NEEL: The Nested Complex Event Language for
Real-Time Event Analytics

Mo Liu!, Elke A. Rundensteiner,! Dan Dougherty', Chetan Gupta?, Song
Wang?, Ismail Ari®, and Abhay Mehta?

! Worcester Polytechnic Institute, USA, (1iumo|rundenst|dd)@wpi.edu,
2 HP Labs, USA, (chetan.gupta|songw|abhay.mehta)@hp.com
3 Ozyegin University, Turkey, Ismail.Ari@ozyegin.edu.tr

Abstract. Complex event processing (CEP) over event streams has
become increasingly important for real-time applications ranging from
health care, supply chain management to business intelligence. These
monitoring applications submit complex event queries to track sequences
of events that match a given pattern. As these systems mature the need
for increasingly complex nested sequence query support arises, while the
state-of-art CEP systems mostly support the execution of only flat se-
quence queries. In this paper, we introduce our nested CEP query lan-
guage NEFEL for expressing nested queries composed of sequence, nega-
tion, AND and OR operators. Thereafter, we also define its formal se-
mantics. Subtle issues with negation and predicates within the nested
sequence context are discussed. An E-Analytics system for processing
nested CEP queries expressed in the NEEL language has been devel-
oped. Lastly, we demonstrate the utility of this technology by describing
a case study of a real-world application in health care.

Key words: Nested Query, CEP, Syntax, Semantics

1 Introduction

Complex event processing (CEP) has become increasingly important in modern
applications, ranging from online financial feeds, supply chain management for
RFID tracking to real-time business intelligence [1, 2]. There is a strong de-
mand for CEP technology that can be applied to process enormous volumes of
sequential data streams for online operational decision making as demonstrated
by several sample application scenarios below. CEP must be able to support so-
phisticated pattern matching on real time event streams including the arbitrary
nesting of sequence operators and the flexible use of negation in such nested
sequences. The need for such sophisticated CEP technology is motivated via
several example applications next.

Motivating Example 1. In the web business application context, the query @1
= SEQ(Create-profile ¢, Update-profile u, NOT (Answer-Email ae OR Answer-
Phone ap, ae.uid = c.uid = w.uid, ap.uid = c.uid = u.uid)) detects customers
not answering an email or a phone call after creating and then updating online

2 Mo Liu et al.

profiles within a specified time. This query could be used for checking customer
inactivity with the goal to understand customer behavior, to subsequently delete
unused customer profiles as well as to adopt marketing strategies to retain cus-
tomer interest. Efficient execution of such complex nested CEP queries is critical
for assuring real-time responsiveness and for staying competitive in an increas-
ingly fast paced business world.

Motivating Example 2. Another example of applications in need of complex
nested event queries are organizations that need to track the status of their
inventory. Consider tracking inventory within a hospital setting. For instance,
reporting contaminated medical equipments within the daily workflow [3, 4, 5].
Let us assume that the tools for medical operations are RFID-tagged. The sys-
tem monitors the histories of the equipment (such as, records of surgical usage,
of washing, sharpening and disinfection). When a healthcare worker puts a box
of surgical tools into a surgical table equipped with RFID readers, the computer
would display approximate warnings such as “This tool must be disposed”. A
query Q2 = SEQ (Recycle v, Washing w, NOT SEQ(Sharpening s, Disinfection
d, Checking ¢, s.id = d.id = c.id), Operating o, r.id = w.id = o.id, o.ins-type =
“surgery”) expresses this critical condition that after being recycled and washed,
a surgery tool is being put back into use without first being sharpened, disin-
fected and then checked for quality assurance. Such complex sequence queries
contain complex negation specifying the non-occurrence of composite event in-
stances, such as negating the composite event of sharpened, disinfected and
checked subsequences.

Motivating Example 3. In a supply chain management scenario, suppliers may
need to monitor the transport of RFID tagged medical goods. It is important to
neither break the cold chain of pharmaceuticals nor to overrun the expiration of
any of these goods. During transportation and temporary storage, pharmaceu-
ticals can be exposed to environmental conditions that may damage the goods.
The temperature in the cooling trucks of the carrier may exceed the allowable
limits, leading to spoilage. It is thus critical to monitor all ongoing transports
in real time for tracking patterns of “safe” and “unsafe” transport. The pattern
query Q3 = SEQ(Distribution-Center dc, OR(Hospital h, NursingHome n, h.id
= d.id, n.id = d.id), DrugStore d, dc.id = d.id, d.temperature < 5° Celsius)
is submitted together with the required conditions to track the paths of each
truck to its destination. Such pattern query is executed continually during daily
operations to reliably identify possible violators or locations of violation. With
suitable technology, decision makers reduce the risk of loss of products, danger
to health of our communities, and even potential lawsuits. In this scenario, CEP
technology is poised to help cut production costs and to increase the quality of
goods for human consumption and health.

Beyond these three motivating examples, numerous other real-time monitor-
ing scenarios are emerging for supply chain management (SCM), financial sys-
tems, sensor networks, and e-commerce. What is common across these scenarios
is a need to query large volumes of sequence data in real-time. However, each
scenario has its own characteristic in terms of streaming data volumes, query

Nested Query 3

latency goals and event query complexities. We believe enabling complex nested
CEP queries would allow us to efficiently correlate trends and detect anomalies
on sequence data for real-time business intelligence.

