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ABSTRACT
Join algorithms must be re-designed when processing
stream data instead of persistently stored data. Data
streams are potentially infinite and the query result is
expected to be generated incrementally instead of once
only. Data arrival patterns are often unpredictable and
the statistics of the data and other relevant metadata
often are only known at runtime. In some cases they are
supplied interleaved with the actual data in the form of
stream markers. Recently, stream join algorithms, like
Symmetric Hash Join and XJoin, have been designed to
perform in a pipelined fashion to cope with the latent
delivery of data. However, none of them to date takes
metadata, especially runtime metadata, into considera-
tion. Hence, the join execution logic defined statically
before runtime may not be well suited to deal with vary-
ing types of dynamic runtime scenarios. Also the poten-
tially unbounded state needs to be maintained by the
join operator to guarantee the precision of the result.
In this paper, we propose a metadata-aware stream join
operator called MJoin which is able to exploit meta-
data to (1) detect and purge useless materialized data
to save computation resources and (2) optimize the ex-
ecution logic to target different optimization goals. We
have implemented the MJoin operator. The experimen-
tal results validate our metadata-driven join optimiza-
tion strategies.
Keywords: Metadata, XML Stream, Join Algorithms,
Optimization, Constraint, XQuery Subscription.

1. INTRODUCTION

1.1 New Challenges in Stream Processing
As processing of stream data like online news, sen-

sor data and network monitoring data has attracted in-
creasing attention in recent years [3] [10] [2] [4], join
processing, being one of the most expensive query op-
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erators, has received renewed interest. As illustrated
below, the traditional strategies employed for join pro-
cessing must be re-examined for this new stream con-
text. Unlike the conventional join being evaluated over
persistently stored data, the stream join operator faces
the following new challenges:
1. Potentially unbounded state and initial delay.
Since the input data streams are potentially infinite and
arrive on the fly during query execution time, join, be-
ing a stateful operator, needs to maintain a potentially
unbounded growing state for the already-processed data
to evaluate the future-arriving data. In addition, tra-
ditional join algorithms using an asymmetric execution
model may take an extremely long time to build the “in-
ner” state without being able to emit any initial result.
2. Dynamic runtime scenarios. Metadata such as
the cardinality of the data stream may not be avail-
able to the query optimizer before runtime. Either the
query system must dynamically estimate such metadata
statistics or in some cases such metadata may be ex-
plicitly provided at runtime interleaved with the data,
then called punctuations [12]. Since data sources are
often distributed over a wide area network, the data ar-
rival rates may greatly fluctuate. Hence a static join
algorithm chosen before runtime may not be effective in
such dynamic scenarios.
3. Multiple optimization goals. The query may
run continuously and the result is generated incremen-
tally instead of once only. Also other operators may be
running at the same time. Thus for individual opera-
tors like join, the minimal time to the completion of the
query is no longer the only optimization goal. Other
objectives like minimal memory overhead or a stable
output rate of dynamic metadata may instead become
the important objectives.

1.2 Related Work
Some existing stream-oriented pipelined join opera-

tors aim to tackle these problems. [14] presents a sym-
metric hash join operator (SHJ). SHJ incrementally main-
tains in-memory state (hash buckets) for both input
streams. It handles newly-arriving tuples from one stream
by joining them with the current state of the other
stream. Therefore, SHJ avoids the infinite long “build”
phase of an asymmetric join. It also masks slow data ar-
rival rates by proceeding with available data from either
input stream instead of being stalled by a slow-delivered



data source. XJoin [13] extends SHJ to also handle any
potential memory overflow, lifting the unrealistic as-
sumption for the whole join state to be memory-resident.
It provides a three-stage policy to switch the join pro-
cessing between the memory-resident and disk-resident
portion of the state to cope with any slow delivery of
stream data. That is, the in-memory join is always given
the highest priority. The blocking period during delayed
data delivery is exploited to make progress on the join
related to secondary-storage-resident tuples. Similar to
XJoin, double-pipelined hash join [8] is another sym-
metric join strategy with overflow resolution.

