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Materialized views defined over distributed data sources can be utilized by many applications to ensure better access,

reliable performance, and high availability. Technology for maintaining materialized views is thus critical for providing up-

to-date results since a stale view extent may not help or even mislead these applications. State-of-the-art incremental view

maintenance requires Oðn2Þ or more remote maintenance queries with n being the number of data sources in the view

definition. In this work, we propose two novel maintenance strategies, namely adjacent grouping and conditional grouping,

that dramatically reduce the number of maintenance queries required to maintain the materialized views. This reduction in

the number of maintenance queries brings the basic trade-off between the complexity of each query and the total number

of maintenance queries that can be exploited to improve maintenance performance. The proposed maintenance strategies

have been implemented in a working prototype system called TxnWrap. Experimental studies illustrate that our proposed

strategies are able to achieve about 400% performance improvement in terms of total processing time compared with

existing batch algorithms in a majority of cases.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Materialized view maintenance; Batch maintenance; Shared common subexpressions; Grouping maintenance; Performance
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1. Introduction

1.1. Materialized views and their maintenance

Materialized views [1–3] that integrate and store
data from distributed data sources can be utilized by
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many applications including data integration ser-
vices, data warehousing and decision support sys-
tems. Applying materialized views can achieve
efficient access, reliable performance and high avail-
ability since applications can directly access materi-
alized views instead of multiple distributed data
sources [2]. Materialized views need to be maintained
upon source changes since a stale view extent may
not help or even mislead user applications. Incre-
mental view maintenance, which aims at only
computing the deltas of the view result instead of
recomputing the view from scratch on data source
67
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R 1: Cust (Name, Age, Address, P hone)
R 2: FlightRes (Name, FlightNo, Source, Dest )
R 3: Tour (TourID, CustName, Type, Days)

Fig. 1. Description of data sources.
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changes, has been extensively studied in the past
[1,3–11]. Among these works, the incremental main-
tenance of batches of updates [3,7,12,13] is of
particular interest because it is attractive from both
a resource and a performance perspective to most
practical systems. The benefits are two-fold. One,
better overall maintenance performance can be
achieved due to utilizing cached results. Two, fewer
conflicts of the maintenance tasks with users’ read
sessions on the view extent may arise due to
significantly reducing the time period during which
the view update process is being performed.

Modern data sources are becoming increasingly
large over time. Rapid changes remain common even
for such huge data sources. For instance, tens of
thousands of transactions per hour may be experi-
enced by Internet businesses such as amazon.com.
Moreover, the data sources tend to be distributed
over the network, i.e., over different branches of the
enterprise or even over the WWW. All these pose
new requirements for efficiently maintaining such
materialized views. That is, practical systems utilizing
such views must be equipped with strategies to
efficiently maintain materialized views defined on
distributed data sources even when faced with large
batches of source updates.

Note that multiple data sources such as six or even
more easily occur in real applications. For example,
online travel assistant systems, such as priceline.com
and travelocity.com, may integrate data from data
sources supported by the different airlines, from sites
for hotel rentals, from car rental companies and from
sources with local sightseeing information. Or, a
large enterprise may have to integrate data, such as
daily sales information, from its branches located at
different cities. Such an enterprise may have a large
number of data sources depending on the organiza-
tion and size of the company.

State-of-the-art view maintenance strategies re-
quire Oðn2Þ (batch view maintenance) or more (i.e.,
sequential maintenance) maintenance queries [10] to
remote data sources with n being the number of data
sources in the view definition. In this work, we
propose new maintenance approaches which require
a smaller number of maintenance queries by effec-
tively restructuring and grouping the batch view
maintenance plans. Such reduction in the number of
maintenance queries will in turn increase the com-
plexity of each query. We find that our proposed
view maintenance solution (in particular, the condi-
tional grouping strategies) may significantly outper-
form existing batch view maintenance strategies
(around 400% improvement) in a majority of the
cases.
 P
ROOF

1.2. Motivating example

We use the following example to illustrate two of
the most prevailing classes of state-of-the-art incre-
mental view maintenance strategies, namely, sequen-
tial maintenance and batch maintenance. The basic
trade-off that will be exploited in our work is
revealed by analyzing these two strategies. Fig. 1
describes three data sources with one relation each
that will be used in the example. A view Tour-

Customer is defined as depicted in Query 1.

CREATE VIEW Tour� Customer AS

SELECT C:Name; C:Age; T :TourID;

F :FlightNo; F :Dest

FROM Cust C; FlightRes F ; Tour T

WHERE C:Name ¼ F :Name AND F :Name

¼ T :CustName

(1)
TED
1.2.1. Sequential maintenance

Sequential maintenance refers to maintaining one
single source update at a time. As one typical
example of such strategy, we illustrate the SWEEP
algorithm introduced in [1]. For example, one data
update ‘‘U1 ¼ Insert into Cust Values (‘Ben’, 28,
‘WPI’, 6136)’’ happened at R1. In order to determine
the delta effect on the view extent, this requires us to
send two maintenance queries, one to R2 and another
to R3. In this case, one maintenance query (Query 2)
is generated based on U1 and sent to source R2. After
we get the result, say (‘Ben’, 28, ‘AA69’, ‘Mia’),
another maintenance query (Query 3) will be
generated and sent to R3 to get the delta change on
the view extent.

