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Abstract

Partitioned query processing is an effective method to process
continuous queries with large stateful operators in a distributed
systems. This method typically partitions input data into non-
overlapping portions, with each query plan instance installed on
a separate machine processing only one portion of the data. Dy-
namic redistribution of load among machines is then employed
to handle fluctuating stream characteristics. However, existing
load redistribution solutions have made the implicit assumption
that no local query optimization is conducted at runtime on any
of the participating machines, i.e., all local query plan instances
are static and thus remain identical. This is restrictive for dynamic
stream systems, where data partitions may experience significant
fluctuations in selectivities or arrival rates over time - thus war-
ranting local plan reoptimization. This raises the new problem
that the heterogeneity of plan shapes among different machines
must be tackled when doing load redistribution. To address this,
we propose two new load balancing strategies along with corre-
sponding protocols, that can balance the workload across a set of
machines while seamlessly handling the complexity caused by lo-
cal plan changes. The PTLB strategy is plan-agnostic, requiring
no detailed knowledge of the underlying query plan. The MSLB
strategy is plan-aware, that is, it rebalances the load by compar-
ing the plan shape differences on the participating machines. All
proposed techniques have been implemented in the DCAPE con-
tinuous query system. Our experiments demonstrate that theap-
plication of both query optimization and load balancing results in
superior performance compared to applying either of the adapta-
tion techniques alone — as has been the state-of-the-art in the cur-
rent literature. Our evaluation compares the relative applicability
and efficiency of the two proposed techniques PTLB and MSLB.

1. Introduction
Continuous queries have become popular in recent years due

to demands of numerous applications, including online auctions,
financial analysis, sensor monitoring systems, etc [2, 4, 5,15, 17].
A continuous query engine takes in real-time streaming dataand
sends out results in a continuous fashion. High stream inputrates
and cost-intensive query operations may cause a continuousquery
system to run out of resources. Distributed continuous query pro-
cessing over a shared nothing architecture, i.e., a clusterof ma-
chines, is a prevalent method for solving this scalability prob-
lem [1,7,8,13,16].

Distributing the query workload across multiple machines can
greatly improve the system performance due to the availability of

aggregated resources, including both CPU and memory. However,
uneven workload among machines may occur over time due to
(1) the lack of initial cost information at the time when firstdis-
tributing the queries, and (2) the potentially fluctuating nature of
the incoming data streams even if the statistics could be measured
at runtime. This imbalance of workloads on different machines
may impair the benefits of distributed processing. Thus,dynamic
load balancing, which deals with the problem of re-distributing
workload across machines in the cluster, has emerged as a crucial
technology for distributed continuous query systems [1,8,13,16].

1.1 Partitioned Query Processing

Partitioned parallelism [10] is a common method for process-
ing query operators with large states in a distributed system. In-
stances of each query operator will be installed on multiplepro-
cessors, with the input data being partitioned among these operator
instances. The outputs from all operator instances are unioned to
form the final output stream. Such partitioned parallelism,which
have been routinely applied for traditional query processing [9,10],
has been shown to be also affective for continuous queries [16].

For example, the continuous query plan with two joins in Fig-
ure 1(a) can be assigned to two machines as in Figure 1(b). Each
machine runs instances of both join operators. To partitionthe
data, we add threesplit operatorsand aunion operatorto the
query plan. Thesplit operatorsoperate as routers: They apply par-
tition mapping functions, such as value-based mapping, to divide
the streams of input tuples into partitions and direct theseparti-
tions to the corresponding machines. The darker shading indicates
that the operator is active on that machine.
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Figure 1. Distribution of Partitioned Plan

By using the partitioned parallelism, we now have the choice
of moving only some partitions of an operator state to another ma-
chine at runtime – without having to move complete operatorseach
time [1]. This enables fine-grained runtime adaptation.



1.2 Limitations of Existing Strategies
The load balancing strategies currently proposed in the litera-

ture for partitioned continuous queries make the implicit assump-
tion that the partitioned query plans on different machinesremain
identical [13, 16]. They have not considered the situation that the
local query optimizer restructures the shape of the query plan re-
siding on its machine. Given this strong restriction, no existing
work on partitioned continuous query processing thus far has con-
sidered integrating the load balancing with query optimization.
Consequently, the effects of query optimization and its impact on
load rebalancing strategies remain an open issue to date.

This clearly is a major limitation, as runtime query optimiza-
tion has been shown to be critical for streaming systems [3, 5, 15,
20]. That is, some data partitions may experience characteristics
rather distinct from those of other partitions over time [14]. Let
us consider a partition containing IBM stock quotes. This parti-
tion may experience a high selectivity, if some major shiftsin the
market raise interest in the performance of those stocks compared
to others. Hence, the local optimizer then would determine the
locally optimal plan based on observed data statistics of its data
portion. This raises the new problem that the heterogeneityof plan
shapes among different machines must be tackled when doing load
redistribution.

Further load balancing strategies just move workload from one
machine to another, while the total resource consumption inthe
system as a whole is not decreased. On the other hand, plan op-
timization may be able to decrease the resource consumptionon
each machine, therefore decreasing the overall resource consump-
tion in the distributed system. For example, a plan optimization
may dynamically switch two join operators in a plan in the face
of changing statistics. It is well known that such optimization may
drastically reduce the intermediate results, leading to less CPU and
memory costs on this machine as well as less overall resources re-
quired to process this query in the distributed system.

