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1. Introduction

1.1 Challenges in Streaming Data Processing

The growth of electronic commerce and the widespread use of sensor net-
works has created the demand for online processing and monitoring applica-
tions [17, 23, 26]. In these applications, data is no longer statically stored.
Instead, it becomes available in the form of continuous streams. Furthermore,
users often ask long-running queries and expect the results to be delivered in-
crementally in real time. Traditional query execution techniques, which assume
finite persistent datasets and aim for producing a one-time query result, become
largely inapplicable in this new stream paradigm due to the following reasons:

The data streams are potentially infinite. Thus the existence of blocking
operators in the query plan, such as group-by, may block query execution
indefinitely because they need to see all input data before producing a re-
sult. Moreover, stateful operators such as join may require infinite storage
resources to maintain all historical data for producing exact results.

Data streams are continuously generated at query execution time. Meta
knowledge about streaming data, such as data arrival patterns or data
statistics, is largely unavailable at the initial query optimization phase.
Therefore the initial processing decisions taken before query execution
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commences, including the query plan structure, operator execution algo-
rithm and operator scheduling strategy, may not be optimal.

Stream environments are usually highly dynamic. For example, the data
arrival rates may fluctuate dramatically. Moreover, as other queries are
registered into or removed from the system, the computing resources
available for processing may vary greatly. Hence an optimal query plan
may become sub-optimal as it proceeds, requiring run-time query plan
restructuring and in some cases even across-machine plan redistribution.

It is apparent that novel strategies must be found to tackle the evaluation of
continuous queries in such highly dynamic stream environments. In particular,
this raises the need to offer adaptive services at all levels of query processing.
The challenge is to cope with the variations in both stream environment and
system resources, while still guaranteeing the precision and the timeliness of
the query result. This is exactly the challenge that the stream processing system
introduced in this chapter, named CAPE (for Constraint-Aware Adaptive Stream
Processing Engine) [21], tackles.

1.2 State-of-the-Art Stream Processing Systems

Many existing stream processing systems have begun to investigate various
aspects of adaptive query execution. STREAM [20] for instance applies runtime
modification of memory allocation and supports memory-minimizing operator
scheduling policies such as Chain [3]. Aurora [1] supports flexible scheduling
of operators via its Train scheduling technique [8]. It also employs the load
shedding when an overload is detected. In [7], they point towards ideas for
developing a distributed version of the Aurora and Medusa systems, including
fault tolerance, distribution and load balancing. TelegraphCQ [6] provides
a very fine-grained adaptivity by routing each tuple individually through its
network of operators. While offering maximal flexibility, this comes with the
overhead of having to manage the query path taken on an individual tuple basis
and of having to recompute intermediate results.

These systems also consider the constraint-exploiting query optimization, in
particular, they all incorporate various forms of sliding window semantics to
bound the state of stateful operators. In addition, the STREAM system also
exploits static k-constraints to reduce the resource requirements [4]. However,
none of these systems considers punctuations which can be used to model both
static and dynamic constraints in the stream context. Further optimization
opportunities enabled by the interactions between different types of constraints
are also not found in these systems.
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1.3 CAPE: Adaptivity and Constraint Exploitation

In this chapter, we will describe CAPE, a Constraint-Aware Adaptive Stream
Processing Engine [21], that we have developed to effectively evaluate contin-
uous queries in highly dynamic stream environments. CAPE adopts a novel
architecture that offers highly adaptive services at all levels of query processing,
including reactive operator execution, adaptive operator scheduling, runtime
query plan restructuring and across-machine plan redistribution. In addition,
unlike other systems that under resource limitation duress load shedding and
thus affect the accuracy of the query result [1], CAPE instead focuses on maxi-
mally serving precise results by incorporating optimizations enabled by a variety
of constraints. For instance, the CAPE operators are designed to exploit dy-
namic constraints such as punctuations [11, 26] in combination with time-based
constraints such as sliding windows [5, 15, 16, 20] to shrink the runtime state
and to produce early partial results.

This chapter now describes four core services in CAPE that are constraint-
exploiting and highly adaptive in nature:

The constraint-exploiting reactive query operators exploit constraints to
reduce resource requirements and to improve the response time. These
operators employ an adaptive execution logic to react to the varying
stream environment.

The introspective execution scheduling framework adaptively selects one
algorithm from a pool of scheduling algorithms that helps the query to
best meet the optimization objectives.

The online query plan reoptimization and migration restructures the
query plan at runtime to continuously converge to the best possible route
that input data goes through.

The adaptive query plan distribution framework balances the query pro-
cessing workload among a cluster of machines so to maximally exploit
available CPU and memory resources.

We introduce the CAPE system in Section 2. The design of the CAPE query
operators is described in Section 3. Sections 4, 5 and 6 present our solutions
for operator scheduling, online plan reoptimization and migration, and plan
distribution respectively. Finally, we conclude this chapter in Section 7.

2. CAPE System Overview

CAPE embeds novel adaptation techniques for tuning different levels of
query evaluation, ranging from intra-operator execution, operator scheduling,
query plan structuring, to plan distribution. Each level of adaptation is able
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to yield maximally optimized performance in certain situations by working on
their own. However, none of them is able to handle all kinds of variations
that may occur in a stream environment. In addition, the improper use of all
levels of adaptation may cause either optimization counteraction or oscillating
re-optimizations, which should both be avoided. Hence an important task is
to coordinate different levels of adaptations, guiding them to function properly
on their own and also to cooperate with each other in a well-regulated man-
ner. CAPE not only incorporates novel adaptation strategies for all aspects of
continuous query evaluation, but more importantly, it employs a well-designed
mechanism for coordinating different levels of adaptation.

Figure 1.1. CAPE System Architecture.

In the system architecture depicted in Figure 1.1, the key adaptive compo-
nents are Operator Configurator, Operator Scheduler, Plan Reoptimizer and
Distribution Manager. Once the Execution Engine starts executing the query
plan, the QoS (Quality of Service) Inspector will regularly collect statistics
from the Execution Engine at each sampling point. All the above four adaptive
components then use these statistics along with QoS specifications to determine
if they need to adjust their behavior.