SELECT 0Ben0 as Name; 28 as Age

F :FlightNo; F :Dest

FROM FlightRes F

WHERE F :Name ¼ 0Ben0 ð2Þ

http:WWW
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U1: Insert (‘Ben’, 28, ‘WPI’, 6136) into Cust
U2: Insert (‘Tom’,D L169, ‘Lax’, ‘Bos’) into Flight Res
U3: Insert (63, ‘Tom’, ‘Lux’, 10) into Tour
U4: Insert (‘Jo e’, AA189, ‘Bos’, ‘Paris’) into Flight Res
U5: Delete (‘Ken’, 27, ‘WPI’, 5857) from Cust

Fig. 2. Updates of data sources.

B. Liu et al. / Information Systems ] (]]]]) ]]]–]]] 3
SELECT 0Ben0 as Name; 28 as Age; T :TourID
0AA690 as FlightNo; 0Mia0 as Dest

FROM Tour T

WHERE T :CustName ¼ 0Ben0 ð3Þ

Thus, to maintain one source update using
SWEEP, we may have to send maintenance queries
to all data sources besides the one from the source
update originated to compute the delta effect on the
view extent. If multiple source updates need to be
maintained, as illustrated in Fig. 2, we would repeat
this process for each update until all updates have
been processed.1
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1.2.2. Batch maintenance

Batch maintenance refers to maintaining the view
extent using source-specific deltas [12,13] where one
source delta describes a set of changes made to a data
source in a certain time period. For example, instead
of maintaining five updates listed in Fig. 2 individu-
ally as described above, we construct a delta specific
for each source. Thus,
DR1 ¼ fþ(‘Ben’, 28, ‘WPI’, 6136),
�(‘Ken’, 27, ‘WPI’, 5857)g,
DR2 ¼ fþ(‘Tom’, DL169, ‘Lax’, ‘Bos’),
þ(‘Joe’, AA189, ‘Bos’, ‘Paris’)g, and
DR3 ¼ fþ(63, ‘Tom’, ‘Lux’, 10)g. Here for simpli-
city, we use ‘þ’ to represent an insert operation and
‘�’ to denote a delete operation. Thereafter, the
incremental view extent (view delta) for all five
updates can be logically computed in three steps (one
step per source delta). Within each step, maintenance
queries are built based on the source-specific delta
and submitted to the other data sources to compute
the maintenance result. Here, each source delta
represents the updates at a logical level, we separate
the processing of insert and delete operations in the
implementation.
1Concurrent source updates could happen during the main-

tenance process. Thus additional concurrency control is necessary

to keep the view extent consistent [11]. We discuss this with more

detail in Section 5.1.
TED P
ROOF

1.2.3. Observation

Based on the above discussion, we will now
describe the basic trade-off that can be observed.
Batch maintenance has been shown to be more
efficient in terms of the total processing time when
maintaining a large set of source updates [3,7,12,13].
Sequential maintenance involves many maintenance
queries in the style similar to Queries 2 and 3 in our
example to be sent, with each maintenance query
reflecting a single source update. Here, the total
number of maintenance queries required for sequen-
tially maintaining k source updates may in the worst-
case be k � ðn� 1Þ with n being the number of data
sources in the view definition. Clearly, batch main-
tenance can improve this query workload due to the
number of maintenance queries cannot exceed n �

ðn� 1Þ (see Section 2). Given that the number of data
sources (n) usually is much smaller than the number
of update tuples (k), i.e., n is usually less than 10
while k can be thousands or even millions, batch
maintenance requires a much smaller number of
maintenance queries. However, each maintenance
query utilized in the batch maintenance process is
now more complex, because it now must reflect a set
of source updates.2

This opens the opportunity to group multiple
source updates so to construct one combined
maintenance query for this batch update set. The
goal is to develop a batch method that may outper-
form the sequential process of handling each
individual source update one by one. Exploitation
of this trade-off between the number of maintenance
queries and their complexity (expressed as query and
result sizes) to improve the view maintenance
performance is the main focus of this paper.

1.3. Contributions

We have illustrated the idea of reducing the
number of maintenance queries when maintaining
batches of updates through a running example in an
earlier poster paper [14]. In this journal manuscript,
we now provide details of the proposed maintenance
strategies, we introduce cost models and their
analysis, and we also present a comprehensive
experimental study. Our main contributions in this
work include:
101
1.
2

sou
We propose an adjacent grouping strategy that
103The methods of composing maintenance queries for a set of

rce updates will be discussed and evaluated in Section 7.2.
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exploits the regularity of the structure of a batch
maintenance plan to share the accesses to remote
data sources.
2.

