
A Dynamically Adaptive Distributed System for

Processing Complex Continuous Queries

Bin Liu, Yali Zhu, Mariana Jbantova, Bradley Momberger and Elke A. Rundensteiner

Department of Computer Science
Worcester Polytechnic Institute
Worcester, MA 01609-2280, USA

{(binliu | yaliz | jbantova | bmombe1 | rundenst)}@cs.wpi.edu

1 Introduction

Recent years have witnessed rapidly growing research
attention on continuous query processing over streams
[2, 3]. A continuous query system can easily run out
of resources in case of large amount of input stream
data. Distributed continuous query processing over a
shared nothing architecture, i.e., a cluster of machines,
has been recognized as a scalable method to solve this
problem [2, 8, 9]. Due to the lack of initial cost in-
formation and the fluctuating nature of the streaming
data, uneven workload among machines may occur and
this may impair the benefits of distributed processing.
Thus dynamic adaptation techniques are crucial for a
distributed continuous query system.

Dynamic adaptation in a distributed system usually
corresponds to load balancing at run time by mov-
ing certain workload across machines. In existing dis-
tributed continuous query systems such as [2, 8], the
basic unit being moved during the adaptation is one
whole operator, assuming that each operator is small
enough to fit on one machine. We refer to this adap-
tation as operator-level adaptation. Many operators
in continuous queries need states to keep tuples they
have received so far for future processing. In case of
high stream workloads, the states in one operator can
grow too large to fit in the main memory of a single
machine. Moreover, moving around large amounts of
states at run time can be inefficient.

The Flux approach [9] addresses this problem by
proposing strategies to divide one large operator state
into many smaller partitions. One partition can then
be treated as one moving unit during runtime adapta-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,

Trondheim, Norway, 2005

tion. We refer to this type of adaptation as state-level
adaptation. However, the Flux approach so far has
only dealt with the relatively simple cases of stateful
operators with one input, namely, aggregate opera-
tors. It has not considered the more complex cases of
stateful operators with multiple inputs and multiple
states, such as binary or multi-way joins, which are
more likely to have bigger operator states.

The D-CAPE system to be demonstrated is a
general-purpose distributed system for continuous
query processing. In particular, the system is able
to apply dynamic load balancing to the processing of
complex continuous queries that contain stateful op-
erators at both the operator-level and the state-level,
with no restrictions on the size of operator states. To
the best of our knowledge, the D-CAPE system is the
first distributed continuous query system to manage
state-level adaptation for complex multiple input oper-
ators, such as joins. Various join predicates among the
input streams make this adaptation a rather challeng-
ing problem. We have developed several adaptation
strategies to address this problem.

Dynamic load balancing, however, can be applied
only when spare processing resources exist in the dis-
tributed system. Although a distributed system has
higher scalability than a centralized system, the over-
all system resource summed over all participating ma-
chines is still limited. To further increase the robust-
ness of the distributed system, D-CAPE explores two
other adaptation techniques, namely data spilling and
query plan shape changing across multiple machines,
to reduce the resources required by query processing
at run time.

The data spilling technique can dynamically choose
certain partitions of the operator states to push to disk
to temporarily lessen the burden of the query process-
ing. This is especially useful when the system encoun-
ters sudden increase of workload and quickly runs out
of processing resources. Accordingly, data recovering
techniques also need to be applied in a timely manner
to recover missing results due to such data spilling.

The query plan shape changing across multiple ma-
chines can also decrease the overall query process-
ing cost. As a unique feature in the D-CAPE sys-
tem, we are the first to explore such cross-machine
plan-level adaptation opportunities to increase the ef-
ficiency of the distributed system. The shape of the
query plans distributed across a cluster is usually as-
sumed to stay unchanged during its execution. How-
ever, as the stream characteristics may fluctuate over
time, sometimes it is beneficial to modify the shape of
the query plan across a cluster. For example, if multi-
ple joins in a query plan are being executed on more
than one machine in the cluster, dynamically changing
the order of these joins based on their selectivities can
reduce the runtime processing cost.

