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Abstract. Moving object environments are characterized by large num-
bers of objects continuously sending location updates. At times, data
arrival rates may spike up, causing the load on the system to exceed its
capacity. This may result in increased output latencies, potentially lead-
ing to invalid or obsolete answers. Dropping data randomly, the most fre-
quently used approach in the literature for load shedding, may adversely
affect the accuracy of the results. We thus propose a load shedding tech-
nique customized for spatio-temporal stream data. In our model, spatio-
temporal properties, such as location, time, direction and speed over
time, serve as critical factors in the load shedding decision. The main
idea is to abstract similarly moving objects into moving clusters which
serve as summaries of their members’ movement. Based on resource re-
strictions, members within clusters may be selectively discarded, while
their locations are being approximated by their respective moving clus-
ters. Our experimental study illustrates the performance gains achieved
by our load-shedding framework and the tradeoff between the amount of
data shed and the result accuracy.

1 Introduction

Applications dealing with extremely large numbers of moving objects are be-
coming increasingly common. These include fleet monitoring [31], location-based
services [18] and scientific applications [25]. In such applications, queries are typ-
ically continuously evaluated over data streams composed of location updates.
At times such data streams may become bursty and thus exceed system capacity.

However, existing load smoothing techniques [16, 24, 30] that store the tuples
that cannot be processed into archives (spill them to disk) are not viable options
for streaming spatio-temporal data. This is because spatio-temporal applications
typically have real-time response requirements [18, 21]. Any delay in the answer
to a query would give obsolete results, and with objects continuously changing
their locations, make them invalid or useless.

In order to deal with resource limitations in a graceful way, returning ap-
proximate query answers instead of exact answers has emerged as a promising
approach [3, 8, 9]. Load shedding is a popular method to approximate query an-
swers for stream processing while reducing the consumption of resources. The
goal is to minimize inaccuracy in query answers while keeping up with the in-
coming data load. The current state-of-the-art in load shedding [1, 2, 9, 22, 26,
28, 29] can be categorized into two main approaches. The first relies on syntactic
(random) load shedding, where tuples are discarded randomly based on expected
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system performance metrics such as output rate [9, 27]. The second approach,
also known as semantic load shedding, assigns priorities to tuples based on their
utility (semantics) to the application and then sheds those with low priority
first [6, 27]. However, both of these approaches may suffer from high inaccuracy
if applied to spatio-temporal data streams. The reason is two-fold: (1) they do
not consider the spatio-temporal properties of the moving objects when deciding
which data to load shed, and (2) they do not consider that both queries as well
as objects have the ability to change their locations. Hence the results to queries
depend on both the positions of the moving objects and of the moving queries
at the time of querying.

To motivate the solution presented in this paper, we consider a scenario from
the supply-chain management application – fleet monitoring. We assume that
vehicles are equipped with positioning devices (e.g., GPS) and are travelling in
convoys, i.e., in close proximity from each other. Using random load shedding,
all vehicles’ location updates are treated equally. Thus any tuple is equally likely
to be discarded and the whereabouts of the vehicle may be unknown for some
duration of time. Using semantic load shedding, a user may specify vehicles with
the most valuable (e.g., expensive or perishable) cargo having the highest utility.
The locations of the vehicles with lower utility may be discarded first, and thus
temporarily loosing the location information of those moving objects.

The scenario above illustrates that using current load shedding techniques,
the spatio-temporal properties of the moving objects are not taken into account
when deciding which data to discard. However, if the workload must be reduced
by dropping some data, taking into account such spatio-temporal properties as
location, speed, direction, much higher accuracy can be achieved. Another point
the scenario above illustrates is the spatio-temporal relationship of several differ-
ent objects relative to each other, more specifically the similarity of movement.
Thus intuitively if we can approximate similarly moving objects into clusters,
and keep track of spatio-temporal properties of the cluster as a whole, then we
could load shed the objects close to the center of the cluster without losing much
in the results accuracy. So the decision to discard certain data is not related to
only one object, but rather to dynamically formed sets of objects. To the best
of our knowledge, no prior work has addressed this thus far.