57

59

61
We also propose a conditional grouping strategy
that groups heterogeneous deltas in a batch
maintenance plan. It is able to reduce the number
of maintenance queries to OðnÞ with n being the
number of data sources in the view definition,
regardless of how many source updates need to be
maintained.
63
3.
65

67
We provide a high level description of the costs of
the proposed strategies in order to be able to
analyze the strategies and to reveal the basic trade-
off among the alternate approaches when main-
taining a large batch of source updates.
4.
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We have implemented the proposed strategies as
well as state-of-the-art algorithms from the
literature in a working prototype. This enables
us to conduct performance studies of the proposed
techniques and to compare our solution against
these existing [1,13].
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We report on the extensive experimental study we
have conducted. The experimental results show a
significant performance improvement (up to
400%) gained by the conditional grouping ap-
proach in a majority of cases considered.

The rest of the paper is organized as follows.
Section 2 describes an abstraction that we present to
capture the essence of the state-of-the-art batch view
maintenance process. Sections 3 and 4 describe the
proposed maintenance strategies, respectively. Sec-
tion 5 discusses issues related to generalizing our
proposed strategies. A cost-based analysis is pro-
vided in Section 6. Section 7 discusses the experi-
mental results, while related work and conclusions
are given in Sections 8 and 9, respectively.

2. Abstract batch view maintenance

For ease of describing our proposed maintenance
strategies, we first use an abstraction to capture the
essence of the batch view maintenance process.
Assume a materialized view V is defined as an n-
way join on n distributed data sources. That is, V is
denoted by R1tR2t � � �tRn.

3 There are n source
deltas DRi, one for each source Ri with 1pipn) that
need to be maintained. As was mentioned in Section
1.2.2, each DRi denotes the changes (the collection of
103Discussions of the handling of more general SPJ views will be

erred to Section 5.2.
TED P
ROOF

insert and delete tuples) on Ri at a logical level. An
actual maintenance query will be issued separately,
that is, one for insert tuples and one for delete tuples.

Given the above notations, the batch view main-
tenance process can be represented by Eq. (4). Here
Ri refers to the original data source state without any
changes from DRi, while R0i ¼ Ri [ DRi reflects the
state of the data source Ri after applying the change
DRi. The discussion of the correctness of this batch
view maintenance can be found in [12,13]. Note that
concurrency control strategies, either compensation-
based [1,10,15] or multiversion-based [6], need to be
employed if other source updates happen concur-
rently. Without loss of generality, we now focus on
the maintenance queries and ignore any concurrent
source updates for the moment. The discussion of
handling concurrent updates is deferred to Section
5.1.

DV ¼ DR1tR2tR3t � � �tRn

[ R01tDR2tR3t � � �tRn

[ � � �

[ R01tR02tR03t � � �tDRn. ð4Þ

We call Eq. (4) a batch maintenance plan. It
specifies at an abstract level how to incrementally
maintain the view. Each ‘‘line’’ in Eq. (4) is referred
to as a maintenance step. DR1tR2tR3t � � �tRn

is one example of such a step. A maintenance query
needs to be composed for each join ðtÞ either from
the source delta ðDRiÞ or the intermediate results
from previous queries, i.e., the query result of
DR1tR2. For ease of description, we may inter-
change the term ‘maintenance query’ and ‘delta’
(either DRi or the result of a maintenance query) in
the subsequent discussion. Two ways of composing a
maintenance query from a delta will be discussed in
Section 7.2. Note that the evaluation of each
maintenance step is expected to start from the source
delta ðDRiÞ and to visit all the other data sources.
This is because each source delta is usually much
smaller in size in terms of the number of tuples
compared to the size of a data source. Seen from the
above discussion, n � ðn� 1Þ ðOðn2ÞÞ maintenance
queries may be required for the batch maintenance
to compute the delta change ðDV Þ of the view extent.

As an example, the source updates (deltas)
described in Section 1.2.2 on the three-way join view
(Query 1) can be maintained in the following three
maintenance steps: ðDR1tR2tR3Þ [ ðR

0
1

tDR2tR3Þ [ ðR
0
1tR02tDR3Þ.
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However, two questions remain. First, is it possible
to further reduce the number of maintenance queries,
say to less than Oðn2Þ? Second, does a lower number
of maintenance queries imply a reduction in total
maintenance time? Put differently, this raises the
underlying question what the key factors are that
affect the view maintenance performance. The
remaining sections of this paper explore these
questions. We use the batch maintenance plan (Eq.
(4)) as the baseline algorithm based on which we will
propose a variety of different strategies.

Note that traditional distributed query optimiza-
tion techniques [16] could be applied to improve view
maintenance performance, e.g., to select an opti-
mized join execution order for each maintenance
step. Clearly, this is orthogonal to what we will
explore here. Instead our focus is to find new
maintenance strategies by restructuring and grouping
maintenance queries. These cost-based optimization
techniques can thereafter also be applied on our
proposed strategies. Readers may consult [17] for
more discussions on this direction. In the view
maintenance context, finding the common expres-
sions such as R3tR4, which is investigated in
traditional multiple query optimization [18], may
not be beneficial. The reason is that the common
parts may be too large to be evaluated if they are not
first joined with the (typically much smaller) delta.