Our demo uses a unique application domain of
Fire Protection Engineering (FPE) that engages in
fire modeling, monitoring, and prediction. We have
an on-going collaboration with the FPE Department
at Worcester Polytechnic Institute (WPI) [1]. To
solve firesafety problems in our modern age, FPE
researchers construct sophisticated computer models
about complex phenomena of fire spread in structural
systems. Empirical measurements are also being made
by executing and monitoring live experiments, in ei-
ther laboratory facilities, such as the WPI Fire Science
Laboratory, or in rare times in controlled real struc-
tures. Such empirical measurements are essential to
ensuring accurate models. During live experiments,
sensors are placed at key locations in controlled struc-
tures and stream data back to the computer host. Such
data often has highly unpredictable characteristics. It
can include information such as temperature, humid-
ity, smoke dynamics and water suppression. Our dis-
tributed query engine allows the FPE researchers to
submit online continuous queries and analyze the ex-
perimental stream data at runtime, comparing actual
phenomena against the predicted simulation model
even under very high stream workload.

2 System Architecture

The overall architecture of the D-CAPE system is de-
scribed in Figure 2. We refer to each machine in the
cluster as one CAPE processor [8], or one processor for
short. A dedicated distribution manager is deployed
to control a set of CAPE processors.

Each CAPE processor has a central continuous
query processing engine responsible for executing op-
erators that are activated in this processor. The data
receiver receives tuples from stream sources or other
processors, feeding them into the right operators in the
processor. The data distributor, on the other hand,
sends output tuples to operators in different proces-
sors. The local statistics gatherer continuously collects
statistics for the current processor. This information
will be used to make local adaptation decisions as well
as reported to the distribution manager for the adap-

Local Statistics
Gatherer

Data
Distributor

Continuous Query
Processing Engine

Data
Receiver

Processor

Local Adaptation
Controller

Distribution Manager

Streaming
Data

InternetInternetEnd User

Distribution/Adaptation
Decision Maker

Runtime
Monitor

Query Plan
Manager

Repository

Connection
Manager

Repository

Figure 1: D-CAPE Framework Architecture

tation across processors.
The distribution manager controls a set of CAPE

processors. It is in charge of 1) the initial distribu-
tion, 2) connecting query plans that are distributed
over multiple processors, 3) collecting statistics about
each processor, and 4) making adaptation decisions
based on adaptation policies. The distribution man-
ager is designed to be light-weight. Thus one distri-
bution manager is able to manage a large number of
processors.

3 System Highlights

3.1 Initial Distribution

An effective initial distribution can set a good starting
point and have positive influence on the characteristics
of the adaptation techniques to be applied at runtime.
However, at this stage no runtime statistics regard-
ing the state of the distributed system and the cost
of operators are available. In the D-CAPE system, to
have a comprehensive estimation of the statistics, the
initial distribution utilizes many cost factors including
the number and the type of query operators, the size
of the window constraints, and the number of avail-
able processors. The initial distribution is a dual-level
algorithm that operates at both the operator level and
the state level. It divides operators into groups and
distribute these groups across the cluster. An opera-
tor with large windows (states) is divided and placed
into multiple groups, and distributed to multiple pro-
cessors. The initial distribution algorithms aim to be
both workload-aware, to equalize the number of oper-
ators and states across processors, and network-aware,
to reduce the number of connections across processors.

3.2 Operator-level Adaptation

When the query operators have small or no states,
the runtime adaptation can be applied at the operator
level. That is, an operator as a whole or even multiple
operators are moved across processors.

Several cost measurements are used to determine
overloaded and underloaded processors. For example,
the load can be measured based on the output rate
at which an operator sends tuples across the network.
The load can also be estimated by the sum of the costs
of all active operators on that processor. The mem-
ory consumption can be a good indicator of load as
well. Experiments in our prototype system show that
the number of network connections (network costs) in
a processor is often a non-trivial cost factor. Figure 2
illustrates the CPU costs incurred when the number of
network connections increases. As we can see, the net-
work connections play an important role in the overall
performance of the system. In the D-CAPE system,
this cost factor affects the design of both initial distri-
bution algorithms and runtime adaptation policies.

