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ABSTRACT
We explore join optimizations in the presence of both time-
based constraints (sliding windows) and value-based con-
straints (punctuations). We present the first join solution
named PWJoin that exploits such combined constraints to
shrink the runtime join state and to propagate punctuations
to benefit downstream operators. We design a state struc-
ture for PWJoin that facilitates the exploitation of both con-
straint types. We also explore optimizations enabled by the
interactions between window and punctuation, e.g., early
punctuation propagation. The costs of the PWJoin are ana-
lyzed using a cost model. We also conduct an experimental
study using CAPE continuous query system. The experi-
mental results show that in most cases, by exploiting punc-
tuations, PWJoin outperforms the pure window join with
regard to both memory overhead and throughput. Our tech-
nique complements the joins in the literature, such as sym-
metric hash join or window join, to now require less runtime
resources without compromising the accuracy of the result.

Categories and Subject Descriptors
H.2 [Database Management]: Miscellaneous

General Terms
Algorithms

Keywords
Join Algorithm, Streaming Data Processing, Punctuation,
Sliding Window

1. INTRODUCTION

1.1 Stream Join Processing
As more and more applications need to query continuous

data streams, such as sensor networks [13], online transac-
tion management [17], and online spreadsheet [10], to name
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a few, continuous query processing is emerging as an im-
portant research area. The join processing techniques in
this new context have received increasing attention because
evaluating a join over continuous data streams may require
potentially unbounded memory in order to maintain the his-
tory data to join with the future data. The well-known
pipelined join solutions, including symmetric hash join [21],
ripple joins [10], XJoin [19, 20], and hash-merge join[14],
will indefinitely accumulate input data in the join state as
data continuously streams in. Thus they may easily con-
sume a huge amount of memory in a short time. As the
join state becomes bulky, the join probe may perform inef-
ficiently, thereby affecting the operator’s throughput.

It is clearly not practical to compare every tuple in one po-
tentially infinite stream with all tuples in another also possi-
bly infinite stream [2]. This problem has been addressed in
recent work on window joins [1, 9, 12]. They extend tradi-
tional join semantics to only join tuples that occur within a
certain bounded time period, i.e., the window. This way the
memory usage of the join state can be bounded by removing
tuples that drop out of the window in a timely fashion.

Recently, it has been recognized that real data streams
may conform to some semantic constraints that can be uti-
lized to detect and thus purge no-longer-needed data in the
join state as the join proceeds [4, 17]. One case is that the
data may be known to arrive in clusters or in rough clus-
ters grouped by the join attribute. For example, the course
grades of a particular student may be clustered together in
the online spreadsheet [10]. This way the termination point
of each join value is known. [17] has proposed to insert
metadata, namely punctuations, into data streams to explic-
itly announce these termination points, thereby punctuating
a continuous stream into sub-streams. Data streams that
carry punctuations are referred to as punctuated streams.

In a binary join over streams A and B, whenever a punctu-
ation about a certain join value inside stream A has arrived,
the B tuples, either already-arrived ones or future-coming
ones, that contain this punctuated value as their join value
will not be joining with any future tuples from stream A.
Hence these B tuples no longer need to be maintained in
the join state. The same purge rule applies to tuples from
stream A. As our example in Section 1.2 illustrates, punc-
tuations can also be derived by the join operator and be
propagated to benefit downstream operators.

1.2 Motivating Example for Exploiting Com-
bined Constraints

In this paper, we present the first stream join solution



that achieves optimizations by exploiting both punctuations
(value-based constraints) and sliding windows (time-based
constraints). While either constraint type can help bound
the memory usage, we now illustrate via an example in the
online auction application [18] that in some situations more
advantages can be achieved by considering both of them.
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Figure 1: Example Streams and Query in Online
Auction System.

As shown in Figure 1, in the auction system, each auction
is represented by a tuple in the Auction stream. Each bid
placed by the bidder is represented by a tuple in the Bid
stream. Tuples in both streams arrive in the order of their
timestamp, which represents their open auction or bidding
time. When the open duration for an auction expires, the
auction system can insert a punctuation into the Bid stream
to signal the end of bids for that particular auction. The
punctuation <180, *, *, *> in Bid stream in Figure 1 (a)
indicates that no more bids will be placed for auction 180.

Let us consider the CQL [3] query in Figure 1 (b). This
query asks for the number of bids for each auction within
12 hours of its opening (if the auction has at least one bid).
The corresponding query plan (Figure 1 (c)) contains an
equi-join operator which joins streams Auction and Bid on
item id. A group-by operator groups tuples in the output
stream (Out1) of the join by item id and then evaluates the
aggregate function count() for each group. The join operator
applies a 12-hour window to the Auction stream.

However, if many auctions are opened within 12 hours
and for each auction there is a large number of bids, the
join state of both streams may become huge. We notice
that each auction has a unique item id. Hence each tuple
from the Bid stream does not need to be maintained in the
state after being joined because it is not going to match any
future Auction tuples.

Second, each Auction tuple, whose open duration is less
than 12 hours, can be removed from the state before the
12-hour window ends once the corresponding punctuation is
received from the Bid stream. Meanwhile a punctuation can
be sent to the Out1 stream to announce no more join result
will be generated for this auction. The group-by operator
can thus produce a result for this auction prior to the end
of the 12-hour window. This way punctuations enable the
query to emit partial results earlier.

Third, for each Auction tuple whose open period is longer
than 12 hours, when it moves out of its window, no more
join results will be produced for this auction, though the
Bid tuples for this auction may still come. Then the join
operator can propagate a punctuation for this auction earlier
than it would have been possible in the non-windowed case.
In addition, any future Bid tuples for this auction can be
directly dropped without even being processed because they
will not contribute to any future results.