While nested queries are commonly supplied by SQL engines over static

databases, the state-of-art CEP literature [1, 2, 6] does not support such nested
queries. While the Cayuga system [2] mentions composable queries, they assume
the negation filter is only applied to a single primitive event type within the SEQ
pattern. Our objective instead is to allow the specification of negation within
any level of the nested query as demonstrated in the scenarios above. While
CEDR [6] allows the application of negation over composite event types, authors
didn’t provide a clear syntax nor formal semantics for the specification of such
nested pattern queries. In addition, existing CEP systems [1, 2, 6] don’t provide
query semantics concerning the handling of predicates in nested CEP queries.
Design of a clean syntax and semantics for nested CEP queries is a delicate task.
In this work, we address this gap by carefully designing the syntax, semantics
and algebraic plan for complex nested sequence queries. Preliminary experiments
with processing nested query plans expressed in the NEEL language are reported
in [16]. Last but not least, we describe a case study of applying this technology
to health care applications.
Organization of Paper: The rest of the paper is organized as follows: Sec-
tion 2 introduces the event model. Section 3 presents our proposal of a nested
query language NEFEL. Sections 4 defines the nested query semantics of NEEL.
Section 5 discusses our E-Analytics system. Sections 6 describes the case study.
Section 7 discusses related work, while Section 8 concludes the paper.

2 The NEEL Event Model

An event instance is an occurrence of interest in a system which can be either
primitive or composite as further introduced below. A primitive event instance
denoted by a lower-case letter (e.g.,‘¢’) is the smallest, atomic occurrence of
interest in a system. e;.ts and e;.te denote the start and the end timestamp of
an event instance e, respectively, with e;.ts < e;.te. For a primitive event instance
ei, e;.ts = e;.te. For simplicity, we use the subscript i attached to a primitive
instance e to denote the timestamp 7. A composite event instance is composed of
constituent primitive event instances e = < eq, ea, ..., e, >. A composite event
instance e occurs over an interval. The start and end timestamps of e are equal
to e.ts = min{e;.ts | V e; € e } and e.te = max{e;.te | V e; € e }, respectively.

An event type is denoted by a capital letter, say E;. An event type E; describes
a set of attributes that the event instances of this type share. An event type
can be either a primitive or a composite event type [7]. Primitive event types
are pre-defined in the application domain of interest. Composite event types are
aggregated event types created by combining other primitive and/or composite
event types to form an application specific type. e; € E; denotes that e; is an
instance of the event type ;. We use e;.type to denote the type I; of e;. Suppose

4 Mo Liu et al.

one of the attributes of F; is attrj and e; € E;, we use e;.attrj to denote e;’s
value for that attribute attrj.

Event History H is an ordered set of primitive event instances. Details of event
history can be found in Section 4. Cross product (x) of event histories for A[H]
= {ay,a2,...,a,} and B[H] = {by,bo, ..., b, } is A[H] x B[H] = { Z1gi§n;1§j§m
{ai,b;} with a; € A[H] and b; € B[H]}.

3 NEEL: The Nested Complex Event Query Language

We now introduce the NEEL' query language for specifying complex event pat-
tern queries. NEEL supports the nesting of AND, OR, Negation and SEQ oper-
ators at any level of nesting.

<Query>::= PATTERN <event-expression>

WITHIN <window>

[RETURN <set of primitive events>]
FE, = <event-expression> <var>
<event-expression> ::=
SEQU(E, | ! (Ev, [<a>]))", Eus (B | ! (Eu, [<a>])*, [<a>])
| AND((Ey, (Ey | ! (Ey, [<a>]))%, [<a>])
| OR((E.)*, [<a>))
| (<primitive-event>, [<q>])
<primitive-event> ::= E; | Ea | ...
<var> ::= event variable e;
<q>:= (<elemqual>)*
<elemqual> ::= <var>.attr <op> <var>.attr |
<var>.attr <op> constant
<op>u=<|>|<|>|=]|!=
<window>::= time duration w

Table 1. NEEL Query Language

The BNF syntax for NEEL is shown in Table 1. In NEEL, the PATTERN
clause retrieves event instances specified in the event expression from the input
stream. The qualification in the PATTERN clause further filters event instances
by evaluating predicates applied to event attributes. The WITHIN clause spec-
ifies a time period within which all the events of interest must occur in order to
be considered a match. In our language, the time period is expressed as a sliding
window, though other window types could be easily plugged in. A set of histo-
ries is returned with each history equal to one query match, i.e., the set of event
instances that together form a valid match of the query specification. Clearly,

! NEEL stands for Nested Complex Event Query Language

Nested Query 5

additional transformation of each match could be plugged in to the RETURN
clause.

Operators in the PATTERN clause. SEQ in the PATTERN clause specifies
a sequence indicating the particular order in which the event instances of interest
should occur. The components of the sequence are the occurrences and non-
occurrences of events [1]. Any component of SEQ including at the start or the end
of the pattern can be negated using “!I”. AND also specifies events occurrences
and non-occurrences but their order does not matter. OR operator specifies
disjunction of events.

