
Run-Time Operator State Spilling for Memory Intensive
Long-Running Queries ∗

Bin Liu, Yali Zhu, and Elke A. Rundensteiner
Department of Computer Science, Worcester Polytechnic Institute

Worcester, Massachusetts, USA

{binliu, yaliz, rundenst}@cs.wpi.edu

ABSTRACT
Main memory is a critical resource when processing long-
running queries over data streams with state intensive oper-
ators. In this work, we investigate state spill strategies that
handle run-time memory shortage when processing such com-
plex queries by selectively pushing operator states into disks.
Unlike previous solutions which all focus on one single op-
erator only, we instead target queries with multiple state
intensive operators. We observe an interdependency among
multiple operators in the query plan when spilling operator
states. We illustrate that existing strategies, which do not
take account of this interdependency, become largely inef-
fective in this query context. Clearly, a consolidated plan
level spill strategy must be devised to address this problem.
Several data spill strategies are proposed in this paper to
maximize the run-time query throughput in memory con-
strained environments. The bottom-up state spill strategy
is an operator-level strategy that treats all data in one op-
erator state equally. More sophisticated partition-level data
spill strategies are then proposed to take different charac-
teristics of the input data into account, including the local
output, the global output and the global output with penalty
strategies. All proposed state spill strategies have been im-
plemented in the D-CAPE query system. The experimental
results confirm the effectiveness of our proposed strategies.
In particular, the global output strategy and the global out-
put with penalty strategy have shown favorable results as
compared to the other two more localized strategies.

1. INTRODUCTION
Processing long-running queries over real-time data has

gained great attention in recent years [2, 3, 6, 14]. Unlike
static queries in a traditional database system, such query
evaluates streaming data that is continuously arriving and
produces query results in a real time fashion. The strin-
gent requirement of generating real time results demands

∗This work was partly supported by the National Science
Foundation under grants IIS-0414567.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2006, June 27–29, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-256-9/06/0006 ...$5.00.

efficient main memory based query processing. Therefore
long-running queries, especially complex queries with mul-
tiple potentially very large operator states such as multi-
joins [21], can be extremely memory intensive during their
execution.

Memory intensive queries with multiple stateful opera-
tors are for instance common in data integration or in data
warehousing environments. For example, a real-time data
integration system helps financial analysts in making timely
decisions. At run time, stock prices, volumes and exter-
nal reviews are continuously sent to the integration server.
The integration server must join these input streams as fast
as possible to produce early output results to the decision
support system. This ensures that financial analysts can an-
alyze and make instantaneous decisions based on the most
up to date information.

When a query system does not have enough resources to
keep up with the query workload at runtime, techniques
such as load shedding [19] can be applied to discard some
workload from the system. However, in many cases, long-
running queries may need to produce complete result sets,
even though the query system may not have sufficient re-
sources for the query workload at runtime. As an exam-
ple, decision support applications rely on complete results
to eventually apply complex and long-ranging historic data
analysis, i.e., quantitive analysis. Thus, techniques such as
load shedding [19] are not applicable for such applications.

One viable solution to address the problem of run-time
main memory shortage while satisfying the needs of com-
plete query results is to push memory resident states tem-
porarily into disks when memory overflow occurs. Such
solutions have been discussed in XJoin [20], Hash-Merge
Join [15] and MJoin [21]. These solutions aim to ensure
a high runtime output rate as well as the completeness of
query results for a query that contains a single operator.
The processing of the disk resident states, referred to as state
cleanup, is delayed until a later time when more resources
become available. We refer to this pushing and cleaning
process as state spill adaptation.

However, the state spill strategies in the current literature
are all designed for queries with one single stateful operator
only [15, 20, 21]. We now point out that for a query with
multiple state intensive operators, data spilling from one
operator can affect other operators in the same pipeline.
Such interdependency among operators in the same dataflow
pipeline must be considered if the goal of the runtime data
spilling is to ensure high output rate of the whole query
plan. This poses new challenges on the state spill techniques,

347

which the existing strategies, such as XJoin [20] and Hash-
Merge Join [15], cannot cope with.

As an example of the problem considered, Figure 1 shows
two stateful operators OPi and OPj with the output of OPi

directly feeding into OPj . If we apply the existing state spill
strategies on both operators separately, the interdependency
between the two operators can cause problems not solved by
these strategies. First, the data spill strategies would aim to
maximize the output rate of OPi when spilling states from
OPi. However, this could in fact backfire since it would in
turn increase the main memory consumption of OPj . Sec-
ondly, the states spilled in OPi may have the potential to
have made a high contribution to the output of OPj . How-
ever, since they are spilled in OPi, this may produce the
opposite of the intended effect, that is, it may reduce in-
stead of increase the output rate of OPj . This contradicts
the goal of the data spill strategies applied on OPj .

OPi OPj
… …

Maximize the output of OPi?

Figure 1: A Chain of Stateful Operators

In this work, we propose effective runtime data spill strate-
gies for queries with multiple inter-dependent state intensive
operators. The main research question addressed in this
work is how to choose which part of the operator states
of a query to spill at run-time to avoid memory overflow
while maximizing the overall query throughput. Another
important question addressed is how to efficiently clean-up
disk-resident data to guarantee completeness of query re-
sults. We focus on applications that need accurate query
results. Thus, all input tuples have to be processed either
in real time during the execution stage or later during the
state clean-up phase.

Several data spill strategies are proposed in this paper.
We first discuss the bottom-up state spill strategy, which is
a operator-level strategy that treats all data in one operator
state equally. We then propose more sophisticated partition-
level data spill strategies that take different characteristics
of the input data into account, including a localized strategy
called local output, and two global throughput-oriented state
spilling strategies, named global output and global output
with penalty. All proposed data spill strategies aim to select
appropriate portions of the operator states to spill in order
to maximize the run-time query throughput. We also pro-
pose efficient clean-up algorithms to generate the complete
query results from the disk-resident data. Furthermore, we
show how to extend the proposed data spill strategies to
apply them in a parallel processing environment.

For long-running queries with high stream input rates
and thus a monotonic increase of operator states, the state
cleanup process may be performed only after the run-time
execution phase finishes. In this paper we focus on this
case. For queries with window constraints and bursty in-
put streams, the in-memory execution and the disk clean-up
may need to be interleaved at runtime. New issues in this
scenario include timing of spill, timing of clean-up, and se-
lection of data to clean-up. We plan to address these issues
in our future work.

The proposed state spill strategies and clean-up algorithms
have all been implemented in the D-CAPE continuous query
system [13]. The experimental results confirm the effective-
ness of our proposed strategies. In particular, the global
output strategy and the global output with penalty strategy
have shown more favorable results as compared to the other
two more localized strategies.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses basic concepts that are necessary for later
sections. Section 3 defines the problem of throughput-oriented
data spilling we are addressing in this paper. The global
throughput-oriented state spilling strategies are presented
and analyzed in Section 4. Section 5 discusses the clean-up
algorithms. In Section 6, we show how to apply the data
spilling strategies in a parallel processing envionment. Per-
formance evaluations are presented in Section 7. Section 8
discusses related work and we conclude in Section 9.

