queue
Size (Q2)

Queue
Size (Q3)

Queue Size
(Total)

Throu-
ghput

0 0 0 0 0 0
1 2 0 0 0 0
1.5 1 0.25 0 1.25 0
1.75 1 0 0.125 1.125 0
2 3 0 0 3 0.1
2.5 2 0.25 0 2.25 0.1
3 4 0 0 4 0.2
3.5 3 0.25 0 3.25 0.2
4 3 0 0 3 0.3

Table 1. FIFO
Time Queue

Size (Q1)
Queue
Size (Q2)

Queue
Size (Q3)

Queue Size
(Total)

Throu-
ghput

0 0 0 0 0 0
1 2 0 0 0 0
1.5 1 0.25 0 1.25 0
2 2 0.5 0 2.5 0
2.5 1 0.75 0 1.75 0
3 2 1 0 3 0
3.5 1 1.25 0 2.25 0
4 1 1 0.125 2.125 0

Table 2. MTIQ

For simplicity let us assume that switching between op-
erators takes zero time. For the example in Figure 1, the
average time the query plan takes to process a newly ar-
rived tuple can be calculated as 1× 0.5 + 1× 0.25× 1 + 1
× 0.25× 0.5× 2 = 1. So on average the query system has
enough resources to keep up with the incoming data rate.

We now use this example to show how two schedul-
ing algorithms, FIFO and MTIQ, differ in their schedul-
ing choices and the consequent query performance in terms
of total tuples in queues and query throughput. FIFO and
MTIQ are chosen here as the illustrating scheduling algo-
rithms because they can be easily quantified while exhibit-
ing interesting behaviors.

Table 1 summarizes the number of tuples in queues and
the throughput (the number of tuplesOp3 outputs thus far)
for FIFO. At time unit 1, two tuples arrive in Q1. FIFO
first removes 1 tuple from Q1, processes for 0.5 time unit,
and outputs 0.25 tuple. This 0.25 tuple is then processed by
Op2 and 0.125 tuples are output. Finally,Op3 consumes the
0.125 tuple and outputs 0.01 tuples. While FIFO is focusing
on propagating the “older” tuples through the query plan,



more tuples would continue to enter the input queue ofOp1.
For MTIQ, as shown in Table 2, at time unit 1,Op1 takes

1 tuple from Q1 and produces 0.25 tuple. MTIQ will con-
tinue to runOp1 as it has the most tuples in its input queue.
At time unit 2,Op1 would have enqueued totally 0.5 tuples
in Q2. Meanwhile, two new tuples arrives inQ1 and MTIQ
will choose to runOp1 yet again. The process continues
until whenOp3 finally would have accumulated the largest
input queue. Only at that pointOp3 would be scheduled and
some output would finally be produced by the query plan.

In summary, FIFO focuses on providing a steady output,
especially a much quicker first output, while MTIQ keeps
its total queue size small but does not output any results
for a relatively long time. As a consequence MTIQ’s result
output pattern is more bursty than FIFO’s.

2.3 Experimental Evaluation of Scheduling Algo-
rithms

We have experimentally evaluated the four scheduling
algorithms described in Section 2.1, namely Round Robin,
FIFO, MTIQ and Chain, in our continuous query system
called CAPE [18]. Figure 4 (b) shows the query plan used in
the experiments. Detailed information on the experimental
setup can be found in Section 4.1.
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Figure 2. Performance of Scheduling Algo-
rithms with a Two-Stream Query Plan.

Figure 2 shows the performance of these algorithms with
regard to the total queue sizes and the result latency. The re-

sult latency is the average time that an input tuple takes to
be output as a result. As anticipated, Chain and MTIQ per-
form the best when it comes to minimizing queue sizes. As
discussed in Section 2.1, Chain processes operators that can
most quickly remove the largest number of tuples. MTIQ
processes operators that have the largest queues. Thus these
two algorithms are excellent at minimizing queue sizes.
However, the results are very different when it comes to the
result latency. MTIQ and Chain end up being the two worst
ones near the end of the recorded execution. FIFO, which
was only mediocre on minimizing the queue size, actually
does quite well minimizing the result latency.

Overall we observe from Figure 2 that no one algorithm
is outstanding regarding both performance metrics. The key
idea that can be deduced from this is that we need to use the
best algorithm available at a given time to optimize the per-
formance requirements. This is the fundamental principle
exploited by our solution outlined in the next section.

3 Adaptive Scheduling Selection Framework

3.1 Overview

Given a set of state-of-the-art scheduling algorithms,
AMoS employs a learning mechanism to empirically learn
the behavior of these algorithms. Based on the learned
knowledge, it adaptively selects the algorithm that has been
statistically shown to best meet the optimization objectives.
The scheduling selection process is executed periodically
and consists of three steps listed below.