1.3 New Research Problems
Local query optimization however complicates load rebalanc-

ing strategies. Traditionally, load rebalancing algorithms assume
that the shape of the query plan stays the same throughout the
query execution. Therefore balancing loads among machinescan
be simply achieved by moving some load (partitions) from over-
loaded machines to under-loaded machines. However, this isno
longer valid if local query optimization has been applied. Since
each machine can apply its own local optimization separately from
other machines, at any given time, the shapes of the query plan on
different machines can be distinct from one another.

To illustrate the problem, we use the query example from Fig-
ure 1. As depicted in Figure 2, each join operator instance has
two states, with each state containing several partitions (without
loss of generality, here we assume value-based partitioning is ap-
plied in the split operator). Each partitioned state contains a set of
partitions with different partition IDs. From Figure 2, we can see
that M1 processed partitions with IDs 1, 2, 3, and M2 processes
partitions with IDs 4, 5.

After machine M2 applies the local plan optimization, the two
joins on M2 are switched. Now the query shapes on the two ma-
chines are distinct from each other. A new partitioned statePBC

has been created on M2 as the result of this plan optimization. If
at this time the load balancing algorithm decided to move allpar-
titions with ID 2 from M1 to M2, the partition 2 belonging to the
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Figure 2. Problem with Simple Partition Mov-
ing During Load Rebalancing

partitioned statePAB cannot be put into any join state on M2, be-
cause it does not have any matching state on that machine. Simply
discarding this unmatched partition would cause loss of data. This
problem of integrating load rebalancing with query optimization
remains an unaddressed problem to date. Clearly, strategies need
to be devised that can support the heterogeneity of plan shapes
on difference machines during load rebalancing. This is nowthe
focus of our work.

1.4 Our Research Outline
In this paper, we solve the new problems of integrating query

optimization with the partition-level runtime load balancing for
continuous queries. Our first research goal is to study the effects
of adding plan optimization to distributed continuous query pro-
cessing. Our goal here is not to propose new methods for plan op-
timization (rewriting of query plans) nor for load balancing (decid-
ing which partitions to move when and to which other machines)
— rather we adopt existing techniques for these well-studied tasks
from the literature [1, 16]. Instead, we focus on the evaluation
of the effectiveness of plan optimization versus load balancing in
isolation in terms of the relative performance gains achievable as
well as scopes of applicability. More importantly, we studyper-
formance gains achievable by their integrated forms. This evalua-
tion is conducted through experimental studies in an actualstream
query system running on a compute cluster. This is the first result
on this topic in the literature.

As our second research goal, we propose to design, implement
and evaluate advanced strategies that can conduct load rebalancing
while taking the heterogeneity of query plan shapes on difference
machines into account. Our focus here is on the protocols, their
synchronization and correctness. We design two new load balanc-
ing strategies, namely PTLB and MSLB, and their corresponding
protocols that can balance workload while seamlessly handling the
complexity caused by local plan heterogeneity. The PTLB strat-
egy is a general load balancing strategy that requires no detailed
knowledge of the underlying query plans, such as types of opera-
tors and shapes of query plans. We then propose the more plan-
aware MSLB strategy, which rebalances the workload by compar-
ing the detailed shapes of the query plans among different ma-
chines. For simplicity of exposition, our techniques are explained
for query plans with their stateful operators being joins, such as
typical symmetric window-based joins [4, 12, 17, 19], giventheir
importance and prevelance in stream queries. Plans with other
stateful operators, such as duplicate elimination and groupby, which
could be handled in a similar vein, are left as future work.

We have implemented the proposed strategies in a continu-
ous query system called D-CAPE [13]. One key contribution of
our work is then this experimental study assessing the proposed



methods in a real stream system. That is, we have experimen-
tally evaluated the effects of query optimization, load rebalancing,
and their integration for partitioned continuous query processing
on an actual cluster of PCs. Our experiments show that the com-
bination of query optimization and load balancing has superior
performance compared to applying either of the two adaptation
techniques alone (as done in the current literature). A compara-
tive study assessing the relative applicability and efficiency of the
two proposed techniques PTLB and MSLB is also conducted. The
MSLB is shown to be more efficient than the PTLB in many situ-
ations, while the PTLB is shown to win under certain conditions.

For the remainder of this paper, we discuss related work in Sec-
tion 2. The two proposed load balancing strategies and theirpro-
tocols in a distributed system are described in Sections 3 and 4,
respectively. Section 5 shows our experimental evaluations. We
conclude our work in Section 6.

2. Related Work
Existing distributed stream systems [1,7,8] use one operator as

the basic unit for load balancing. This assumes that each operator
is small enough to fit on one machine. Partitioned parallelism is a
general query plan distribution strategy [9,10]. Flux [16]is the first
to apply partition-level load redistribution to continuous queries.
Flux focused on single-input operators, namely, group-by.They
assume that all query instances have the same query shapes. Our
research instead proposes load balancing strategies to deal with the
heterogeneity of plan shapes with stateful join operators among
different machines.

Continuous query optimization has been studied in recent years
[2,6,11,18]. [18] proposes a rate-based algorithm to optimize con-
tinuous multiple joins to achieve high output rate. [3] proposes
heuristics-based join ordering algorithms for mjoin that consider
dependent join selectivities. [15] introduces the Eddy approach of
adaptively executing a query by routing tuples among operators.
Eddy’s always-adapting solution makes it suitable for a highly dy-
namic environment. These solutions all focus on optimizingcon-
tinuous queries based on statistics collected at runtime.