1.3 Issues in Exploiting Combined Constraints
From the above example, we obtain the following observa-

tions that motivate our stream join optimization exploiting
both punctuations and time windows.

1. For relatively long-lasting windows or rapid data ar-
rivals, the join state would typically contain a huge
number of tuples. By additionally exploiting punctua-
tions, we may be able to further shrink the join state.
This may also improve the probe efficiency.

2. A join operator may be able to help downstream op-
erators by propagating punctuations, for instance, to
unblock blocking operators such as the group-by. [17]
defines formal punctuation propagation rules for alge-
bra operators. However, no formal semantics for pass-
ing meta information between operators have thus far
been proposed in the literature for windowed queries.

3. Further optimizations may even be achievable due to
the coexistence of these two constraint types. For ex-
ample, with tuples being invalidated by windows, some
punctuations can be propagated much earlier. In ad-
dition, more unnecessary state probes and tuple inser-
tions can be avoided by the early propagation.

While these huge potential benefits exist, to our best knowl-
edge the join operator that exploits such combined con-
straints has not yet been considered in the literature.

Sliding windows and punctuations are constraints about
different aspects of the data, i.e., the timestamp and the
value respectively. In many cases they have an overlap-
ping effect on shrinking join state. An ill-designed join algo-
rithm may achieve minor gains at possibly double overhead,
thereby resulting in worse performance than the join so-
lutions customized to only exploit one of these constraint
types. Correspondingly, the following questions arise re-
garding potential join algorithms that could exploit both
punctuations and windows.

1. Can the join storage structure and execution logic be
designed to facilitate some optimization strategy to
exploit both constraint types?

2. If no punctuations are provided, would performance
of punctuation-exploiting window join be considerably
worse than that of the pure window join due to the
overhead of being aware of punctuations?

3. If both constraint types are applicable simultaneously,
would punctuation-exploiting window join always per-
form better than the join that only exploits one con-
straint type? In which cases would it perform worse?

4. What optimization strategies can be devised that ex-
ploit the interaction of these two constraint types and



that would not be applicable in the presence of only
punctuation or only sliding window?

In this paper, we seek to address these questions by pre-
senting our approach, namely PWJoin, the first punctuation-
exploiting window join solution.

1.4 Summary of Contributions
Our contributions of this research include: (1) we propose

the first Punctuation-exploiting binary Window Join algo-
rithm (PWJoin), (2) we design a novel storage structure for
the PWJoin state that effectively accomplishes the aware-
ness of both constraint types, (3) we derive a formula for
estimating the cost of the PWJoin, and (4) we conduct an
extensive experimental study in our CAPE continuous query
system [16] that compares PWJoin with a pure punctuation-
exploiting join [7] and a pure window join [12]. The exper-
imental results show that by utilizing punctuations in ad-
dition to sliding windows, PWJoin consumes less memory
than the pure window join. For relatively large windows,
PWJoin achieves a higher tuple output rate than the pure
window join. On the flip side, even in some cases when the
join that exploits only punctuations is not able to propagate
punctuations, PWJoin can still achieve a steady punctuation
output rate to benefit downstream operators. This way the
performance of the overall query plan can be improved.

1.5 Roadmap
Section 2 discusses related work. Section 3 provides back-

ground knowledge about punctuation and sliding window.
The PWJoin state structure and the PWJoin algorithm are
described in Section 4. We derive the cost formula for
PWJoin in Section 5 and show the experimental study in
Section 6. Finally we conclude our work in Section 7.

2. RELATED WORK
As query evaluation over continuous data streams receives

increasing attention, several data stream management sys-
tems have been built, including Aurora [1], STREAM [15]
TelegraphCQ [5], NiagaraCQ [6], to name a few.

Specific to join processing, the first well-known pipelined
join solution is the symmetric hash join [21]. XJoin [19,
20] and ripple joins [10] are extended pipelined joins that
are designed for special optimization purposes. However,
all these join solutions face the problem of potentially un-
bounded runtime join state as data continuously streams in.

A lot of work has been done in bounding memory con-
sumption in join evaluation by exploiting constraints. Win-
dow join [1, 9, 12] exploits time-based constraints called win-
dows to constrain the relative time range for tuples to be
joined. Tuples that drop out of the window can be removed
from the state. [1] defines formal semantics for a binary win-
dow join operator. Kang et al. [12] provide a unit-time-basis
cost model for analyzing the performance of binary window
join algorithms, which we apply and then extend here to
estimate the memory cost of PWJoin. They also propose
strategies for maximizing the join efficiency in various sce-
narios. [9] studies algorithms for handling sliding window
multi-join processing. [11] researches the shared execution
of multiple window join operators. They provide alternative
strategies that favor different window sizes. [22] investigates
the migration between query plans that contain window join
operators in order to achieve dynamic query optimization.

[8] proposes storage structures and indexing methods for
sliding windows to improve the join efficiency. The design
of the PWJoin state extends from their work.

Value-based constraints have also begun to be considered
in the literature, though to a much lesser degree than win-
dows. The k-constraint-exploiting algorithm [4] exploits clus-
tered data arrival patterns to detect and purge expired data
to shrink the join state. These clustered patterns are stati-
cally specified, and hence only characterize restrictive cases
of real-world data. If the actual data fails to obey these
static constraints, the precision of the join result may suffer
due to the incorrect purge of tuples. Moreover, this work
focuses on value-based constraint exploitation instead of ex-
ploring the interaction between window and value-based con-
strains, as now done in our work.