3. Adjacent grouping

One way to reduce the number of maintenance
queries is to exploit the regularity in a maintenance
plan to promote sharing of common accesses to data
sources. Studying the batch maintenance plan (Eq.
(4)), we observe that a large number of common data
source accesses exists in different maintenance steps.
For example, the first two maintenance steps both
UNCO

(a) Group by 2

∆Rn…R4
'R3

'R2
'R1

'

Rn……………

Rn…∆R4R3
'R2

'R1
'

Rn…R4∆R3R2
'R1

'

Rn…R4R3∆R2R1
'

Rn…R4R3R2∆R1

Fig. 3. Group adjacen
TED P
ROOF

have R3 tR4t � � �t Rn in common, while the
second and the third steps both have R01 and R4

t � � �t Rn. Thus, if we share the accesses to these
common data sources, the number of maintenance
queries (join operations) would be reduced.

The matrix-like abstraction of the batch main-
tenance plan as depicted in Fig. 3 highlights the
regularity in terms of the common items between
adjacent maintenance steps. The basic idea under-
lying the adjacent grouping strategy is illustrated in
Fig. 3. Namely, we divide maintenance steps and
group the deltas from different maintenance steps
along the main diagonal. Then we share the accesses
to common data sources.

For example, Fig. 3(a) illustrates the grouping by
two. Here, the first two maintenance steps are
rewritten into one expression, namely,
ðDR1tR2 [ R01tDR2ÞtR3t � � �tRn. Clearly,
the total number of maintenance queries for evaluat-
ing these two maintenance steps is reduced from 2 �
ðn� 1Þ to n. While for the third and the fourth steps,
we rewrite them as R01tR02t (DR3t
R4 [ R03tDR4) t � � �tRn, and so on. Thus, only
ðn=2Þ � n maintenance queries are required if we
group every two maintenance steps with n being an
even number. Grouping maintenance steps by three
can be done in a similar manner (see Fig. 3(b)), and
so on.

If we divide steps equally, i.e., we group every m

(mon) adjacent steps along the main diagonal. Let us
denote the total number of maintenance queries by
Nm. Here, R includes the leftover factors of n that
cannot be divided by m. The formula Nm is derived
assuming we group every group of m maintenance
steps together into one query. For example, assume
the view is defined on six data sources ðn ¼ 6Þ, and we
group every two adjacent maintenance steps together
ðm ¼ 2Þ. Then, the maintenance steps are divided into
91

93

95

97

99

101

103
(b)  Group by 3

∆Rn…R4
'R3

'R2
'R1

'

Rn……………

Rn…∆R4R3
'R2

'R1
'

Rn…R4∆R3R2
'R1

'

Rn…R4R3∆R2R1
'

Rn…R4R3R2∆R1

t maintenance steps.
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three groups ðn=m ¼ 3Þ. In each group, the number
of maintenance queries corresponds to mðm� 1Þ (the
m�m matrix) and the rest ðn�mÞ. The total number
of maintenance queries corresponds to the sum of the
counts for the three groups.

Nm ¼
n

m

j k
ðmðm� 1Þ þ ðn�mÞÞ þR,

R ¼ n�
n

m

j k
m

� �
ðn� 1Þ.

We can solve the equation qNm=qm ¼ 0 to find the
number m that minimizes Nm. If we assume n is
perfectly divided by m, then qNm=qm equals
n2=m2 � n. As can be seen, the total number of
queries Nm reaches its minimum when m is aroundffiffiffi

n
p

. Note that other grouping heuristics may also be
possible. For example, we could group maintenance
steps unevenly based on the estimated respective
delta sizes.

By replacing m with
ffiffiffi
n
p

, the total number of
maintenance queries now becomes Oðn3=2Þ. However,
this approach only combines temporary results that
have the same schema. For example, the combination
of the result from DR1tR2 and R01tDR2. This
limits the type of query shrinking that can be
considered. Below, we propose a new solution
strategy that relaxes the constraint of only combining
(unioning) deltas with the same schema. This
solution dramatically reduces the number of main-
tenance queries.
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4. Group heterogeneous deltas

4.1. Basic notations

We use � to represent the operation that takes a
list of deltas as input, possibly with different
schemas, and combines (union) them together. For
example,�ð½DR1�;DR2;DR3Þ equals a combined delta
containing both DR2 and DR3. The tuples contained
in the brackets are not included in the union. At this
point, we focus on the logical expressions only. The
engineering problem of how to implement the union
of deltas with different schemata will be discussed in
Section 4.4. A join operator applied to an expression
containing the � operator corresponds to the
computation of each delta in the result set produced
by the � expression. For example,
�ð½DR1�;DR2;DR3ÞtRi equals the collection of
result deltas DR2tRi and DR3tRi, henceforth
represented by fDR2tRi, DR3tRig. To further
simplify the notation, we may omit the t symbol in
TED P
ROOF

the result set whenever the context is clear, i.e.,
fDR2tRi;DR3tRig will be simplified to
fDR2Ri;DR3Rig.