2. PRELIMINARIES

2.1 State Partitions and Partition Groups
Operators in a continuous long-running queries are re-

quired to be non-blocking. Thus many operators need states.
For example, a join operator needs states to store tuples that
have been processed so far so to join them with future in-
coming tuples from the other streams. In case of high stream
arrival rates and long-running time, the states in an opera-
tor can become huge. Spilling one of these large states in its
entirety to disk at times of memory overflow can be rather
inefficient, and possibly even not necessary. In many cases,
we need the flexibility to choose to spill part of a state or
choose to spill data from several states to disk to temporarily
reduce the query workload in terms of memory.

To facilitate this flexibility in run time adaptation, we can
divide each input stream into a large number of partitions.
This enables us to effectively spill some partitions in a state
without affecting other partitions in the same state or par-
titions in other operator states. This method has first been
found to be effective in the early data skew handling liter-
ature, such as [9], as well as in recent work on partitioned
continuous query processing, such as Flux [18].

By using the above stream partitioning method, we can
organize operator states based on the input partitions. Each
input partition is identified by a unique partition ID. Thus
each tuple within an operator state belongs to exactly one
of these input partitions and would be associated with that
particular partition ID. For simplicity, we also use the term
partition to refer the corresponding operator state partition.

The input streams should be partitioned such that each
query result can be generated from tuples within the same
partition, i.e., with the same partition ID 1. In this way, we
can simply choose appropriate partitions to spill at run time,
while avoiding repartitioning during this adaptation process.
Figure 2 depicts the stream partitioning for a join query
(A �� B �� C). The join is defined as A.A1 = B.B1 = C.C1

where A, B, and C denote input streams (join relations) and
A1, B1, and C1 are the corresponding join columns. Here,
the SplitA operator partitions the stream A based on the

1For m-way joins (m > 2) [21] with join conditions defined
on different columns, more data structures are required to
support this partitioned m-way join processing. The discus-
sion of this is out of the scope of the paper since we focus
on the aspect of run-time state adaptation in this work.

348

value of column A1, while the SplitB operator partitions
the stream B based on B1, and so on. As we can see, in
order to generate a final query result, tuples from stream A
with partition ID 1 only need to join with tuples with the
same partition ID from streams B and C.

A B

PA PB

...…

...2

...1

A1ID

..…

...2

...1

B1ID

SplitA SplitB

...

PC

..…

...2

...1

C1ID

...

C

SplitC

Figure 2: Example of Partitioned Inputs

When spilling operator states, we could choose partitions
from each input separately, as shown in Figure 3(a). Using
this strategy requires us to keep track of the timestamps
of when each of these partitions was spilled to disk, and
the timestamps of each tuple in order to avoid duplicates or
missing results in the cleanup process. For example, parti-
tion A1 has been spilled to the disk at time t. We use A1

1 to
denote this part of the partition A1. All the tuples from B1

and C1 with a timestamp greater than t have to eventually
join with the A1

1 in the cleanup process. Since A1, B1, and
C1 could be spilled more than one time, the cleanup needs to
be carefully synchronized with the timestamps of the input
tuples and the timestamps of the partitions being spilled.

An alternative strategy is to use a partition group as the
smallest unit of adaptation. As illustrated in Figure 3(b), a
partition group contains partitions with the same partition
ID from all inputs. During our research, we found that
using the granularity of a partition group can simplify the
cleanup process (described in Section 4). Therefore, in our
work we choose to use the notion of a partition group as the
smallest unit to spill to disk. From now on, we use the term
partition to refer to a partition group if the context is clear.
Since a query plan can contain multiple joins, the partition
groups here are defined for each individual operator in the
plan. Different operators may generate a tuple’s partition ID
based on different columns of that tuple. This arises when
the join predicates are non-transitive. Therefore a tuple may
hold different partition IDs in different operators.

(a) Select partitions from one
individual input

(b) Select partitions from all
inputs with the same ID

A B C

A1 B1 C1

A B C

A1 B1 C1

Figure 3: Composing Partition Groups

As an additional bonus, the approach of partitioning input
streams (operator states) naturally facilitates efficient par-

titioned parallel query processing [10, 18]. That is, we can
send non-overlapping partitions to multiple machines and
have the query processed in parallel. The query processing
can then proceed respectively on each machine. This will be
further discussed in Section 5.

2.2 Calculating State Size
Serving as the basis for the following sections, we now

describe how to calculate the operator state size and the
state size of the query tree. The operator state size can be
estimated based on the average size of each tuple and the
total number of tuples in the operator. The total state size
of the query tree is equal to the sum of all the operator state
sizes. For example, the state size of Join1 (see Figure 4) can
be estimated by S1 = ua∗sa+ub∗sb+uc∗sc. Here, sa, sb, and
sc denote the number of tuples in Join1 from input stream
A, B and C respectively, and ua, ub, and uc represent the
average sizes of input tuples from the corresponding input
streams.

In Figure 4, I1 and I2 denote the intermediate results from
Join1 and Join2 respectively. Note that the average tuple
size of I1 can be represented by ua + ub + uc, while the
average tuple size of I2 can be denoted by ua + ub + uc

+ ud if no projection is applied in the query plan. This
simple model can be naturally extended to situations when
projections do exist.

The size of operator states to be spilled during the spill
process can be computed in a similar manner. For example,
assume da tuples from A, db tuples from B, and dc tuples
from C are to be spilled. Then, the spilled state size can be
represented by D1 = ua ∗ da + ub ∗ db + uc ∗ dc.

A B C

D

E

Join
1

S1=ua*sa +ub*sb +uc*sc ua ub
uc

ud

ue

I1

I2

D1=ua*da +ub*db +uc*dc

(ua+ub+uc)

(ua+ub+uc+ ud)

overall state size

spilled state size
Join

2

Join
3

Figure 4: Unit Size of Each Stateful Operator

Thus, the total percentage of states spilled for the query
tree can be computed by the sum of state sizes being spilled
divided by the total state size. For the query tree depicted
in Figure 4, it is denoted by (D1 + D2 + D3)/(S1 + S2

+ S3). Here Si represents the total state size of operator
Joini, while Di denotes the operator states being spilled
from Joini (1 ≤ i ≤ 3).

3. THROUGHPUT-ORIENTED STATE SPILL
STRATEGIES

As discussed in Section 1, our goal is to keep the runtime
throughput of the query plan as high as possible while at
the same time preventing the system from memory overflow
by applying runtime data spilling when necessary. Given
multiple stateful operators in a query tree, partitions from

349

all operators can be considered as potential candidates to
be pushed when main memory overflows. We now discuss
various strategies to choose partition groups to spill from
multiple stateful operators.

State spill strategies have been investigated in the litera-
ture [15,20,21] to choose partitions from one single stateful
operator to spill to disk with the least effect on the overall
throughput. However, as discussed in Section 1, the exist-
ing strategies are not sufficient to apply on a query tree with
multiple stateful operators, because they do not consider the
interdependencies among a chain of stateful operators in a
dataflow pipeline. As we will illustrate below, a direct ex-
tension of the existing strategies for one single operator does
not perform well when applied to multiple stateful operators.