Punctuations [17] are dynamic constraints embedded in-
side data streams. Static constraints such as unique key
and clustered arrival of attribute values can also be mod-
eled by punctuations. Therefore, punctuation covers a wide
class of constraints that may help continuous query opti-
mization. [17] provides pass, purge and propagation rules
enabled by punctuations for algebra operators. In response,
a punctuation-exploiting stream join solution, PJoin [7], is
proposed. PJoin extends XJoin to maintain a more compact
join state by timely purging useless data according to punc-
tuations. However, it does not handle window semantics.

We apply the ideas of constraint-exploiting join optimiza-
tion in our PWJoin solution. Different from the k-constraint-
exploiting algorithm, PWJoin exploits dynamic constraints,
i.e., punctuations, which cover both static k-constraints and
dynamic data value arrival patterns. PWJoin enhances PJoin
by considering an additional dimension of constraints, namely,
windows. In addition, we now investigate the performance
impact as well as synergy of both constraint types.

3. PRELIMINARIES

3.1 Punctuation
A punctuation is an ordered set of patterns, each corre-

sponding to an attribute of tuple. All tuples that arrive
after the punctuation are guaranteed to never contain any
attribute values specified in the corresponding patterns. The
pattern can be a wildcard ∗, a constant (also, single-value),
a data range, an enumeration list or an empty pattern.

In this paper, we consider the punctuations that specify a
single-value pattern for the join attribute, i.e., each punc-
tuation signals the end of a single join value. We choose
this pattern because it occurs very commonly in the real-
world data streams, as shown in our example in Section 1.2.
Other punctuation patterns including range and enumera-
tion list can also be modeled by single-value patterns in most
cases. In addition, the granularity of single-value patterns
are consistent so that we can obtain a concise cost model
without compromising the generality. We term the value
that is announced to be no longer arriving by a punctuation
as a punctuated value of that stream.

We assume that all data streams consist of relational tu-
ples. Each tuple contains an attribute att representing the
join attribute and a timestamp ts that records the time when
the tuple enters into the stream. Given a punctuation p from
a stream that specifies the punctuated value valp, any tuple
t from any stream, whose join value equals valp, is defined
to match p, denoted as match(t, p). Two punctuations pa



and pb from streams A and B respectively are defined to
match each other if they specify the same punctuated value.

Below we restate the purge and propagation rules defined
in [17] for the equi-join operator regarding single-value punc-
tuations. Both rules depend on the join execution logic that
the join process for each tuple must be finished before the
next tuple is retrieved and processed from the stream. Tu-
ples from both input streams are retrieved alternatively in
the ascending order of their timestamp.
Purge rule. For any tuple ta from stream A, if there exists
a punctuation pb that has already been received from stream
B such that match(ta, pb), ta will not be joining with any
future arriving tuples from stream B. Hence ta does not need
to be maintained in the A state after being processed. This
purge rule similarly applies to any tuples from stream B.
Propagation rule. The join operator can also propagate
punctuations to the output stream in order to help down-
stream operators. Based on punctuation semantics, we de-
rive the following theorem as the foundation of our punctu-
ation propagation algorithm.

Theorem 3.1. Let pa and pb be punctuations retrieved
from streams A and B at time TSa and TSb respectively
specifying the same punctuated value val of join attribute
att. Then no output tuples with val being the value of at-
tribute att will be generated after time max(TSa, TSb).

Proof. Let time TS be max(TSa, TSb). According to punc-
tuation semantics, no more tuples with the join value val
will be arriving from either stream after time TS. Based on
the join execution logic, all tuples from both streams that
precede pa and pb have finished their join processes before
time TS. Therefore no more tuples with attribute att having
value val will be produced after time TS. �

We now are ready to derive our punctuation propagation
algorithm based on Theorem 3.1. Whenever a punctuation
is received from one stream, we check whether the matching
punctuation from the other stream has already been seen. If
yes, since no more output tuples containing this punctuated
value for attribute att will be generated thereafter, this value
becomes a punctuated value for the attribute att in the out-
put stream. Therefore, the corresponding punctuation can
be emitted to the output stream.

3.2 Sliding Window
The sliding window constrains the relative time range

within which tuples from both streams can be joined. Our
PWJoin supports the basic window join semantics illustrated
in Figure 2. We are only interested in the join of each new
A tuple whose timestamp is TSa with all B tuples that ar-
rived within the last Tb time units prior to TSa and the
join of each new B tuple whose timestamp is TSb with all
A tuples that arrived within the last Ta time units prior to
TSb. Ta and Tb are called time windows for streams A and
B respectively. Below we define the rule for invalidating 1

tuples from the join state based on the sliding window.
Tuple invalidation rule. Let tuple ta be the latest tuple
with timestamp TSa from stream A that has been processed.
The tuple in the B state with timestamp TSb such that

1In order to distinguish the purge of tuples by sliding
window from that by punctuation, thereafter we will use
invalidation and purge to refer to the purge of tuples by
window and by punctuation respectively.

���

��� � ��

��� � ��

���

��

����	�
�

��

��

������� �������

����������������
�����������
����������������
�����������
���	� �����������
�����������
���	� �����������
�����������

Figure 2: Basic Window Join.

TSb + Tb < TSa is called a time-expired tuple and can be
invalidated. The same invalidation rule applies to tuples in
the A state. We call this cross invalidation.

4. PWJOIN SOLUTION
Being aware of both window and punctuation, the PWJoin

execution logic is composed of three operations: (1) probing
state to find matching tuples for producing join results, (2)
purging no-longer-joining tuples by punctuations and (3)
invalidating expired tuples by windows. Among these oper-
ations, probe and purge conduct value-based searches, while
invalidation needs time-based searches. Therefore the join
state storage structure must be designed to be efficient for
both value-based search and time-based search.