1. Scoring statistics: update the statistics of overall his-
torical scheduling behaviors using the statistics of the
scheduling algorithm that was just used, denoted as
Acurrent. Then the historical statistics and the statis-
tics forAcurrent are scored.

2. Ranking scheduling algorithms: use scored statistics
to evaluateAcurrent against all the other scheduling
algorithms that have been used.

3. Selecting next candidate algorithm: select the schedul-
ing algorithm to use next based on algorithm ranking.

Figure 3 shows the architecture of AMoS. All candidate
scheduling algorithms are maintained in thescheduling al-
gorithm library. Newly developed algorithms can also be
easily added into the library. Thealgorithm evaluatortakes
statistics collected by the system statistics collector toeval-
uate the performance of each algorithm. The changing per-
formance requirements are also input to the algorithm eval-
uator. Thealgorithm selectorthen employs thelearning
strategyto select the next algorithm to use.
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Figure 3. Architecture of AMoS.

Several issues have to be tackled in the design of AMoS.
First, a scoring function needs to be developed to quantify
how well a scheduling algorithm is performing regarding
certain performance metrics. This function should allow the
statistics of individual performance metric to be weighed for
relative importance and be normalized such that one algo-
rithm can be ranked against others. Second, AMoS should
be able to judiciously choose the next scheduling algorithm.
It must be able to weigh the benefits of choosing an alter-
nate algorithm versus staying with the current one. Hence
the learning strategy needs to be carefully chosen such that
it favors the well-performing ones, but still allows the other
algorithms to be periodically explored. In Sections 3.3 –
3.5, we will provide details on how we address these issues
in AMoS. Before that, we first introduce in Section 3.2 how
our system enables users to specify multi-dimensional per-
formance requirements. Such performance specification is
used by AMoS as a benchmark to determine how well or
poorly each scheduling strategy is performing.

3.2 Specifying Performance Requirements

Our continuous query system provides a panel for the
system administrator to input their performance require-
ments on query execution, which we callperformance spec-
ification. The performance specification is composed of re-
quirements on one or more performance metrics. Each re-
quirement consists of three parts: (1) theperformance met-
ric that is to be controlled, (2) thequantifier, eithermaxi-
mizeor minimize, that specifies how the administrator wants
to manage this performance, and (3) theweight, which is
the relative priority of each requirement, with the sum of all
weights equals to 1. Using this panel, the administrator can
also revise the performance specification during query exe-
cution by adding or removing some performance metrics or
adjusting the weight of any of the performance metrics.

We choose to quantify the performance requirements us-
ing relative priorities instead of absolute numbers such as
“output 10 results per second” or “keep no more than 5000

tuples in queues” due to the following reasons. First, the
absolute performance requirements are often impractical to
achieve because they are dependent on many uncontrollable
factors such as data value distributions or stream arrival
rates. Second, in most cases we only care about the rela-
tive importance of each performance. For example, we may
be primarily interested in minimizing the total queue size,
say 75%, while caring to a less degree about minimizing
result latency, say 25%, as shown in Table 3.

Statistic Quantifier Weight
Total queue size minimize 75%
Result latency minimize 25%

Table 3. Example Performance Specification

Throughout this paper, we will work with the following
performance metrics:

• Result output rate: the number of tuples output by the
query per time unit.

• Total queue size: the total number of tuples stored in
all the queues within a query plan.

• Result latency (or tuple delay): the average delay from
the time a tuple enters the query system until it is out-
put as a result.

3.3 Scoring Statistics

During query execution, the statistics collector in the
system will use the new statistics collected from the query
plan executor to update the statistics that are related to
the targeted performance metrics. These updated statistics
serve as feedback for assessing how well the scheduling al-
gorithms that was just used, i.e.,Acurrent, has performed
compared to other algorithms that was used before. Since
the performance specification can be multi-dimensional, the
evaluation of an algorithm should consider all related statis-
tics. So, as the first step, we evaluate each statistici in a
normalized way.

zi new =
(µC

i − µH
i )

maxH
i − minH

i

·(1−decay)+zi old·decay (1)

For each candidate scheduling algorithm, we keep an ar-
ray of normalized statistics scores calculated by Equation1
for the latest time that this algorithm is run. For currently
running algorithmAcurrent, we use Equation 1 to update
scorezi for each statistici of Acurrent. The new score
zi new is computed based on the historical statistics (with
superscript H), the statistics from executingAcurrent (with
superscript C), the old scorezi old and adecay factor.