Tuple
Receiver

15%

Tuple
Sender

8%
Connection
Manager

1%

Statistics
Recording

2% Query
Processor

74%

Statistics
Recording

2%

Connection
Manager

1%

Tuple
Sender

12%

Tuple
Receiver

22%
Query

Processor
63%

8 Connections 32 Connections

Figure 2: CPU Utilization/Network Connections

Redistribution policies are designed based on the
combinations of these cost measurements. For exam-
ple, the degradation based policy, one of the redistribu-
tion policies in the system, aims to alleviate the loads
on processors that have shown an increase in the cost.
If the increase is beyond a certain threshold, the cost is
lessened by moving the most costly operators to other
processors. During the redistribution decision phase,
higher preference is given to operators that by mov-
ing them can reduce the overall number of network
connections in the system.

3.3 State-level Adaptation

Partitioned parallelism [5, 7] is applied to query oper-
ators with large states accumulated at run-time. By
using this strategy, each operator will be run on mul-
tiple processors with each operator instance working
only on a portion of whole data streams. We here
use an m-way symmetric hash join as an example to
illustrate the basic ideas of state-level adaptation.

Adapting States Across Processors. Our system
utilizes the partitioned parallel processing as used in
Volcano [4] and Flux [9]. Input streams of opera-
tors are partitioned into many smaller partitions and
a number of partitions are assigned to each operator
instance. At runtime, the adaptation algorithms can
choose certain partitions to move across the machines
if necessary. For example, Figure 3 illustrates a 3-

way join that is processed over three CAPE proces-
sors. In this case, each input stream is partitioned
into 500 partitions, which then distributed to 3 pro-
cessors. Here, each processor has join states from dif-
ferent input streams with the same partition ID. At
runtime, our mechanism is to choose all the states with
the same partition ID as a whole unit to move. This
avoids joins across multiple processors. For example,
if we only move A1 from m1 to m2, then the newly
incoming tuples to partition A1 would have to probe
B1 which is now located on another machine.

A B C

Join Join Join
m1 m2 m3

Split Split Split

1~100 101~350 351~500

Join

A B C

m1

............

States C2States B2States A22

States C1States B1States A11

CBAID

m2

............

States Ck+1States Bk+1States Ak+1k+1

States CkStates BkStates Akk

CBAID

Figure 3: Partitioned Mway-Join Example

State Spilling and Recovering. However, the over-
all resources of a distributed system are still limited.
Adapting states across processors by itself may not
solve the problem of overall system resource short-
age. Thus, the D-CAPE system is also designed to
be able to temporarily spill state partitions into the
local disk of the processor. This allows the system to
react to overall resource shortage immediately. States
that have been spilled become inactive. Thus, new in-
puts to the operator are processed based on the partial
states (the main memory resident part) only. Given
that, a state recovering process is necessary to merge
the memory resident and the disk resident states when
resources become available. In the recovery process,
all the missing results are generated. For example, as
shown in Figure 4, processor m1 pushes state parti-
tions into the local disk when main memory overflows.
These states will be recovered later when free memory
on m1 becomes available.

Local DiskState Spill

State Recovery

m�
Join

m�
Join

m�
Join

A B C

Split Split Split

Moving States across Processors

Figure 4: State Spill and Recovery

Our D-CAPE employs both state adapting across
machines and state spilling into local disks, as illus-

trated in Figure 4. We also design multiple strategies
for integrating both types of adaptations to maximally
utilize the overall resources in the distributed system.