However, none of the above join strategies take meta-
data about the stream, neither static nor dynamic, into
consideration. Therefore, they will neither recognize nor
drop no-longer-needed data from the state. Thus they
don’t tackle the problem of a potentially infinite state.
Their execution logic is not optimized in accordance
with the available metadata. Moreover, some of these
join strategies only aim for a single optimization goal,
namely, throughput, while other optimization goals may
be more appropriate for stream data.

In response, [10] proposed the idea of exploiting con-
straints on data streams to reduce the memory over-
head of the query operators by purging useless data
from the state. [1] further provides a query execution
algorithm that has state purging rules based on static
constraints. These two works only consider a subset of
static constaints, namely, integrity constraints and clus-
tered or ordered arrival patterns known before runtime.
They don’t deal with intra-operator scheduling nor tar-
get different optimization goals. Tucker et al. [12] de-
scribe a framework for stream operators in the presence
of puncutations, the runtime metadata. They define
state purging and punctuation propagation functions
for stream operators. However, no metadata-driven op-
timized join algorithm has been proposed to date.

Semantic query optimization [5] [9] is the counterpart
of metadata-aware query optimization in the traditional
query processing context. It uses knowledge of the se-
mantics of the data to transform a query into an equiv-
alent query which can be processed more efficiently. It
is based on the fact that all the base data and meta-
data are available before runtime. It is also typically a
plan-level instead of an operator-level optimization.

1.3 Our Approach
In this paper, we present MJoin, a metadata-aware

stream natural join operator, which has the following
features:

1. Use a multi-subtask execution model, with each
subtask being equipped with a family of alternate
execution strategies. Driven by metadata, one of
the strategies will be chosen based on optimization
heuristics.

2. Reduce resource requirements by correctly and in
a timely manner detecting and purging useless data
from the join state.

3. Be able to target different optimization goals.

4. Handle memory overflow by applying secondary-
storage-involved overflow resolution techniques.

To the best of our knowledge, MJoin is the first join
strategy that exploits both static and dynamic meta-
data to optimize the execution logic and also target dif-
ferent optimization goals. We have implemented MJoin
in Raindrop [11], an XQuery subscription system devel-
oped at WPI. We also report on experimental studies
that validate our metadata-driven optimization strate-
gies.

The rest of the paper is organized as follows: Section
2 gives a running example. Section 3 provides back-
ground knowledge. Section 4 gives an overview of the
MJoin operator. The detailed description of the join
algorithm is presented in Section 5. Section 6 shows
the experimental results and we conclude our work in
Section 7.

2. RUNNING EXAMPLE
As running example throughout this paper, we con-

sider an Online News Management System (Figure 1(a)),
which publishes news as well as collects user access data,
analyzes both news information and access records to
get statistics. The News Publisher generates the gen-
eral description about news and submits them as XML
stream (Figure 2). The Access Monitor generates an
XML stream of user access records of each news item
from the time it is posted until it is dropped off the
top 10 latest news. After that, a punctuation is in-
serted into the stream signaling “no more access record
for news item with a serial number equal to some value
will be generated” (Figure 3). The Data Analyzer en-
ables the data analyst to issue XQueries over the XML
streams. For example, the XQuery in Figure 4 correlates
the user’s IP address with the keywords of the news this
user has read to establish the interrelationship between
user interest and the keywords of the news items. In the
corresponding query plan shown in Figure 1(b), a nat-
ural join operator joins the stream NewsGeneral (de-
noted as ISa) with the stream AccessRecord (denoted
as ISb) on sno. This is a one-to-many join on the key of
the stream ISa and the foreign key of the stream ISb.

The leaf operators of the query plan are special oper-
ators called Convert, which is similar to X-scan opera-
tor in Tukwila [7]. A Convert operator takes an XML
stream and converts it to a stream of tuples. Those tu-
ples will conform to the fixed schema shown in Figure
1(b). Therefore, the input data of Join operator are two
potentially infinite streams of tuples.
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Figure 1: Running Example.