To synchronize adaptations at all levels, we have designed a heterogeneous-
grained adaptation schema. Since these adaptations deal with dissimilar run-
time situations and have different overheads, they are invoked in CAPE under
different frequencies and conditions. The current adaptation components in
CAPE and the granularities of adaption are shown in Figure 1.2, with the adap-
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tion interval increasing as we go from the inner to the outer layers of the onion
shape.
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Figure 1.2. Heterogeneous-grained Adaptation Schema

The intra-operator adaptation incurs the lowest overhead so that it func-
tions within an operator’s execution time slot. Our event-driven intra-operator
scheduling mechanism enables the operators, especially the stateful and block-
ing ones, to adjust their execution at runtime through the Operator Configurator.
The Operator Scheduler is able to adjust the operator processing order after a
run of a single operator or a group of operators, called a scheduling unit. After
a scheduling unit finishes its work, the scheduler will check the QoS metrics for
the operators and decide which operator to run next or even switch to a better
scheduling strategy. This is a novel feature unique to our system. The Plan Re-
optimizer will wait for the completion of several scheduling units and then check
the QoS metrics for the entire query plan residing on its local machine to decide
whether to restructure the plan. The Distribution Manager, which potentially
incorporates the highest costs in comparison with other adaptive components
due to across-machine data transfers, is invoked the least frequently, i.e., it is as-
signed the longest decision making interval. If a particular machine is detected
to be overloaded, the Distribution Manager will redistribute one or multiple
query plans among the given cluster of machines. While the Plan Reorganizer
migrate the old plan to a new plan structure, the Distribution Manager instead
migrates a query plan from one machine to another machine.

3. Constraint-Exploiting Reactive Query Operators

As described in Section 1.1, uncertainties may exist in many aspects of a
streaming environment, including the data arrival rate, the resource availability,
etc. The operators in CAPE are designed to react to such variations by adapting
their behavior appropriately [11]. Moreover, these operators exploit various
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constraints to optimize their execution without sacrificing the precision of the
query result [12].

In this section we use the design of a join operator as an example to illustrate
the optimization principles inherent in the CAPE operator design. We highlight
in particular two features unique to CAPE: the adaptive operator execution logic
and the exploitation of punctuations.

For clarity of presentation, we use a join over two streams S1<A, B1> and
S2<A, B2> with the join condition S1.A = S2.A. The schema of the join result
is <A, B1, B2>. We assume that each tuple or punctuation has a timestamp field
TS that records its arrival time. We also assume that tuples and punctuations in
both streams have a global ordering on their timestamp.

3.1 Issues with Stream Join Algorithm

Pipelined join operators have been proposed for delivering early partial re-
sults in processing streaming data [14, 19, 27, 29]. These operators build one
state per input stream to hold the already-processed data.. As a tuple comes in
on one input stream, it is used to probe the state of the other input stream. If a
match is found, a result is produced. Finally the tuple is inserted into the state
of its own input stream. In summary, this join algorithm completes the process
of each tuple by following the probe-insert sequence.

Some issues may arise with this algorithm. As tuples continuously accumu-
late in the join states, the join may run out of memory. To prevent data loss, part
of the state needs to be flushed to disk. This may cause many expensive I/O
operations when we try to join new tuples with those tuples on disk. As more
data is paged to disk, the join execution will be slowed down significantly. In
addition, the join state may potentially consumes infinite storage.

3.2 Constraint-Exploiting Join Algorithm

In most cases it is not necessary to maintain all the historical data in the states.
Constraints such as sliding windows [5, 15, 16, 20] or punctuations [11, 26]
can be utilized by the join to detect and discard no-longer-needed data from
the states. This way the join state can be shrunk in a timely manner, thereby
reducing and even eliminating the need of paging data to disk.

We first consider the sliding window, a time-range constraint. Assume that
in the join predicate, two time-based windows W1 and W2 are specified on
streams S1 and S2 respectively. A new tuple from S1 can only be joined with
tuples from S2 that arrived within the last W2 time units. So can new tuples from
S2. Hence the join only needs to keep tuples that have not yet expired from the
window. Any new tuple from one stream can be used to remove expired tuples
from the other stream. Accordingly, the probe-insert execution logic should be
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extended to add a third operation that invalidates tuples based on the sliding
window constraints.

Punctuations are value-based constraints embedded inside a data stream.
A punctuation in a stream is expressed as an ordered set of patterns, with
each pattern corresponding to one attribute of the tuple from this stream. The
punctuation semantics define that no tuple that arrives after a punctuation will
match this punctuation. As the join operator receives a punctuation from one
stream, it can then purge all already-processed tuples from the other stream that
match this punctuation because these tuples no longer contribute to any future
join results. In response, a new operation, namely purge, that discards tuples
according to punctuations, needs to be added into the join execution logic.

Below we use an example query in an online auction application to briefly
illustrate how these constraints are used to optimize the evaluation of this query.
As shown in Figure 1.3, in this auction system, the items that are open for
auction, the bids placed on the items and the registered users are recorded in
the Item, Bid and Person streams respectively. When the open duration for a
certain item expires, the auction system can insert a punctuation into the Bid
stream to signal the end of bids for that item, e.g., the punctuation <1082, ∗, ∗,
∗> on item 1082 in the figure. Figure 1.3 also shows a stream query in CQL
language [2] and a corresponding query plan. For each person registered with
the auction system, this query asks for the count of distinct categories of all the
items this person has bid on within 12 hours of his registration time.
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Figure 1.3. Example Query in Online Auction System.

In the first join (Item �� Bid) in the query plan, when a punctuation is received
from the Bid stream, the tuple with the matching item id from the Item stream
can be purged because it will no longer join with any future Bid tuples. The
second join (S1 �� Person) applies a 12-hour window on Person. Tuples from
stream S1 can be used to invalidate expired tuples from the Person stream.

Besides utilizing punctuations to optimize their own execution, the operators
can also propagate punctuations to help other operators. In the above example,
when a Person tuple moves out of the window, no more join results will be
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produced for this person. A punctuation can then be propagated to trigger
the group-by operator to emit a result for this person. This way the group-by
operator is able to produce real-time results instead of being blocked indefinitely.