Our own earlier work on dynamic plan migration [20] is the
first to deal with the problem of safely transferring the currently
running plan to the new plan generated by the optimizer. Thisear-
lier work in part has inspired our solution now proposed for the
distributed scenario. However, the two problems are significantly
different. The former focuses on migrating the states of a cur-
rently running query plans in a central environment, that is, one
machine. Here instead, we are addressing the distributed scenario
where the plans to “balance load” between are residing on distinct
machines. One, this now requires carefully synchronized coordi-
nations both within and also among the participating machines to
assure correctness. Two, we now focus on relocating only indi-
vidual partitions of states while leaving others behind – that is, we
are relocating partial state between query plans. This is incontrast
to the centralized migration, where the complete operators(along
with their full state) are simply migrated into other operators or
other positions within the query plan.

3. Plan-Agnostic Load Balancing Strategy

3.1 Basic Idea : Duplicated Processing

Here, we assume that the load balancer has selected the par-
titions to be moved from one query plan to a second query plan
by any standard techniques, such as in [16]. We call the machine
where the first partition resides before the relocation thesender
machineand the second machine thereceiver machine.The ba-
sic idea for this plan-agnostic strategy is now for the correspond-
ing split operator to duplicate any newly arriving data belonging
to these to-be-moved partitions, so that they can be send to both
the sender and the receiver machines concurrently. Both machines
then process this same portion of data in parallel. This effort must
continue until all tuples of the to-be-moved partitions that were re-
siding in the sender query plan at the time the relocation started
have been purged out of their respective operator states on the
sender machine due to the arrival of the newer tuples. The purg-
ing itself proceeds as usual according to the operators’s window
semantics [4, 12, 17]. Here we say a tuple isold if it exists in any
partition before the load balance starts. A tuple isnewif it arrives
after load balance has started. Clearly, the receiver machine would
not be containing any tuples of the to-be-moved partitions at the
relocation-start-time. Thus all its tuples will benew.

When the to-be-moved partitions on the sender machine con-
tain onlynewtuples, it can be shown that it is safe to discard the
old partitions from sender. This is because all old partitions have
finished their duty in terms of contributing to the generation of out-
put results from the sender machine. Since we have been feeding
the same data belonging to these to-be-moved partitions to the re-
ceiver machine in parallel when the load balancing first starts, all
the new tuples belonging to these partitions now in the sender ma-
chine exist in the receiver machine as well. So if the old partitions
are discarded from the sender machine at this time, no usefuldata
will be lost.

We must ensure that no duplicate tuples are being generated.
If we use the parallel track strategy described above, although
the sender machine will generate all output tuples from the to-be-
moved partitions that consist of at least oneold sub-tuple, it may
also generate the all-new sub-tuple combination, duplicate to the
output results from the receiver machine.

To solve this duplication problem, the root join operator ofthe
sender machine can prevent anewtuple from joining with another
new tuple. Hence if the join predicate is evaluated on two tuples
that are bothnew, we simply skip the join step in the regular purge-
join-insert symmetric join algorithm. The purge and insertsteps
are however still undertaken as usual.

For this strategy, all old tuples (tuples with at least one old sub-
tuple) need to be purged from the to-be-moved partitions. Suppose
that h (h >= 1) is the height of the query tree on the sender
machine. We analyze the time spent on the parallel track strategy,
denoted henceforth asTPT , in two cases:

1) h = 1. In this case the query tree has only one level of join
operators. For a join operator on the sender to purge all old tuples
in the to-be-moved partitions from one of its two states, thejoin
operator must process new tuples from another input that arrive in
the next W time units. Therefore relocation timeTPT = W .

2) h > 1. This means that on the sender there is at least
one join operator which is above another join operator. Whenthe
load balance begins, W time window’s new tuples from the input
queues are needed to purge old tuples inside the to-be-movedpar-
titions of leaf operators on the sender machine. However, asthese
new tuples are used to purge old tuples, they may also join with
some of the old tuples and the results are being inserted intothe
state of the join operators above the leaf operators. Because the



joined tuples contain anold sub-tuple, they are treated asold tu-
ples and need to be purged as well. In order to do so, the sender
machine needs to process another W time window’s new tuples to
completely purge theseold tuples from the old partitions. So in
this case, relocation timeTPT = 2W .

In summary, the lower bound of time spent on finishing the
parallel track process is2W for a query with more than one join
operator, given thatW is the window size of the query. The lower
bound is W if the query contains only one join operator.

3.2 Distributed PTLB Protocols
In this section, we describe the distributed Parallel TrackLoad

Balancing (PTLB) protocol we have designed to apply the ba-
sic idea described above to solve the problem of load balancing
among machines with heterogeneous plans in a distributed envi-
ronment. The distributed protocol is critical because we need care-
ful coordination among sender machine (the one sends the parti-
tions), receiver machine (the one receives the partitions), and the
distribution manager (the one that makes the load rebalancede-
cision) in order to guarantee correct load rebalancing. This is to
ensure that no on-the-fly data is missing, duplicated or corrupted.

We have designed a 5-step PTLB communication protocol to
achieve the PTLB once our system has made the decision to apply
load rebalancing. This decision making model is called distribu-
tion manager (DM). Each step contains a message passing between
DM and one of the query processors. The query example in Figure
2 is used here to illustrate the execution of the protocol.

Steps 1 and 2 of the PTLB protocol involve communications
between the distribution manager and the sender machine to cal-
culate the partitions that need to be moved from the sender tothe
receive. These steps are depicted in Figure 3. When the DM
makes the decision to invoke load balancing, it has already calcu-
lated three variables used in the load balancing process: the sender
machine which has the highest memory consumption (denoted by
Mmax), the receiver machine which has the least memory con-
sumption (denoted byMleast), and the amount of partitions in
terms of memory the sender should send to the receiver. There-
fore, in the first step of load balancing, the DM sends a request
computePartitionsToMoveto the sender (assumed to be M1 in Fig-
ure 3), with the amount of partitions that need to be moved. Upon
receiving such a request, the sender machine selects the partitions
whose total memory consumed is close to the amount of memory
that is to be moved. In step 2, the sender then sends the IDs of the
selected partitions, denoted aspartitionsToMovein Figure 3, back
to the DM.