1.1 Spatio-Temporal Similarity

We observe that large numbers of moving objects often share some spatio-
temporal properties, in fact, they often naturally move in clusters for some
periods of time [7, 14]. For example, migrating animals, city pedestrians, or a
convoy of cars that follow the same route in a city naturally form moving clus-
ters (Fig. 1). Such moving clusters do not always retain the same set of objects
for their lifetime, rather some objects may enter or leave over time. For exam-
ple, new animals may enter the migrating group, and others may leave the group
(e.g., animals attacked by predators). While belonging to a particular cluster,
the object shares similar properties with the other objects that belong to the
same cluster. In this case, the spatio-temporal properties of the cluster such as
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speed, direction3, and relative proximity of other moving objects summarize how
these objects are moving and where they currently are.

A cluster can in some sense serve as a “common-feature-abstraction” of a
group of moving objects sharing spatio-temporal properties. We now postulate
that this abstraction can be exploited for efficient load shedding.

1.2 Our Contributions: ClusterSheddy Framework

In this paper, we present the ClusterSheddy framework for processing spatio-
temporal queries on moving objects. ClusterSheddy is equipped with novel meth-
ods for spatio-temporal load shedding based on motion semantics. Moving clus-
ters, abstracting similarly moving objects and queries, serve as summaries of
their members and preserve their location, even if approximate, when their indi-
vidual positions are load shed. The novelty of our method is that it uses dynamic
clusters, together with the knowledge of the current system resources to deter-
mine when, how much and which data to load shed. Inside each moving cluster,
a nested data structure, termed nucleus, abstracts the positions of the cluster
members whose positions are load shed. In other words, the load shedding in
ClusterSheddy takes a “from-inside-out” approach, where objects/queries closest
to the center of the cluster are load shed first. The motivation is that the closer
cluster members are to the centroid, the more accurately the cluster approx-
imates their individual locations. The sizes of the moving clusters’ nuclei are
resource-sensitive, meaning that the nucleus size of a moving cluster changes
depending on the current resource availability. We measure the quality of a load
shedding policy in terms of the deviation of the estimated answers produced by
the system from the actual answers. Experimental results illustrate that Clus-

terSheddy is very effective in quickly reducing the load while maintaining good
accuracy of the results.
Roadmap: Section 2 provides an overview of the ClusterSheddy framework and
the moving cluster abstractions over spatio-temporal streams. Section 3 describes
the load shedding technique based on moving clusters and the different policies
for shedding clusters. Section 4 presents our experimental results. Section 5 dis-
cusses related work, and Section 6 concludes the paper.
3

We measure direction using a counterclockwise angle of rotation with due East. Using this con-
vention, a vector with a direction of 30 degrees is a vector which has been rotated 30 degrees in
a counterclockwise direction relative to due east.
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2 ClusterSheddy Framework

2.1 Query Evaluation in ClusterSheddy

ClusterSheddy is encapsulated into a physical non-blocking pipelined query op-
erator that can be combined with traditional operators in a query network plan.
The input to ClusterSheddy consists of moving objects and spatio-temporal query
streams. Moving objects’ location updates arrive in the form (oid, Loc, t), where
oid is an object id, and Loc is its location at time t. Continuous queries arrive
in the form (qid, Loc, t, qType, qAttrs), where qid is a query id, and Loc is its
location at time t, qType is a query type (e.g., knn, range), and qAttrs represents
query attributes (e.g., a value of k for a knn query).

The ClusterSheddy execution process consists of three phases: (1) clustering,
(2) cluster-based join, and (3) load shedding (Fig. 2). When new location data
for an object/query arrives, the object/query joins either an existing cluster or
forms its own cluster (clustering phase). Similar to our prior work, SCUBA [20],
spatio-temporal queries on moving objects are evaluated by first performing a
spatial join between moving clusters pruning true negatives. If two clusters do
not intersect with one other, the objects and queries belonging to these clusters
are guaranteed to not join either. Thereafter, in the join-within step, individual
objects and queries inside the clusters are joined with each other. This two-step
filter-and-join process helps reduce the number of unnecessary spatial joins.