3.3 Optimizations Enabled by Combined Constraints

Either punctuation or sliding window can help shrink the join state. We
now show that when they are present simultaneously, further optimizations can
be enabled. Such optimizations are not achievable if only one constraint type
occurs. We first present a theorem as the foundation of these optimizations.

Theorem 1.1 Assume ti is announced by a punctuation to be the last tuple
ever in stream Si that has value ak for join attribute A. Once ti expires from
the sliding window, no more join results with A=ak will be generated thereafter.

Based on this theorem, we derive a tuple dropping invariant for dropping
new tuples that won’t contribute to the join result. This further reduces the join
workload without compromising the precision of the join result.

Definition 1.2 (Tuple Dropping Invariant.) Let ti be the last tuple from
stream Si that ever contains value ak for the join attribute A and let latestTS be
the timestamp of the latest tuple being processed thus far. Drop tuple tj from
stream Sj (j �= i) if ti.TS < latestTS - Wi and tj .A = ti.A and tj .TS ≥ latestTS.
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Figure 1.4. Dropping Tuples Based on Constraints.

Figure 1.4 shows an example of applying the tuple dropping invariant. The
last tuple with join value 8 in stream S2 expires from the window at time T.
Hence, the tuple dropping invariant is satisfied. In the figure, four tuples in
stream S1 are shown to have join value 8. Three of them arrived before time T
so that they have joined with the matching tuples from S1 and have been purged
by the purge operation. Another tuple with this join value is arriving after time
T. This tuple can then be dropped with no need to be processed based on the
tuple dropping invariant.

Now we consider how the combined constraints assist the punctuation prop-
agation in the join operator. Assume the join receives a punctuation <a1, ∗>
from S1, which declares that no more tuples from S1 will have value a1 for
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attribute A. The join, however, may not be able to immediately output a punctu-
ation <a1, ∗, ∗> because tuples with A=a1 are still potentially coming from S2.
This may render future results with A=a1. Only when the join state contains
no tuple with A=a1 from stream S1, we can safely output this punctuation.

We observe that without sliding window, we can only propagate punctuations
in a very restrictive case, i.e., punctuations are specified on the join attribute.
When the punctuation on a certain join value has been received from both
streams, we know that all results with this join value have been produced. The
join is then able to propagate this punctuation.

In the presence of both punctuations and sliding windows, a more efficient
propagation strategy can be achieved in the invalidation operation of the join
algorithm. As we invalidate expired tuples from the window, we also invalidate
punctuations. When a punctuation from one stream moves out of the window,
all tuples from this stream that match this punctuation must have all expired
from the window. Therefore the propagation condition is satisfied and this
punctuation becomes propagable. Also note that the punctuations propagated
by this strategy are not necessary to be on the join attribute.

3.4 Adaptive Component-Based Execution Logic

As described in Section 3.2, the join algorithm may involve numerous tasks:
(1) memory join, which probes in-memory join state using a new tuple and
produces results for any matches, (2) state relocation, that moves part of the in-
memory state to disk when running out of memory, (3) disk join, that retrieves
data from disk into memory for join processing, (4) purge, that purges no-longer-
useful data from the state according to punctuations, and (5) invalidation, that
removes expired tuples from the state based on the sliding window.

The frequencies of executing each of these tasks may be rather different due
to performance considerations. Memory join is executed as long as new tuples
are ready to be processed. This guarantees the join result to be delivered as
soon as possible. State relocation is applied only when the memory limit is
reached. This way the I/O operations are reduced to a minimum. Disk join
also involves I/O operations. Hence it is scheduled only when the memory
join cannot proceed due to the delays in data delivery. The purge incurs over-
head in searching for tuples that satisfy the purge invariant. Depending on
how frequently the punctuations arrive, we may choose to run the purge task
after receiving a certain number of punctuations (purge threshold) or when the
memory usage reaches the limit. Similarly, the invalidation task also incurs
overhead in searching for expired tuples. We may decide to conduct this task
after processing a certain number of new tuples (invalidation threshold).

Due to the dynamic nature of the streaming environment, the threshold as-
sociated with these tasks may vary over time. For example, as other queries
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enter and leave the system, the memory limit of a operator may be decreased
and increased accordingly. The traditional join algorithm that follows a fixed
sequence of operations is inappropriate for achieving such fine-tuned execution
logic. In response, we have devised a component-based adaptive join algorithm
to cope with the dynamic streaming environment. For this algorithm, we design
five components for accomplishing the five tasks listed above. We also employ
an event-driven framework to adaptively schedule these components according
to certain changes that may affect the performance of the operator.

As shown in Figure 1.5, the memory join is scheduled as long as new tuples
are ready to be processed. Meanwhile, an event generator monitors a vari-
ety of runtime parameters that serve as the component triggering conditions.
These parameters include the memory usage of the join state, the number of
punctuations that arrived since the last purge, etc. When a parameter reaches
the corresponding threshold, e.g., when the memory usage reaches the memory
limit, a corresponding event will be invoked. Then the memory join is suspended
and the registered listener to the invoked event, i.e., one of the components, will
be scheduled to run. After the listener finishes its work, the memory join will
be resumed. We have defined the following events for the join operator:
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Figure 1.5. Adaptive Component-Based Join Execution Logic.

1 StreamEmpty signals that both input streams currently contain no tuple.

2 PurgeThresholdReached signals that the number of unprocessed punctu-
ations has reached the purge threshold.

3 MemoryLimitReached signals the memory used by the join state has
reached the memory limit.

4 InvalidationThresholdReached signals that the number of newly-processed
tuples since the last invalidation has reached the invalidation threshold.

The join operator maintains an event-listener registry. Each entry in the
registry lists the event being generated, additional conditions to be checked
and the listener (component) which will be executed to handle the event. The
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Table 1.1. Example Event-Listener Registry.

Events Conditions Listeners
StreamEmpty Activation threshold: 70%. Disk Join
PurgeThresholdReached None. Purge
MemoryLimitReached There exist unprocessed punctuations. Purge
MemoryLimitReached There are no unprocessed punctuations. State Relocation

registry is initiated at the static query optimization phase and can be updated
at runtime. The thresholds used for invoking the events are specified in the
event generator. They can be changed at runtime. Table 1.1 shows an example
registry for a join with no sliding window applied. Hence, no entry in the
registry corresponds to the invalidation component.