4.1 Storage Structure for PWJoin State
State. Similar to most pipelined join operators, PWJoin
performs a symmetric execution logic for processing tuples
and punctuations from both input streams. Thus it main-
tains two states, each containing tuples from one input stream
that have been processed so far and may still be joining with
the future incoming tuples from the other stream.

�

��

�

�

��

�

�

��� ��	
 �	� ������	�

� ����

��������� ����
����
�����	����	 �!

���
� �
"��
�#
$����

�� %�����	��
 ���
� &

"��
�#
'�


����
�

��%�

���������������
�

����(	���������
�����
�

)�	���*�+�,�����%���)�+�	�

������	��

-���

Figure 3: Storage Structure for PWJoin State.

Figure 3 shows the storage structure for one state of PWJoin.
We employ the LIST structure [8] to link all tuples in the
state in chronological order (newest tuple at the tail) into a
time list. The head and the tail of the time list are indicated
by Window Begin and Window End pointers respectively.
As the window moves, tuples are in turn removed from the
head of the time list. Moreover, tuples containing the same
join value are linked into a value list (also in chronological
order). In short, all tuples in the state form a single time
list and multiple value lists. Each tuple is held by a linked
list node, which we call T-Node. Each T-Node contains two
additional pointers: NextTimeListTNode points to the next



T-Node in the time list and NextValueListTNode points to
the next T-Node in the same value list.

In addition, an index node, which we call I-Node, is cre-
ated for each value list. Each I-Node contains the join
value (Key), two pointers pointing respectively to the head
and the tail T-Nodes of the value list it is indexing, and a
PunctF lag indicating whether a punctuation for this value
has been seen from this stream. For a particular punctuation
type, we have a customized index for organizing I-Nodes.
For single-valued or list-valued punctuations, we use a hash-
based index while for range-valued punctuations we instead
use a tree-structured index. Since we only focus on single-
value punctuations in this paper, the I-Nodes in Figure 3 are
maintained in a hash table, which we call the I-Node index.

Using this storage structure, the probe and the purge first
search the I-Node index to find the matching value list while
the invalidation first checks the head of the time list for de-
tecting the expired tuples. Hence all three operations per-
form efficiently because they directly obtain the tuples that
they are interested in while the access of irrelevant tuples is
avoided. In addition, only two pointers (Head and Tail) are
maintained in the I-Node for each distinct value. This in-
curs little cost for maintaining the index structure as tuples
dynamically enter and leave the state.

4.2 PWJoin Algorithm
Now we describe the PWJoin algorithm regarding process-

ing tuples and punctuations from input stream A. The pro-
cessing of tuples and punctuations from input stream B is
similar due to the symmetric execution logic. The pseudo
code is shown in Figure 4.

1. Invalidation. Once a new tuple t is retrieved from
stream A, its timestamp is used to invalidate expired
tuples from the head of the time list of stream B. This
process stops when the first unexpired tuple is encoun-
tered, which becomes the new head of this time list.

2. Probe. After invalidation is done, the join value of t is
used to probe the I-Node index of the B state. If the
matching I-Node iNode is found, the corresponding
value list is located by following the Head pointer of
iNode. Tuple t then joins with all tuples in this value
list by following the NextValueListTNode pointer of
each T-Node. Finally, the PunctFlag of iNode is checked.
If it is “punctuated”, t is discarded, called on-the-fly
discard. If it is “none”, t is inserted into the A state.
The value of this flag can also be “propagated” for di-
rectly dropping tuples without even processing them,
as will be explained in Section 4.4.

3. Purge. When a new punctuation p is retrieved from
stream A, p is used to probe the I-Node index of the B
state. If the matching I-Node iNode is found, all tuples
in the corresponding value list are deleted. iNode is re-
moved from the I-Node index as well. If the PunctFlag
of iNode is “punctuated”, p is discarded. If iNode is
not found or iNode’s PunctFlag is “none”, p is used
to probe the I-Node index of the A state and set the
PunctFlag of the matching I-Node iNodea as “punc-
tuated”. If iNodea does not exist, a new I-Node is cre-
ated with its PunctFlag marked as true and inserted
into the I-Node index of the A state.

01. PROCEDURE PWJoin()
02. IF (a new object obj is received from stream A)
03. IF (obj is a tuple)
04. Invalidate(obj, Sb);
05. Probe(obj, Sa, Sb);
06. ELSE IF (obj is a punctuation)
07. Purge(obj, Sa, Sb);
08. IF (a new object obj is received from stream B)
09. /* Similar to above. */
10.
11. PROCEDURE Invalidate(Tuple t, State probeState)
12. T-Node tNode = probeState.getTimeList().getHead();
13. WHILE (tNode != NULL)
14. Tuple tHead = tNode.getTuple();
15. Long Tw = probeState.getWindow();
16. IF (tHead.ts + Tw < t.ts)
17. tNode.setTuple(NULL);
18. tNode = tNode.getNextTimeListTNode();
19. ELSE /* Encounter the first time-valid tuple. */
20. RETURN;
21.
22. PROCEDURE Probe(Tuple t, State ownState,

State probeState)
23. I-Node iNode = probeState.GetIndexNode(t.att);
24. IF (iNode == NULL)
25. ownState.insertTuple(t);
26. ELSE
27. T-Node tNode = iNode.getHead();
28. WHILE (tNode != NULL)
29. Tuple ti = tNode.getTuple();
30. outStream.append(join(t, ti));
31. tNode = tNode.getNextValueListTNode();
32. IF (iNode.PunctFlag == NONE)
33. ownState.insertTuple(t);
34.
35. PROCEDURE Purge(Punctuation p, State ownState,

State probeState)
36. I-Node iNode = probeState.GetIndexNode(p.att);
37. IF (iNode == NULL)
38. ownState.insertPunct(p);
39. ELSE
40. IF (iNode.PunctFlag == PUNCTUATED)
41. iNode.removeValueListTuples();
42. probeState.removeIndexNode(iNode);
43. ELSE
44. iNode.removeValueListTuples();
45. /* Mark the matching I-Node as punctuated. */
46. ownState.markPunctuated(p);

Figure 4: PWJoin Algorithm.