<stream:NewsGeneral>
<info>

<sno> 79 </sno>
<title> Cashless society gets mixed reviews </title>
<keyword> Smart Card </keyword>

</info>
...

</stream:NewsGeneral>

Figure 2: General News Information Stream.

<stream:AccessRecord>
<record>

<sno> 79 </sno>
<ipaddr> 64.58.76.224 </ipaddr>

</record>
<record>

<sno> 81 </sno>
<ipaddr>207.68.172.234</ipaddr>

</record>
<record>

<sno> 79 </sno>
<ipaddr> 202.112.39.8 </ipaddr>

</record>
<punct:record>

<sno> 79 </sno>
<ipaddr> * </ipaddr>

</punct:record>
...

</stream:AccessRecord>

Figure 3: User Access Record Stream.

FOR $ar in stream("AccessRecord")/record
RETURN {

FOR $ng in stream("NewsGeneral")/info[sno=$ar/no]
RETURN

<data> $ng/keyword, $ar/ipaddr </data>
}

Figure 4: Example XQuery.

3. BACKGROUND

3.1 Join Semantics and State
We use the semantics of continuous queries over mul-

tiple data streams defined in [10]. The active set of a
stream natural join J at time Tt consists of all tuples
that have been processed before time Tt. Then the an-
swer of J at any time Tt, A(J, Tt), is defined as the
answer resulting from evaluating J using standard nat-
ural join operator semantics over the active set of J at
time Tt.

A stateful operator, like join, needs to materialize the
whole or at least a partial set of already-processed data
to be able to process the future-arriving data. Such
materialized dataset is called state. In MJoin algorithm,
each data item in the state is called state tuple, which
corresponds to a whole input tuple. We denote the state
corresponding to the input streams ISa and ISb by Sa

and Sb, respectively.

3.2 Metadata
Metadata for a database defines how the data is stored,

including its schema definition, integrity constraints and
index information. In the stream context, schema in-
formation and integrity constraints can be provided at
stream registration phase. Then they are available at

the static query optimization phase. Some information
may not be known before runtime, possibly only being
delivered in the form of runtime metadata, including (1)
the number of tuples of each stream seen thus far; and
(2) the domain of future data.

Our goal is to design a join operator that is able to
make use of both static and on-the-fly metadata. We
now classify metadata by summarizing important di-
mensions of metadata introduced in the literature. As
Figure 5 shows, granularity specifies the level at which
the metadata would be applied, including query (like
window constraints), schema (like integrity constraints),
and instance level (like punctuations [12] interleaved in-
side the stream). Time characterizes when the metadata
is available to our system, either statically at query op-
timization time or dynamically at runtime. The scope
dimension refers to the time period during which the
metadata will be valid. Global metadata would be valid
for the whole data stream, while local metadata is only
valid for a specified substream. In [10], they distinguish
between static and dynamic constraints. By the classifi-
cation of Figure 5, all global constraints obtained before
runtime are static constraints, and all other constraints
are dynamic.
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Figure 5: Dimensions of Metadata.

Below we will introduce two types of metadata ex-
ploited by MJoin.
Integrity constraints [6] are schema level metadata.
We assume they are available before runtime and are
global. We consider a join between a key and a for-
eign key, which implies a one-to-many join. Since the
data arrival rates are unpredictable, we don’t have any
restrictions on the relative arrivals of the key and its
matching foreign keys.
Punctuations [12] are predicates on stream elements
which specify what items will not be seen past the punc-
tuation. Punctuations are interleaved inside the actual
data stream to mark the end of substreams. Hence,
they serve as dynamic domain information for future
data. By logically breaking an infinite stream into a
combination of finite streams, the cardinality of sub-
streams becomes known. We classify a punctuation as
runtime instance-level metadata, which is globally valid
from declaration onwards until the end of the stream.

In MJoin, we continue to use the punctuation model
and semantics defined in [12]. A concrete example of the
punctuation has been presented in the running example
(inside the stream in Figure 3). We also assume all



metadata is provided by the stream generator, either
when the stream is registered or at runtime. The MJoin
operator will make use of them, whenever available, but
it has no control over their content nor their arrival
patterns.