3.5 Summary of Performance Evaluation

From our experimental study on the join operator in CAPE [11, 12], we have
obtained the following observations:

By only exploiting punctuations, in the best case the join state consumes
nearly constant memory. The shrinkage in state also helps improve the
tuple output rate of the join operator because the probe operation can now
be done more efficiently.

In terms of the sliding window join, if the window contains a large amount
of tuples, by in addition exploiting punctuations, the memory consump-
tion of the join state is further reduced and the tuple output rate increases
accordingly due to the tuple dropping.

The adaptive execution logic enables the join operator to continue out-
putting results even when the data delivery experiences temporary delay.
In addition, the appropriate purge threshold and invalidation threshold
settings help the join operator to achieve a good balancing between the
memory overhead and the tuple output rate.

4. Adaptive Execution Scheduling

Rather than randomly select operators to execute or leave such execution
ordering up to the underlying operating system, stream processing systems aim
to have fine-grained control over the query execution process. In response,
scheduling algorithms are being designed that decide on the order in which
the operators are executed. They target specific optimization goals, such as
increasing the output rate or reducing the memory usage.
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4.1 State-of-the-Art Operator Scheduling

Current stream processing systems initially employed traditional schedul-
ing algorithms borrowed from the realm of operating systems [9, 30], such as
Round-Robin and FIFO. More recently, customized algorithms designed specif-
ically for continuous query evaluation have been proposed, including Chain [3]
in STREAM and Train [8] in Aurora. The Chain scheduling strategy is designed
with the goal of minimizing intermediate queue sizes, thereby minimizing the
memory overhead. However, it is not targeting at meeting other Quality of
Service (QoS) requirements. The Train scheduling algorithms, four in total,
are variations each tuned for a particular QoS criterion.

We have experimentally compared these popular algorithms under a variety
of stream workloads within the CAPE testbed. This experimental study [24]
reveals that each of these algorithms is good at improving the system perfor-
mance in one specific manner, e.g., Chain for reducing memory usage and FIFO
for increasing the result output rate. Thus, even though many scheduling algo-
rithms exist in the literature, there is no one algorithm that a system can utilize
to satisfy the diversity of system requirements common to stream systems. In
other words, it is difficult to design a scheduling algorithm that always func-
tions effectively even when experiencing a wide variety of changing conditions,
including changing QoS requirements, the addition of new queries or runtime
query plan reoptimization (See Section 5).

The existing stream systems usually select one scheduling algorithm at the
beginning of the query execution and then stick with it. This overlooks the
fact that as the stream environment experiences changes, the initially optimal
scheduling algorithm may become sub-optimal over time. One possible solution
to this dilemma may be to put a human administrator in charge of the decision
on selecting scheduling algorithms. However, it is often impossible for an
administrator to know a priori which scheduling algorithm to pick, or more
challenging even which algorithm to turn on or off at runtime based on the
behavior of the system. It is exactly this issue of automating the scheduling
algorithm selection that we address in CAPE.

4.2 The ASSA Framework

We have designed a framework for the Adaptive Selection of Scheduling
Algorithms (ASSA for short) [24]. The ASSA architecture is depicted in Figure
1.6. ASSA is equipped with a library of scheduling algorithms, ranging from
well established ones like Round Robin and FIFO to recently proposed ones
like Chain and Train. As new scheduling algorithms are developed, they can
easily be plugged into this library.

In a nutshell, having several algorithms at its avail with each targeting differ-
ent QoS requirements, the Strategy Selector dynamically selects one scheduling
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Figure 1.6. Architecture of ASSA Scheduler.

algorithm from the library for scheduling the execution of the operators in a plan.
For this, the Performance Monitor must establish some measures by which the
algorithms can be compared and ranked in terms of their expected effective-
ness. ASSA learns about the impact of each algorithm on the query system by
observing how well each algorithm has done thus far during execution. This
learned knowledge is encoded into a score for each algorithm.

The Strategy Selector then utilizes those learned scores to guide the selection
of the candidate algorithm. It applies a lightweight Adaptive Heuristic, also
called Roulette Wheel heuristic [18], that selects the next candidate algorithm
to use for scheduling based on its perceived potential to fulfill the current set of
QoS requirements. ASSA then simply asks this selected algorithm to pick the
next operator to execute. Lastly this decision is then reported to the Execution
Engine which carries out the control of the actual execution flow.

4.3 The ASSA Strategy: Metrics, Scoring and Selection

We now describe the specified QoS requirements that the ASSA selector
utilizes to assess the effectiveness of a scheduler. We also discuss the fitness
score assigned to each scheduler to capture how well it performed relative to
the other algorithms.

Quality of Service Requirements. Our system allows for the system
administrator to specify the desired execution behavior as a composition of
several metrics. A QoS requirement consists of three components: the statistic,
quantifier, and weight. The statistic corresponds to the metric that is to be
controlled. Performance metrics considered include throughput (the number
of result tuples produced), memory requirements, and freshness of results (the
amount of time a tuple stays in the system). The quantifier, either maximize
or minimize, specifies what the administrator wants to do with this preference.
The weight is the relative importance of each requirement, with the sum of all
weights equal to 1. We combine all of the QoS requirements into a single set
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called a QoS specification. This specification is our indicator of how we want
the system to perform overall. Table 1.2 shows an example QoS specification.
Here, the administrator has specified that the system should give highest priority
to minimizing the queue size and next highest to maximizing the output rate.

Table 1.2. An example QoS specification

Statistic Quantifier Weight
Input Queue Size minimize 0.75
Output Rate maximize 0.25

QoS requirements guide the adaptive execution by encoding a goal that the
system should pursue. Without these preferences, the system will not have any
criteria by which to determine how well or poorly a scheduler is performing. The
requirements specify the desired behavior in relative terms, such as maximize
the output rate or minimize the queue size(s) and their relative importance.
Absolute requirements are too dependent on data arrival patterns and in fact in
many cases are simply not achievable.

Scoring the Scheduling Algorithms. During execution, the Execution
Engine will update the statistics that are related to the QoS requirements. Once
updated, the system needs to decide how well the previous scheduler, Sold,
has performed, and compare this performance to that of the other scheduling
algorithms. To accomplish this, a function is developed to quantify how well an
algorithm is performing for a particular QoS metric. First, the system calculates
the mean and the spread of the values of each of the statistics specified in the
service preferences for each category. Next, using the statistics from Sold, the
relative mean of each of the statistics is calculated and then normalized.