The decision of finding partitions to spill can be done at
the operator-level or at the partition-level. Selecting parti-
tions at the operator-level means that we first choose which
operators to spill partitions from and then start to spill par-
titions from this operator until the desired amount of data
is pushed to disk. If the size of the chosen operator state is
smaller than the desired spill amount, we would choose the
next operator to spill partitions from. In other words, by
using the operator-level state spill, all partitions inside one
operator state are treated uniformly and have equal chances
of being spilled to disk. The state spilling can also be done
at the partition-level, which treats each partition as an in-
dividual unit and globally choose which partitions to spill
without considering which operators these partitions belong
to. In this section, we present various state spill strategies
at both the operator-level and the partition-level.

We first investigate the impact of pushing operator states
to disk in a chain of operators. Figure 5 illustrates an ex-
ample of an operator chain. Each operator in the chain rep-
resents a state intensive operator in a query tree. Note that
it does not have to be a single input operator as depicted
in the figure. si represents the corresponding selectivities of
operator OPi (1 ≤ i ≤ n).

OP1 OP2 OP3 OPn…
s1 s2 s3 sn

to final output

Intermediate states

Figure 5: An Operator Chain

For such an operator chain, Equation 1 estimates the pos-
sible number of output tuples from OPn given a set of input
tuples t to OP1.

u =
n∏

i=1

si × t (1)

The total number of tuples that will be stored somewhere
within this chain due to these t input tuples, which also
corresponds to the increase in the operator state size, can
be computed as follows2 :

2We assume that all input tuples to stateful join operators
have to be stored in operator states. In principle, other
stateful operators can be addressed in a similar manner.

I =
n∑

i=1

[(
i−1∏

j=1

sj × t)] (2)

More precisely, OP1 stores t tuples, OP2 stores t ∗ s1 tu-
ples, OP3 stores t∗s1 ∗s2 tuples, and so on. Thus, if we spill
t tuples at OP1, then all the corresponding intermediate re-
sults generated due to the existence of these t tuples and
would have been stored in OP2, OP3, . . ., OPn now would
not exist any more. Note that spilling any of these interme-
diate results would have the same overall effect on the final
output, i.e., spilling the t ∗ s1 tuples at OP2 would decrease
the same amount of the final output as spilling t tuples at
operator OP1, as estimated by the Equation 1.

3.1 Operator-Level State Spill

3.1.1 Bottom-up Pushing Strategy
Inspired by the above analysis, we now propose a naive

strategy, referred to as bottom-up pushing, to spill operator
states of a query tree with multiple stateful operators at
the operator-level. This strategy always chooses operator
states from the bottom operator(s) in the query tree until
enough space has been saved in the memory. For example,
in Figure 5, the bottom operator is OP1. Partition groups
from bottom operators are chosen randomly and have equal
chances to be chosen.

Intuitively, if partition groups from the bottom operator
are chosen to be pushed to disk, less intermediate results
would be stored in the query tree, compared to pushing
states in the other operators. Thus, the bottom-up push-
ing strategy has the potential to lead to a smaller number
of state spill processes, because less states (intermediate re-
sults) are expected to be accumulated in the query tree.

However, having a smaller number of state spill processes
does not naturally result in a high overall throughput. This
is because (1) the states being pushed in the bottom opera-
tor may contribute to a high output rate in its down stream
operators, and (2) the cost of each state spill process may not
be high, thus having a large number of state spill processes
may not incur significant overhead on the query processing.

OP
1

OP
2

...

OP
n

...
p1

1t

t1
1

t1
2

t2
1

t2
2p1

2 ...
p2

1

p2
2 ...

pn
1

pn
2

Figure 6: A Chain of Partitioned Operators

Moreover, the output of a particular partition of the bot-
tom operator is likely to be sent into multiple different par-
titions of the down stream operator(s). For example, as
illustrated in Figure 6, assume the t input tuples to OP1 are
partitioned into partition group P 1

1 . Here the superscript
represents the operator ID, while the subscript denotes the
partition ID. After the processing in OP1, t11 result tuples
are outputted and partitioned into P 2

1 of OP2, while t12 tu-
ples are partitioned into P 2

2 of OP2. The partitions P 2
1 and

P 2
2 of OP2 may have very different selectivities. For exam-

ple, the output t22 may be much larger than t21 while the

350

size of these two partitions may be similar. Thus, it may
be worthwhile to keep P 1

1 in OP1 even though certain states
(in P 2

1 of OP2) will be accumulated at the same time.

3.1.2 Discussions On Operator-Level State Spill
As we can see, the relationship between partitions among

adjacent operators is a many-to-many relationship. Push-
ing partition groups at any operator other than the root
operators may affect multiple partition groups at its down
stream operators. However, an operator-level strategy, such
as the presented bottom-up strategy, does not have a clear
connection between the partition pushing and its effects on
the overall throughput.

Another general drawback of the operator-level spilling is
that it treats all partitions in the same state as having the
same characteristics and the same effects on query perfor-
mance when consider data spilling. However, different parti-
tions may have different effects on the memory consumption
and the query throughput after the data spilling. For exam-
ple, some tuples have data values that appear more often in
the stream, so they may have higher chances to joins with
other tuples and produce more results. Thus we may need to
make decisions on where to spill data on a finer granularity.

3.2 Partition-Level State Spill
To design a better state spilling strategy, we propose to

globally select partition groups in the query tree as candi-
dates to push. Figure 7 illustrates the basic idea of this
approach. Instead of pushing partitions from particular op-
erator(s) only, we conceptually view partitions from different
operators at the same level. That is, we choose partitions
globally at the query level based on certain cost statistics
collected about each partition.

The basic statistics we collect for each partition group
are Poutput and Psize. Poutput indicates the total number
of tuples that have been output from the partition group,
and Psize refers to the operator state size of the partition
group. These two values together can be utilized to identify
the productivity of the partition group. We now describe
three different strategies for how to collect Poutput and Psize

values of each partition group, and how partition groups
can be chosen based on these values with the most positive
impact on the run time throughput.

A B C

D

EJoin
2

Join
1

Join
3

…

Disk
State Spill

Figure 7: Globally Choose Partition Groups

3.2.1 Local Output Strategy
The first proposed partition-level state spill strategy, re-

ferred to as local output, updates Poutput and Psize values of

each partition group locally at each operator. The Psize of
each partition group is updated whenever the input tuples
are inserted into the partition group. While Poutput value
is updated whenever output tuples are generated from the
operator.

Figure 8 illustrates this localized approach. When t tu-
ples input to Join1, we update Psize of the corresponding
partition groups in Join1. When t1 tuples are generated
from Join1, then Poutput value of the corresponding parti-
tion groups in Join1 and the Psize value of related pariti-
tion groups in Join2 are updated. Similarly, if we get t2
from Join2, then Poutput of corresponding partition groups
in Join2 and Psize in Join3 are updated.