4. MJOIN OPERATOR OVERVIEW
Internal to the join operator design, a set of subtasks

are performed within an infinite loop. These subtasks
include:

1. Retrieve a tuple tup from some input stream (e.g.,
ISa);

2. Search the state Sb using tup for matching tuples,
join them with tup, and output the result;

3. Insert tup into the state Sa;

4. Retrieve a punctuation punct from some input
stream (e.g., ISb);

5. Purge useless state tuples from the state Sa using
punct.

We have various strategies designed for performing each
subtask, with each strategy being optimized for certain
metadata and specific optimization goal.

4.1 Stream Scheduling
The traditional hash join algorithm [6] proceeds in a

“sequential-build-and-probe” mode, which relies on the
fact that the entire dataset is finite and available be-
fore query execution. However, when dealing with po-
tentially infinite stream data which gradually becomes
available at runtime, such strategy does not apply be-
cause of the huge initial delay for building the inner
dataset. Instead, the join algorithms which proceed in
“interleaved-build-and-probe” mode [14] [13] [8] are pro-
posed for the stream context. At each time, a tuple from
either input stream is retrieved to probe the state of the
other stream and then is inserted into the corresponding
state. Stream scheduling determines from which input
stream the next tuple should be retrieved from. We
consider two stream-scheduling strategies.

Random scheduling randomly retrieves a tuple from
one input stream to process, hence treating both inputs
symmetrically. This is easy to control. However, in
the case that the two inputs are not symmetric, like a
one-to-many join, asymmetric stream scheduling may
perform better than symmetric ones.

We design the priority-driven scheduling, an asym-
metric strategy. It breaks both input streams into a se-
quence of substreams. Each time a substream from each
stream is picked to form a substream pair. Within such
substream pair, the traditional hash join algorithm is
reused, that is, the smaller dataset is chosen as “inner”
one to build the state, and tuples from the other dataset
are used to probe the state. Therefore, in the one-to-
many join from ISa to ISb, ISa is assigned a higher
priority to be consumed next. This costs less overhead
in building and probing than the opposite choice or ran-
dom scheduling for the following reasons: (1) Every tu-
ple from ISb can be dropped after it has been joined

once. Ideally, if tuples from both streams arrive in the
same order with respect to the join attribute, then each
time a tuple from ISb is used to probe Sa, the matching
tuple is likely to be already there. Hence the material-
ization cost of tuples from ISb is avoided; (2) By mate-
rializing an equal number of tuples from both inputs, Sa

would cover a wider data range. This may improve the
chance of newly-arriving tuples from ISb to get joined
immediately.

4.2 Tuple Scheduling
Unlike stream scheduling which concerns itself with

making a decision about which stream to read data
from, tuple scheduling affects the order in which tuples
from the same input stream are processed.

Sequential scheduling is the default tuple scheduling
strategy. Here the order of processing tuples from the
same stream is also the order of retrieving them. The
advantage of sequential scheduling is simplicity. How-
ever, in some cases we want to break the coupling of
retrieving and processing tuples to achieve a better out-
put rate of both data and punctuations.

We design value-oriented scheduling which schedules
the processing of tuples based on the relationship be-
tween their values and the available punctuations. For
example, in a many-to-many join with punctuations
over both input streams, once a punctuation arrives
from ISa, the corresponding punctuation would be ex-
pected from ISb so that we can propagate such punc-
tuation (although it may never come). The prerequisite
to propagating a punctuation is that all possible out-
put tuples matching the punctuation have been gener-
ated. Therefore, tuples from ISb which match the to-be-
propagated punctuation will be assigned higher priority
to be processed, while the processing of tuples which
likely won’t contribute to the punctuation propagation
is delayed.

We design the rule for switching between these two tu-
ple scheduling strategies. By default, sequential schedul-
ing is used. When some punctuation arrives, value-
oriented scheduling is activated and works until: (1) the
punctuation expires (all the tuples punctuated by this
punctuation have finished the join) and no valid punctu-
ation exists or (2) stream scheduling switches to process
another stream since stream scheduling overrides tuple
scheduling.