The historical statistics cover all statistics collected so
far1, including the statistics ofAcurrent. Each time the
statistics for the currently running algorithm are updated,
the historical statistics are updated as well with the new
statistics. Note that the historical statistics cover the behav-
ior of all the scheduling algorithms that have been used, not
just the history ofAcurrent. In Equation 1,µH

i , maxH
i and

minH
i respectively denote the mean, maximum and min-

imum values of statistici in the historical statistics.µC
i

denotes the mean value of statistici from usingAcurrent.
Thedecay factoris used to exponentially decay out-of-

date data to give a higher priority to the data that are col-
lected the most recently, since this data is the most relevant
to the current state of the system. The decay factor has a
value in the range of (0, 0.5), so more weight is given to cur-
rent data2. We can see that sinceminH

i ≤ µC
i ≤maxH

i and
minH

i < µH
i < maxH

i , bothzi old andzi new are bounded
in the range of (–1, 1).

3.4 Ranking Scheduling Algorithms

As the next step, we use Equation 2 to compute the score
for a scheduling algorithm. The score of each algorithm is
based on the scores of all the statistics related to the per-
formance requirements. In Equation 2, the total number of
related statistics is denoted by symbolI. To compute the
score for an algorithm, the normalized score for each statis-
tic is multiplied by its corresponding weightwi specified
in the performance specification. The quantifier for each
performance requirement in the specification is used to de-
termine the value ofqi. If the quantifier is to maximize the
performance metric,qi is 1. If it is to minimize,qi is –1.

ScoreA =

I∑

i=1

(qi · zi · wi) + 1 (2)

If the performance specification states that a certain
statistic should be minimized, then ideally the statistics
score generated by Equation 1 should produce a negative
value. This implies thatAcurrent yields a lower value than
the overall performance recorded so far regarding this statis-
tic. Similarly, a statistic to be maximized should ideally
yield a positive score. By applying the quantifierqi, the
negative to-be-minimized values (less than overall) will be
flipped to a positive value and thus they contribute more
to the scheduler’s score. Consequently, the negative to-be-
maximized values will be subtracted from the score.

Therefore, this equation gives a better score to perfor-
mance requirements with a high weight and a highz value
from Equation 1. The weighed sum will yield a value within

1In our implementation, we only store the synopsis of these statistics.
2The first time a statistics score of an algorithm is calculated, the decay

factor is set to 0.

(–1, 1) for each scheduling algorithm. We then add 1 to shift
the range to (0, 2) so that all algorithms will have a positive
score, which will be used by the learning strategy described
in Section 3.5. This way we map a complete set of statistics
for a scheduling algorithm into a single value that can be
compared against the other algorithms.

The score of an algorithm is not based solely on the pre-
vious time that it was applied, but rather is an exponentially
smoothed average value over time. While the performance
of an algorithm is largely coupled to the characteristics of
the data, over time the score of the algorithm should reflect
its true potential. Therefore, the system is capable of han-
dling reasonable fluctuations in data characteristics.

3.5 Adaptive Scheduling Selection

After each algorithm has been given a score based on its
performance, the system is in a position to decide whether
Acurrent should be used again or if better performance
could potentially be achieved by changing to another al-
gorithm. It does this by comparing the score ofAcurrent

with the scores for all of the other algorithms (that have run
so far). For this, we use a simple Radix sort to rate these
algorithms in linear time. Thus this comparison is cheap.

Several issues are considered when using the scores to
determine the next scheduling algorithm:

1. Initially, all scheduling algorithms should be given a
chance to “prove” themselves. Otherwise the decision
would be biased against the algorithms that have not
yet run. Therefore, at the beginning of execution, we
want to allow some degree of exploration on the part of
the adapter. We choose to initially run each algorithm
in a Round Robin fashion because this is the fairest
way to start the adaptive scheduling selection.

2. If we greedily choose the next algorithm to run in-
stead of switching algorithms periodically during exe-
cution, a poor-performingalgorithm may consequently
run more often than a potentially better one. Hence, we
need to periodically explore alternate algorithms.

3. Switching algorithms too frequently could cause one
algorithm to skew the results of the next used algo-
rithm. So when a new algorithm is chosen, it should
be used for enough time such that its behavior is not
significantly over-shadowed by the previously running
one. For this purpose, we empirically set the delay
threshold before reassessing the potential of a switch.