By examining the PWJoin algorithm, we can see that the
purge operation is triggered by arrival of punctuations. For
data streams not containing punctuations, the purge opera-
tion will never be performed, thus causing zero overhead. In
addition, the cost for on-the-fly discard is minimal because
it is accomplished as a side effect of the probe operation,
i.e., by checking the PunctFlag of the matching I-Node.
Therefore, we predict that our design enables PWJoin to
achieve almost the same performance as the pure window
join for non-punctuated streams. In dealing with punctu-
ated streams, on-the-fly discard may provide huge gains by
avoiding a good number of unnecessary tuple insertions and
deletions. The purge can also effectively shrink the state
and hence improve the probe efficiency. So PWJoin should
perform better than the pure window join in most cases.

4.3 Tuple Insertion and Deletion
The PWJoin algorithm involves frequent operations for

inserting and deleting tuples into and from the state. These
operations must guarantee that both the time list and the
value lists are updated correctly.
Tuple insertion. Inserting a new tuple ta into the A state



follows the steps listed below:

1. A new T-Node tNodea is created to contain ta and
is appended to the end of the time list (pointed by
Window End pointer). This can thus be done within
constant time.

2. The join value of ta is used to probe the I-Node index
of the A state. If the matching I-Node iNodea exists,
a NextValueListTNode pointer is pointed from the tail
T-Node of the value list to tNodea. The Tail pointer
of iNodea also points to tNodea. Else if iNodea does
not exist, a new I-Node iNodea is created and both
Head and Tail pointers point to tNodea.

Tuple deletion. To delete a tuple ta from the A state,
two cases must be considered: (1) the tuple is deleted by
invalidation and (2) the tuple is deleted by purge. Assume
that ta is contained in a T-Node tNodea. In case (1), we first
remove tNodea from the head of the time list by pointing
the Window Begin pointer to the next T-Node in the time
list. Then we need to adjust the Head pointer (sometimes
also the Tail pointer) of the corresponding I-Node that is
currently pointing to tNodea. However, this will incur an
extra probe on the I-Node index to find the I-Node. And
this may become a significant overhead because it happens
for each tuple being invalidated from the time list.

In response, we propose a lazy T-Node deletion strategy.
After tNodea is removed from the time list, we don’t im-
mediately adjust the pointers of the corresponding I-Node.
Instead we only set the tuple in the T-Node to null to re-
lease the memory taken by this tuple. Next time when the
probe operation accesses the value list associated with this
I-Node, all T-Nodes containing a null tuple, which can be
located at the head of the value list, will be detected and
removed from the value list. Similarly, in case (2), when
the purge operation deletes all T-Nodes from a value list,
we only set the tuple in the T-Node to null to release the
memory taken by the tuple. Next time when the time list
is probed by the invalidation, all T-Nodes containing a null
tuple will be removed from the time list.

4.4 Punctuation Propagation
As we explained in Section 1.2, in some cases the PWJoin

is able to propagate punctuations to help downstream op-
erators. The propagation is not beneficial to the operator
itself and rather it costs extra overhead. However, from the
perspective of a whole query plan, the propagated punctua-
tions may bring huge advantages to the downstream opera-
tors. For example, they may unblock the blocking operators
such as the group-by. If we are able to achieve propagation
at a negligible cost, a significant performance gain may be
achieved for evaluating the whole query plan.

According to the propagation rule described in Section
3.1, once the punctuation about a particular join value has
been received from both streams, a punctuation about this
value can be announced to the output stream. Therefore, we
can modify the purge operation above (Section 4.2) to en-
able the propagation. That is, upon retrieving a new punc-
tuation p from stream A, p is used to probe the I-Node index
of the B state. If the matching I-Node iNode is found and
its PunctF lag is “punctuated”, a punctuation about this
join value will be sent to the output stream. The pseudo
code for the modified purge operation is shown in Figure 5.
Note that line 09 is the only code being added.

01. PROCEDURE Purge(Punctuation p, State ownState,
State probeState)

02. I-Node iNode = probeState.GetIndexNode(p.att);
03. IF (iNode == NULL)
04. ownState.insertPunct(p);
05. ELSE
06. IF (iNode.PunctFlag == PUNCTUATED)
07. iNode.removeValueListTuples();
08. probeState.removeIndexNode(iNode);
09. outStream.append(new Punctuation(p.att));
10. ELSE
11. iNode.removeValueListTuples();
12. ownState.markPunctuated(p);

Figure 5: Purge with Propagation.

Early propagation. By considering punctuations in com-
bination with sliding windows, we discover that a new prop-
agation rule can be derived that enables further optimiza-
tions. As illustrated in Figure 6, given that the punctuation
pa is received before the punctuation pb, without window
semantics, according to the propagation rule in Section 3.1,
the punctuation <180> can only be propagated after pb is
received. However, by considering sliding windows, once the
last A tuple containing join value 180 moves out of the win-
dow, no more such tuple will appear in the A state. Hence no
more result tuples containing 180 will be generated in the fu-
ture. Therefore the punctuation <180> can be propagated
without needing to wait for the arrival of pb. We can see that
this new propagation point is always earlier or at least same
as the one that occurs for the pure punctuation-exploiting
join operator. We have derived the following theorem that
the early propagation is based on. The proof is omitted due
to space reasons.