4.3 On-the-fly Dropping and State Purging
By checking metadata, MJoin can achieve multi-fold

gains in reducing memory overhead:

1. A tuple may never need to be inserted into the
state if it won’t have any chance to join with any
future tuple, which we call on-the-fly dropping.

2. Once a state tuple is known to no longer be able
to join with any future tuple, it is removed from
the state, which is called state purging.

Either on-the-fly dropping or state purging can only
happen when it is known from the metadata that no
existing matching tuple from the opposite stream is left
un-joined nor possibly still coming in the future. During



the evaluation of the join, if we can get such purging in-
dication from metadata frequently, either newly-arriving
tuples don’t even need to be inserted into the state or
useless state tuples can be purged in a timely manner.
Hence the memory overhead can be reduced without
compromising the precision of the result. Depending on
the metadata, the purging indication can be explicit or
implicit. Static constraints would specify implicit purg-
ing indications as follows:

1. A one-to-many join from ISa to ISb implies that
whenever a value occurs at ISa once, it won’t oc-
cur any more. Hence there is no need to maintain
the matching state tuples from ISb.

2. A clustered arrival implies that whenever the clus-
ter is over, no data with the clustered join value
will come. Hence the matching state tuples from
the other input can be purged.

3. An ordered arrival is a special case of clustered
arrival. It not only specifies that no data with such
join value will come later, but also implies that no
data with a join value less than (increasing order)
or greater than (decreasing value) such value will
come any more past this cluster.

In addition, each punctuation explicitly specifies a
purging indication. In our algorithm, on-the-fly drop-
ping based on a purging indication is always done im-
mediately. This avoids the overhead of inserting tuples
into the state. In addition, two state-purging strate-
gies are proposed to be tuned for different optimization
goals. State purging can be done whenever the purging
indication is obtained. A performance gain will likely
be achieved by shrinking the state. However, the purg-
ing itself carries some cost, that is, the state needs to be
scanned to find the purgable tuples. Hence this repre-
sents a delicate tradeoff between time versus space. Ac-
cordingly, we design two purging strategies: Immediate
purging will be performed when a purging indication is
obtained; while batch purging (also called lazy purging)
may purge the state at a better time (when the num-
ber of existing punctuations reaches some threshold or
the input stream is temporarily blocked so that no new
input data is available for a while) or until necessary
(when the size of the state reaches some size limitation).

Immediate purging can guarantee the minimal mem-
ory overhead at any time as well as the earliest possible
punctuation propagation, while batch purging can po-
tentially gain a better data output rate by reducing the
number of scanning operations over the state and poten-
tially batching the purge. Depending on the optimiza-
tion goal, a different purging strategy may be chosen.

.

5. JOIN ALGORITHM
MJoin extends XJoin [13] by introducing metadata-

aware optimization. We assume that all metadata is
indeed accurate. We only deal with punctuations in the
form of “from now on, no more tuple with a join value
satisfying this predicate will arrive in the future”. In

this section, we will describe the MJoin algorithm in
dealing with a one-to-many join from ISa to ISb with
punctuations on the join attribute of tuples from ISb (1-
NP). Based on this, we briefly describe the modification
of the 1-NP algorithm when dealing with a one-to-many
join from ISa to ISb with a clustered arrival of tuples
from ISb (1-NC), which is a special case of 1-NP.