Unlike SCUBA, ClusterSheddy implements incremental query evaluation and
unlike SINA [19] and SEA-CNN [32], it is done at the coarser level of moving
clusters rather than of individual objects and queries. Such incremental approach
helps to avoid continuous re-evaluation of spatio-temporal queries. Moreover,
ClusterSheddy effectively employs load shedding based on moving clusters, a task
not addressed in these prior works.

2.2 Moving Cluster Abstraction

Given the intuition highlighted in Section 1.1 that the moving objects often travel
closely together in space for some period of time, we group moving entities4

into moving clusters based on their shared spatio-temporal properties (Fig. 3).
Moving entities that don’t satisfy conditions of any existing clusters form their
own clusters. When moving entities change their spatio-temporal properties, they
may enter or leave a moving cluster, and the properties of that cluster (depicted
in Fig. 4) are then adjusted accordingly.

4
By moving entities we mean both moving objects and spatio-temporal queries.
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PROCEDURE ClusterMovingObject (MovingCluster M)
1. new object o arrives
2.     if distance between o and M.Loc < distance threshold
3.     and speed difference between o and M < speed threshold
4.     and direction difference between o and M < direction threshold
5.     and time difference between o location update and M update < time threshold
6.           add object o to the moving cluster M, updating cluster properties:
                    a)  member object count (M.oCount)  and total member count (M.Count)
                    b)  average speed (M.AveSpeed)
                    c)  average direction (M.Dir)
                    d)  location of the cluster centroid (M.Loc)
                    e)  cluster radius (M.R)
                    f)   record the time of the cluster update (M.UpdTime)
7.     else create new cluster based on the properties of object o

Fig. 5. Pseudo Code for Clustering Moving Objects.

Four similarity thresholds play a key role in determining the moving clusters5.
Using these thresholds, we define the similarity among moving entities.

Definition 1. (Similarity Condition) Let ΘS be the maximum speed difference thres-

hold, ΘD the maximum spatial distance threshold, ΘR the maximum direction dif-

ference threshold, and ΘT the maximum time difference threshold. Let tk and tl be

the times when moving entities ei and ej (i 6= j) last updated their spatio-temporal

properties. Then if |ei.Speed − ej .Speed| ≤ ΘS , and |ei.Loc − ej .Loc|6 ≤ ΘD, and

|ei.Dir − ej .Dir| ≤ ΘR, and |tk − tl| ≤ ΘT , the entities are said to be similar, ei
s
= ej.

Definition 2. (Moving Cluster) Let E={e1,e2...ei} be a set of moving entities. A

moving cluster m is a non-empty subset of E (m ⊆ E), with spatio-temporal properties

mspt = (AveSpeed,AveDir, Loc, R, t . . .) which represents the average of the spatio-

temporal properties of all entities ei ∈ m, and where each ei satisfies the similarity

condition with respect to mspt.

Using Definition 1 above, a moving entity ei that is found to be in close prox-
imity of a cluster centroid (m.Loc) and has similar properties with the cluster,
is added to that respected moving cluster. Our clustering method is based on
the classic leader-follower (LF ) algorithm7 [10, 11]. The LF algorithm can han-
dle incrementally streaming data, producing adequate quality moving clusters in
linear time. Fig. 5 gives the pseudo-code for clustering moving objects. Similar
processing is done for clustering moving queries. Due to space constraints, we
omit the description of the clustering procedure. For more details, we refer the
reader to [20].

2.3 Incremental Query Evaluation Using Moving Clusters

ClusterSheddy uses an incremental strategy in evaluating joins between moving
clusters, and then within the overlapping clusters that we describe next.
Incremental Join-Between : Consider two moving clusters m1 and m2 (Fig.
6). When performing a join between moving clusters, ClusterSheddy distinguishes
between four cases as illustrated in Table 18. Column “Clusters at time t0” in-
dicates if m1 and m2 intersected at an old time t0, column “Clusters at time t1”

5
Deriving threshold values that give you near-optimal clustering is a research area of its own. In
our work, we approximated the threshold values that would cluster on average a certain number
of objects per cluster based on the properties of the data [12].