We now explain step by step the proposed NEEL language using the earlier
RFID-based hospital tool management scenario. Again, RFID tags are assumed
to be either embedded in or attached to surgical knives, clamps, scissors, etc.
Sensors transmit the events performed on the equipment in an input event stream
of event types washing, sharpening, disinfection, etc. For example, the query Q4
below detects activity related to surgical knife management. The PATTERN
clause contains a SEQ construct that specifies a sequence consisting of a Re-
cycling, a Washing instance followed by the occurrence of an Operating event
instance.

Q4 = PATTERN SEQ(Recycle r, Washing w, Operating o)

Nested expressions and variable scope. If E, F> ,..., E,, are event expres-
sions, an application of SEQ, AND and OR over these event expressions is again
an event expression [7]. In other words, nesting of AND, OR and SEQ operators
is supported. An event expression exp; can be used as an inner component to
construct an outer expression exp;. The operator construct optionally also in-
cludes an event variable (<var>). The benefits of using such an event variable
are that it is (1) more concise to refer to an event expression in a predicate,
(2) easier for the user to interpret predicates, (3) and avoids ambiguity if the
same expression occurs twice, e.g., Washing wy, Washing ws. The event vari-
able in an outer expression exp; is visible within the outer expression exp; as
well as within the scope of any of its own nested inner expressions exp;. For ex-
ample, the PATTERN clause of the query @5 extends the query @4 by nesting
the occurrence of a sub-sequence consisting of a Sharpening, a Disinfection and
a Checking instance within the outer sequence of a Recycling, a Washing and
an Operating event instance. Event instances “r”, “w” and “0” declared in the
outer SEQ expression are visible both in the outer and inner SEQ operators.
Event instances “s”, “d”, “c¢” declared in the inner SEQ expression are visible
only within this inner SEQ operator.

Q5 = PATTERN SEQ(Recycle r, Washing w,
SEQ(Sharpening s, Disinfection d, Checking c),
Operating o)
WITHIN 2 hours

Window Constraints. We currently work with simple sliding windows, though
other window models could be adopted in the future. The window constraint in
the WITHIN clause imposes a time duration constraint on all instances involved

6 Mo Liu et al.

in a match of the query. For a nested event expression, the same window clause
w is applied to all nested subexpressions as a constraint. However, this window
constraint w will be further restricted implicitly in each nested subexpression
based on its context within its outer expression. For example, the window for
the query @5 is 2 hours. The window for the subexpression SEQ(Sharpening
s, Disinfection d, Checking ¢) is bounded by the timestamps of events w and o,
namely by the interval [w.te, o.ts]. Explicit time windows for the inner SEQ can
also be supported in the future without violating the window constraints of the
outer nested sequences.

Predicate specification. The optional qualification in the PATTERN clause,
denoted by qual, contains one or more predicates. Predicates only referring to
events in the local expression exp; (simple predicates) are specified directly
inside exp;. Predicates referring to event instances both from an outer and an
inner expression are correlated predicates. They must be placed with the
innermost expression where a variable used in the expression is declared. For
example, in Qg the correlated predicate “s.id=d.id=c.id=o0.id” referring to both
inner (“s”, “d” and “c”) and outer (“0”) events must be placed within the inner
SEQ operator where any of the variables are defined. The simple predicate “o.ins-
type = surgery” is placed with the outer SEQ operator where the variable “op”
is declared. Predicates across the OR arguments are not allowed as only one
of the OR arguments will match at a time. Correlated predicates involving two
sibling expressions are not allowed since the event instances in one expression
are not visible within the scope of the other expression.

Q6 = PATTERN SEQ(Recycle r, Washing w,
SEQ(Sharpening s, Disinfection d, Checking c,
s.id=d.id=c.id=0.id),
Operating o, o.ins-type="surgery")

Q7 below is not a valid query as the subexpression SEQ(Washing d, Sharp-
ening s) contains a correlated predicate (w.id = c.id) referring to the Checking
event ¢ which is not within the scope of this predicate because it is declared in a
sibling SEQ operator. Similarly, the event w is not within its proper scope, yet
is referred to, in the subexpression SEQ(Disinfection d, Checking c).

Q7 = PATTERN SEQ(Recycle r,
SEQ(Washing w, Sharpening s, w.id = c.id),
SEQ(Disinfection d, Checking c, d.id = w.id))

Negation. The symbol “!” before an event expression E; expresses the non-
occurrence of F; and indicates that F; is not allowed to appear in the specified
position. If there is a ! (Negation) symbol before an event expression, we now
say that the event expression marked by ! is a negative event expression,
otherwise, it is a positive event expression. At least one positive event ex-
pression must exist in SEQ and AND operators. Event instances that satisfy the
positive event expressions of a query with no events existing in the input stream
satisfying the negative event expressions in the specified positions are said to

Nested Query 7

be a valid match. For example, the query Qg specifies the non-occurrence of
Washing events anywhere between Recycle and Operating events.

Q8 = PATTERN SEQ(Recycle r, ! Washing w, Operating o)

If several adjacent event types are marked by ! in a SEQ operator such as in
Q9 below, the query requires the non-existence of any Washing and Sharpening
events between our matched pair of Recycle and Operating event instances. In
other words, SEQ(Recycle r, | Washing w, ! Sharpening s, Operating o) is
equivalent to SEQ(Recycle r, ! Sharpening s, | Washing w, Operating o) as
no ordering constraint holds between Washing and Sharpening events. Events
of either types can’t exist in the location between our Recycle and Operating
matches.