Distribution Manager
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Figure 3. PTLB: Compute Partitions to Move.

Each partition ID represents all the partitions on the sender ma-
chine with that same partition ID. In fact, each partitionedstate
can have a partition with the selected ID. Therefore each partition
ID indicates one partition from each state. Our mechanism isto
choose all the partitions in all the states with the same partition
ID as a whole unit to move. This avoids joins across multiple
processors. For example, as shown in Figure 2, we denote the par-
tition with ID 2 in partitioned statePA as partitionA2. If we only
move partitionA2 from M1 to M2, then after the load balancing,
the newly coming tuples to partitionA2, which is now located on
M2 would have to probe and join partitionB2, which is still lo-
cated onM1. Therefore in our load balancing process, the unit
to move between two machines is not a single partition, but isa
partition groupthat contains all the partitions with the same ID on
the sender machine.

Steps 3 and 4 exploit parallel processing principles. In Step 3,
the DM sends aDuplicatePartitionsto the sender machine as well
as all the machines with active split operators. Upon receiving the
message, an active split operator will add entries to the existing
partition mapping table, which map each of the to-be-moved par-
titions to the receiver machine. This allows the split operator to
hereforth forward tuples that belong to these selected partitions to
both the sender and the receiver machines. Whenever a tuple is
forwarded to a sender machine, the split operator sets a flag on the
tuple asnew. This indicates that this tuple is also being sent to the
receiver machine. The flag on all other tuples, including thetuples
being sent to the receiver machine in parallel, are by default set to
beold.

Upon receiving theDuplicationPartitions, the join operators on
the sender machine process as follows in order to avoid producing
duplicate results from the sender and the receiver.

• For all join operators except the root join operator on the
sender machine, anew tuple is being treated the same as
an old tuple. When a joined tuple is outputted from a join
operator, the joined tuple is set to be newonly whenall its
sub-tuples arenewas well. Otherwise, the tuple is still set
to beold.

• At the root join operator, when two tuples are to be joined,
if both tuples are marked as new, they arenot joined to-
gether. Instead, the tuples are just used to purge partitions
and are then inserted to the corresponding partitions. Thisis
because the new-to-new joins are to be done on the receiver
machine.

• The sender machine sends anAllOldPurgedmessage back
to the DM when all old tuples have been purged from all the
partitions that belong to the set of to-be-moved partitions.

As the last step of the PTLB protocol, Step 5 the DM sends a
DeletePartitionsmessage to the sender machine and all machines
with active split operators. Each active split operator will then
remove the entries that map the to-be-moved partition IDs tothe
sender machine. This allows the split operator to forward new tu-
ples belonging to these partitions to the receiver machine only. The
split operator then puts anEndOfPartitionsflag to all the output
queues connecting to the sender machine. When a join operator
has received theEndOfPartitionsflag from all its input queues, it
can delete the to-be-moved partitions from its states. The join op-
erator also forwards anEndOfPartitionsflag to its parent. When
the root join operator has received all theEndOfPartitionsflags
from its input queues, the PTLB process is considered to be over.



Algorithms 1 and 2 sketch the high level interactions between
the distribution manager and the processors on each machinedur-
ing the runtime PT load balancing process. Algorithm 1 describes
the basic operations of the distribution manager. Similarly, Algo-
rithm 2 describes the steps performed on a participating processor
during the PTLB process. Here, thesendandwait are primitive
operators designed to send or wait for messages across machines.

Algorithm 1 PT-State-Rebalance:Manager(sender, receiver, amt)
/*It controls load balance process by sending control messages
to participating machines and waiting for corresponding re-
sponses.*/
1: sendComputePartitionsToMove(amt) msg tosender;
2: wait until getPartitionsToMovemsg;
3: send DuplicatePartitionsto sender & machines with active

split operator(s);
4: wait until getAllOldPurgedmsg from the sender machine;
5: sendDeletePartitionsmsg to sender & machines with active

split operator(s);

Algorithm 2 PT-State-Rebalance:Processor()
/* To receive messages, perform corresponding actions, andreturn
message(s) to the distribution manager.*/
1: while (keepGoing)do
2: wait for control message of PTLB protocol;
3: switch(protocol)
4: ComputePartitionsToMove: /*compute partitions to be

moved*/
5: compute partitions to move;
6: sendPartitionsToMovemsg to Distribution Manager;
7: DuplicatePartitions: /*send new tuples to both machines*/
8: split operators start sending new tuples to both machines;
9: root join operator waits for old tuples to be purged;

10: root join operator sendsAllOldPurgedmsg to DM;
11: DeletePartitions: /*Delete to-be-moved partitions*/
12: split operators stop sending tuples in the given partitions

to the sender machine;
13: join operators on sender remove given partitions;
14: end while

In summary, the PTLB is a general strategy that does not need
to care about the detailed properties about the plan itself,such as
the types of the operators and the shapes of the plans. This simpli-
fies the process of load balancing, especially when the plan shapes
can be different between the sender and the receiver. It alsohas the
advantage of not having to stop the query execution in the to-be-
moved partitions at any point of time. It thus does not have todeal
with on-the-fly tuples. However, this simplicity comes witha price
of both CPU and memory overhead, which will prevail as long as
the balancing process is ongoing. The whole process can takeas
long as 2W timeframe to finish. This is undesirable for continuous
queries with large windows, which are in fact the ones that most
likely need to be executed in a distributed system in the firstplace.
It also incurs the extra overhead of having to store the same set
of tuples for these to-be-moved partitions on both the sender ma-
chine and the receiver machine. To overcome these shortcomings,
we design the second runtime load balancing protocol, the moving
state protocol, which is described in the next section.