A B C

D

EJoin
2

Join
1

Join
3

Poutput, Psize

…

…

t1

t2

t3

Poutput, Psize

t

Figure 8: A Localized Statistics Approach

Different from the previous operator-level state spill, when
selecting partitions to spill, this strategy chooses from the
set of all partitions across all operators in the query plan
based on their productivity values (Poutput/Psize). Hence
this is a partition-level state spill strategy. We push the
partition group with the smallest productivity value among
all partition groups in the query plan.

However, this approach does not provide a global produc-
tivity view of the partition groups. For example, if we keep
partition groups of Join1 with high productivity values in
main memory, this in turn would contribute to generating
more output tuples to be input to Join2. All these tuples
will be stored in Join2 and hence will increase the main
memory consumption of Join2. This may cause the main
memory to be filled up quickly. However, these intermediate
results may not necessarily help the overall throughput since
these results may be dropped by its down-stream operators.

3.2.2 Global Output Strategy
In order to maximize the run-time throughput after push-

ing states into disks, we need to have a global view of par-
tition groups that reflects how each partition group con-
tributes to the final output. That is, the productivity value
of each partition group needs to be defined in terms of the
whole query tree.

This requires the Poutput value of each partition group to
represent the number of final output tuples generated from
the query. The productivity value, Poutput/Psize, now indi-
cates how ‘good’ the partition group is in terms of contribut-
ing to the final output of the query. Thus, if we keep the
partition groups with high global productivity value in main

351

memory, the overall throughput of the query tree is likely
to be high compared with the previously described pushing
strategies. Note that the key difference of this global output
approach from the local output approach is its new way of
computing the Poutput value.

We have designed a tracing algorithm that computes the
Poutput value of each partition group. The basic idea is that
whenever output tuples are generated from the query tree,
we figure out the lineage of each output tuple. That is, we
trace back to the corresponding partition groups from dif-
ferent operators that have contributed to this output. The
tracing of the partition groups that contribute to an output
tuple can be computed by applying the corresponding split
operators. This is feasible since we can apply the split func-
tions on the output tuple along the query tree to identify all
the partition groups that the output tuple belongs to. Such
tracing requires that the output tuple contains at least all
join columns of the join operators in the query tree.

The main idea of the tracing algorithm is depicted in Fig-
ure 9. When k tuples are generated from Join3, we directly
update the Poutput values of partition groups in Join3 that
produce these outputs. To find out the partition groups in
the Join2 that contribute to the outputs, we apply the parti-
tion function of Split2 on each output tuple. Since multiple
partition groups in the Join2 may contribute to one par-
tition group in Join3, we need to trace for each partition
group that is found in Join2. Similarly, we apply the par-
tition function of Split1 to find the corresponding partition
groups in operator Join1. Note that we do not have to trace
and update Poutput for each output tuple. We only update
the value with a random sample of the output tuples.

The pseudocode for the tracing algorithm for a chain of
operators is given in Algorithm 1. Here, we assume that
each stateful operator in the query tree keeps reference to
its immediate upstream stateful operator and reference to its
immediate upstream split operator. Upstream operator of
an operator op here is defined as the operators that feed their
output tuples as inputs to the operator op. Note that for a
query tree, multiple immediate upstream stateful operators
may exist for one operator. We can then similarly update
the tracing algorithm to use a breadth-first or depth-first
traversal algorithms of the query plan tree to update the
Poutput values of the corresponding partitions.

Algorithm 1 updateStatistics(tpSet)

/*Tracing and updating the Poutput values for a given set of
output tuples tpSet.*/

1: op ← root operator of the query tree;
2: prv op ref ← op.getUpStreamOperatorReference();
3: prv split ref ← op.getUpStreamSplitReferences();
4: while ((prv op ref �= null) && (prv split ref �= null))

do
5: for each tuple tp ∈ tpSet do
6: cPID ← Compute partitionID of tp in prv op ref ;
7: Update Poutput of partition group with ID cPID;
8: end for
9: prv op ref ← prv op ref.getUpStreamOperatorReference();

10: prv split ref ← prv split ref.getUpStreamSplitReference();
11: end while

Given the above tracing, the Poutput value of each parti-
tion group indicates the total number of outputs that have

been generated that have this partition group involved in.
The update of Psize value is the same as we have discussed
in the local output approach. Thus, Poutput/Psize indicates
the global productivity of the partition group. By pushing
partition groups with a lower global productivity, the overall
run-time throughput would be expected to be better than
the localized approach as well as the bottom-up approach.

A B C

D

EJoin
2

Join
1

Join
3

Split
E

Split
A

Split
B

Split
C

Split
2

Split
D

Split
1

k

Figure 9: Tracing the Output Tuples

3.2.3 Global Output with Penalty Strategy
In the above approaches, the size of the partition group

Psize reflects the main memory usage of the current partition
group. However, as previously pointed out, the operators in
a query tree are not independent. That is, output tuples
of an up stream operator have to be stored in the down
stream stateful operators. This indirectly affects the Psize

of the corresponding partition groups in the down stream
operator.

...

2

2

P1
1: Psize = 10, Poutput=20

P1
2: Psize = 10, Poutput=20

OP
1

...
p1

1

1

p1
2

OP
2

...
p2

i

p2
j1

2

20

Figure 10: Impact of the Intermediate Results

For example, as shown in Figure 10, both partition groups
P 1

1 and P 1
2 of OP1 have the same Psize and Poutput values.

Thus, these two partitions have the same productivity value
in the global output approach. However, P 1

1 produces 2
tuples on average that are output to the OP2 given one
input tuple, while P 1

2 generates 20 tuples on average given
one input tuple. All intermediate results have to be stored
in the down stream stateful operators. Thus, pushing P 1

2

instead of P 1
1 can help to reduce the memory that will be

needed to store possible intermediate results in downstream
operators.

352

To capture this effect, we define an intermediate result
factor in each partition group, denoted by Pinter. This fac-
tor indicates the possible intermediate results that will be
stored in its down stream operators in the query tree. In
this strategy, the productivity value of each partition group
is defined as Poutput/(Psize + Pinter).

This intermediate result factor can be computed similarly
as the tracing of the final output. That is, whenever an
intermediate result is generated, we update the Pinter values
of the corresponding partition groups in all the upstream
operators. Figure 11 illustrates an example of how tracing
algorithm can be utilized to update Pinter . In this example,
one input tuple to OP1 eventually generates 2 output tuples
from OP4. The number in the square box represents the
number of intermediate results being generated.

......
3

OP
1

...
p1

1

1

p1
2

OP
2

p2
1

p2
j

2 4

OP
3

p3
1

p3
j

2

OP
4

...
p4

1

p4
j

2
3

3

4

4
4

Figure 11: Tracing and Updating Pinter Values

4. CLEAN UP DISK RESIDENT PARTITIONS

4.1 Clean Up of One Stateful Operator
When memory becomes available, disk resident states have

to be brought back to main memory to produce missing re-
sults. This state cleanup process can be performed at any
time when memory becomes available during the execution.
If no new resources are being devoted to the computation,
then this cleanup process may likely occur at the end of
the run-time phase. In the cleanup, we must produce all
missing results due to spilling data to disk while preventing
duplicates. Note that multiple partition groups may exist
in disk for one partition ID. This is because once a partition
group has been pushed into disk, new tuples with the same
partition ID may again accumulate and thus a new parti-
tion group forms in main memory. Later, as needed, this
partition group could be pushed into the disk again.