Q9 = PATTERN SEQ(Recycle r, ! Washing w, ! Sharpening s, Operating o)

Scoping of Negation. Pattern matching involving negation is different from
matching on positive event types. Let us consider query @4 with only positive
event types. It looks for the existence of Recycle, Washing and Operating events
in the proper order. But Qg is different. We do not look for three instances, the
first matching Recycle, the second matching ! Washing, and the third match-
ing Operating. If we were to follow this interpretation, for event history H =
{r1,ws, 83,04}, we would return {ry, o4}, since s3 would match “! Washing”.
However, {r1, o4} should not be returned in this case because wy € Washing
exists between r; and o4. Clearly, the role of the “!” Washing in this context is
different from the role of positive event types in the same position. Mainly, the
“I” in a SEQ operator has a “for all” semantics and not an “exists” semantics.
Put differently, in Qg, “! Washing” doesn’t mean matching one particular ! Wash-
ing instance between Recycle and Operating events. Rather, the query requires
the non-existence of Washing events anywhere in the input stream between the
matched Recycle and Operating events.
Nested Negation. A negative event expression exp; can be used as an inner
expression to filter out the construction of other outer event expression exp;. For
example, in Q1o the negative event type “Disinfection” is a sub-component of
the negative event expression SEQ(Sharpening s, ! Disinfection d, Checking
c¢). The later in turn is a sub-component of the outermost SEQ expression of
Q10- Q10 states that < r,w,o0 > is a valid match if either no Sharpening and
Checking event pairs exist in the input stream between our Washing w and
Operating o events in the outer match < r,w, 0 >, or otherwise if they do exist,
then disinfection events must also exist between all Sharpening and Checking
event pairs.
Q10 = PATTERN SEQ(Recycle r, Washing w,
! SEQ(Sharpening s, ! Disinfection d, Checking c),
Operating o)

Predicates with Negation. Consider the query @11 below.

Q11 = PATTERN SEQ(Recycle r, ! Washing w, Operating o,
r.attrl + w.attrl = o.attrl)

8 Mo Liu et al.

Assume the history H = { 71, 05} and ry.attrl = 1 and os.attrl = 1. Here
we assume that no negative Washing events exist in this history. Should query
Q@11 return {r1, o5}? The question is how do we decide whether the condition
is true or false since there is no value for a Washing event to participate in the
predicate?

One answer might be that the predicate (r.attrl + w.attrl = o.attrl) will be
treated as true whenever it refers to attributes of negative events (like w.attrl
above). This would lead to awkward semantics because the logic of the predicate
will be unexpected. For example, if P is any formula and w is the “excluded”
event, then (P V (w.attrl !=w.attrl)) will evaluate to true. This logic would
clearly not be sensible. Or, we could have the above predicate evaluate to false.
{r1, 05} would not be returned in this case as a result. It is also unexpected
as no Washing events exist so no sequence results of the outer positive event
expression should be filtered. Instead, we adopt a third strategy of interpreting
nesting similar in spirit of our interpretation described above for the ! symbol in
the primitive case.

Q12 = PATTERN SEQ(Recycle r, Washing w,
! SEQ(Sharpening s, Disinfection d, Checking c),
Operating o)
WITHIN 1 hours

Q13 = PATTERN SEQ(Recycle r, Washing w,
! SEQ(Sharpening s, Disinfection d, Checking c,
s.id=d.id=c.id=o0.id),
Operating o, r.id=w.id=o.id)
WITHIN 1 hours

For this, we now propose that the way we write predicates influences
its meaning and thus its results. Simple predicates involving negative event
types are placed with negative event types. We require that all predicates re-
ferring to only positive events are stated separately, as they refer to instances
that must exist. And we require all predicates involving negative event types are
stated separately with the negative event types. During pattern matching, we
first match events of the positive event expression and their predicates. If and
only if we find a match, then we check events for the non-existence of instances
to match the negative event expression and thus we then check their associated
predicates. Assume the history H = {ry, wa, s3,d4, ¢5,06} and r1.id = wq.id =
0g.id = 1, s3.id = 2, d4.id = 3 and ¢5.id = 4. Assume one user requires all event
instances in Q12 have the same id. If the user put the condition “r.id = w.id=
0.id = s.id = d.id = c.id” in the end of the outer SEQ in ()12, no sequence results
for the positive event expression SEQ(Recycle r, Washing w, Operating o) are
constructed as the predicate is not satisfied. However, when the user represents
the predicate as “r.id=w.id=o0.id” associated with the outer SEQ expression,
and “s.id=d.id=c.id=0.id” associated with the inner SEQ expression as shown
in @13, during Q13 pattern evaluation, we first construct the outer sequence
< ry,ws, 0 > with r1.id = ws.id = 0g.id. Then we check between ws and og if

Nested Query 9

one or more matches for the inner expression a SEQ(Sharpening s, Disinfection
d, Checking c¢) sequence exists with “s.id=d.id=c.id=0g.id”. < r1,ws,06 > is a
match for Q13 as no such inner sequence is found.
Q14 = PATTERN SEQ(Recycle r, Washing w,
! SEQ(Sharpening s, Disinfection d,
! (Checking c, c.id = d.id),
s.id=d.id=o0.id),
Operating o, r.id=w.id=o.id)
WITHIN 1 hours