6
The difference is measured by a distance function (e.g., euclidean distance).

7
However, any alternative clustering algorithm can also be plugged-in, as long as it is efficient.

8
By ∩, we denote intersection.
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Case Clusters at time t0 Clusters at time t1 Join-Within

Needed

Result Updates Illustration

1. m1 ∩ m2 = ∅ m1 ∩ m2 = ∅ - - Fig. 6a
2. m1 ∩ m2 = ∅ m1 ∩ m2 6= ∅ X positive Fig. 6b
3. m1 ∩ m2 6= ∅ m1 ∩ m2 = ∅ - negative Fig. 6c
4. m1 ∩ m2 6= ∅ m1 ∩ m2 6= ∅ X positive/negative Fig. 6d

Table 1. Cases for Incremental Evaluation: Join-Between Moving Clusters

Case Clustering at time t1 m.Ans at time t0 o,q at t1 Update Answer Set Result

Updates

Illustration

1. o ∈ m and q ∈ m (q, o, m.Cid) ∈ m.Ans o ∈ q - - Fig. 7b
2. o ∈ m and q ∈ m (q, o, m.Cid) ∈ m.Ans o /∈ q (q, o, m.Cid) /∈ m.Ans (q,-o) Fig. 7c
3. o ∈ m′ and q ∈ m (q, o, m.Cid) ∈ m.Ans o ∈ q (q, o, m′.Cid) ∈ m.Ans - Fig. 7d
4. o ∈ m′ and q ∈ m (q, o, m.Cid) ∈ m.Ans o /∈ q (q, o, m.Cid) /∈ m.Ans (q,-o) Fig. 7e
5. o ∈ m′ and q ∈ m (q, o, m.Cid) /∈ m.Ans o ∈ q (q, o, m′.Cid) ∈ m.Ans (q,+o) Fig. 7f
6. o ∈ m′ and q ∈ m (q, o, m.Cid) /∈ m.Ans o /∈ q - - -

Table 2. Cases for Incremental Evaluation: Join-Within Moving Clusters

describes if they are currently intersecting (at time t1). “Join-Within Needed”
column specifies if join-within needs to be performed after this current join-
between, while the “Results Updates” column describes the types of result up-
dates that would be sent to the output stream. Column “Illustration” names the
figure that graphically illustrates this case. For example, consider Case 1. If at
time t0 and at time t1 two clusters m1 and m2 are not overlapping, no further
processing is needed and no result updates are sent9.
Incremental Join-Within : To illustrate incremental join-within moving clus-
ters, consider a query q which belongs to a cluster m and a moving object o

which at time t0 was in the same cluster m as q, but at time t1 may belong
to either the same cluster (m) or to any moving cluster currently intersecting
with m (e.g., m′) (Fig. 7). ClusterSheddy, at time t1, distinguishes among six
cases (Table 2)10. Column “Clustering at time t1” describes which moving clus-
ters the object o and query q belong to at time t1. “m.Ans at time t0” column
describes the result set associated with cluster m for query q. Whether o still
satisfies q at time t1 is depicted in column “o, q at t1”. Column “Update Answer
Set” describes which cluster result set has to be updated at time t1. Finally,
“Result Updates” depicts the types of result updates that would be sent, and
“Illustration” names the figure for that case. For example, in Case 1, o and q are
in the same cluster m at both time t0 and t1. At time t1 o still satisfies q. Since
only the updates of the previously reported results are processed, o is neither
processed nor is any result sent to the output stream11.

3 Cluster-Based Load Shedding

Load shedding of moving clusters is an optimization problem composed of three
sub-problems: (1) how to effectively estimate the current system load. This im-
plicitly determines when we have to load shed to avoid system overload; (2) how
to determine which clusters to load shed. Is it better to shed all moving clusters
equally or to target a subset of moving clusters to more effectively reduce the
load, while minimizing the overall inaccuracy; (3) how much to shed per cluster,

9
For brevity of discussion, we skip the detailed discussion of each case.

10
We did not include the figure for case 6 as it is trivial.

11
We omit the detailed discussion of each case, as Table 2 illustrates the main ideas of each case.
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so that the introduced relative error in the final query results is minimized. We
address these three questions next.