4. Load Balancing With Plan-Aware Strategy

4.1 Basic Idea: Moving Partitions
The basic idea of themoving state strategyis to safely move to-

be-moved partitions on the sender machine directly into thestates
on the receiver machine without losing any useful data. In this sec-
tion, we describe the necessary steps of the moving state strategy,
includingstate matching, state movingandstate recomputing.
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State matchingdetermines the pairs of states, one in the sender
and one in the receiver machine, between which tuples can be
safely directly moved. Two states can move tuples in between
them if and only if they contain tuples with the same schema. In
our query plans, a tuple’s schema is defined by all its column IDs.
We define a state’s ID as the same to its tuple’s schema, and all
tuples in one state have the same schema. If two states have the
same state ID, we say that those two states arematching states.
In Figure 4, states(SA, SB , SC , SD) exist in both boxes and are
matching states. States(SBC , SBCD) appear in the new box only
(the box on the right), and states(SAB , SABC) appear in the old
box only (the box on the left). These are thus unmatched states.

After thestate matching, we can then take thestate movingstep
to move tuples between all pairs of matching states. The details of
how these move is achieved is describe in Section 4.2.

Assume that now the chosen partitions have indeed been moved
safely, then the partitions on the receiver machine start tobe exe-
cuted with the unmatched states being empty. In the join operator
B ./ C in Figure 5, onlynewB tuples can be joined withold or
newC tuples inSC .1 Also, only newC tuples can be joined with
old or newB tuples inSB . Hence only combined BC tuple with its
two sub-tuples’ old/new status as (new, old), (old, new) or (new,
new) can be generated. The combination (old, old) would never
be generated.

Therefore, before restarting the execution of the query plan on
the receiver machine, we need to gain back thoseall-old combi-
nations viastate recomputing. This can be done by recursively
recomputing the unmatched states from bottom to top.

4.2 Distributed MSLB Protocols
1In Figure 5SC only containsold tuples. However, eachnewC
tuple inserted intoSC may have been joined with B tuples, and
after a while the stateSC may contain bothold andnewtuples.
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The key of the distributed moving state load balance (MSLB)
strategy is that now we need to carefully synchronize the partic-
ipating machines, including the distribution manager (DM), the
sender and the receiver in order to achieve the load balancing
without resulting in any loss, duplicate or incorrect queryresults.
Hence we have developed an 8-step communication protocol to
achieve the MS load rebalancing. Each step consists of one or
more message exchanges between distribution manager (DM) and
one of the query processors.

Steps 1 and 2 in the MSLB protocol correspond to communi-
cation between the distribution manager and the sender machine.
Basically the DM requests the sender machine to calculate the IDs
of the partition groups that needs to be moved to the receiverma-
chine. Steps 3 and 4 denote exchanges between the DM and pro-
cessors to deactivate to-be-moved partitions before they are really
moved between machines. These steps are necessary because the
processing of the to-be-moved partitions needs to be stopped be-
fore they can be safely moved to another machine. In Step 3, the
DM sends adeactivatePartitionsmessage, along with the to-be-
moved partition IDs calculated in Steps 1 and 2, to sender ma-
chine and all machines with active split operators. In this exam-
ple, both machines have active split operators and thus bothwill
receive such message from the DM.

On machines with active split operators, after receiving thede-
activatePartitionsmessage, an active split operator will take the
following three actions in that order: 1) First, it removes the to-be-
moved partition IDs from its partition mapping table, so that newly
arriving tuples belonging to these partitions will no longer be for-
warded to the sender machine. 2) Because after the first action, any
new tuple belonging to these partitions won’t be forwarded to any
machine, the split operator needs to create buffers to temporarily
hold these new tuples. 3) Lastly, the split operator insertsanEnd-
OfPartitionInputFlaginto each output queue that connects to the
sender machine. After all active split operators on a machine has
taken these three actions, the machine sends aDeactivatedmes-
sage back to the DM as Step 4.

On the sender machine, after receiving thedeactivatePartitions
message, the sender machine sets each join operator on that ma-
chine to count the number ofEndOfPartitionInputFlagthis oper-
ator has received. When a join operator has received the same
number of theEndOfPartitionInputFlagsas its input queues, it
forwards this flag to its parent operator. When the root join op-
erator has received such flags from all its input queues, thismeans
that all operators on the sender machine have finished processing

all tuples that belong to the to-be-moved partitions. This means
that no more tuples that belong to these partitions will come. The
sender machine then sends aDeactivatedmessage back to the DM
as Step 4.

Steps 3 and 4 not only deactivate to-be-moved partitions, they
also allow the operators on the sender machine to finish processing
all on-the-fly tuples in these input queues that belong to these to-
be-moved partitions. This clean-up stage is necessary, because
if the partitions were to be moved right away without the clean-
up, the on-the-fly tuples won’t be able to join with these already
moved partitions on the sender machine. We thus may miss some
of the query results due to load balancing process.

The actual partition movement is achieved in Steps 5, 6 and 7,
as depicted in Figure 6. The DM first waits for theDeactivated
message from all the involved machines. After that, as Step 5, the
DM sends aSendPartitionsmessage to the sender machine. Upon
receiving such a message, as Step 6 the sender machine packs all
the partition groups with the selected IDs and sends them to the
receiver machine using aReceivePartitionsmessage.