When a negative event type is nested in another negative component such
as the Checking event in (14, the user is required to put predicate requirements
for the Checking event directly with the Checking event type. Predicates re-
ferring to Sharpening and Disinfection events but not involving the Checking
event are specified in the end of the inner SEQ operator as shown in Q4. Dur-
ing Q14 pattern evaluation, we first construct outer <r, w, o> sequences with
r.id=w.id=o0.id. Then we check between w and o pairs if one or more matches for
the inner expression a SEQ(Sharpening s, Disinfection d, ! Checking c) sequence
exists with “s.id=d.id=0.id” and “c.id = d.id”. If not, <r, w, 0> sequences are
matches for Q14. If yes, the query filters this intermediate match.

4 Formal Semantics of NEEL

We now define the operator semantics using the notion of event histories. Below,
we define the set of operators that NEEL supports in the PATTERN clause of a
query and the semantics of the expressions that they form. Below E; represents
an event expression of either a primitive or composite event type.

For closure, the input and output data types are the same. The cross product
of event histories A[H] and B[H] is a power set over H denoted by A[H] x B[H].
This in turn could be the input of another operator which then would generate
a power set over H again by working on one event history at a time (pow(H) —

pow(H)).

Definition 1. Assume the window size for a nested event expression is w. For
sliding window semantics, at any time t, we apply a query to the window con-
strained event history H,, = Hfts, te] with te := t and ts := t-w such that:

H, ={ele € HA (ts < e.ts < e.te < te)}. (1)
Definition 2. E;[H,] selects events of event type E; from Hy,.

E;[H,] = {{e}|e € Hy, N e.type = E;}. (2)
Definition 3. Union of event histories. H1 U Hy ={ e; | e; € Hy V e; € Hy }.

Duplicates of e; that appear in both histories Hi and Hy are removed from the
result set.

10 Mo Liu et al.

The notation ey, denotes an ordered sequence of event instances eq, ea, ...
en, such that for all pairs (e;, ;) with 1 < j in the sequence, e;.ts < e;.te < e;.ts <
e;.te holds. The notation €1., denotes a set of event instances {e1, ea, ..., €, ..., €, }
without any ordering constraints. The notation WE, ,, denotes the cross product
(defined in Section 2) of event histories. Namely, WE ,,[Hy,| = E1[Hy| X E2[Hy
X ... B;{[Hy] X ... X E,[H,]. We use the notation P; ;(€1,,) to refer to predicates
Py, ..., Pj on events {eq, ..., e,}. Namely, P1_j(€1.,) = Pi(€1,) ..., Pi(€1,n)-

Definition 4. SEQ specifies a particular order in which the event instances of
interest ey, €y ,..., €, = a should occur.

SEQ(EI €1, E2 €2,y .ty Ei [PR En en,le(e/l-;L))[Hw]
= {€1nl(e1n € WEn[Hu]) APrm(€1n)}-

(3)
Ezample 1. Given SEQ(Recycle r, Washing w) and H = {ry, ws, w3}, SEQ(Recycle
r, Washing w)[H] generates 2 histories: {ri, w2} and {ry,ws}.

Definition 5. Fquation 4 defines the SEQ operator with negation.

SEQ(Es e1,.... E; e,/ (Eit1 €it1, Piv1(€1.0)), Eivo €ivo, ... En €n, P1i(€1.0), Pito..m(€1.n)) [Hu)
= {{e1, ... €is Cita, .., en | ({€1, s €4 €142, oy en} € (WEY ;[Hy| X WEi10 [Hyl))A
(€17 A €iran Neite < eirots) NP1 i(€1.0) APiva. m(rm) A (m3eir1 € Eip1[Hy)
where (e;.te < ej41.t8 < e;q1.te < e;42.t8) APiy1(é1n))}-

(4)

Equation 4 defines the SEQ operator with negation in the middle of a list
of event types. P;;1 involves predicates referring at least once to an instance
of type E;y1. In Equation 4, events {eq, ..., ¢;, €12, ..., €, } of the positive event
expression satisfying the associated predicates are first constructed. We then
check the non-existence of E;;; instances satisfying the predicate P;;; with
timestamps between e; and e; o events.

Negation could equally exist at the start or the end of the SEQ operator.
If negation exists at the start, the non-existence left time bound should be
en.te — w. Similarly, if negation exists at the end, the non-existence right time
bound should be e;.ts + w. If negations are specified at both the start and the
end of the SEQ operator, we need to bound them conservatively into both direc-
tions simultaneously from the leftmost and the rightmost positive components.
Multiple negations could exist in the SEQ operator. For example, SEQ(FE; e;
s Bieiy U (Eig eiy1, Pipa(ein)), ! (Bive eive, Piya(ern)), - ! (Biyj eirg,
Piii(e1n)), Eitjt1 €itjt1 soer En €n, Pi.m(€1,). It requires the non-existence
of Bjt1, Eito, ...and E;;; event instances between e; and e;4;11 with those
qualifications.