The tasks that need to be performed in the cleanup can
be described as follows: (1) Organize the disk resident parti-
tion groups based on their partition ID. (2) Merge partition
groups with the same partition ID and generate missing re-
sults. (3) If a main memory resident partition group with
the same ID exists, then merge this memory resident part
with the disk resident ones.

Figure 12 illustrates an example of the partition groups
before and after the cleanup process. Here, the example
query is defined as A �� B �� C. We use a subscript to indi-
cate the partition ID, while we use a superscript to distin-
guish between the partition groups with the same partition
ID that have been pushed at different times. The collec-
tion of superscripts such as 1 ∼ r represents the merge of
partition groups that respectively had been pushed at times
1, 2, . . . , r.

A1
1 B1

1 C1
1

A2
1 B2

1 C2
1

Ar
1 Br

1 Cr
1

...

A1
2 B1

2 C1
2

As
2 Bs

2 Cs
2

...

...

A1
m B1

m C1
m

At
m Bt

m Ct
m

...

A1~r
1 B1~r

1 C1~r
1

A1~s
2 B1~s

2 C1~s
2

A1~t
m B1~t

m C1~t
m

...

merge

merge

merge

partition groups with ID 1

partition groups with ID 2

partition groups with ID n

Figure 12: Example of Cleanup Process

The merge of partition groups with the same ID can be
described as follows. For example, assume that a partition
group with partition ID i has been pushed k times to disk,
represented as (A1

i , B
1
i , C1

i), (A2
i , B

2
i , C2

i), . . ., (Ak
i , Bk

i , Ck
i)

respectively. Here (Aj
i , B

j
i , Cj

i), 1 ≤ j ≤ k denotes the j-th
time that the partition group with ID i has been pushed into
the disk. For ease of description, we denote these partition
groups by P 1

i , P 2
i , . . . , P k

i respectively.
Due to our usage of the idea of spilling at the granularity

of complete partition groups (see Section 2.1), the results
generated between all the members of each partition group
have already been produced during the previous run-time
execution phase. In other words, all the results such as
A1

i �� B1
i �� C1

i , A2
i �� B2

i �� C2
i , . . ., Ak

i �� Bk
i �� Ck

i

are guaranteed to have been previously generated. For sim-
plicity, we denote these results as V 1

i , V 2
i , . . ., V k

i . These
partition groups can thus be considered to be self-contained
partition groups given the fact that all the results have been
generated from the operator states that are included in the
partition group.

Merging two partition groups with the same partition ID
results in a combined partition group that then contains
union of the operator states from both partition groups. For
example, the merge of P 1

i and P 2
i results in a new partition

group P 1,2
i now containing the operator states A1

i ∪A2
i , B

1
i ∪

B2
i , C1

i ∪C2
i . Note that the output V 1,2

i from partition group

P 1,2
i should be (A1

i ∪A2
i) �� (B1

i ∪B2
i) �� (C1

i ∪C2
i). Clearly,

a subset of these output tuples have already been gener-
ated, namely, V 1

i and V 2
i . Thus now we must generate the

missing part in the merging process for these two partition
groups in order to make the resulting partition group P 1,2

i

self-contained. This missing part is ΔV 1,2
i = V 1,2

i −V 1
i −V 2

i .
Here, we observe that the problem of merging partition

groups and producing missing results is similar to the prob-
lem of the incremental batch view maintenance [11,16]. We
thus now describe the algorithm for incremental batch view
maintenance and then show how to map our problem to
the view maintenance problem so to apply existing solutions
from the literature to our problem [11,16].

Assume a materialized view V is defined as an n-way join
upon n distributed data sources. It is denoted by R1 ��
R2 . . . �� Rn. There are n source deltas (ΔRi, 1 ≤ i ≤ n)

353

that need to be maintained. As was mentioned earlier, each
ΔRi denotes the changes (the collection of insert and delete
tuples) on Ri at a logical level. An actual maintenance query
will be issued separately, that is, one for insert tuples and
one for delete tuples.

Given the above notations, the batch view maintenance
process is depicted in Equation 3.

ΔV = ΔR1 �� R2 �� R3 . . . �� Rn

+ R′
1 �� ΔR2 �� R3 . . . �� Rn

+ . . .
+ R′

1 �� R′
2 �� R′

3 . . . �� ΔRn

(3)

Here Ri refers to the original data source state without
any changes from ΔRi incorporated in it yet, while R′

i rep-
resents the state after the ΔRi has been incorporated, i.e.,
it reflects Ri + ΔRi (‘+’ denotes the union operation). The
discussion of the correctness of this batch view maintenance
itself can be found in [11,16].

Intuitively, we can treat one partition group as the base
state, while the other as the incremental changes. Thus,
the maintenance equation described in Equation 3 can be
naturally applied to merge partitions and recompute missing
results.

Lemma 4.1. A combined partition group P r,s
i generated

by merging partition groups P r
i and P s

i using the incremental
batch view maintenance algorithm as listed in Equation 3 is
self-contained if P r

i and P s
i were both self-contained before

the merge.

Proof. Without loss of generality, we treat partition group
P r

i as the base state, while P s
i as the incremental change to

P r
i . Incremental batch view maintenance equation as de-

scribed in Equation 3 produces the following two results:
(1) the partition group P r,s

i having both states of P r
i and

P s
i , and (2) the incremental changes to the base result V r

i

by ΔV r,s
i = V r,s

i - V r
i . Since two partition groups P r

i and
P s

i already have results V r
i and V s

i generated, the missing
result of combining P r

i and P s
i can be generated by ΔV r,s

i

- V s
i . As can be seen, P r,s

i is self-contained since it has gen-
erated exactly the output results V r,s

i = (ΔV r,s
i - V s

i) + (
V r

i + V s
i).

As an example, let us assume A1
i , B1

i and C1
i are the base

states, while A2
i , B2

i and C2
i are the incremental changes.

Then, by evaluating the view maintenance equation in Equa-
tion 4, we get the combined partition group P 1,2

i and the

delta change ΔV 1,2
i = V 1,2

i − V 1
i . By further removing V 2

i

from ΔV 1,2
i , we generate exactly the missing results by com-

bining P 1
i and P 2

i .

V 1,2
i − V 1

i = A2
i �� B1

i �� C1
i

∪ (A1
i ∪A2

i) �� B2
i �� C1

i

∪ (A1
i ∪A2

i) �� (B1
i ∪B2

i) �� C2
i

(4)

Lemma 4.2. Given a collection of self-contained parti-
tion groups {P 1

i , P 2
i , . . . , P m

i }, a self-contained partition
group P 1∼m

i can be constructed using the above given in-
cremental view maintenance algorithm repeatedly in m − 1
steps.

Proof. A straightforward iterative process can be ap-
plied to combine such a collection of m partition groups.