3.1 Load Shedding Via Cluster Nucleus

A nucleus of a cluster is a circular region that approximates the positions of
the members near the centroid of the cluster. Individual positions of objects and
queries inside the nucleus are load shed12. The imprecision is directly propor-
tional to the size of the nucleus. The larger the nucleus, the more imprecise the
query results may become.

Definition 3. (Cluster Nucleus) Given the nucleus threshold ΘN where 0 ≤ ΘN ≤

ΘD, let m be a moving cluster. Then the cluster nucleus m.Nucl is the subset of m

(m.Nucl ⊆ m), where ∀ objects oi ∈ m.Nucl, |oi.Loc − m.Loc| ≤ ΘN and ∀ queries

qj ∈ m.Nucl, |qj .Loc − m.Loc| ≤ ΘN .

Fig. 8 depicts the effect of increasing a cluster nucleus on the amount of ob-
jects/queries preserved. In Fig. 8a, no load shedding is performed (ΘN = 0).
In Fig. 8b, ΘN is increased, and seven objects and one query are load shed.
Fig. 8c illustrates the extreme case, when ΘN = ΘD (maximum possible size
of the cluster), where all cluster members are discarded. Even if a new member
were to arrive to the cluster, it would not be preserved, but automatically dis-
carded. Nucleus threshold ΘN may be set either globally for all moving clusters,
or individually for each moving cluster, if a finer granularity shedding is needed.
Query Processing With Shedded Clusters: By discarding moving enti-
ties from the nuclei and not knowing their precise locations, we make several
assumptions when executing a cluster-based join. Objects that fall into the in-
tersection region with a nucleus are assumed to satisfy all the queries from the
nucleus. Similar reasoning is applied to queries. Fig. 9 depicts the cases with the
intersecting clusters and their nuclei.
12

To load shed a query, the nucleus must fully overlap with the query region.
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3.2 Estimating When To Load Shed

Fig. 10 depicts the main steps of load shedding execution. Load shedding is ini-
tiated when ClusterSheddy utilization becomes greater than or equal to the ρshed

threshold. First, we determine which moving clusters are to be shed (termed
shedding clusters). We then determine how much per each shedding cluster to
load shed. This is repeated until the current utilization ρcurrent becomes less
than or equal to ρshed stop. We use queuing theory [4] and Little’s Law [13] to
predict system overflow13. Queueing theory has been widely used to model and
analyze the performance of complex systems involving service. For details of
queueing theory see [4, 13].

3.3 Estimating Which Clusters To Load Shed

We divide the approaches for picking which moving clusters to load shed into
two broad categories: uniform and selective.
Uniform Load Shedding Policies: With uniform load shedding, we load shed
across all moving clusters in the system. Each moving cluster gets affected by
the load shedding procedure, and some or all data within the cluster is dis-
carded. Uniform load shedding policy does not mean that all cluster nuclei will
increase by equal amount. It merely means that all clusters will participate in
load shedding and will shed something.
Selective Load Shedding Policies: Alternatively, in selective load shedding,
some clusters are chosen for load shedding to minimize the overall inaccuracy
of the answers. The different selective policies may include: (1) Random Policy
– selecting clusters at random; (2) Count-Based Policy – selecting clusters with
the highest number of members; (3) Size-Based Policy – selecting clusters with
the smallest size to minimize the overall inaccuracy; (4) Score-Based Policy –
selecting clusters with the highest scores (see Fig. 11), thus favoring clusters
where members are distributed near the centroid regardless of the cluster size;
and (5) Volatility Policy – selecting clusters with the lowest volatility (i.e., clus-
ters undergoing fewer changes to their properties). The motivation is that stable
clusters, once load shed, can accurately approximate their members for longer
time intervals, thus amortizing the load shedding overhead in the long term.