Definition 6. AND operator computes the cross product of the input events.

Nested Query 11
AND(El 61,E2 €a, En Gn,le(G/l—\m))[Hw}
= {e1nl(€1n € WELn[Hy]) APr.m(€1n)}-

()

Definition 7. Equation 6 defines the AND operator with negation.

AND(E; ey, ..., E;i e;,'(Eit1 i1, Piv1(€10)), Eivo €ig2, oy B €0, Pri(€10), Pita..m(€1,0)) [Hu)
= {{61, ey €y €342, oeny 671}|({617 ey €y €542, ony en} S (L‘!’JELZ'[Hw] X H'JEi+2,n[HwD)/\
Pi..i(€1.n) A Pito. m(€1n) A —3eip1where (€41 € Eip1[Hy| A Piti(e1n))}-

(6)

Again, negative event expressions just like positive ones could be composed
of SEQ, AND and OR operators.

Definition 8. Formally, the set-operator OR is defined as follows. Predicates
across the OR arguments are not allowed as arguments are independent, i.e.,
only one of the instances will constitute the result history for each match.

OR(Ey €1 ..., By €y, P1.m(€10)[Hyw]) = (E1[Hy|, Pi(e1))U...U (En[Hyl, Po(en))-
(7)

Ezample 2. Assume the query Q15 = OR(Checking, Sharpening, Checking.id

> 10, Sharpening.id > 15)[H| and the event history H,, = {c1, ¢, g, sg} where

c1.id = 5, co.id = 20, ¢g.id = 2 and sg.id = 25. Then Q16 = (Checking[H,],

Checking.id > 10) U (Sharpening[H,), Sharpening.id > 15) = {{c2}, {ss}}

5 E-Analytics System

E-Analytic Architecture. Figure 1 shows the overall architecture of our E-
Analytics system. Input adaptors read event streams from different devices and
of different formats. Queries are first compiled into query plans, then optimized
and lastly submitted to the query executor for processing. The execution engine
will instantiate the query plan by instantiating the corresponding physical op-
erators in the query plan. Thereafter, execution of the query is activated which
then will continuously consume the input event stream and produce complex
events that match the query pattern. The resulting streams will then be fed con-
tinuously to the monitoring business applications. These applications can either
have a Graphical User Interface (GUI) for visual analytics or can be console-
based. The system will help track the critical conditions for scenarios described
in Section 1. A more detailed case study of this technology can also be seen in
Section 6.

Query Compiler. A query expressed by NEEL is translated into a default
nested algebraic query plan composed of the following algebraic operators: Win-
dow Sequence (WinSeq), Window Or (WinOr) and Window And (WinAnd). The
same window w is applied to all operator nodes. During query transformation,

12 Mo Liu et al.

© @
11

Stream Result Qe
Sender Monitoring Optimizer

x X ‘I‘
Stream Query_
Feeder Compiler

t Query Executor T
Input Physical Execution Stream / Query]
Adaptors Operators Strategies Registration

A
T b

@ Query 1Query 2.. Queryn
Streaming
Data

Fig. 1. E-Analytic Processing System

each expression in the event pattern is mapped to one operator node in the query
plan. WinSeq first extracts all matches to the positive components specified in
the query, and then filters out events based on negative components as specified
in the query. WinOr returns an event e if e matches one of the event expressions
specified in the WinOr operator. WinAnd computes the cross product of events
of its component event expressions. The operator node for an outer expression
is placed on top of the operator nodes of its inner expressions. For queries ex-
pressed by NEEL, predicates are placed in their proper position in nested event
expressions as discussed in Section 3. A leaf node, labeled by a primitive event
type E, selects instances of the primitive event type E from the input event
stream S and passes them to their parent nodes.

ﬁ o.ins_type = “surgery”,
rid = w.id = o.id

WinSeq(Recycle r, Washing w, ! WinSeq(Sharpening s, Disinfection d, Checking c), Operating O)J

T T 3

Recycle Washing s.id = d.id = c.id = o.id Operating

WinSeq(Sharpening s, Disinfection d, Checking c)

T T T

Sharpening Disinfection Checking

Fig. 2. Basic Query Plan

Ezample 3. Figure 2 shows the basic query plan for the sample query SEQ(Recycle
r, Washing w, ! SEQ(Sharpening s, Disinfection d, Checking c, s.id = d.id =
c.id = 0.id), Operating o, r.id = w.id = o.id, o.ins-type = “surgery”). The two

Nested Query 13

SEQ operators are transformed into two WinSeq operator nodes in the query
plan. The simple predicate o.ins-type = “surgery” is attached to the topmost
WinSeq operator node containing the Operating event type. The correlated pred-
icate is attached to the inner WinSeq operator node.

Query Executor. Following the principle of nested iteration for SQL queries
[12, 13], we apply the iterative execution strategy to queries expressed by NEEL.
The outer query is evaluated first followed by its inner sub-queries. The results of
the positive inner queries are passed up and joined with the results of the outer
query. For every outer partial query result, a constrained window is passed down
for processing each of its children sub-queries. These sub-queries compute results
involving events within the constraint window. Qualified result sequences of the
inner operators are passed up to the parent operator. The outer operator then
joins its own local results with those from its positive sub-queries. The outer
sequence result is filtered if the result set of any of its negative sub-queries is not
empty. We apply iterative execution until a final result sequence is produced by
the root operator. Finally, the process repeats when the outer query consumes
the next instance e. A more detailed description with preliminary experimental
evaluation of the nested execution strategy can be found in [16].