The scoring function weighs the individual QoS metrics for relative impor-
tance (by multiplying by its corresponding weight wi) and then normalizes
the collected statistics for those metrics such that one algorithm can be ranked
against another. We compute an algorithm’s overall score, scheduler score, by
combining the relative performance for all of the QoS metrics into one QoS
specification. The score assigned to an algorithm is not based solely on the pre-
vious time that it was used, but rather it is an exponentially smoothed average
value over time. By comparing Sold’s scheduler score with the scores for the
other algorithms, the adapter is in a position to select the next most promising
scheduling candidate.

Guidelines for Adaptation. Several guidelines are considered when using
the scores to determine the next scheduling algorithm. Initially, all scheduling
algorithms should be given a chance to “prove” themselves. Otherwise the de-
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cision would be biased against the algorithms that have not yet run. Therefore,
at the beginning of execution, we allow some degree of exploration on the part
of the adapter. Second, not switching algorithms periodically during execution
(i.e., greedily choosing the next algorithm to run) could result in a poor per-
forming algorithm being run more often than a potentially better performing
one. Hence, we periodically explore alternate algorithms. Third, switching al-
gorithms too frequently could cause one algorithm to impact the next and skew
the latter’s results. For example, using Chain could cause a glut of tuples in the
input queues of the lower priority operators. If a batch-tuple strategy were to
be run next, its throughput would initially be artificially inflated because of the
way Chain operated on the tuples. More generally, when a new algorithm is
chosen, it should be used for enough time such that its behavior is not signifi-
cantly over-shadowed by the previous algorithm. For this, we empirically set
delay thresholds before reassessing the potential of a switch to be undertaken.

Adaptive Selection Process. After each algorithm is given a score, the
system needs to decide if the current scheduling algorithm performed well
enough that it should be used again or if better performance may be achieved
by changing algorithms. Considering Guideline 1 above, initially running each
algorithm in a round robin fashion is the fairest way to start adaptive scheduling.

Once each algorithm has had a chance to run, there are various heuristics that
could be applied to determine if it would be beneficial to change the scheduling
algorithm. In an effort to consider all scheduling algorithms while still proba-
bilistically choosing the best fit we adopted the Roulette Wheel strategy. This
strategy assigns each algorithm a slice of a circular “roulette wheel” with the
size of the slice being proportional to the individual’s score. Then the wheel is
spun once and the algorithm under the wheel’s marker is selected to run next.
This strategy was chosen because it is lightweight and does not cause significant
overhead. In spite of its simplicity, this strategy is shown to significantly out-
perform single scheduling strategies (See Section 4.4). While this strategy may
initially choose poor scheduling algorithms, over time it should fairly choose
a more fit algorithm. The strategy also allows for a fair amount of exploration
and thus it prevents one algorithm from dominating.

4.4 Summary of Performance Evaluation

An extensive experimental study on performance of ASSA can be found
in [24]. We now briefly summarize the overall observations from this study:

For the special case of a QoS specification consisting of only one single
metric, ASSA indeed picks the one most optimal algorithm from all
available algorithms in the library.
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For a complex QoS specification combining multiple requirements, ASSA
also significantly improves performance over the run of any individual
algorithm by working with some combination of algorithms.

ASSA is able to react to QoS requirements even as they are changed at
runtime by the system administrator.

The overhead for the adaptation itself, i.e., the score calculation and the
switching among algorithms, is shown to be negligible.

ASSA is shown to be general, i.e., new scheduling solutions developed
in the future can be plugged into the library of ASSA at any time.

5. Run-time Plan Optimization and Migration

Query plan optimization is critical for improving query performance. In a
stream processing system, data is not present at the time when a query starts but
is streaming in as time goes by. The long-running continuous queries have to
withstand fluctuations in stream workload and data characteristics. Therefore,
compared to static query processing system, a stream processing system has a
much more pressing need to re-optimize the continuous query plans at run-time.
A run-time plan optimization procedure takes three steps:

Step 1: The optimizer decides when to invoke the optimization procedure.
Too frequent optimization creates extra burden on the system resources,
and too infrequent optimization may skip good optimization opportunities
and hurt the system performance as well. The timing of the optimization
is critical and needs to be carefully tuned. We present the solution in
CAPE for this issue in Section 5.1.

Step 2: The optimizer constructs a new query plan that is semantically
equivalent to the currently running plan yet more efficient in terms of
system resource consumption or performance. This is done by applying
heuristics and rewriting rules to the old query plan based on gathered
system statistics. We will discuss the optimization heuristics in CAPE in
Section 5.2.

Step 3: The optimizer migrates the old running query plan to the new plan
that it has chosen. We refer to this process as dynamic plan migration. A
novel feature of the run-time optimizer in CAPE, not yet offered by other
stream engines, is that it can efficiently at run-time migrate a stream query
plan even if it contains stateful operators. This dynamic plan migration
step is the critical service that enables optimization to occur at runtime
for stream query processing. We will discuss dynamic plan migration in
Sections 5.3 and 5.4.
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5.1 Timing of Plan Re-optimization

In the CAPE system, the plan optimization procedure can be invoked in two
modes: the periodic mode and the event-driven mode.

In the periodic mode, the optimizer is invoked at a pre-specified optimization
interval. As mentioned in Section 2, we adopt a heterogeneous-grained adapta-
tion framework, in which each adaptation technique is assigned an adaptation
interval based on its overhead and its perceived potential gain. Since the cost of
the plan re-structuring is usually between the costs of the operator scheduling
(which is very low effort) and the across-machine plan re-distribution (which
is a more involved effort), so is its adaptation interval. The optimization inter-
val can also be tuned dynamically based on certain changes in streaming data
arrival rates or data distributions.

The CAPE system also identifies types of events that represent critical op-
timization opportunities that are unique to a stream processing system, as de-
tailed in Section 5.2. Whenever one of the events occurs, it will trigger the
optimizer running in the periodic mode to switch to the event-driven mode.
The optimizer then immediately reacts to the triggering event by taking the
corresponding actions typically in the form of applying customized heuristics.
Once the optimization has completed, the optimizer returns back to its default
mode, i.e., the periodic mode.