Theorem 4.1. Let ta,i be the last tuple from stream A
that contains value vali for join attribute att and ta,i is in-
validated by the time window Ta at time T. Then no result
tuple that contains value vali for the attribute att will be gen-
erated after time T. Hence a punctuation announcing “att
= vali” can be appended to the output stream.
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Figure 6: Early Punctuation Propagation.

Based on this theorem, we are able to achieve early prop-
agation by simply keeping track of the last tuple for each
punctuated join value. To do this, we introduce a Punctu-
atedINode pointer into the T-Node. The markPunctuated()
method is also revised so that the PunctuatedINode pointer
of the tail T-Node in corresponding value list is set to point
back to the matching I-Node after this I-Node is marked
as punctuated. This way a punctuated ring is created for
each punctuated join value, as shown in Figure 3. In the
Invalidate procedure, when a T-Node with a not null Punc-
tuatedINode pointer is removed from the time list, the cor-
responding punctuation will be propagated.



When an early propagation happens (assuming it is due
to the last A tuple that contains the punctuated join value
being invalidated from the window), we will not remove the
corresponding I-Node from the A state immediately. Since
tuples containing this join value may still be arriving from
stream B but they are not joining with any future A tuples,
we keep this I-Node and set its PunctFlag to “propagated”
in order to drop these B tuples. This I-Node will be removed
only when the matching punctuation arrives from stream B,
i.e., at the regular propagation point.

5. ESTIMATING COST OF PWJOIN
In this section, we apply the unit-time-basis cost model

proposed in [12] to derive the formula for estimating the
memory cost of the PWJoin algorithm. We use this formula
to compare the performance of PWJoin with the pure win-
dow join algorithm. Table 1 lists the notations related to
stream B that will be used in our cost analysis. The nota-
tions related to stream A can be derived by switching the
subscript “b” of these notations to “a”.

Notation Meaning

λb input rate of tuples from stream B
λpb input rate of punctuations from stream B
Tb time window for stream B
NKb,T # of distinct join values having occurred in

stream B up to the T’th time unit
Sb join state of stream B
|Sb|T number of tuples in Sb at the T’th time unit

|Sb|insert
T # of tuples inserted into Sb at the T’th time unit

|Sb|purge
T # of tuples purged from Sb at the T’th time unit

Table 1: Notations Used in Cost Model.

5.1 Data Arrival Patterns and Assumptions
In our cost analysis in this section and the experimental

study in Section 6, we consider three different data arrival
patterns for the join values: (1) Unique data arrival in which
each tuple is followed by a punctuation. In other words,
the join attribute acts as a unique key. (2) Clustered data
arrival in which tuples having the same join value arrive
successively in the stream. A corresponding punctuation is
appended to the end of each cluster. The number of tuples
within a cluster is called cluster size. The unique data arrival
is a special case of the clustered arrival in which the cluster
size is equal to 1. (3) A general punctuated stream in which
a punctuation is declared immediately after the tuple that
contains the last occurrence of a particular join value. It
does not constrain that tuples with the same join value have
to occur adjacent to each other. The tuples between two
consecutive punctuations form a punctuated segment.

The cost formula derived here assumes an input-limited
mode [21], i.e., the processor can always keep up with the tu-
ple input rate. Hence at any time unit T, the number of tu-
ples having been inserted into the join state so far equals the
number of tuples that have been processed and also equals
the number of tuples that have arrived thus far.

5.2 Cost Analysis
We now analyze the memory overhead of the PWJoin al-

gorithm in terms of the number of tuples in the join state.
According to window semantics, at each time unit, λb arriv-
ing tuples will enter the B state and stay there for Tb time

units. Therefore, without purging by punctuations, at any
time unit the B state will contain λbTb tuples. Similarly,
λaTa tuples will be maintained in the A state.

Considering punctuations, we sketch the best case in Fig-
ure 7 in which both streams have a clustered arrival pat-
tern and punctuations from both streams arrive in the same
order regarding the punctuated value. Moreover, each B
cluster arrives right after the matching punctuation from
stream A. Then at any time unit, the maximum memory
overhead equals the maximum cluster size of stream A or
λaTa, whichever is smaller, because no B tuple needs to be
maintained in the B state. If the average cluster size is 1,
which is the unique data arrival pattern, at most one tuple
needs to be maintained in the A state at any time unit.
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Figure 7: Synchronized Clustered Arrival.

In general, the number of tuples maintained in the B state
at any time unit equals the number of tuples entering the
state minus the number of tuples being purged by punc-
tuations within that time unit. Since the join attributes of
stream A and that of stream B have the same domain, so we
assume here that both streams have the same number of dis-
tinct join values. Then at the T’th time unit, the probability
of each B tuple to be purged by the A punctuations equals
the ratio of the number of A punctuations that have been
processed to the number of distinct join values that have
occurred in stream B thus far, i.e., (λpaT)/NKb,T . Then
the number of B tuples being purged is λbTb(λpaT/NKb,T ).
This is also the memory savings by PWJoin compared with
the pure window join. Equation (1) computes the number
of tuples in the B state at the T’th time unit.

|Sb|T = |Sb|insert
T − |Sb|purge

T = |Sb|arrive
T − |Sb|purge

T

= λbTb − λbTb
λpaT

NKb,T
= λbTb(1 − λpaT

NKb,T
) (1)

By examining this equation, we can see that given a fixed
tuple arrival rate, λb, and a window size, Tb, the memory
overhead of PWJoin at the T’th time unit is affected by
two factors: λpa and NKb,T . On one hand, at a higher
punctuation arrival rate (λpa), more punctuations will arrive
from stream A up to the T’th time unit. Then more tuples
in Sb may get purged so that Sb will use less memory. On
the other hand, given a fixed λpa, the smaller NKb,T is,
the higher the probability of each tuple in Sb to match and
hence be purged by the already arrived punctuations from
stream A could be.