Query Optimization. With precise semantics in place, we now have laid a solid
foundation for developing optimization strategies for E-Analytics. For instance,
in [16], selective caching of intermediate results is introduced as technique for
optimizing iterative execution. In addition, interval-driven cache expansion and
interval-driven cache reduction are proposed in [16].

6 Case Study of Health Care

We are collaborating with medical staff in the University of Massachusetts
Memorial Medical Center in the context of a project entitled “Development
and Testing of an Electronic Infection Control Reminder System for Healthcare
Workers” [17]. We aim to tackle the major concerns in healthcare today of the
spread of human infectious diseases in hospital settings. It has been established
by the medical community that one of the simplest yet most effective meth-
ods for prevention of hospital-acquired infections is to have healthcare workers
cleanse their hands and follow other precautions (such as wearing masks for
H1N1, gowns, etc) before and after they see patients. Unfortunately, compliance
for hand hygiene even in the best practicing hospitals in the country is below
acceptable levels (75% to 80% in the best case) and methods of enforcement are
minimal to non-existent.

Thus, our objective is to overcome this problem by building a Hospital
Infection Control System (HICS) that continuously tracks healthcare workers
throughout their workday for hygiene compliance and for paths of exposure to
different diseases and unhygienic conditions. Our system would alert healthcare
workers at the appropriate moments, for instance, if they are about to enter
an operation room without first performing the required disinfection procedure.
Such events are detected in real time by our system using queries such as Q17.

14 Mo Liu et al.

Q17 = PATTERN SEQ(!(Sanitize-Area s, s.wID = o.wID),
Enter-Operating-Room o)
WITHIN 1 minutes)

Similarly, in intensive care units we need the capability to conduct path
analysis determining who went into an operating room, left for a break or to
visit a different patient, and returned without washing and drying hands. Such
logic could be expressed in NEEL by query (Q1s. On finding matches, officials
may then need to find out which operating rooms and/or patients are potentially
at risk to undertake the needed actions to confront and remind the healthcare
workers.

Q18 = PATTERN

SEQ(Operating Room ol,
OR(Break Room br, Patient Room pr,
br.wID = 02.wID, pr.wID = 02.wID),
! SEQ(Washing w, Drying d, w.wID = d.wID = 02.wID),
Operating Room 02, ol.wID = 02.wID)
WITHIN 1 minutes

If a significant number of violations occur at a certain room, the supervising
staff may want to review all violation patterns related to this room and deduce
the potential causes of this phenomenon. Or, the supervising staff may want to
identify the violator causing such an abnormal violation pattern who possibly
may be a young physician or intern not well versed in required safety regulations
or simply a worker neglecting usual precautions distracted by an overly busy
schedule. Clearly, real-time analysis to not only track sequences of events in real
time, but also to analyze their frequency relative to prior behavior of the same
health care work, prior patterns by the overall staff within this intense CPU unit
also across the overall care facility may be time critical, potentially, mitigating
risks before they spread.

As an example of the type of services our HyReminder system provides,
consider our real-time monitoring console in Figure 3 that displays the current
hygiene compliance state of every HCW for the head nurse to supervise. The
map-based monitoring window displays each worker as a moving object in the
intense care unit map. Real-time statistics about the hand hygiene violations can
be accessed and filtered by specifying conditions in the “view control” panel.

7 Related Work

Most event processing systems, such as SNOOP [20], do not support scope. The
Cayuga [2] query language is a simple mapping of the algebra operators into a
SQL like syntax, similar in spirit to the complex event language in SASE [1]. In
Cayuga [2] and SASE [1], scope is expressed respectively by a duration predicate
and a window clause. NEEL adopts basic query constructs similar to the ones
in SASE [1] for expressing a flat query. Negation is not treated as an opera-
tor in NEEL. Instead, negation is scoped within the context of other algebra

Nested Query 15

8889/ Maplnterace.hmi

%2 XLS *% PDF & Print & D (2 Time w4 Setting
Tntense Care Unit 2 2010-03-15 14:06 Average Rate: 106 events/sec
® St y
b =fele’ [o= e]]]] Num of HCWs 10
foom HCWsin Safc Status -5
— L) - g = HCWSs in Waming Status: 3
| [mC2 [B @] - - .«
® o % t || =g HCWs in Violation Status: 2
S Ay’ £ &
b | N R | L] View Statistics
Hallway
" ST T T e
e
e, oo foon Room vibaton
o [| [) e
] § § [] §
Legend: @ sensorin door; {§ sensor in sanitizer; (s healthcare worker Wiolation Types | ALY

Fig. 3. Real-time Hand Hygiene Monitoring

operations to act as filter of positive matches, namely, within SEQ and AND
operators. As compared to previous event languages such as ODE [19], SASE
provides a compact CEP query language which is easy to read. For instance,
“relative(deposit, | before interest) and withdraw’ is used to express the pat-
tern “deposit followed eventually by withdraw with no intervening interest” in
ODE [19]. Using SASE, the pattern can be simply expressed as PATTERN
SEQ(deposit, ! interest, withdraw). However, SASE [1] has several limitations.
It only supports SEQ and SEQw rrouT operators which allow you to express
flat sequence queries. In addition, it only allows queries to transform events from
primitive types to complex types, but has not looked at transforming from com-
plex types to (even more) complex types. Put differently, SASE doesn’t support
the nesting of complex operators. This is our key focus.