The first combination merges two partition groups, while the
remaining m-2 partition groups are combined one at a time.
Thus the combination ends after m-1 steps. Given each com-
bination results in a self-contained partition group based on
Lemma 4.1, the final partition group is self-contained.

Based on Lemmas 4.1 and 4.2, we can see that the cleanup
process (merging partition groups with the same partition
ID) successfully produces exactly all missing results and no
duplicates. Note that memory resident partition groups can
be combined with the disk resident parts in exactly the same
manner as discussed above. As can be seen, the cleanup
process does not rely on any timestamps. We thus do not
have to keep track of any timestamps during the state spill
process.

4.2 Clean Up of Multiple Stateful Operators
Given a query tree with multiple stateful operators, when

operator states from any of the stateful operators have been
pushed into the disk during run-time, the final cleanup stage
to completely remove all persistent data should not be per-
formed in a random order. This is because the operator
has to incorporate the missing results generated from the
cleanup process of any of its up stream operators. That is,
the cleanup process of join operators has to conform to the
partial order as defined in the query tree.

Figure 13 illustrates a 5-join query tree ((A �� B �� C) ��
D) �� E with three join operators Join1, Join2, and Join3.
Assume we have operator states pushed into the disk from all
three operators. The corresponding join results from these
disk resident states are denoted by ΔI1, ΔI2, and ΔI3. From
Figure 13, we can see that the cleanup results of Join1 (ΔI1)
have to be joined with the complete operator states related
to stream D to produce the complete cleanup results for
Join2. Here, the complete stream state D includes states
from the disk resident part ΔI2 and the corresponding main
memory operator state. The cleanup result of Join2, (ΔI2

+ ΔI1 �� D), has to join with the complete stream state E
in Join3 to produce the missing results.

A B C

D

E

ΔI1

ΔI2

ΔI3

Clean up

Spilled States

Join
1

Join
2

Join
3

Figure 13: Clean Up the Operator Tree

Given this constraint, we design a synchronized cleanup
process to combine disk resident states and produce all miss-
ing results. We start the cleanup from the bottom opera-
tors(s) which are the furthest from the root operator, i.e.,
from all the leaves. The cleanup process for operators with
the same distance from the root can be processed concur-
rently. Once an up stream operator completes its cleanup

354

process, it notifies its down stream operator using a con-
trol message interleaved in the data stream to signal that
no more intermediate tuples will be sent to its down stream
operators hereafter. This message then triggers the cleanup
process of the down stream operator. Once the cleanup pro-
cess of an operator is completed, the operator will no longer
be scheduled by the query engine until the full cleanup is
accomplished.

This synchronized cleanup process is illustrated in Figure
13. The cleanup process starts from Join1. The gener-
ated missing results ΔI1 are sent to the down stream op-
erators. Join1 then generates a special control tuple ‘End-
of-Cleanup’ to indicate the end of its cleanup. The down
stream stateful operator Join2 starts its cleanup after receiv-
ing the control tuple. All the other non-stateful operators,
such as split operators, simply pass the ‘End-of-Cleanup’ tu-
ple through to their down stream operator(s). This process
continues until all cleanup processes have been processed.

Note that in principle it is possible to start the cleanup
process of all stateful operators at the same time. However,
this may require a large amount of main memory space since
each cleanup process will bring disk resident states into the
memory. On the other hand, the operator states of the down
stream operators cannot be released in any case until its up
stream operators finish their cleanup and compute the miss-
ing results. While for the synchronized method, we instead
bring these disk resident states into memory sequentially
one operator at a time. Furthermore, we can safely discard
them once the cleanup process of this operator completes.

5. APPLYING TO PARTITIONED
PARALLEL QUERY PROCESSING

A query system that processes long-running queries over
data streams can easily run out of resources when process-
ing large volume of input stream data. Parallel query pro-
cessing over a shared nothing architecture, i.e., a cluster
of machines, has been recognized as a scalable method to
solve this problem [1, 8, 18]. Parallel query processing can
be especially useful for queries with multiple state intensive
operators that are resource demanding in nature. This is
exactly the type of queries we are focusing on in this work.
However, the overall resources of even a distributed system
may still be limiting. A parallel processing system may still
need to temporarily spill state partitions to disk to react to
overall resource shortage immediately. In this section, we
illustrate that our proposed state spill strategies natually
can be extended to also work for such partitioned parallel
query processing environment. This observation broadens
the applicability of our proposed spill techniques.

The approach of partitioning input streams (operator states)
discussed in Section 2.1 is still applicable in the context of
parallel query processing. In fact, it helps to achieve a par-
titioned parallel query processing [7,12,17]. We can simply
spread the stream partitions across different machines with
each machine only processing a portion of all inputs.

Figure 14 depicts an example of processing a query plan
with two joins in a parallel processing environment. First,
stateful operators must be distributed across available ma-
chines. In this work, we choose to allocate all stateful op-
erators in the query tree to all the machines in the cluster,
as shown in Figure 14(b). Thus, each machine will have ex-
actly the same number of stateful operators defined in the

query tree activated. Each machine processes a portion of
all input streams of the stateful operators. The partitioned
stateful operators can be connected by split operators as
shown in Figure 14(c). One split operator is inserted after
each instance of the stateful operator. The output of the op-
erator instance is directly partitioned by the split operator
and then shipped to the next appropriate down stream oper-
ators. Note that other approaches exist for both allocating
stateful operators across multiple machines and connecting
such partitioned query plans. However, the main focus of
the work here is to adapt operator states to address the prob-
lem of run time main memory shortage. The exploration of
other partitioned parallel processing approaches as well as
their performance are beyond the scope of this paper.

Join
11

Join
21

A B C

D

Split
A

Split
B

Split
C

Join
12

Split
D

Join
22

Split
11

Split
12

Join
1

Join
2

A B C

D

cluster

m1 m2

m3 m4

(a) Original Query (b) Allocating Multiple
Stateful Operators

(c) Composing Partitioned
Query Plan

Figure 14: Partitioned Parallel Processing

The throughput-oriented state spill strategies discussed in
Section 3 naturally apply to the partitioned parallel process-
ing environments. This is because the statistics we collect
are based on main memory usage and operator states only.

However, given partitioned parallel processing, when ap-
plying the global output or the global output with penalty
state spill strategy, the Poutput value must be traced and
then correctly updated across multiple machines. For ex-
ample, as shown in Figure 15, the query plan is deployed
in two machines. If k tuples are generated by Join3, we
directly update the Poutput values of partition groups in
Join3 that have produced these outputs. To find out the
partition groups in Join2 that contribute to the outputs, we
then apply the partition function of Split2 on each output
tuple. Note that given partitioned parallel processing, par-
tition groups from different machines may contribute to the
same partition group of the down stream operator. Thus,
the tracing and updating of Poutput values may involve mul-
tiple machines. In this work, we design an UpdatePartition-
Statistics message to notify other machines of the update of
Pinter and Poutput values. Since each split operator knows
exactly the mappings between the partition groups and the
machines, it is feasible to only send the message to the ma-
chines that have the partition groups to be updated.