5.1 Framework
Figure 6 shows the framework of the MJoin operator.
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Hash Buckets
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Figure 6: Framework of MJoin

Input/output queues. Each input/output stream of
the join operator corresponds to a FIFO queue (denoted
as Qa, Qb and Qo, with Qa and Qb corresponding to
ISa and ISb respectively), which can hold both data
and punctuations.
Punctuation collection. The operator maintains a
punctuation collection for each input stream. The col-
lection contains all punctuations that have already ar-
rived but have not yet been propagated. Each punctu-
ation item specifies a predicate about the data.
State structure. The state contains hash buckets and
a waiting tuple pool. Hash buckets hold all material-
ized data from the corresponding input stream. Similar
to XJoin, each hash bucket has a memory-resident por-
tion and a disk-resident portion. The waiting tuple pool
contains waiting tuples, which have been retrieved from
the queue, but haven’t yet been processed due to value-
oriented tuple scheduling. Waiting tuples are treated
the same as those tuples which still sit in the queue,
hence called waiting tuples.
Punctuated range. In order to purge useless data,
we need to determine the data range specified by all the
punctuations received so far from each input stream.
We call it the punctuated range (denoted as PRa and
PRb respectively). No new tuple with the join value
falling into the punctuated range will come in the fu-
ture. Then assume for example, a tuple ta is retrieved
from ISa and finishes the join with all matching tuples
received thus far from ISb. If the join value of ta falls
into PRb so that it won’t be able to join with any future
tuple from ISb, then ta can be dropped on the fly.

5.2 Overall Execution Logic
Join Stages. Similar to XJoin, MJoin proceeds in
three stages. The in-memory stage joins matching tu-
ples in the memory-resident state of both input streams.



The memory-disk stage joins the memory-resident state
of one input with the disk-resident state of the other
input. The cleanup stage joins any pairs of matching
tuples which haven’t gotten joined during the first two
stages yet due to a state flush.

The in-memory stage always has the highest prior-
ity to run. It includes two different scenarios: (1) the
newly-retrieved tuple will join with all matching tu-
ples in the memory-resident state of the other input
stream; (2) when the tuple scheduling switches from
value-oriented to the sequential strategy, the waiting
tuple pool will be cleaned out by processing all waiting
tuples in the same way as (1). The memory-disk stage
is activated whenever the in-memory stage blocks. And
the cleanup stage starts when neither in-memory stage
nor memory-disk stage can proceed. At each stage on-
the-fly dropping and state purging may be applied.
State purging rules. In MJoin, state purging is in-
voked by one of the following events: (1) a punctuation
is retrieved (using immediate purging); or (2) the maxi-
mal number of unpurged punctuations is reached (using
batch purging); or (3) the memory is full and unpurged
punctuations exist (batch purging); or (4) both input
queues are empty (batch purging).

5.3 1-NP Join Algorithm
In the 1-NP join, we assume the stream generator will

insert punctuations into the stream to signal the end of
substreams, as shown in Figure 3. Such assumption is
made only for simplifying the description of our algo-
rithm, but it is not required. If no punctuation arrives,
the execution logic described in Section 5.2 will be per-
formed.
Stream/tuple scheduling. Since this is a one-to-
many join, priority-driven stream scheduling is applied.
In addition, triggered by the available punctuation, value-
oriented tuple scheduling may be applied accordingly.
Once started, MJoin operator will alternately retrieve
substreams from Qa and Qb. Each queue is assigned a
fixed retrieval quota, denoting the maximal number of
tuples to be retrieved consecutively from a queue. At
the beginning, the retrieval iterator of Qa is 0. MJoin
keeps retrieving tuples from Qa until either Qa becomes
empty or the iterator of Qa reaches the quota. Then
Qb begins to be consumed until an event happens simi-
larly as above. Once the retrieval quota of one queue is
reached, the quota of the other queue will be reset to 0.
If the iterators of both queues are within the range [0,
retrieval quota) and neither queue is empty, the head
tuple of Qa will be retrieved because Qa is assigned
higher scheduling priority.
Execution logic. The execution logic is determined
based on two fundamental rules given below.
Rule 1: If MJoin is optimized to maximize the tuple
output rate, batch purging will be applied. The state
purging rule is stated in Section 5.2. The execution logic
is defined as follows:

1. The MJoin algorithm is running in an infinite loop.
Each time the stream and tuple scheduling strate-
gies will decide how to retrieve tuples from queues
and in which order to process them. After a tu-

ple or a punctuation is retrieved and chosen to be
processed, either step 2, 3 or 4 will be performed.