We assume that each DRi has been processed at Ri

before it is reported to the view manager for
maintenance. That is, insert tuples in DRi have
already been inserted into Ri, while delete tuples in Ri

have already been deleted from Ri. Thus, each
maintenance query will be evaluated on R0i instead
of on Ri. Compensations are needed to get the
maintenance query results based on the original state
Ri. We introduce yi to represent the compensation
process using DRi. For example, assuming D is a
delta (either DRi or a previous maintenance query
result), then yiðDtR0iÞ ¼ DtR0i �DtDRi ¼

DtRi. The rationale behind this compensation
process can be illustrated by : DtR0i ¼

DtðRi [ DRiÞ ¼ DtRi [DtDRi. Note that both
D and DRi are available at the view manager. Thus
such compensation can be computed locally at the
view manager when we get the result of DtR0i.

4.2. A greedy grouping approach

To maintain n source deltas
DR1;DR2;DR3; . . . ;DRn on an n-way join view, one
extreme solution is to group all the intermediate
results (deltas) computed in the maintenance steps
(DRi or any previous maintenance query result) to
construct a combined query. We thus need to access
each data source (Ri, 1pipn only) once to evaluate
the maintenance process (see Eq. (4)). This way, we
only require n combined maintenance queries (the
theoretically minimal number). These n combined
maintenance queries will be evaluated in a sequential
manner by sending them to the data sources
R1;R2; . . . ;Rn, respectively. These queries are repre-
sented by Q1;Q2; . . . ;Qn, as further described below.
The overall approach is sketched in Algorithm 1,
while each of its steps is further elaborated upon
below.

Algorithm 1. GreedyGrouping(s_Deltas)
/*s_Deltas: An array list of source deltas, with

s_Deltas½i� ¼ DRi initially */

1:
 for ði ¼ 1; ipn; i þþÞ do
2:
 Compose maintenance query Qi from
s_Deltas,
except for s_Deltas½i�;

3:
 Send Qi to Ri;

4:
 Compensate query result of Qi;
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5:
 Update s_Deltas based on the compensated
query result;
55
6:
 end for
7:
 Compose DV by unioning deltas in s_Deltas;

57

59

61
The composition of each query Qi (step 2 in
Algorithm 1) and the corresponding compensation
processes of each query result (step 4 in Algorithm 1)
are described below.
63
�

65

67
Q1: We combine all source deltas (except DR1) and
send them to the data source R1. We evaluate the
query result. This process can be expressed by
�ð½DR1�;DR2;DR3; . . . ;DRnÞtR01
¼ fDR1;R

0
1DR2;R

0
1DR3; . . . ;R

0
1DRng.
 69
�

71

73
Q2: We combine all result deltas from Q1 except
the one containing DR2 and send it to R2 (referred
as evaluation).
� Evaluation: �ðDR1; ½R

0
1DR2�, R01DR3; . . . ;

R01DRnÞtR02 ¼ fDR1R02;R
0
1DR2;R

0
1R02DR3; . . . ;

R01R02DRng.
 75

77

79

81
After we get the query result, we compensate it
using DR2 for those result deltas containing DR1

(referred as compensation).
� Compensation:
fy2ðDR1R

0
2Þ;R

0
1DR2;R

0
1R02DR3; . . . ;R

0
1R
0
2DRng

¼ fDR1R2;R
0
1DR2;R

0
1R
0
2DR3; . . . ;R

0
1R02DRng.
83

85
EC
We now describe this process in general for any query
Qi (1oipn):
87
�
89

91

93

95
NCORRfor any query Qi (1oipn), we combine the results
from query Qi�1—except the one containing DRi—
and then ship them to the data source Ri for
evaluation.

� Evaluation: �ðR01R
0
2 . . .DRkRkþ1 . . .Ri�1 ð1

pkoiÞ, ½R01R02 . . .R
0
i�1DRi�, R01R

0
2 . . .

R0i�1DRk ðiokpnÞÞtR0i ¼ fR
0
1R02 . . .

DRkRkþ1 . . .Ri�1R0i ð1pkoiÞ, R01R
0
2 . . .

R0i�1DRi; R01R02 . . .R
0
i�1R01DRk ðiokpnÞg.
97

99

101

103
U
The result deltas that contain delta DRj (joi),
which correspond to any data source that has
already been visited before, will be compensated
using DRi, as described next:
� Compensation: apply yi to R01R

0
2 . . .

DRkRkþ1 . . .Ri�1R0i (1pkoi), we get the result
of Qi as fR01R
0
2 . . . DRkRkþ1 . . .Ri ð1pkoiÞ,

R01R02 . . .R
0
i�1DRi; R01R

0
2 . . .R

0
iDRk ðiokpnÞg.
TED P
ROOF

Thus, after the nth query Qn (replacing i with n), we
get fR01R

0
2 . . .DRkRkþ1 . . . Rn ð1pkonÞ; R01R

0
2 . . .

R0i�1DRng. By listing individual result deltas, we get
fDR1tR2tR3t � � �tRn; R01tDR2 tR3t
� � �tRn; R01tR02tDR3t � � �t
Rn; . . . ;R

0
1tR02tR03t � � �tDRng. This is same as

the equation we have shown for the batch main-
tenance plan (Eq. (4)) if we union these deltas
together. The correctness of the approach is shown
by the fact that the nth query result is the same as Eq.
(4). Thus, by issuing only n combined queries to the
underlying data sources, we can indeed compute
theincremental view extent DV .