The revised updateStatistics algorithm is sketched in Al-
gorithm 2. We classify partition group IDs by applying the
current split function into localIDs and remoteIDs depend-
ing on whether the ID is mapped to the current machine.
Then for the partition groups with localIDs, we update ei-
ther Pinter or Poutput based on whether the current tpSet is
a set of intermediate results. While for the remoteIDs, we
compose UpdatePartitionStatistics messages with appropri-
ate information and then send the messages to the machine
that holds the partition groups with their IDs in remoteIDs.

355

A B C

D

EJoin
2

Join
1

Join
3

Split
E

Split
A

Split
B

Split
C

Split
2

Split
D

Split
1

k

A B C

D

EJoin
2

Join
1

Join
3

Split
E

Split
A

Split
B

Split
C

Split
2

Split
D

Split
1

Machine1 Machine2

Figure 15: Tracing the Number of Output

Algorithm 2 updateStatisticsRev(tpSet,intermediate)

/*Tracing and updating the Poutput/Pinter values for a given
set of output tuples tpSet. intermediate is a boolean indi-
cating whether tpSet is the intermediate results of the query
tree*/

1: op ← root operator of the query plan;
2: prv op ref ← op.getUpStreamOperatorReference();
3: prv split ref ← this.getUpStreamSplitReference();
4: while ((prv op ref �= null) && (prv split ref �= null))

do
5: for each tp ∈ tpSet do
6: cPID ← Compute partitionID of tp in prv op ref ;
7: Classify cPID into localIDs/remoteIDs;
8: end for
9: if (intermediate) then

10: Update Pinter of localIDs;
11: else
12: Update Poutput of localIDs;
13: end if
14: Compose & send UpdatePartitionStatistics msg(s) for

remoteIDs;
15: prv split ref ← prv split ref.getUpStreamSplitReference();
16: prv op ref ← prv op ref.getUpStreamOperatorReference();
17: end while

6. PERFORMANCE STUDIES

6.1 Experimental Setup
All state spilling strategies discussed in this paper have

been implemented in the D-CAPE system, a prototype con-
tinuous query system [13]. We use a five-join query tree
illustrated in Figure 15 to report our experimental results.
The query is defined on 5 input streams denoted as A, B, C,
D, and E with each input stream having two columns. Here
Join1 is defined on the first column of each input stream A,
B, and C. Join2 is defined on the first join column of input
D and the second join column of input C, while Join3 is de-
fined on the first column of input E and the second column
of input D. The average tuple interarrival time is set to be
50 ms for each input stream. All joins utilize the symmetric
hash-join algorithm [22].

We deploy the query on two machines with each process-
ing about half of all input partitions. Each machine has
dual 2.4Hz Xeon CPUs with 2G main memory. All input
streams are partitioned into 300 partitions. We set the mem-

ory threshold (θm) for state spilling to be 60 MB for each
machine. This means the system starts spilling states to
disk when the memory usage of the system is over 60 MB.

We vary two factors, namely the tuple range and the range
join ratio, when generating input streams. We specify that a
data value V appears R times for every K input tuples. Here
K is defined as the tuple range and R the range join ratio
for V . Different values (partitions) in each join operator can
have different range join ratios. The average of these ratios
is defined as the average join ratio for that operator.

6.2 Experimental Evaluation
Figure 16 compares the run-time phase throughput of dif-

ferent state spilling strategies. Here we set the average join
ratio of Join1 to 3, while the average join ratio of Join2 and
Join3 is 1. In Figure 16, the X-axis represents time, while
the Y-axis denotes the overall run time throughput.

From Figure 16, we can see that both the local output
approach and the bottom-up approach perform much worse
than the global output and the global output with penalty ap-
proaches. This is as expected because the local output and
the bottom-up approaches do not consider the productivity
of partition groups at the global level. From Figure 16, we
also see that the global output with penalty approach per-
forms even better than the global output approach. This
is because the global output with penalty approach is able
to efficiently use the main memory resource by considering
both the partition group size as well as the possible inter-
mediate results that have to be stored in the query tree.

0

5000

10000

15000

20000

25000

30000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Minutes

T
h

ro
u

g
h

p
u

t

Global Output with Penalty
Global Output
Local Output
Bottom-Up

Figure 16: Comparing Run-time Throughput with
Join Ratio 3,1,1

Figures 17 and 18 show the corresponding memory usage
when applying different spilling strategies. Figure 17 shows
the memory usage of the global output approach and global
output with penalty approach. Note that each ‘zig’ in the
lines indicates one state spill process. From Figure 17, we
can see that the global output approach has a total of 13
state spill processes in the 50 minutes running, while the
global output with penalty approach only spills for 10 times.
Again, this is expected since the global output with penalty
approach considers both the size of the partition group and
the overall memory impact on the query tree.

As discussed in Section 3, having a smaller number of
state spill processes does not imply a high overall run time
throughput. In Figure 18, the bottom-up approach only has
7 times of adaptations. However, the run time throughput of
the bottom-up approach is much less than the global output

356

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Every 30 Seconds

M
em

o
ry

 U
sa

g
e

(M
B

)

Global Output with Penalty
Global Output

Figure 17: Memory Usage: Global Output vs.
Global Output with Penalty

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Every 30 Seconds

M
em

o
ry

 U
sa

g
e

(M
B

)

Global Output with Penalty

Bottom-Up

Figure 18: Memory Usage: Global Output with
Penalty vs. Bottom-up

with penalty approach as shown in Figure 16. This is because
having high productive partition groups in main memory
helps to keep high overall throughput.

Figures 19 and 20 show the run time phase throughput
when we run queries with different join ratios. In Figure 19,
we set the join ratio of the three joins to be 1, 3 and 3. In Fig-
ure 20, we set the join ratio of the three joins to be 3, 2 and
3. From both figures, we see similar trends as we have ob-
served in Figure 16: The global output with penalty approach
always outperforms other state spill strategies, and both the
bottom-up and the local output approaches are much worse
than the two global approaches.

The main memory usage of these two experiments also
shows a similar pattern as illustrated in Figures 17 and 18.
That is, the global output with penalty approach requires
less adaptations compared with the global output approach.
While the bottom-up approach requires even less number of
adaptations than the global output with penalty approach.
As can be seen, less number of adaptations does not imply
a high run-time throughput.

The cleanup time depends on where the operator states
are pushed in the query tree. As we discussed in Section
4, the lower the level from which the partition groups are
pushed, the higher the clean up cost. This is because the
cleanup process needs to be sequentialized according to the
partial order defined in the query tree. Therefore, the cleanup
time of these approaches varies depending on the queries

0

5000

10000

15000

20000

25000

30000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Minutes

T
h

ro
u

g
h

p
u

t

Global Output with Penalty
Global Output
Local Output
Bottom-Up

Figure 19: Comparing Run Time Throughput with
Join Ratio 1,3,3

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Minutes

Th
ro

ug
hp

ut

Global Output with Penalty
Global Output
Local Output
Bottom-Up

Figure 20: Comparing Run Time Throughput For
Join Ratio 3,2,3

and the settings. In the experiment illustrated in Figure
16, the total cleanup time of the global output with penalty
approach takes 495,741 ms, while the cleanup time of the
global output approach takes 305,997 ms. For the same ex-
periment shown in Figure 19, the cleanup time of the global
output with penalty approach takes 278,234 ms, while the
global output approach takes 362,752 ms. In all the above
experiments, the bottom-up approach takes much longer to
clean up disk resident states since this strategy tends to push
partitions at the bottom operators.