In the best case illustrated in Figure 7, since the tuples
containing each distinct join value will only occur within
their own value-based cluster instead of widely distributed
in the stream, thus NKb,T equals λpbT at time unit T. We
know that λpb equals λpa because every B cluster immedi-
ately follows the matching A cluster. Thus NKb,T equals
λpaT at time unit T. So we compute that |Sb| remains 0 on
average at all times.



In addition, the number of tuples in the PWJoin state at
any time unit is also affected by the elapsed time unit T. The
time window bounds the number of tuples in each join state
to be λaTa or λbTb, which would be a constant if the tuple
arrival rate stays the same. However, as more punctuations
stream in over time, the probability of tuples in the state
to be purged is increased. Hence the memory overhead is
reduced correspondingly.

6. EXPERIMENTAL STUDY

6.1 Experimental Setup
We have implemented the PWJoin algorithm for the equi-

join operator in our Java-based continuous query system
named CAPE [16]. We now report on an experimental
study we have conducted to explore the effectiveness of this
punctuation-exploiting window join solution. Below we show
the most important results obtained from this study. Our
testing machine has a 733 MHz Intel(R) Celeron(TM) pro-
cessor and a 512MB RAM, running Windows2000 and Java
1.4.1.01 SDK. In order to compare PWJoin with other stream
join solutions in the literature including PJoin [7], a pure
punctuation-exploiting join, and a pure window join [12]
(here we call it WJoin) in a comparable manner, we have im-
plemented both PJoin and WJoin in our system and applied
the same optimizations as for PWJoin.

In all experiments shown in this section, we run a many-
to-many join over two input streams, which, we believe, ex-
hibits the most general case of our solution. Moreover, the
join operators are running in a CPU-limited mode [21], i.e.,
tuples stream into the join operator at a high rate so that
the input streams are never drained of tuples. This way
we can observe the performance of different join operators,
including PJoin, WJoin and PWJoin, at their full process-
ing ability. One may wonder whether the extra overhead of
PWJoin caused by purging tuples and propagating punctu-
ations would become a predominant cost such that the sav-
ings gained in memory then become meaningless. We note
that if PWJoin’s throughput is almost the same or even bet-
ter than other join solutions in the CPU-limited mode, then
in terms of slow-delivering streams, the savings in memory
would be an extra gain of PWJoin because the additional
time taken by purge and propagation can be hidden by the
intermittent delay between tuples.

We have also built a benchmark system to generate and
send synthetic data streams with control on the arrival pat-
terns of data and punctuations. The data streams used in
our experiments can have any one of the arrival patterns
specified in Section 5.1. We use the following notations to
specify the particular arrival patterns of each stream.

1. cluster-[order]-[clustersize]

2. punctuation-[order]-[segmentsize]-[matchpercentage]

Notation 1 denotes the streams with a clustered data ar-
rival pattern. order specifies whether the punctuations ar-
rive in ascending (asc), descending (desc) or random (ran-
dom) order regarding the punctuated values. The num-
ber of tuples in each single cluster conforms to a Poisson
distribution with a mean of clustersize. Similarly, nota-
tion 2 is used to denote the general punctuated streams.
order and segmentsize bear the same meaning as order and
clustersize respectively in the first notation. matchpercentage

specifies the average percentage of tuples in a punctuated
segment matching the punctuation that concludes this seg-
ment. In our experiments, this percentage for each punc-
tuated segment conforms to a Poisson distribution where
matchpercentage acts as a mean. Note that the tuples that
match each punctuation may also occur in any other punc-
tuated segments prior to this punctuation. The matching
tuples in each punctuated segment (also a cluster) of the
clustered arrival pattern always has a percentage of 100.

Whenever the join operator begins execution, a statistics
gatherer starts to collect the performance data of the join
regularly at a specified time interval, which we call a sam-
pling step. The data it collects include the number of tuples
currently in the states for both input streams and the num-
ber of tuples and punctuations being output thus far. All
figures in this section will show performance data at each
sampling step within a finite time range 2. The sampling
intervals of the experiments shown in Sections 6.2 and 6.3
are 2 seconds and 1 second respectively.

6.2 PWJoin vs. WJoin
First, we compare the performance of PWJoin with WJoin,

a pure window join without being aware of punctuations.
In this experiment, we explore (1) how much memory over-
head can be saved by PWJoin in comparison with WJoin,
(2) how the throughput of PWJoin is affected and (3) how
the performance of PWJoin is affected in terms of irrele-
vant punctuations. We evaluate join operators over a pair
of punct-asc-100-40 streams. The inter-arrival time of tuples
from each stream conforms to a Poisson distribution with a
mean of 10 milliseconds. We vary the window size for input
streams in different runs and record the total number of tu-
ples in both states of the join operator and the total number
of tuples output up to each sampling step. Within the same
experimental run, we apply the same window size to both
input streams.
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Figure 8: Memory Overhead, PWJoin vs. WJoin,
Stream A, B: punct-asc-100-40.

Memory overhead. In Figure 8 we show the result of 3
runs regarding the total number of tuples in the join state of
PWJoin and of WJoin, both with the time window being 1, 5,
and 15 seconds respectively. Accordingly, we denote PWJoin
in these 3 runs as PWJoin-1, PWJoin-5 and PWJoin-15 in
the figure. The same notation also applies to WJoin. We
can see that as window becomes larger, the memory savings
by PWJoin become more and more significant.