2. A tuple ta retrieved from Qa is used to probe Sb.
If no matching tuple is found, ta is inserted into
Sa. MJoin continues to retrieve the next tuple.
If matching tuples are found, ta joins with all of
them and then purges them immediately. If the
join value of ta falls into PRb and the matching
bucket in Sb doesn’t have any disk-resident por-
tion, then ta is dropped as well. Otherwise it is
inserted into Sa. The corresponding pseudocode
for this step is shown in Figure 7.

3. A tuple tb retrieved from Qb is used to probe Sa.
If a matching tuple ta is found, tb is joined with
ta and then dropped. Otherwise tb is inserted into
Sb.

4. A punctuation p retrieved from Qb is inserted into
the punctuation collection.

5. Whenever a tuple is inserted into the state, the
status bit for purging will be checked to see if state
purging is needed.

Procedure stage-mem-a (Tuple ta) {
/* Compute the hash value. */
Object key = hash(ta.sno);
/* Get corresponding hash bucket. */
Bucket bucket = Sb.getBucket(key);
if (bucket �= ∅)

foreach tb in bucket
/* Join ta with matching tuples from Sb. */
if (ta.sno == tb.sno) {

Qo.enqueue(join(ta, tb));
/* Purge matching tuple from Sb. */
Sb.purge(tb); }

/* Judge whether to drop ta on the fly. */
if (ta.sno ∈ PRb) /* PRb is punctuated range of Sb. */

if (bucket.hasDiskPart())
Sa.add(ta);

else
Sa.add(ta); }

Figure 7: Join Algorithm in Pseudocode.

Rule 2: If MJoin is optimized to minimize the memory
overhead, immediate purging will be applied to purge
the state whenever a punctuation is retrieved from Qb.
The rest of the execution logic is the same as above.
Duplicate issue. Although the multi-stage join algo-
rithm is applied, for a one-to-many or one-to-one join,
MJoin doesn’t have the potential problem of producing
spurious duplicate tuples, which is unlike XJoin. Since
any tuple from ISb will be dropped immediately after
it is joined with the matching tuple from ISa, it has
no chance to contribute to more than one output tuple.
Hence the execution logic is simpler than XJoin.

5.4 Further Optimization of 1-NC Join
1-NC (one-to-many-clustered) join is a special case of

1-NP join, which has stricter constraints on the stream
ISb. Hence it provides opportunity for further optimiza-
tion. For example, since tuples with the same join value



arrive consecutively, the stream scheduling strategy can
be changed accordingly to speed the output rate. When-
ever a tuple from ISb gets joined, MJoin will continue
to retrieve the subsequential tuples from ISb until a dif-
ferent value occurs to signal the end of the cluster. In
doing so, more cost of probing and inserting tuple into
the state has been saved.

6. EXPERIMENTAL VALIDATION
We now provide experimental results to explore the

effectiveness of our metadata-based optimization.

6.1 Experimental Setup
We ran the experiments on an Intel(R) Celeron(TM)

733 MHz processor, with 512 MBytes real memory, run-
ning Windows2000 and Java 1.4.1 01. To have repeat-
able experiments, we create NewsGeneral and Access−
Record streams beforehand and feed them to the MJoin
operator at runtime. A punctuation is inserted into the
AccessRecord stream whenever a news item is rolled
out of the top 10 latest news and the access monitor no
longer generates user access records for it. Within each
punctuated substream, at most 10 distinct sno values
exist representing the serial numbers of the news being
monitored. Each distinct sno value may correspond to
multiple access records, which arrive in a random order.
A substream of AccessRecord (only sno value) is shown
below. P(value) represents the punctuation. For exam-
ple, P(3) means no more sno with value 3 will come
afterwards.

← 9,12,5,11,7,4,12,6,4,7,3,12,P(3),5,11,10,7,4,7,4,9,12,P(4),8,...←

We test two arrival patterns of the input streams. In
the ordered pattern, both input streams arrive in the in-
creasing order with respect to sno of the NewsGeneral
stream and the punctuated sno of the AccessRecord
stream. In the random pattern, NewsGeneral stream
arrives in some random order with respect to the sno
value.