In summary, in all of our experiments (including others
not reported here due to space reasons), the two global out-
put approaches consistently outperform the alternative ap-
proaches in the overall runtime throughput while typically
also outperforming in the final cleanup costs.

7. RELATED WORK
State spill adaptation for one single operator has been

investigated in the literature. As discussed in this paper,
existing state spill solutions for stateful operators, including
XJoin [20], Hash-Merge Join [15] and MJoin [21], are all de-
signed to work with a single stateful operator. Such local
approaches, as we have shown in our work, are not adequate
for a query with multiple stateful operators that can be in-
terdependent on each other. This is an important problem
that has yet to be addressed in the current literature, and
it is now the focus of this paper.

357

Distributed continuous query processing over a shared
nothing architecture, i.e., a computing cluster, has been in-
vestigated in the literature to address the resource shortage
and the scalability concerns [1, 8, 18]. In existing systems
such as Aurora* [8] and Borealis [1], the main focus is to
distribute the query plan across multiple machines and to
balance the workload by moving complete query operators
across machines.

Flux [18] discusses the partitioned parallel processing and
the distributed adaptation in a continuous query processing
context. It makes use of the exchange architecture proposed
by Volcano [10] by inserting split operators into the query
plan to achieve partitioned processing for large stateful op-
erators. However, Flux mainly focuses on adapting operator
states across machines. Moreover, it focuses on one single
operator only. In our work, we instead investigate methods
of adapting operators with large states by state spilling at
the level of state partitions.

Query processing over data streams [2, 3, 5, 6, 14] in gen-
eral has gained growing research attentions in recent years.
Such query processing faces scalability concerns due to high
rates of inputs and possibly infinite data streams. Many
techniques have been investigated to address this problem.
For example, load shedding techniques [2, 19] aim to drop
input tuples to handle the run time resource shortage while
having the query results within certain predefined QoS re-
quirements. However, this technique is not suitable for sys-
tems that require accurate query results, which are the sys-
tems our work focuses on. Adaptive scheduling and process-
ing [4, 14] techniques have also been proposed. They focus
on adapting the order of operators or tuples being processed.
In this work, we instead focus on adapting the memory usage
for multiple stateful operators with possibly huge volumes
of states. The issue we tackle in this paper has not been
explicitly studied in the context of stream processing yet.

8. CONCLUSION
In this work, we have studied the mechanisms and policies

of spilling operator states of complex long-running queries
with multiple state intensive operators to overcome run-time
memory overflow. Such queries are rather common in a data
integration context since the integration queries are complex
and stateful in nature. Multiple throughput oriented state
spill strategies are proposed. All these adaptation strate-
gies have been implemented in the D-CAPE system [13].
Extensive experiments have been conducted and the results
confirm the effectiveness of our proposed solutions.

9. REFERENCES
[1] D. Abadi, Y. Ahmad, and et. al. The design of the

borealis stream processing engine. In Proceedings
CIDR, pages 277–289, 2005.

[2] D. J. Abadi, D. Carney, and et al. Aurora: a new
model and architecture for data stream management.
The VLDB Journal, 12(2):120–139, 2003.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In Proceedings of ACM PODS, pages 1–16, 2002.

[4] B. Babcock, S. Babu, R. Motwani, and M. Datar.
Chain: operator scheduling for memory minimization
in data stream systems. In ACM SIGMOD, pages
253–264, 2003.

[5] S. Chandrasekaran and M. J. Franklin. Streaming
queries over streaming data. In proceedings of VLDB,
pages 203–214, 2002.

[6] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang.
Niagaracq: a scalable continuous query system for
internet databases. In ACM SIGMOD, pages 379–390,
2000.

[7] M.-S. Chen, M.-L. Lo, P. S. Yu, and H. C. Young.
Using segmented right-deep trees for the execution of
pipelined hash joins. In VLDB, pages 15–26, 1992.

[8] M. Cherniack, H. Balakrishnan, M. Balazinska,
D. Carney, U. Cetintemel, Y. Xing, and S. Zdonik.
Scalable distributed stream processing. In CIDR
Conference, 2003.

[9] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and
S. Seshadri. Practical skew handling in parallel joins.
In Proceedings of VLDB, pages 27–40, 1992.

[10] G. Graefe. Encapsulation of parallelism in the volcano
query processing system. In Proceedings of ACM
SIGMOD, pages 102–111, 1990.

[11] W. J. Labio, R. Yerneni, and H. Garćıa-Molina.
Shrinking the Warehouse Updated Window. In
Proceedings of SIGMOD, pages 383–395, June 1999.

[12] B. Liu and E. A. Rundensteiner. Revisiting Parallel
Multi-Join Query Processing via Hashing . In
Proceedings of VLDB, pages 829–840, 2005.

[13] B. Liu, Y. Zhu, and et. al. A Dynamically Adaptive
Distributed System for Processing Complex
Continuous Queries. In VLDB Demo, pages
1338–1341, 2005.

[14] S. Madden, M. Shah, J. M. Hellerstein, and
V. Raman. Continuously adaptive continuous queries
over streams. In ACM SIGMOD, pages 49–60, 2002.

[15] M. Mokbel, M. Lu, and W. Aref. Hash-merge join: A
non-blocking join algorithm for producing fast and
early join results. In ICDE, page 251, 2004.

[16] K. Salem, K. S. Beyer, R. Cochrane, and B. G.
Lindsay. How To Roll a Join: Asynchronous
Incremental View Maintenance. In SIGMOD, pages
129–140, 2000.

[17] D. A. Schneider and D. J. DeWitt. Tradeoffs in
processing complex join queries via hashing in
multiprocessor database machines. In Proceedings of
VLDB, pages 469–480, 1990.

[18] M. A. Shah, J. M. Hellerstein, and et. al. Flux: An
adaptive partitioning operator for continuous query
systmes. In ICDE, pages 25–36, 2003.

[19] N. Tatbul, U. Cetintemel, S. B. Zdonik, M. Cherniack,
and M. Stonebraker. Load shedding in a data stream
manager. In VLDB, pages 309–320, 2003.

[20] T. Urhan and M. J. Franklin. Xjoin: A
reactively-scheduled pipelined join operator. IEEE
Data Engineering Bulletin, 23(2):27–33, 2000.

[21] S. Viglas, J. F. Naughton, and J. Burger. Maximizing
the output rate of multi-way join queries over
streaming information sources. In VLDB, pages
285–296, 2003.

[22] A. N. Wilschut and P. M. G. Apers. Dataflow query
execution in a parallel main-memory environment.
Distrib. Parallel Databases, 1(1):103–128, 1993.

358

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