Once each algorithm has had a chance to run, there are
various learning strategies that could be applied to deter-
mine if it would be beneficial to change the algorithm. In the
current stage, AMoS employs theRoulette Wheel strategy



(also referred to asfitness proportion selection) [16]. AMoS
is extensible so that other learning strategies, if found to
be more effective, can be easily plugged in. The Roulette
Wheel strategy assigns each algorithm a slice of a circu-
lar “roulette wheel” with the size of the slice being propor-
tional to the individual’s score. Then the wheel will be spun
once and the algorithm under the wheel’s marker is selected
to run next. Since the slice of the roulette wheel for each
algorithm is proportional to its score, the well-performing
algorithm will have higher probability to be selected than
other ones. Meanwhile, other algorithms also have chance
to be explored. This appropriately solves the second issue
described above.

The Roulette Wheel strategy was chosen also because
it is lightweight. The lightweightness is of critical impor-
tance to AMoS as a meta-scheduling framework because
it enables quick response to performance degradation and
quick detection of possible performance improvement. We
observe close to zero overhead when using this strategy
to evaluate the scheduling algorithms in our experimental
study, as will be shown in Section 4. In spite of its simplic-
ity, this strategy has been shown by our experimental results
(Section 4) to be effective enough to help AMoS outperform
all single scheduling algorithms significantly.

4 Experimental Evaluation

4.1 Experimental Setup

We have implemented the AMoS adaptive scheduling
selection framework in the CAPE continuous query sys-
tem [18]. To fully test the capability of AMoS, in our ex-
periments, we use both synthetic data and real-world data
from the Internet Traffic Archive [12]. For synthetic data we
control the selectivity and the arrival rate of data streams.
The tuple inter-arrival time conforms to Poisson distribu-
tion. We vary the Poisson mean every 5 seconds to model
time-varying data arrivals. The Internet Traffic Archive data
is sent based on the timestamp of each data item. They
also have bursty arrivals at times. We choose these data
sets in order to show that under both steady and bursty
data arrivals, the adaptive framework can respond with good
query performance. All data streams are sent across a 10
BaseT LAN to achieve a realistic environment in which data
streams are from remote sources. The machine that runs the
continuous query engine with AMoS has a 1.2 GHz Inter(R)
Celeron(TM) CPU and a 512 MB RAM, running Windows
XP and Java 1.4.2 SDK.

AMoS has been tested with an extensive array of differ-
ent query plans ranging from 2 to 90 operators. Here we
report our comparative results using existing query plans
extracted from a recent scheduling paper [3] to provide
the basis for comparing AMoS with published schedul-
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Figure 4. Query Plans used in Experiments.

ing algorithms. The query plans are shown in Figure 4
with selectivity denoted byσ and average tuple process-
ing time by t. The selectivity of the window join op-
erator with a window of 200 milliseconds is defined as
σjoin =

Noutput

Nleftinput·Nrightinput
.

4.2 Comparison with Existing Algorithms

The first set of experiments uses a performance specifi-
cation with only one requirement, i.e., to minimize memory
overhead or to minimize tuple delay. These experiments are
done to demonstrate that even for only one requirement, the
adaptive framework is able to yield better or at least equal
performance to individual algorithms most of the time.

In Figure 5 we can see that the adaptive framework out-
performs all individual scheduling algorithms with regard
to minimizing tuple delay. By tracing the execution history
of all these algorithms, we observe that the adaptive frame-
work achieves such performance gains by exploitingbene-
ficial interactionsbetween different scheduling algorithms.
For example, FIFO excels in minimizing tuple delay. How-
ever, it may cause a large number of input tuples to accumu-
late in the input queues of the query plan after running for a
while. On the other hand, MTIQ can take advantage of such
queue buildups. When queue buildups arise, MTIQ will be
selected (at timet = 7 in Figure 5) and it will progress tuples
through the query plan more rapidly. After a while, FIFO
will be selected again (at timet = 21) because older tuples
still remain in the query plan and need to be processed.

Figure 6 shows that the adaptive framework also of-
ten outperforms any single algorithm in terms of reducing
memory overhead.

4.3 Reaction to Changing Specifications

Secondly, we evaluate how well the adaptive framework
works with two performance requirements, in particular, av-
erage tuple delay and result output rate. Most importantly,
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Figure 5. One Performance Requirement:
Minimizing Tuple Delay.
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Figure 6. One Performance Requirement:
Minimizing Total Queue Size.

we test that as the importance of the performance require-
ments changes, how efficiently the adaptive framework will
acknowledge such change and adapt accordingly.