5.2 Optimization Opportunities and Heuristics

Many commonly used heuristics and rewriting rules in static database are
also applicable for continuous query optimization. In CAPE, an optimizer in
the periodic mode for example applies the following heuristics:

The optimizer pushes down the select and project operators to minimize
the amount of data traveling through the query plan, unless sharing of
partial query plans dictates a delay of such early filtering.

The optimizer merges two operators into one operator whenever possible,
such as merging two select operators or merging a group-by operator with
an aggregate operator, to reduce scan of data via shared data access and
to avoid context switching.

The optimizer switches two operators based on their selectivities and
processing overhead. If Seli and Costi represent the selectivity and the
processing cost of an operator opi, then operators opi and opj with opi

consuming data produced by opj can be switched if (1−Seli)/Costi >
(1 − Selj)/Costj .
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We have also identified several new optimization opportunities that are unique
to the stream processing system and its dynamic environment. We have incor-
porated these stream-specific optimization heuristics into CAPE as well.

Register/De-register Continuous Queries. A stream processing system of-
ten needs to execute numerous continuous queries at the same time. Sharing
among multiple queries can save a large amount of system resources. In addi-
tion, queries may be registered into or de-registered from the system at any time.
The above features can affect the decision of the optimizer. As an example,
assume the system currently has one query plan with one select and one join op-
erator, and after a while another query is registered which contains the same join
as the first query but no select. In this case, the optimizer can pull up the select
operator so the two queries can share the results from the join operator. Later
if the second query is de-registered from the system, the optimizer may need to
push the select down again. So the events of query registering/de-registering
create new optimization opportunities that CAPE utilizes to trigger heuristics
for query-sharing optimizations.

Item Stream Bid Stream Person Stream

Join bidder_id=p_id

Join item_idSI SB

SPSIB Join I.item_id=B.item_id
& B.bidder_id=P.p_id

SI

(b) Multi-way Join

SPSB

Item StreamBid StreamPerson Stream

(a) Binary Join Tree

Figure 1.7. A Binary Join Tree and A Multi-way Join Operator.

Multi-Join Queries. Choosing the optimal order of multiple join operators
has always been a critical step in query optimization. There are two popular
methods to process a continuous query with multiple joins: a binary join tree as
in traditional (static) databases, and a single multi-way join operator [13, 28].
For the two joins JoinI.item id=B.item id & B.bidder id=P.p id. in the query defined in
Figure 1.3, Figures 1.7 (a) and (b) depict a query plan composed of several binary
joins and out of one multi-way join operator respectively. A binary join tree
stores all intermediate results in its intermediate states, so no computation will
be done twice. On the other hand, a multi-way join operator does not save any
intermediate results, so all useful intermediate results need to be recomputed.
A binary join tree saves CPU time by sacrificing memory, while a multi-way
join sits on the opposite end of the spectrum. Dynamically switching between
these two achieves different balancing between CPU and memory resources.
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The CAPE system monitors the usage of CPU and memory while processing
multiple joins. When the ratio of CPU to memory is greater or smaller than
some pre-defined threshold, the optimizer enters the event-driven mode and
switches between these two methods accordingly.
Punctuation-Driven Plan Optimization. The characteristics of punctuations
available to the query also affect the plan structuring decision making. Consid-
ering the example query shown in Figure 1.3, the two join operators in the query
plan are commutative, hence rendering two semantically equivalent plans. In
the plan shown in Figure 1.3, some join results of the first join may not be
able to join with any Person tuple in the second join because they don’t satisfy
the sliding window constraint applied to the Person stream. If we choose to do
(Bid��Person) first, the sliding window constraint will drop expired tuples early
so to avoid unnecessary work in the later join. However, in this plan, both join
operators need to propagate punctuations on the Person.p id attribute to help the
group-by operator. This incurs more propagation overhead than the first plan in
which only the second join needs to propagate punctuations. The optimizer in
CAPE will choose the plan with less cost by considering these factors related
to punctuation-propagation costs and punctuation-driven unblocking.

5.3 New Issues for Dynamic Plan Migration

Dynamic plan migration is the key service that enables plan optimization
to proceed at runtime for stream processing. It is a unique feature offered by
the CAPE system. Existing migration methods instead adopt a pause-drain-
resume strategy that pauses the processing of new data, drains all old data from
the intermediate queues in the existing plan, until finally the new plan can be
plugged into the system.

The pause-drain-resume migration strategy is adequate for dynamically mi-
grating a query plan that consists of only stateless operators (such as select and
project), in which intermediate tuples only exist in the intermediate queues. On
the contrary, a stateful operator, such as join, must store all tuples that have been
processed thus far to a data structure called a state so to be able to join them
with future incoming tuples. Several strategies have been proposed to purge
unwanted tuples from the operator states, including window-based constraints
[5, 15, 16, 20] and punctuation-based constraints [11, 26] (See Section 3). In
all of these strategies the purge of the old tuples inside the state is driven by the
processing of new tuples or new punctuations from input streams.

For a query plan that contains stateful operators, the draining step of the
pause-drain-resume step can only drop the tuples from the intermediate queues,
not the tuples in the operator states. Those could only be purged by processing
new data. Hence there is a dilemma. CAPE offers a unique solution for stateful
runtime plan migration. In particular, the we have developed two alternate
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migration strategies, namely Moving State Strategy and Parallel Track Strategy.
These strategies are now introduced below.

5.4 Migration Strategies in CAPE

Below, the term box is used to refer to the plan or sub-plan selected for
migration. The migration problem can then be defined as the process of trans-
ferring an old box containing the old query plan to a new box containing the new
plan. The old and new query plans must be equivalent to each other, including
identical sets of box input and output queues, as shown in Figure 1.8.