One potential weakness of this approach is the
possibility of a large intermediate result set, in the
case that no join condition exists between some of the
intermediate results and the data source. For
example, assume we send �ð½DR1�; DR2;
DR3; . . . ;DRnÞ to data source R1 in Q1. Assume that
only R2 has a join condition with R1 given the view is
defined by R1tR2t � � �tRn. Thus, to evaluate
the result DRktR01 ð3pkpnÞ, we may have to
compute the Cartesian product instead between R1

and those other relations. Given that the size of each
data source may be huge, this approach may not
always be very beneficial in practice.

4.3. Conditional grouping approach

To address the above mentioned problem of
potentially large intermediate results arising in the
greedy grouping approach, we now propose the
conditional grouping strategy. The basic idea is to
make use of join conditions in the view definition.
This is because a maintenance query based on join
conditions is generally much cheaper to process than
one based on Cartesian products.

The main steps of the conditional grouping
approach are outlined in Algorithm 2, while each
subroutine is thereafter described in more detail. The
overall maintenance process is divided into two
phases, called the scroll up phase and the scroll down

phase. In each phase, we issue n� 1 queries by
grouping the deltas with common join conditions for
a data source together.

Algorithm 2. ConditionalGrouping(s_Deltas)
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Fig. 4. Scroll up phase: (a) matrix representation view; (b) query tree view.
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=�s_Deltas: An array list of source deltas, with

s_Deltas½i� ¼ DRi initially. �=
83
1:
 s_Deltas ¼ scroll_up (s_Deltas);

2:
C
s_Deltas ¼ scroll_down (s_Deltas);
85
3:
 ECompose DV by unioning deltas in s_Deltas;
R 87

89

91
OR4.3.1. Scroll up phase

The n� 1 queries in this phase are represented by
Qu

1;Q
u
2; . . . ;Q

u
n�1, respectively. They are evaluated

sequentially. We describe each query below.
C 93

95
�
97
UNQu
1: We send DR1 to R2, evaluate DR1tR02 and

then compensate the result using DR2. These two
steps can be expressed by �ðDR1ÞtR02 ¼ DR1R

0
2

and y2ðDR1R
0
2Þ ¼ DR1R2 (see Fig. 4(a1)).
99
�
101

103
Qu
2: We union the first query ðDR1R2Þ with DR2 and

send this collection to R3. We then compensate this
query result using DR3. The following steps
capture this process: (1) �ðDR1R2;DR2ÞtR03 ¼

fDR1R2R
0
3,DR2R

0
3g, and (2)

fy3ðDR1R2R
0
3Þ; y3ðDR2R03Þg ¼ fDR1R2R3; DR2R3g
E
(see Fig. 4(a2)).
T�
 Qu

3: Similarly, the third query is expressed as (1)
�ðDR1R2R3, DR2R3, DR3ÞtR04, and (2) then we
apply y4 to compensate the query results. We then
get fDR1R2R3R4;DR2R3R4;DR3R4g as the result of
the third query (see Fig. 4(a3)).

�
 To generalize, we do the following three operations
for any query Qu

i ð1oipn� 1Þ.

� Compose maintenance query Qu
i by

combiningQu
i�1 query result with DRi. We get

�ðDR1R2R3 . . .Ri;DR2R3 . . . Ri; . . . ;
DRi�1Ri;DRiÞ.
� Send Qu

i to Riþ1 and evaluate it against Riþ1. We
get the query result fDR1R2R3 . . .
RiR

0
iþ1;DR2R3 . . . RiR

0
iþ1; . . . ;DRi�1RiR

0
iþ1;

DRiR
0
iþ1g.

� Compensate the result using DRiþ1 (yiþ1). We
finally get fDR1R2R3 . . .RiRiþ1;DR2R3 . . .
RiRiþ1; . . . ;DRi�1RiRiþ1;DRiRiþ1g.
After processing query Qu
n�1, we get

fDRktRkþ1t � � �tRn ð1pkpnÞg as the result of
the scroll up phase (Fig. 4(a4)). Note that in Fig. 4,
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Fig. 5. Scroll down phase: (a) matrix representation view; (b) query tree view.
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deltas represented by different rectangle boxes are
unioned ð�Þ into one combined delta and sent to the
data source. Fig. 4(b) illustrates the corresponding
left-deep query tree representation of this process. In
this process, queries are evaluated in a bottom-up
manner.

4.3.2. Scroll down phase

The n� 1 queries in the scroll down phase are
represented by Qd

1 ;Q
d
2 ; . . . ;Q

d
n�1, respectively. These

queries are built based on the result obtained from
the scroll up phase. Below, we again describe this
phase by its queries.
91
�
93
COQd
1 : We evaluate �ðDRnÞtR0n�1 and get R0n�1DRn.

Note that no compensation needs to be applied in
this phase (Fig. 5(a1)).