Due to space limitations, here we only show the exper-
iments which test the in-memory behavior of the 1-NP
join running in the “CPU-limited mode”, that is, the
input queues never become empty. All experiments are
run at least 10 times and the averages over all runs are
plotted.

6.2 Results
Experiment 1: Stream and tuple scheduling. We
first compare the performance of two combinations of
stream and tuple scheduling, that is, priority-driven stream
scheduling with value-oriented tuple scheduling vs. ran-
dom stream scheduling with sequential tuple scheduling.
The latter is the default strategy used by most existing
stream join algorithms [13] [14]. We evaluate MJoin
using these two scheduling combinations over the two
stream arrival patterns stated above. The time used
to output a certain number of tuples is recorded. This
time also covers the time for immediate purging and
punctuation propagation. Figure 8 shows the result in
the case of ordered and random arrival patterns respec-
tively. We can see that in both cases, priority-driven

stream scheduling with value-oriented tuple scheduling
always outperforms the other scheduling combination.
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Figure 8: Stream/Tuple Scheduling Strategies.

Experiment 2: MJoin vs. XJoin. Second, we com-
pare the result generating time and memory overhead of
MJoin with XJoin. In this experiment, we eliminate the
punctuation propagation task from MJoin because it is
not supported by XJoin. Batch purging is applied here
instead of immediate purging because the granularity of
punctuations is rather small. We now purge conserva-
tively after every 100 punctuations are received.

(a) Ordered Arrival Pattern (b) Random Arrival Pattern
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Figure 9: Execution Time, MJoin vs. XJoin.

Figure 9 shows that until some threshold (the total
number of output tuples reaches 7500) is reached, MJoin
costs somewhat more time than XJoin because the time
used by MJoin to purge state dominates over the extra
probing time taken by XJoin. As more data streams
in, without purging, the state maintained by XJoin in-
creases significantly. The probing time keeps increasing
as well. MJoin, however, purges useless data in a timely
manner so that it costs less time than XJoin. Espe-
cially, when memory overflow occurs in XJoin, MJoin
will achieve more time savings because disk I/Os are
significantly more expensive than only in-memory oper-
ations. Also from Figure 10, we can see that for the
random arrival pattern, by getting rid of no-longer-
needed data in a timely manner, the memory overhead
can be significantly reduced as more data streams in.
The result over ordered arrival pattern is similar to the
random one.
Experiment 3: Immediate vs. batch purging.
From Figures 9 and 10, we see that by applying batch
purging, the memory overhead can be effectively re-
duced and the execution time won’t deteriorate severely
and can even be better as more data streams in. Now
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Figure 10: Memory Overhead, MJoin vs. XJoin.

we compare the performance of immediate purging with
batch purging. Same as above, we evaluate MJoin by
applying state purging after every 1 or 100 punctua-
tions respectively over the data streams which arrive in
random pattern. The execution time to get a certain
number of output tuples is recorded.

Figure 11 shows that for such a frequently arriving
and small-granularity punctuation case, immediate purg-
ing will cause more time than batch purging because of
the cost for scanning the state. Hence we conclude that
although state purging can help to reduce memory over-
head and further reduce the state probing cost, since it
also costs extra effort to scan the whole state, we need
to find a good time to do it.
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Figure 11: Immediate vs. Batch Purging.

7. CONCLUSION
In this paper, we have presented MJoin, a metadata-

aware stream join operator, which extends XJoin by
introducing optimization of the execution logic accord-
ing to both static and dynamic metadata. It is also
able to target different optimization goals. It purges
useless data from the state to reduce the requirement
of computing resources. Accordingly, different schedul-
ing and purging strategies are being proposed. We have
implemented MJoin in the Raindrop system. We also
show the experimental results of heuristic-based intra-
operator optimization.

In the future, we plan to work on a cost-based stream
join operator optimization strategy by exploiting meta-
data instead of the heuristics-based approach presented
here.
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