After receiving theReceivePartitionsmessage from the sender,
along with all the partition groups, the receiver machine then con-
ducts the following process:

• First, the receiver machine extracts all the partitions from
the received partition groups.

• It then applies thestate partition matchingstep, as described
in Section 4.1, to match each single partition’s schema with
the existing states on the sender machine. If a match is
found, the single partition is then inserted to the state that
has the same schema. At this point, this single partition
should have a partition ID different from any existing par-
titions in that state. If a single partition cannot be matched
with any state, this single partition is then discarded by the
receiver. Using the example in Figure 2, the moved parti-
tion group contains four single partitionsPA2, PB2, PC2

andPAB2. The first three single partitions will be inserted
into statesPA, PB and PC on machine M2 respectively,
while the single partitionPAB2 is discarded since it does
not match any states on machine M2.

• After the partition matching step, all the states that do not
have a matching partition inserted will require a partition
recomputation to regain the partitions that have the moved
partition IDs. This can be done by recursively recomputing
these single partitions in a bottom up fashion. Again using
the example in Figure 2, the statePBC does not have any
matching partition. So the partitionPBC2 that should have
been moved from the sender machine would now be recom-
puted by joining the moved single partitionsPB2 andPC2.
Note that we only need to join partitions with the same ID
as the to-be-generated partition.

After the partitions are being moved and recomputed, as Step
7 the receiver machine sends aReceivedmessage back to the DM.
This partition moving procedure is general, that is, it would also
work when local plan optimization had not been invoked in the
system, meaning the shape of query plans stay unchanged. In
that case, all partitions transfered between two machines will be
matching partitions on the receiver machine. Therefore no parti-
tion recomputation is necessary.

As the last step (Step 8) of the MSLB protocol, the DM sends
a ReactivatePartitionsmessage to all machines with active split
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operators. Upon receiving such a message, the split operator will
start forwarding new tuples belonging to the moved-partitions to
the receiver machine. The tuples in the temporary buffers will also
be forwarded to the receiver machine all at once, after whichthe
temporary buffers are removed from the machine. The processof
MS load balancing is then finished.

Algorithms 3 and 4 sketch the high level interactions between
the distribution manager and the query processors on each ma-
chine during the distributed MSLB process. Algorithm 3 describes
the basic operations of the distribution manager.

Algorithm 3 MS-State-Rebalance:Manager(sender, receiver, amt)
/*It controls load balance process by sending moving pro-
tocols to local machines and waiting for corresponding re-
sponses.*/
1: sendComputePartitionsToMove(amt) msg tosender;
2: wait until getPartitionsToMovemsg;
3: sendDeactivatePartitionsto sender & machines with split op-

erator(s);
4: wait until get allDeactivatedmsgs;
5: sendSendPartitionsmsg tosender;
6: wait until getReceivedmsg;
7: sendReactivatePartitionsmsg to machines with split opera-

tor(s);

Similarly, Algorithm 4 describes the steps performed on a par-
ticipating processor during the state relocation process.The al-
gorithm waits for control messages in the MSLB protocol. It
performs corresponding actions based on the messages it hasre-
ceived.

DiscussionIn summary, the MS load rebalance strategy selects
partitions to move and then directly moves these partitionsfrom
the sender machine to the receiver. Different from the PTLB strat-
egy, it needs to have the knowledge of the detailed information
about the query plan. However, it directly moves partitionsfrom
the sender and the receiver without delay, therefore it can release
the burden of the sender right away, which is supposed to be the
over-loaded machine of the two. It also does not incur the extra
overhead of having to send new tuples to both the sender and the
receiver, as in the PTLB strategy.

5. Experimental Evaluation

Algorithm 4 MS-State-Rebalance:Processor()
/* To receive messages, perform corresponding actions, andreturn
message(s) to the distribution manager.*/
1: while (keepGoing)do
2: wait for control messages of the MSLB protocol;
3: switch(received protocol)
4: ComputePartitionsToMove:
5: compute partitions to move;
6: sendPartitionsToMovemsg to Distribution Manager;
7: DeactivatePartitions:
8: deactivate partition inputs;
9: sendDeactivatedmsg to Distribution Manager;

10: SendPartitions: /*send out partitions*/
11: wait on-the-fly tuples being processed;
12: send partitions viaReceivePartitionsmsg to receiver;
13: ReceivePartitions: /* receive, insert and recompute parti-

tions*/
14: extract single partitions from partition groups received;
15: insert matching single partitions to corresponding states;
16: recompute single partitions in unmatched states;
17: sendReceivedmsg to Distribution Manager;
18: ReactivatePartitions: /* resume & redirect inputs for moved

partitions*/
19: reactivate moved partitions;
20: redirect moved partitions’ input;
21: end while

Our experimental evaluation focuses on two studies. First,we
show the benefits of adding local plan optimization in the dis-
tributed continuous query processing along with the load balanc-
ing adaptation. Second, we compare the performances of the two
proposed load balancing strategies.

5.1 Experimental Setup
We have implemented the dynamic query optimization and the

two proposed load balancing strategies in a distributed continu-
ous query processing system called D-CAPE [13]. The D-CAPE
system consists of a distribution manager, a stream generator and
arbitrary number of query engines. Each machine runs a queryen-
gine. The distribution manager collects statistics from each query
engine and initiates global load balancing among machines.The
stream generator generates tuples with arrival patterns modeled as
the widely adopted Poisson process. System parameters suchas
stream input rates and global time windows are varied to reflect
the changes in workload and data characteristics.