�

95

97

99
UNQd
2 : We combine the result of the first query
ðR0n�1DRnÞ with the result from the scroll up phase
containing DRn�1 (DRn�1Rn in this case). This
results in �ðR0n�1DRn, DRn�1RnÞ. We then send it
to Rn�2, evaluate �ðR0n�1DRn, DRn�1RnÞtR0n�2
and get fR0n�2R

0
n�1DRn;R

0
n�2DRn�1Rng (Fig. 5(a2)).
�

101

103
To generalize, we take the following two steps for
any query Qd

i (1oipn� 1).
� Combine previous query (Qd

i�1) result
(fR0n�iþ1R

0
n�iþ2 . . .DRn�kþ1Rn�kþ2 . . . Rn,

1pkpi � 1g) with the result from the scroll up
ED 
phase that contains DRn�iþ1 (DRn�iþ1

Rn�iþ2 . . .Rn).
� Submit the combined query to Rn�i and
evaluate it against Rn�i. We get result
fR0n�iR

0
n�iþ1R

0
n�iþ2 . . . DRn�kþ1Rn�kþ2 . . .

Rn ð1pkpiÞg.
Thus, after processing query Qd
n�1, we get

fR01R
0
2R
0
3 . . .DRn�kþ1Rn�kþ2 . . .Rn (1pkpn� 1Þg.

As we can see, this equals fDR1tR2t
R3t � � �tRn; R01tDR2tR3t � � �t Rn;R

0
1t

R02t DR3t � � � tRn; . . . ;R
0
1tR02t R03t � � �

tDRng (see Fig. 5(a4)). By unioning the results in
this collection, we clearly obtain Eq. (4) again. Fig.
5(b) depicts the query tree representation of the scroll
down process. Similarly, the query tree is again
evaluated in a bottom up fashion. Note that the
join(s) inside the box (right-hand side of � operator)
have already been evaluated in the scroll up phase.

To summarize, the scroll up phase calculates the
upper part along the main diagonal of the batch
maintenance plan using n� 1 queries (Eq. (4)), while
the scroll down phase computes the remaining part in
another n� 1 queries.
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4.4. Grouping deltas together

Next, we address the engineering problem of
combining the heterogeneous deltas. For example,
consider building a combined delta for
�ðDR1tR2;DR2Þ. If the query engine at the data
source were advanced, it could exploit the similarity
among the deltas to scan the source relation once
when processing this � operator even if we send the
results separately. However, query engines may not
be that advanced. Thus, we instead propose a non-
intrusive method to address this issue of unifying
various deltas from different data sources. This
guarantees the general applicability of our method.

The basic idea is to construct one large table that
contains the schema of different deltas and fill the
respective unrelated fields with default values. This
table is shipped to the data source as one large delta
and evaluated in one set. The view manager splits the
large query result back into different deltas per
source. We may append certain identification related
information to the delta so we can split the query
result back into deltas more easily.

As shown in Fig. 6, instead of sending delta tables
DR1tR2 and DR2 to the data source R3 separately,
we first build a union table which contains the
information of both deltas and then send this
combined delta together to R3 to evaluate the
maintenance result in one pass. For the issues of
building a maintenance query from a delta table,
either a composite SQL query or temporary table
approach can be applied based on whether the data
source is cooperative or not. We will discuss this in
more detail in Section 7.2.
101

103
TED P
ROOF

5. Generalizing the maintenance strategies

5.1. Handling concurrent updates

In the grouping strategies proposed above, we
have thus far assumed that there is no concurrency
interfering with a given view maintenance plan. This
can be easily achieved by a multiversion system [6]
because we can always retrieve the right data source
states from the versioned source data. However, if a
compensation-based approach were to be used, such
as [15], concurrent updates would have to be
considered. To address this, we now propose a
method to maintain the view even in concurrent
environments.

We use two vectors to hold source updates: the
current vector (CV) holds the deltas per source that
currently are being maintained, while the concurrent

vector (CRV) holds all updates that occur concur-
rently to the current maintenance plan. Initially,
CRV is empty because all source updates will be put
into CV. After we begin to maintain the deltas in CV,
newly incoming updates will be put into CRV. As
usual, we use Ri (1pipn) to represent its original
data source state, and R0i (R0i ¼ Ri þ DRi) to repre-
sent the state that incorporates the effect of source
updates in CV. We use Rc

i to represent the state that
reflects R0i þ DRc

i , where DRc
i denotes the correspond-

ing deltas accumulated in CRV that are concurrent
with the current maintenance plan.

As done in most of the literature [1,10], we assume
that all message transfers between sources and the
view manager use a FIFO scheme. That is, all
updates that happen on a data source after the
evaluation of the maintenance query upon this source
will also arrive at the view manager (vector CRV)
after the arrival of the result of this maintenance
query. That is, we can use deltas in both vectors
(DRi;DRc

i ) to restore the appropriate data source
states (either R0i or Ri), when the view manager gets
the result of a maintenance query.