3.4 Estimating How Much Per Cluster to Shed

Once clusters have been selected for load shedding, the next question that needs
to be addressed is how much per cluster to discard, which is determined by the
increase in ΘN . Clusters may either discard all (total drop) or only a subset
(partial drop) of their members.

13
However, other models for predicting system overload could be similarly be used.
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Total drop policy causes ΘN to expand to its maximum (ΘD), and all mem-
bers inside the clusters are discarded. Total drop is a simple way to quickly
reduce the load. However it may significantly impact the accuracy of the results,
as we may be discarding data unnecessarily. Partial drop policy is a more pru-
dent way of discarding data. It allows to drop just enough to alleviate the burden
on the system without shedding more than necessary.

In the face of detected overload, ClusterSheddy increases cluster nuclei in the
shedding clusters. The algorithm begins in the exponential growth phase, and in-
creases the nucleus size exponentially14. Once ClusterSheddy perceives that there
is no longer an overload, it starts to decrease the nuclei. The rationale for this
is that the utilization is below the load shedding threshold, and ClusterSheddy

could be storing precise locations and producing more accurate query results. It
does this by decreasing nuclei a little each time after a periodic timeout, termed
stable load timeout. For simplicity of presentation, we assume that nuclei radii
are decremented by some constant spatial unit amount k each time. Thus Clus-

terSheddy multiplicatively increases cluster nuclei when it detects that utilization
is aproaching the overload threshold, and additively decreases the cluster nuclei
when the utilization is low.

4 Experimental Study
Our experiments are based on a real implementation of ClusterSheddy in the
Java-based CAPE continuous query engine [23] running on Intel Pentium IV
CPU 2.4GHz with 1GB RAM on Windows XP and 1.5.0.06 Java SDK. We use
the Moving Objects Generator [5] to generate continuously moving objects in
the city of Worcester, MA, USA in the form of data streams. We begin with
20K of moving objects and each time unit 1K of new moving objects enter the
system. Without loss of generality, all presented experiments are conducted using
spatio-temporal range queries. We control skewness of the data and set the skew
factor to 100. Hence, on average 100 objects are in a cluster. The values of
the threshold parameters were set as follows: speed threshold ΘS = 10 spatial
units/time units, distance threshold ΘD = 100 spatial units, direction threshold
ΘR = 10 degrees, and time threshold ΘT = 1 time unit. All experimental runs
begin with the nucleus threshold set to zero (ΘN = 0), i.e., no load shedding.

4.1 Incremental vs. Non-incremental Query Evaluation

In this experiment, we compared SCUBA and ClusterSheddy (without load shed-
ding). We wanted to see how the performance and memory consumption are
affected when executing spatio-temporal queries using incremental versus non-
incremental cluster-based technique (Fig. 12a). We observe that in the long term,
ClusterSheddy incremental strategy gives a better performance and requires less
memory. The advantage that ClusterSheddy has over SCUBA is that if dense clus-
ters overlap for long durations of time and objects and queries don’t change their
relative positions within the clusters, the re-evaluation of the contained queries
in those clusters is not needed. This translates into significant savings in pro-
cessing time. Memory-wise, ClusterSheddy also has an advantage over SCUBA,
because fewer computations are made and no redundant answers are produced.

14
This is a similar approach as in TCP congestion control mechanisms [15]
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Fig. 12. Experiemental Evaluations

4.2 Load Shedding Policies Comparison

We compared different cluster-based load shedding policies15 to no load shedding
and traditional random load shedding. Figures 12b and 12c respectively represent
the join processing times and the accuracy measurements.
Best Performance: We observe that selective random policy with full load
shedding gives the best performance but the lowest average accuracy (≈ 57%).
With this policy, clusters are randomly selected and all their cluster members
are discarded. The processing overhead is small since clusters are chosen ran-
domly, but the accuracy suffers. Any new objects joining the shedded clusters
are assumed to satisfy all queries in the cluster. For any new queries joining
these clusters, all cluster objects are returned as satisfying these queries.
Best Accuracy: The best accuracy (≈ 79%) was achieved with the selective
size-based partial load shedding policy. Here the smallest clusters were selected
first and their nuclei were increased by 50%.
Worst Performance: The worst performance was seen when using selective
membership volatility policy with partial shedding. With this policy we picked
the clusters that were more stable. However, picking stable clusters did not give
much advantage. Very dense clusters may be very dynamic, thus we may not
be able to reduce load fast. The membership volatility doesn’t account for the
count and the distribution of the members within the clusters, hence accuracy
may suffer as well.