All experiments are run on a 10-node clusters. Each node has
dual 2.4Hz Xeon CPUs with 2G main memory. We use the query
in Figure 1 as the experiment query. The join operators have in-
stances installed on all machines. Split and union operators are
added to the plan accordingly. We devote one machine each to
run the distribution manager, the stream generator and the end ap-
plication that receives query results. The remaining nodescan be
utilized to execute the query plan.

5.2 Benefits of Local Query Optimization
Our first goal for experimental evaluation is to show that local

query optimization does boost the performance of partitioned CQ
processing. To show the added benefits of local optimization, we
compare the query performances in the following four settings:



• No-Adapt: In this setting, the same query plan is executed
from the beginning to the end. Neither local optimization
nor load balancing is applied to the query execution.

• LM-only: Only Local Machine query optimization (LM) is
applied as the form of adaptation during query execution.

• PTLB-onlyor MSLB only: Only PTLB or MSLB is applied
as the adaptation method during query execution.

• LM-PTLBor LM-MSLB: Both query optimization and load
balancing are applied during query execution.

In this set of experiments, each of the three stream inputs (streams
A, B and C) is partitioned into 100 partitions. The initial input
rates are all set to be 100 tuples/sec. The initial plan joinsstreams
A with B then C. At the 30th second, the input rates of B and C
are both changed to 5 tuples/sec. This motivates the switch of the
two join operators to get a more efficient plan by dynamic plan
optimization. The partition functions in the split operators are ini-
tially set so that one machine in the system gets 50% of the total
workload, while the rest of the workload is divided evenly among
all machines. This indicates that load balancing is necessary to
obtain a good query performance.

We show the results of applying LM with PTLB in Figures 7
and 8, which compare the performances of the four settings de-
scribed above in terms of query throughput and total tuples in
system, respectively, when PTLB is applied as the load balanc-
ing strategy. Here the term “total tuples” accounts for all tuples
across all machines, not just tuples on one machine. This shows
the system performance as a whole.

The performance comparisons in term of throughput (accumu-
lated) is shown in Figure 7. It is clear that the execution with
neither forms of adaptation performs the worse. When applying
the PTLB-only, the performance improves about 100% because
the workloads are more balanced on all machines. The execution
with only local plan optimization (LM-only) but no load balanc-
ing also generates about twice the number of tuples generated by
No-Adapt. This shows that local plan optimization, as a runtime
adaptation technique, can be as powerful as the widely used load
balancing. Lastly, the execution with both forms of adaptions (LM-
MSLB) has the best performance, producing about 330% more tu-
ples than theNo-Adapt. This illustrates that combining the two
techniques can lead to a better performance than applying either
adaptation alone.
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Figure 7. Accumulated Throughput Compar-
isons (PTLB).

The total number of tuples in the system is a good indicator
for how well the query performs. A build-up of tuples in the sys-

tem indicates that the query engine is not able to keep up withthe
current workload. Figure 8 depicts the comparison of total sys-
tem tuples among the four settings. The two settings with local
plan optimization (LM-only andLM-PTLB) have much lower sys-
tem tuple build-up than the other two settings (PTLB-onlyandNo-
Adapt). This is because both settings can apply query optimization
as soon as the changes in stream input rates are first detected. The
reduction of system tuples happens forPTLB-onlyas well but is
much more behind the above two settings because it needs to deal
with a much higher tuple build-up. TheNo-Adapthas about the
same highest build-up asPTLB-onlyand number of tuples slowly
drops as a result of slower stream input rates. But this drop may
happen too slow and thus too late for a system with limited amount
of memory. Both thePTLB-onlyandNO-Adapthave higher likeli-
hood of causing system overflow than the other two settings. This
set of results shows that load balancing itself may sometimes have
very limited impact on lowering the total memory cost of the sys-
tem. Plan optimization, even if local, can be much more critical
when it comes to releasing the burden of memory in the system.

0

200000

400000

600000

800000

1000000

1200000

0 50000 100000 150000 200000 250000 300000 350000
Time (ms)

T
up

le
s 

in
 S

ys
te

m

LM-PTLB LM only PTLB only No Adapt

Figure 8. Total Tuples Comparisons (PTLB).
When MSLB is applied as the load balancing strategy, we ob-

serve very similar patterns in both performance charts as compared
to the corresponding performance charts depicted in Figures 7 and
8, respectively. Further discussions on this set of resultsare omit-
ted here due to space limits.

In summary, our experiments have shown that applying query
optimization can be very effective when processing distributed
continuous query plans. Furthermore, we have made the follow-
ing three observations based on our tested scenarios: 1) local query
optimization can be as effective as load balancing in by improving
partitioned continuous query performance in distributed systems.
2) query optimization can decrease the total system resource con-
sumptions while load balancing only balances the workload but
does not decrease it. 3) Combining both adaptation techniques
can significantly improve query performances beyond what would
be achievable by only applying each adaptation individually.

5.3 Comparing PTLB and MSLB
In this evaluation, we compare the runtime performances of

the two proposed load balancing techniques, namely PTLB and
MSLB. We vary window sizes and stream rates, in order to com-
pare the two strategies in a range of parameter settings, from low,
medium to high. The stream rates are set to be one of the three
values: 30, 40 or 50 tuples/sec, while the window sizes are set to
be one of the four settings: 15, 30, 45, 60 second. Therefore we
have 3 x 4 = 12 different experimental settings. During our experi-
ments, we run each setting for at least 5 times, and get the average



of the total throughput as the throughput of that setting. All the
other environment setup is the same as in the previous section.