Item Stream Bid Stream Person Stream

Group-by p_id, category_id

Join bidder_id=p_id

Join item_idSI SB

SPSIB

Bid Stream Person StreamItem Stream

Group-by p_id, category_id

Join item_id

Join bidder_id=p_idSB SP

SBPSI

(a) Old Box (b) New Box

Figure 1.8. Two Exchangeable Boxes

Moving State Strategy. The moving state strategy first pauses the execution of
the query plan and drains out tuples inside intermediate queues, similar to the
above pause-drain-resume approach. To avoid loss of any useful data inside
states, it then takes a three-step approach to safely move old tuples in old states
directly into the states in the new box. These steps are state matching, state
moving and state recomputing.

State matching determines the pairs of states, one in the old and one in the
new box, between which tuples can be safely moved. If two states have the
same state ID, which are defined as the same as its tuples’ schema, we say that
those two states are matching states. In Figure 1.8, states (SI , SB, SP ) exist in
both boxes and are matching states. During the step of state moving, tuples are
moved between all pairs of matching states. This is accomplished by creating
a new cursor for each matching new state that points to its matching old state,
such that all tuples in the old state are shared by both matching states. The
cursors for the old matching states are then deleted. In the state recomputing
step, the unmatched states in the new box are computed recursively from the
leaves upward to the root of the query plan tree. Since the two boxes have
the same input queues, the states at the bottom of the new box always have a
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matching state in the old box. Using the example shown in Figure 1.8, we have
identified an unmatched state SBP in the new box. We can recompute SBP by
joining the tuples in SB and SP .

Once the moving state migration starts, no new results are produced by the
targeted migration box inside the larger query plan until the migration process
is finished. Of course, the remainder of the query plan continues its processing.
This way the output stream may experience a duration of temporary silence.
For applications that desire a smooth and constant output, CAPE offers a second
migration strategy called the parallel track strategy. This alternate strategy can
still deliver output tuples even during migration.
Parallel Track Strategy. The basic idea for the parallel track migration strat-
egy is that at the migration start time, the input queues and output queue are
connected and shared between the old box and the new box. Both boxes are
then being executed in parallel until all old tuples in the old box have been
purged. During this process, new outputs are still being continually produced
by the query plan. When the old box contains only new tuples, it is safe to
discard the old box. Because the new box has been executed in parallel with
the old box from the time the migration first starts, all the new tuples now in
the old box exist in the new box as well. So if the old box is discarded at this
time, no useful data will be lost.

A valid migration strategy must ensure that no duplicate tuples are being
generated. Since the new box only processes new tuples fed into the old box at
the same time, all output tuples from the new box will have only new sub-tuples.
However, the old box may also generate the all-new tuple case, which may
duplicate some results from the new box. To prevent this potential duplication,
the root operator of the old box needs to avoid joining tuples if all of them are
new tuples. In this way, the old box will not generate the all-new tuples.
Cost of Migration Strategies Detailed cost models to compute the performance
overhead as well as migration duration periods have been developed [31]. This
enables the optimizer in CAPE to compute the cost of these two strategies based
on gathered system statistics, and then dynamically choose the strategy that has
the lowest overhead at the time of migration.

The two migration strategies have been embedded into the CAPE system.
While extensive experimental studies comparing them can be found in [31], a
few observations are summarized here:

Given sufficient system resources, the moving state strategy tends to finish
the migration stage quicker than parallel track.

However, if the system has insufficient processing power to keep up with
the old query plan, the parallel track strategy, which can continuously
output results even during the migration stage, is observed to have a
better output rate during the migration stage.



22

Overall, the costs of both migration strategies are affected by several
parameters, including the stream arrival rates, operator selectivities and
sizes of the window constraints.

6. Self-Adjusting Plan Distribution across Machines

While most current stream processing systems (STREAM [20], TelegraphCQ [6],
and Aurora [1]) initially have employed their engine on a single processor, such
an architecture is bound to face insurmountable resource limitations for most
real stream applications. A distributed stream architecture is needed to cope
with the high workload of registered queries and volumes of streaming data
while serving real-time results [7, 22]. Below we describe our approach to-
wards achieving a highly scalable framework for distributed stream processing,
called Distributed CAPE (D-CAPE in short) [25].

6.1 Distributed Stream Processing Architecture

D-CAPE adopts a Shared-Nothing architecture shown to be favorable for
pipelined parallelism [10]. As depicted in Figure 1.9, D-CAPE is composed
of a set of query processors (in our case CAPE engines) and one or more
distribution managers. We separate the task of distribution decision making
(“control”) from the task of query processing to achieve maximal scalability.
This allows all query engines to dedicate 100% of their resources to the query
processing. The distribution decision making is encapsulated into a separate
module called the Distribution Manager. A Distribution Manager typically
resides on a machine different from those used as query processors, though this
is not mandatory.

D-CAPE is designed to efficiently distribute query plans and continuously
monitor the performance of each query processor with minimal communica-
tion between the controller and query processors. At runtime, during times of
heavy load or if it is determined by D-CAPE that reallocation will boost the
performance of the system, query operators are seamlessly reallocated to dif-
ferent query processors. By multi-tiering distribution managers, we can exploit
clusters of machines in different locations to process different workloads.

As illustrated in Figure 1.9, the Distribution Manager is composed of four
core components and three repositories. The Runtime Monitor listens for pe-
riodic statistics reported by each query processor, and records them into the
Cost Model Table. These run-time statistics form the basis for determining the
workload of processors and for deciding operator reallocation. The Connection
Manager is responsible for physically sending a sequence of appropriate con-
nection messages according to our connection protocol to establish operators to
machines. The Query Plan Manager manages the query plans registered by the
user in the system. The Distribution Decision Maker is responsible for deciding
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Figure 1.9. Distribution Manager Architecture

how to distribute the query plans. There are two phases to this decision. First,
an initial distribution is created at startup using static information about query
plans and machine configurations. Second, at run-time query operators are re-
allocated to other query processors depending on how well the query processors
are perceived to be performing by the Decision Maker.

The Distribution Manager is designed to be light-weight. Only incremental
changes of the set of query plans are sent to the query processors to reduce
the amount of time the Distribution Manager spends communicating with each
processor at run-time. Our empirical evaluation of the Distribution Manager
shows that the CPU is rarely used, primarily, only when calculating new distri-
bution ([25]). Furthermore, the network traffic the DM creates is minimal. In
short, this design of D-CAPE is shown to be highly scalable.