3.4 Run-time Query Plan Adaptation

Query plan shapes may also need to be adapted due to
variations in input streams. In addition to traditional
query plan adaptation [6] which reorders operators in
query plans, we explore the adaption of merging and
breaking operators so to switch between binary joins
(trees) and m-way joins (trees). Figure 5(a) shows a
binary join tree with each join allocated to one ma-
chine. Here, the letters AB, I1C, and I2D represent
the operator states that have to be stored in the join
operators, while I1 and I2 denote the intermediate re-
sults, and m1, m2, and m3 represent available ma-
chines. As shown in Figure 5(b), we would merge
Join1 and Join2 into a 3-way join Join12 if we ob-
serve that large intermediate results are transferred
from m1 to m2 and then stored in m2. After that,
state ABC becomes the only state that needs to be
stored. However, the state ABC may no longer fit into
one machine. Thus, we need to partition the state into
multiple machines as shown in Figure 5(c) 1.

Join��Join� Join�
Join�

A B

C

D

(a) Binary Query Plan

Join��Join�
A B C

D

(b) M-way Query Plan (c) Partitioned Query Plan

Join��Join�
A B C

D
AB

I1C

I2D

ABC

I2D

A1B1C1 A2B2C2

I2D

m1

m2

m3

m1

m3 m1 m2

m3

Figure 5: Adapt Partitioned Query Plan

4 Demonstration Focus

In this demonstration, we focus on showing the follow-
ing aspects of the D-CAPE system:

Machine 1 Machine 2 Machine 3

Distributed Execution Controller

Figure 6: GUI for the Distribution Manager

Overall System. We have developed two separate
GUIs to show the status of the processors and the dis-
tribution manager respectively. The processor GUI
displays the operators that are currently running on

1Query plan migration techniques [10] are applied to switch
plans without missing or corrupted query results.

this processor and the processor’s cost. The distribu-
tion manager GUI, as partly shown in Figure 6, illus-
trates the overall framework. It shows the processors
in the cluster and their runtime statistics.

Initial Distribution. We will show the impact of
different initial distribution algorithms, such as work-
load aware and network-aware distributions, on the
overall performance.

Dual-level Adaptations. We will show the perfor-
mances of the run-time adaptations at the operator-
level, the state-level and hybrid adaptation at both
levels. For the operator-level adaption, we show the
performance impact of different redistribution policies,
such as the degradation-based policy and the balanced
redistribution policy. As for the state-level adaptation,
we show the tradeoffs between two adaptation meth-
ods, and how these two adaptations can be integrated
to improve the query processing performance.

Runtime Query Plan Adaptation. We will show
that adapting the shape of the query plan boosts
the system performance. For example, in some cases
breaking one m-way join into several smaller m-way
or binary join operators can add flexibility to the re-
distribution procedure. In other cases several binary
joins can be merged to one m-way join so to decrease
the overall memory consumptions, as shown in Figure
5.

References

[1] WPI Department of Fire Protection Engineering.
http://www.wpi.edu/Academics/Depts/Fire/.

[2] D. Abadi, Y. Ahmad, and et. al. The design of the borealis
stream processing engine. In CIDR, 2005.

[3] B. Babcock, S. Babu, and et. al. Models and issues in data
stream systems. In ACM PODS, pages 1–16, 2002.

[4] G. Graefe. Encapsulation of parallelism in the volcano
query processing system. In ACM SIGMOD, pages 102–
111, 1990.

[5] W. Hasan. Optimization of SQL Queries for Parallel Ma-
chines. PhD thesis, Stanford University, Dec 1995.

[6] J. M. Hellerstein, M. J. Franklin, and et. al. Adaptive
query processing: Technology in evolution. IEEE Data
Engineering Bulletin, 23(2):7–18, 2000.

[7] B. Liu and E. A. Rundensteiner. Revisiting pipelined par-
allelism in multi-join query processing. In VLDB, page to
appear, 2005.

[8] E. A. Rundensteiner, L. Ding, and et. al. Continuous query
engine with heterogeneous-grained adaptivity. In VLDB
Demo Session, pages 1353–1356, 2004.

[9] M. A. Shah, J. M. Hellerstein, and et. al. Flux: An adap-
tive partitioning operator for continuous query systmes. In
ICDE, pages 25–36, 2003.

[10] Y. Zhu, E. A. Rundensteiner, and G. T. Heineman. Dy-
namic plan migration for continuous queries over data
streams. In ACM SIGMOD, pages 431–442, 2004.