For each setting, we run the experiment with no adaptation to
serve as base performance. We then run the experiment by apply-
ing either PTLB or MSLB to adapt the query plan. The average
throughputs of PTLB runs and MSLB runs are then divided by the
base average throughput to get the scaledthroughput ratio. The
throughput ratio for the run with no adaptation is 1 since it is di-
vided by itself. The larger the throughput ratio is, the better the
query performs as compared to the run without adaptation.

Figures 9, 10 and 11 depict the results of the 12 settings with
different combinations of window sizes and stream rates. Each
figure compares the throughput ratio of the base case, the PTLB
run and the MSLB run. Figure 9 shows the results of the 4 settings
in which the stream rates are set to be 30 tuples/sec. We can see
that as the size of the window grows, the difference of average
throughput ratios between the base case and either PTLB run and
the MSLB run are getting larger.

The difference between PTLB and MSLB also changes from
insignificant, when window size is small, to about 25% difference,
with the MSLB gaining the edge. This is because, as the window
size grows, the total time to finish PTLB also becomes larger (es-
timated as 2W). This means the over-loaded machine will continue
to be overloaded because it needs to purge out all the old tuples.
This slow relief can have a negative impact on the overall system
performance. In comparison, MSLB releases the overloaded ma-
chine right away by moving tuples to another machine. Even if
some states are unmatched and need to be recomputed, this work
will be done at the receiver side, which is expected to be the un-
derloaded machine. Therefore the impact of such recomputation
to the overall query performance would be rather light.

We can observe similar but more dramatic trends in Figure 10,
where the stream rates are all set to be 40 tuples/sec. Since the
stream rate is higher than in the previous set of results, thelead
of the PTLB and MSLB versus the base case is much larger even
when the window size is small.

In Figure 11, when the stream rate is set to the relatively high
50 tuples/sec, the trend is a bit different. First, when the window
size is small, the different between PTLB or MSLB and the base
case is very large. On average, the PTLB produces about 90%
more tuples while the MSLB produces about 100% more tuples
than the base case. However, as the window size grows larger,
this difference is not further enlarged. Instead, the gap between
the base and the PTLB is getting narrower. This is because as
both stream rates and window sizes are high, the PTLB starts to
take a long time and consume large amounts of system resources
in order to purge all old tuples on the already overloaded sender
machine. Therefore it becomes less efficient. On the other hand,
the MSLB is becoming more efficient in comparison to the PTLB,
demonstrating that MSLB is a better choice when parameters have
high values.

Figure 12 compares the average total time taken by the two load
balancing strategies in the 4 experiment settings when the arrival
rates are set to be 40 tuples/sec. Similar results are also observed
for the other 8 settings but are omitted here due to space limit. As
have been estimated, the PTLB always takes approximately 2W
time to finish, while the MSLB usually takes much shorter timeto
complete the whole process.

So far our experimental results have shown that the MSLB
strategy is winning. However, given certain combinations,the
PTLB can perform better than the MSLB as well. This is when
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Figure 12. Average Lengths of Load Balance
(λ = 40).

the cost for state moving and recomputation is high (large state
size) while the cost for processing new tuples is relativelylow
(low stream rates). Such situation will happen when the stream
statistics changes shortly before the load balancing process.

We set up an experiment to reflect this situation. For the three
input streams, A, B and C, the initial input rates are 100 tuples/sec.
At 30th second, the input rates for B and C slow down to 5 tu-
ples/sec. This triggers a local query optimization on the machine
with the highest workload. The load balancing process is then in-
voked. The result of this experimental setup is shown Figure13.
As we can see, the PTLB starts to have better performance after the
load balancing process is triggered. This is because such stream
changes benefit PTLB as it lowers the cost of purging old tuples.
However, since the state size has already grown very large atthis
point, the cost of moving state tuples and recomputing unmatched
states can be high. So in this case PTLB is winning.
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Figure 13. PTLB-better-than-MSLB Case.
Discussion. In summary, we have demonstrated that MSLB

has better performance than PTLB because the former utilizes the
underloaded machine more while the latter continues using the al-
ready overloaded machine to purge old tuples. However, under
certain circumstances, the cost of state purging can be smaller
than the cost of state moving and state recomputing. This may
occur when the data statistics change towards the directionthat
decreases the cost of PTLB. In this case applying PTLB can be
more efficient than applying MSLB.

6. Conclusions
Existing load balancing solutions have made the simplifying

assumption that query plan instances on all machines are static,
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i.e., no query optimization is conducted at runtime. This isclearly
unrealistic for dynamic stream systems. In this paper, we point
out that adding plan optimization to distributed continuous query
processing is beneficial but doing so also creates new problems in
dynamic load balancing. The new problem is the heterogeneity
of query plan shapes among machines as a result of applying local
query optimization, which has yet to be dealt with by currentstate-
of-the-art load balancing strategies. We therefore propose two new
load balancing strategies, namely the PTLB and the MSLB strate-
gies, along with their corresponding protocols, that can balance
the workload while seamlessly handling the complexity caused by
local plan changes in the system. The PTLB strategy is a general
load balancing strategy that requires no knowledge of the under-
lying query plan optimization. The MSLB strategy, on the other
hand, rebalances the workload by comparing the detailed shapes
of the query plans among different machines. Both strategies have
been implemented in our prototype continuous query system.Our
experiments show that the combination of query optimization and
load balancing exhibits significantly superior performances than
applying each adaptation technique alone. The MSLB is shownto
be more efficient than the PTLB in most experiments.

Our future work will investigate other stateful operators,such
as groupby and duplicate elimination. Also, other integration is-
sues, such as relocation decisions based on local plan choices may
be studied.
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