In Figure 7 we depict the results of an experiment for
which we place 70% importance on minimizing tuple delay
and a 30% importance on maximizing result output rate. We
observe that the adaptive framework outperforms each sin-
gle algorithm regarding average tuple delay, and performs
about average regarding the result output rate. Since aver-
age tuple delay is of higher priority, the scheduling algo-
rithms that favor this metric such as FIFO will be used for
most of the time. Due to the frequent context switchings
between operators caused by FIFO scheduling, the average
processing cost for a single input tuple will be increased
accordingly. Therefore, another performance requirement,
the result output rate, may not be satisfied as well. However,
the overall performance of the adaptive framework is better
than any of the individual algorithms.

In the experiment shown in Figure 8, we adjust the
weights to be 70% on maximizing output rate and 30% on
minimizing tuple delay. We observe that with such change
in requirements, the adaptive framework still does excep-
tionally well at minimizing tuple delay, and improves sig-
nificantly at raising the output rate. This is because the
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Figure 7. Two Performance Requirements
with 70% Focus on Minimizing Tuple Delay,
and 30% on Maximizing Output Rate (Plan 1)

adaptive framework can adaptively adjust the frequency of
executing each scheduling algorithm according to their po-
tentials on achieving the desired performance. When more
weight is put on maximizing the output rate, the algorithms
that are good at this will be used more often than others.

4.4 Handling Multi-Faceted Specifications

Now we compare the performance of the adaptive frame-
work against the individual scheduling algorithms with a
performance specification of three requirements – tuple de-
lay, result output rate and memory overhead. Each perfor-
mance requirement is given equal weight.

In Figure 9 we can see that the adaptive framework again
performs well under all three performance requirements,
with the biggest improvements on average tuple delay and
memory overhead. This is again due to the beneficial inter-
actions between various algorithms.

5 Related Work

There is a recent surge of ongoing research in continu-
ous query processing [1,6,7,11,19]. Resource management
has been recognized to be one of the important issues to
be addressed [17]. To effectively allocate resources among
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Figure 8. Two Performance Requirements
with 30% Focus on Minimizing Tuple Delay,
and 70% on Maximizing Output Rate (Plan 1)

possibly a large number of operators in a continuous query
plan is critical to achieve desired query performance.

The research effort on resource management that is most
related to ours is operator scheduling, i.e., allocating CPU
time among query operators. Besides borrowing schedul-
ing strategies from the operating systems realm, such as
Round Robin, some continuous query systems also propose
more fine-tuned adaptive scheduling algorithms including
Chain [3], Train [5] and path capacity [13] strategies. Each
of these scheduling strategies aims to optimize one perfor-
mance objective, such as minimizing total queue size or
minimizing result latency. The threshold strategy [13] ad-
dresses the combined optimization of both result latency
and memory requirement. Our work differs from these prior
works in that our system is able to target any number of per-
formance objectives with flexible-configured priorities.

Another line of research on scheduling concentrates on
how to schedule data. Rate-based stream scheduling [23]
deals with ordering the execution of input streams so to
maximize the query output rate. Eddies [2, 15] uses a
lottery-type scheduler to route tuples to an available oper-
ator. The goal is to prevent tuples from waiting in the input
queues of a slow or busy operator.

Besides CPU time, memory is another important re-
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Figure 9. Three Performance Requirements
with Same Priority (Plan 2)

source that should be taken good care of. [4, 9, 10, 22] ex-
ploit semantic constraints of streaming data, such as clus-
tered or ordered data arrivals, to discard no-longer-useful
data from operator states in a timely manner. [7,15] research
on grouping queries or operators to minimize memory over-
head. These issues are orthogonal to our work.

6 Conclusion

In this paper, we proposed a novel scheduling selec-
tion framework that leverages the strengths of individual
scheduling algorithms to meet flexible compositions of per-
formance requirements. Our framework uses the recent per-
formance of each scheduling algorithm in determining how
to best adapt operator scheduling given the current status of
query execution. Using a lightweight lottery-based heuris-
tic, an algorithm is selected based on its potential to yield
better performance.



We have found that not only was our framework able
to efficiently meet both single or multiple performance re-
quirements, but it was also able to react to the runtime
requirements changes. The framework succeeded where
each single scheduling algorithm may fail due to their uni-
objective nature. As a result, our technique is shown to aid
several highly tuned algorithms, such as Chain [3], in areas
where the algorithm would normally not produce satisfac-
tory results. Our framework is general and can be easily
plugged into existing continuous query systems.

As future work, we plan to incorporate and experiment
with alternate scheduling algorithms, such as the Train
strategies [5], path capacity scheduling and hybrid thresh-
old scheduling [13]. We could also explore other adaptive
heuristics and learning mechanisms. Another interesting
open problem is to investigate the interactions between run-
time query restructuring [25] and operator scheduling in or-
der to derive an optimal query execution plan.
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