While CEDR [6] allows the application of negation over composite event
types, they didn’t provide a clear syntax for the specification of such nested
pattern queries. The SEL language [18], while supporting nesting of operators,
focusses in particular on temporal relationship specification. Semantics of nested
negation appear ambiguous as negation itself is an operator and thus a match
(or, negation match) presumably would need to be returned from the negation
operator if nested. Subtle issues with predicates in the presence of negation
operators are not explored in [18], but can be found in our work (see Section 3).

8 Conclusions

In this paper, the CEP query language NEEL able to succinctly express nested
queries composed of sequence, negation, AND and OR operators is presented.
NEFEL allows users to specify fairly complex queries in a compact manner with
predicates and negation over query nestings both well-supported. We also in-
troduce the formal query semantics for NEEL. An algebraic query plan for the
execution of nested CEP queries is designed. The proposal presented here per-
mits a simple and direct implementation of nested CEP queries following the
principle of nested query execution for SQL queries. Our case study in health

16 Mo Liu et al.

care confirms the utility of applying nested complex event processing support
for enabling real-time event analytics.

9 Acknowledgements

This work is supported by HP Labs Innovation Research Program and National
Science Foundation under grants NSF 1018443 and NSF IIS 0917017, Turkish
foundation under TUBITAK career award 109E194. We thank Di Wang, Han
Wang and Richard T. Ellison III for the case study. We thank Database System
Research Group members at WPI for many valuable comments.

References

1. E. Wu, Y. Diao, and S. Rizvi, High-performance complex event processing over streams, in
SIGMOD Conference, 2006, pp. 407-418.

2. A. J. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, and W. M. White, Cayuga: A
general purpose event monitoring system. in CIDR, 2007, pp. 412-422.

3. J. M. Boyce and D. Pittet, Guideline for hand hygiene in healthcare settings, MMWR Recomm
Rep., vol. 51, 2002, pp. 1-45.

4. Shnayder, V., Chen, B., Lorincz, K., Fulford-Jones, T.R.F., and Welsch, M. Sensor Networks for
Medical Care. in Harvard University Technical Report TR-08-05, 2005.

5. J. A. Stankovic, Q. Cao, et al., Wireless sensor networks for in-home healthcare: Potential and
challenges, In Proceedings of HCMDSS Workshop, 2005.

6. R. S. Barga, J. Goldstein, M. Ali, and M. Hong, Consistent streaming through time: A vision for
event stream processing, in CIDR, 2007, pp. 363-374.

7. S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.K. Kim, Composite events for active
databases: Semantics, contexts and detection, in VLDB, 1994, pp. 606-617.

8. C. Gupta, S. Wang, I. Ari, M. Hao, U. Dayal, A. Mehta, M. Marwah, and R. Sharma, Chaos: A
data stream analysis architecture for enterprise applications, in CEC09, 2009, pp. 33-40.

9. L inetats. stock trade traces. http://www.inetats.com/.

10. P. Seshadri, H. Pirahesh, and T. Y. C. Leung, Complex query decorrelation, in ICDE 96, pp.
450-458.

11. C. Beeri and R. Ramakrishnan, On the Power of Magic, J. Log. Program., vol. 10, 1991, pp.
255-299.

12. E. Wong and K. Youssefi, Decomposition - a strategy for query processing, ACM Trans. Database
Syst., vol. 1, no. 3, 1976, pp. 223-241.

13. J. M. Smith and P. Y.-T. Chang, Optimizing the performance of a relational algebra database
interface, Commun. ACM, vol. 18, no. 10, 1975, pp. 568-579.

14. R. Guravannavar, H. S. Ramanujam, and S. Sudarshan. Optimizing nested queries with param-
eter sort orders. In VLDB, 2005, pp. 481-492.

15. P. Seshadri, H. Pirahesh, and T. Y. C. Leung. Complex query decorrelation. In ICDE, pp.
450-458. IEEE Computer Society, 1996.

16. M. Liu, M. Ray, E. Rundensteiner, D. Dougherty, et al, Processing strategies for nested complex
sequence pattern queries over event streams, 7th International Workshop on Data Management
for Sensor Networks (DMSN’2010).

17. D. Wang, E. Rundensteiner, R. Ellison III, Active complex event processing: applications in
realtime health care, VLDB (demonstration paper), 2010.

18. D. Zhu and A.S. Sethi, SEL - A new event pattern specification language for event correlation,
Proc. ICCCN-2001, Tenth International Conference on Computer Communications and Networks,
2001, pp. 586-589.

19. Narain H. Gehani, H. V. Jagadish, Oded Shmueli: Composite event specification in active
databases: model & implementation. VLDB 1992, pp. 327-338

20. Sharma Chakravarthy, V. Krishnaprasad, etc, Composite events for active databases: semantics,
contexts and detection. VLDB 1994, pp. 606-617