6.2 Strategies for Query Operator Distribution

Distribution is defined as the physical layout of query operators across a
set of query processors. The initial distribution of a query plan based only
on static information at query startup time is shown to directly influence the
query processing performance. The initial distribution depends only on two
pieces of information: the queries to be processed and the machines that have
the potential to do the work. The Distribution Decision Maker accepts both the
description of the query processors and query plans as inputs and returns a table
known as a Distribution Table (Figure 1.10). This table captures the assignment
of each query plan operator to the query processor it will be executing on.

The methodology behind how the table is created depends on the Distribu-
tion Pattern utilized by the Decision Maker. This allows us the flexibility to
easily plug in any new Distribution Pattern into the system. Two distribution
algorithms that were initially incorporated into D-CAPE are:
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Figure 1.10. Distribution Table

Round Robin Distribution. It iteratively takes the next query operator
and places it on the still most "available" query processor, i.e., the one
with the fewest number of assigned operators. This ensures fairness in
the sense that each processor must handle an equal number of operators,
i.e., an equivalent workload.

Grouping Distribution. It takes each query plan and creates sub-plans
for each query by maximally grouping neighboring operators together so
to construct connected subgraphs. This aims to minimize network con-
nections since adjacent operators with joint “pipes” are for the most part
kept on the same processor. Then it divides these connected subgraphs
among the available query processors.

After a distribution has been recorded into the distribution table, then the
Connection Manager distributes the query plan among the query processors.
Once the Connection Manager has completed the initial setup, query execution
can begin on the cluster of query processors, now no longer requiring any
interaction from the Distribution Manager.

6.3 Static Distribution Evaluation

Our work is one of the first to report experimental assessments on a working
distributed stream processing system. For details, the readers are referred to
[25]. Below we list a summary of our findings:

D-CAPE effectively parallelizes the execution of queries, improving per-
formance even for small query plans and for lightly loaded machines,
without ever decreasing performance beyond the central solution.
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The total throughput is improved when using more query processors over
that when using less processors. This is because we can assign a larger
CPU time slice to each operator.

The larger the query plans in terms of number and type of operators,
the higher a percentage of performance improvement is achievable when
applying distribution (on the order of several 100%). In many cases
while the centralized CAPE fails due to resource exhaustion or a lack of
processing power, the distribution solution continues to prevail.

The Grouping Distribution generally outperforms the Round Robin by
several fold. In part, this can be attributed to the Grouping Distribution
being “connection-aware", i.e., due to it minimizing the total amount of
data sent across the network and the number of connections.

6.4 Self-Adaptive Redistribution Strategies

When we first distribute a query plan, we only know static information such
as shape and size of the query plan, the number of input streams, and data about
the layout of the processing cluster. Dynamic properties such as state size,
selectivity, and input data rates are typically not known until execution. Worse
yet, these run-time properties tend to change over time during execution.

Due to such fluctuating conditions, D-CAPE is equipped with the capability
to monitor in a non-obtrusive manner its own query performance, to self-reflect
and then effectively redistribute query operators at run-time across the cluster
of query processors. We will allow for redistribution among any of the query
processors, not just adjacent ones, in our computing cluster.

Towards this end, we require a measure about the relative query processor
workload that is easily observable at runtime. One such measure we work with
is the rate at which tuples are emitted out of each processor onto the network.
This dynamically collected measure is utilized by the on-line redistribution
policy in D-CAPE for deciding if, when and how to redistribute.

Algorithm 1 Overall Steps for Redistribution.
1: costTable ← costModel.getTable()
2: maxCost ← costTable.getMaxCost()
3: minCost ← costTable.getMinCost()
4: if max − min > redistributionPercent then
5: while !valid(newDistribution) do
6: newDistribution ← RedistributionPolicy.redistribute()
7: end while
8: differenceTable ← newDistribution − currentTable
9: connectNewDistribution(differenceTable)
10: currentTable ← newDistribution
11: end if

While new policies can be easily plugged into D-CAPE framework, one of
the redistribution policies we found to be effective in D-CAPE is called the
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degradation redistribution policy. This policy alleviates load on machines that
have shown a degradation in cost since the last time operators were allocated
to the machine. If the cost has degraded beyond a certain threshold, we aim
to stop this degradation by moving the ‘most costly’ operators to other query
processors. This policy gives higher preference to those operators that will
remove a network connection from the overall distribution of operators — driven
by our empirical observation of the direct impact of higher connection loads on
the resulting system performance.

In general, any of the redistribution policies in D-CAPE, including the degra-
dation policy above, employs the steps detailed in Algorithm 1 for realizing the
desired re-distribution. These steps use our our handshake protocol between
the Distribution Manager and the designed for moving query operators between
processors The cost of moving an operator has been shown to be negligible in
our system due to this carefully designed connection protocol. Intuitively, since
we create the connections for the data to flow before we start sending the data,
we are able to “flip a switch" and in the eyes of the query processor, turn off
one operator and turn it on on another machine instantaneously.

6.5 Run-Time Redistribution Evaluation

Our results confirm that dynamic redistribution is a viable and even necessary
option for handling the performance degradation observed at runtime. Our re-
sults illustrate that redistribution can tune the execution if the initial distribution
is found to be bad or if it turns bad over time. While a detailed experimental
study can be found in [25], key experimental observations are shown below.

The overhead for redistributing an operator or even a complete sub-plan
across machines is found to be negligible. This allows D-CAPE to per-
form reallocation at a high frequency, if deemed necessary.

Even strategies that achieve good initial distribution patterns such as the
Grouping Distribution can still experience a further performance boost
when undergoing runtime redistribution.

On-line operator re-allocation has been shown to improve performance
over time compared to only working with static distributions.

Initial static distribution decisions significantly affect the performance in
the long-term even when continuing to dynamically apply reallocation.

7. Conclusion

In this chapter, we have presented a streaming query processing system
named CAPE. We reviewed the query optimization techniques that are unique to
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CAPE, including the heterogeneous-grained adaptation framework and constraint-
exploiting techniques. The adaptation technologies we illustrated include the
adaptive operator execution logic, self-healing adaptive operator scheduling,
runtime query plan re-optimization and migration, and self-adjusting query plan
distribution across machines. CAPE employs these technologies to effectively
evaluate continuous queries in highly dynamic streaming environments.
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