Overall, if both performance and high accuracy are desired, selective random
policy with partial shedding or uniform policy with partial shedding may be used.
The former gives a better accuracy (≈ 76%), but has slightly worse performance
than the latter policy which has a lower average accuracy (≈ 71%).

4.3 Load Shedding Cost

We compared the load shedding overhead for different policies (Fig. 12d). Load
shedding overhead cost includes the time to pre-process the clusters before the

15
For all full shedding strategies, cluster nucleus is increased to the maximum ΘD . For all partial
shedding strategies, cluster nucleus is increased by 50% each time with respect to the current (at
the time of shedding) size of the cluster.
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shedding is initiated. This may include finding the clusters based on the policy
selection criteria (e.g., largest, smallest, most dense, etc.), determining and in-
creasing the nucleus size, associating the ids of the shedded objects and queries
with the nucleus, etc. Fig. 12d shows that selective size-based policy has the
highest overhead compared to other policies. This is due to the fact that we
classify clusters into smaller and larger clusters based on the distribution of
their members and also determine if a larger cluster may be an outlier cluster16.
Processing the cluster members to see if any latest update caused the cluster to
become an “outlier” cluster may require some additional CPU and memory.

5 Related Work

The current state-of-the-art in load shedding includes [1, 2, 9, 22, 26–29]. Load
shedding on streaming data has first been presented by Aurora [26, 27]. Aurora
shedder relies on a quality of service function that specifies the utility of a tu-
ple. This is best suited for applications where the probability of receiving each
individual tuple in a query result is independent of the other tuples’ values, an
assumption that does not hold for spatio-temporal queries.

Load shedding for aggregation queries was addressed in [2]. Babcock et al. de-
scribe a load shedding technique based on random sampling. Although sampling
works well for aggregation on a traditional data, sampling on location updates
without considering their actual values – such as their location – may omit some
of the moving entities (when selecting a sample), leading to higher inaccuracy.

The probably most closely related work to ours is the Scalable On-Line Exe-
cution (SOLE) algorithm [17] performing load shedding on spatio-temporal data
streams in PLACE server. In SOLE, specific objects marked as significant are
kept, and the other objects are discarded. However, SOLE is not designed to
deal accordingly with dense and highly overlapping spatio-temporal data, as
objects satisfying many queries are termed as significant and thus are not load
shed. ClusterSheddy addresses these shortcomings. In fact, it exploits such spatial
closeness to approximate the locations when load shedding is performed.

ClusterSheddy extends our earlier work – SCUBA algorithm [20], which intro-
duced the concept of moving clusters as abstractions on moving objects. While
SCUBA only provides full result recomputation, ClusterSheddy now also sup-
port incremental query evaluation. Most importantly, ClusterSheddy focuses on
load shedding – a topic not addressed by SCUBA.

6 Conclusions

This paper addresses an important problem faced in continuous querying of
spatio-temporal data streams: system capacity overload. We proposed moving
cluster-based load shedding, called ClusterSheddy which uses common spatio-
temporal properties to determine which objects’ updates would be least sen-
sitive to load shedding and have minimum adverse impact on the accuracy of
query answers. The proposed technique is general, because moving objects in

16
We term a cluster an outlier cluster, if the majority of its members are distributed near the
centroid with an exception of a single member that is at a far distance, thus causing the size of
the cluster to increase.
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practice tend to share spatio-temporal properties with other objects for some
time intervals. Our experimental results show that ClusterSheddy compared to
traditional non-spatio-temporal load shedding is efficient in reducing the load
while maintaining good accuracy of results.
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