2The join operator is continuously running. But it is only
practical for us to show statistics at finite number of sam-
pling steps in all figures in this section.



Tuple output rate. In this experiment, we also plot the
number of output tuples of PWJoin and WJoin for each run.
Figure 9 shows the number of output tuples of these two
join solutions up to each sampling step in 2 runs, with a
5-second window on both input streams and a 15-second
window on both input streams respectively. We observe
that when the window is small, since the number of tuples
purged by each punctuation is small, the cost of purge by
punctuations exceeds the saving in probing so that WJoin
performs slightly better. As the window becomes larger, the
gains in probe by shrinking the state gradually takes over,
the PWJoin would perform apparently better than WJoin.
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Figure 9: Tuple Output Rate, PWJoin vs. WJoin,
Stream A, B: punct-asc-100-40, Window: 5 seconds,
15 seconds.

Irrelevant punctuations. Now we turn to the third ques-
tion regarding the overhead required for the PWJoin oper-
ator to handle irrelevant punctuations. In terms of data
streams without punctuations, the cost of PWJoin is almost
the same as the WJoin because the operations caused by
purge and propagation are only triggered by the arrival of
punctuations. If punctuations never happen, no extra cost
would be incurred in PWJoin.
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Figure 10: Tuple Output Rate, PWJoin vs. WJoin,
Irrelevant Punctuations, Stream A: punct-asc-30-40,
Stream B: punct-random-30-40.

Let us now consider an extreme case in which all punctu-
ations are irrelevant, i.e., the punctuation does not match
any tuples so that no tuples would ever be purged. How-
ever, PWJoin still tries to search for tuples that can be

purged for each arrived punctuation. This will cost ex-
tra time. Figure 10 shows the number of output tuples
by PWJoin and WJoin over a punctuation-asc-30-40 stream
and a punctuation-random-30-40 stream, however, with all
punctuations being irrelevant instead. We can see that even
in this case, the extra overhead of PWJoin is insignificant.
This is because the cost for processing an irrelevant punctu-
ation equals the cost of probing a hash table for a matching
I-Node. This is even less than the cost of processing a tuple
because it does not incur the overhead of forming result tu-
ples when any matches are found. Moreover, punctuations
normally arrive much more infrequently than the actual tu-
ples, in this case, 30 times less frequent. Hence we conclude
that in most cases, the cost of handling punctuations is triv-
ial compared to the potential advantages it may offer.

6.3 Synergy of Punctuation and Window
Next, we consider the synergy of punctuations and win-

dows, i.e., the optimization enabled by the co-existence of
both constraint types. As we discussed in Section 4.4, early
punctuation propagation can be potentially achieved. We
run PWJoin and PJoin over a punct-asc-30-40 stream and
a punct-random-30-40 stream. Both streams have Poisson
tuple inter-arrival time with a mean of 10 milliseconds. For
PWJoin, a 1-second window applies to both input streams.
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Figure 11: Punctuation Output Rate, PWJoin vs.
PJoin, Stream A: punct-asc-30-40, Stream B: punct-
random-30-40, Window: 1 second.

We can see from Figure 11 that PWJoin has an over-
all higher punctuation output rate. In addition, for a join
without window specification, if only one input stream has
punctuations while the other one does not, according to the
punctuation propagation rule in Section 3.1, the join opera-
tor cannot derive any punctuations for the output stream. In
this case no punctuation will be output. However, by adding
a window constraint on the input stream that is served with
punctuations, whenever the last tuple that carries a certain
punctuated value drops out of the window, the correspond-
ing punctuation can be delivered to the output stream no
matter whether the matching punctuation has been declared
for the other stream or not. This is also the case shown
by our running example in Section 1.2. Since each tuple
in the Auction stream contains a unique item id, the auc-
tion system can derive a punctuation on item id after each
Auction tuple. Even if the Bid stream doesn’t have punc-
tuations, when an Auction tuple expires after 12 hours of
staying in the join state, a punctuation can be sent to the
output stream to indicate no more join result related to this
particular auction will be generated.



To show these advantages enabled by the interaction be-
tween punctuations and windows, we run PWJoin over a
punct-asc-30-40 stream and a stream not containing punc-
tuations. The join values of the tuples in the second stream
are uniformly distributed within [0, 15000) and a 5-second
window is applied to this stream. Figure 12 shows the total
number of output punctuations by PWJoin up to each sam-
pling step. In this case PJoin cannot deliver punctuations.
However, PWJoin is still able to regularly provide punctu-
ations to benefit downstream operators. We conclude that
punctuations with time windows offer more opportunities
for continuous query optimization.
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Figure 12: Punctuation Output Rate, PWJoin,
Stream A: no punctuation, Stream B: punct-asc-30-
40, Window B: 5 seconds.

7. CONCLUSION
In this paper we have explored stream join optimization

in the presence of punctuations and sliding windows. We
proposed a 3-operation-based algorithm for a punctuation-
exploiting binary window join operator, PWJoin. We have
derived a cost model for estimating the cost of PWJoin.
Lastly, we have conducted an extensive experimental study
to confirm the performance gains, synergy as well as poten-
tial overhead when exploiting these two constraint types.

As for future work, the current binary join algorithm
should be extended to handle n-ary joins. Instead of only
probing the B join state upon the arrival of a tuple or a
punctuation from stream A, the algorithm then would need
to check the states of the remaining (n-1) streams. Addi-
tional optimizations such as various purge strategies could
also be explored for further tuning.
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