Now, we are ready to extend the original
compensation operator yi to yiþc

i and yc
i . Here yiþc

i

compensates the query result using DRi þ DRc
i . That

is yiþc
i ðDtRc

i Þ ¼ DtRi. The yc
i compensates the

result using DRc
i . That is, yc

i ðDtRc
i Þ ¼ DtR0i.

Given that, the above conditional grouping algorithm
can be adapted as follows for a concurrent environ-
ment: (1) For any query Qu

i in the scroll up phase, we
use yðiþ1Þþc

iþ1 to compensate the result. (2) For any
query Qd

i in the scroll down phase, we then use yc
n�i to

compensate the result.
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Fig. 7. Handling general view definitions: (a) a star-view definition; (b) maintain R1–R2–R3; and (c) maintain R4–G1–R5.
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Thus, we compute view delta ðDV Þ which exactly
only reflects the source updates in CV. Once we
refresh the view extent, we simply move the deltas in
CRV to CV and set Rk ¼ R0k (1pkpn). Thereafter,
we can repeat the maintenance process for the next
set of collected updates.

5.2. Handling general view definitions

The grouping strategies we have described so far
have 0 on linear join view definitions, i.e.,
R1tR2t � � �tRn, as also implicitly assumed by
most previous works in the literature [1,3,13,19].
However, practical view definitions may have arbi-
trary shapes beyond just linear join view definitions,
i.e., they may include acyclic and in some cases even
cyclic join relationships within the view definitions.
For these general view definitions, we use view graphs

to represent the view definitions. A node in a view
graph represents the data source, while an edge
denotes the join conditions that appear in the view
definition. We then propose the following view graph
transformation technique to maintain general join
view definitions: (1) Find a linear path and apply the
grouping strategies to the parts of the view definition
related to the linear path. (2) Transform the graph
using the partial results from (1) and recursively
apply this find-and-transform technique.

For example, Fig. 7(a) represents an acyclic view
(V ) that involves five data sources. To maintain this
view using grouping strategies, we first find a linear
path, i.e., R1tR2tR3. For simplicity, we use G1 to
represent this part of the view definition. We then
maintain G1 by the grouping strategy (Fig. 7(b)).
After that, we transform the original graph by
replacing the linear path using G1. Here, edges that
connect G1 to any of the nodes in the linear path are
changed to G1. Multiple edges between two nodes are
merged into one. The delta change of G1 (DG1) can
be got from the maintenance result of G1 (Fig. 7(c)).
We repeat the above processes until we get the final
TED P
ROOF

view maintenance result DV . Note that we do not
materialize G1. Thus a maintenance query involving
G1 (or G01 ¼ G1 + DG) has to be sent to each of the
data sources, i.e., R1tR2tR3 in this case.

6. Cost model and analysis

We now introduce cost models we have developed
to analyze the proposed maintenance strategies. In
this work, we focus on the following two cost metrics
since they are the main factors that affect the overall
performance: the cost of transferring data between
the view manager and the data sources, and the cost
of evaluating maintenance queries (join operations)
at the data sources. We note that the compensation
cost would be rather small if we were to apply a
multiversion-based concurrency control strategy [6].
This happens indeed to be the environment we have
at our disposal for our experimental study (Section
7). Hence, in the cost model, we do not consider the
compensation cost.

We use the following assumptions to further
simplify the models we develop: (1) Assume all data
sources are identical in terms of the cost of answering
similar maintenance queries. Thus, we use R to
represent each data source Ri (1pipn). (2) Assume
all DRi (1pipn) are identical in terms of the cost of
evaluating them against a data source R, i.e., all DRi

have same number of insert and delete tuples
involved. Thus, we can simplify our expressions by
using the symbol D to represent each delta DRi.

To represent the result delta of a maintenance
query composed from a source delta D, we define
Diþ1 ¼ DitR ð1pipn� 1Þ with D1 ¼ D. For
simplicity, we use Si to represent the size of a delta
Di.

The cost of the batch maintenance is given by Tb

with Tb ¼ n
Pn�1

i¼1 ½f netðSiÞ þ f joinðSiÞ þ f netðSiþ1Þ�,
which is a summation of individual maintenance
query costs. Here f net and f join represent the unit cost
functions of data transfer and maintenance query
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answering, respectively. Here, f netðSiÞ represents the
network cost of sending Di from the view manager to
the data source. f netðSiþ1Þ denotes the network cost
of transferring the corresponding query result from
the data source to the view manager. f joinðSiÞ denotes
the join cost of evaluating the corresponding main-
tenance query.

The cost of adjacent grouping can be estimated by
Ta assuming that we divide the maintenance steps
evenly into groups of size m where mon. Thus, n

maintenance steps are divided into n=m groups with
each having m maintenance steps. In each group,
m
Pm�1

i¼1 ½f netðSiÞ þ f joinðSiÞ þ f netðSiþ1Þ� represents the
cost of grouping and processing m source deltas (a
m�m matrix along the main diagonal in Eq. (4)),
while

Pn�1
i¼m ½f netðmSiÞ þ f joinðmSiÞ þ f netðmSiþ1Þ� de-

notes the cost of processing the result of the above
m�m matrix on the remaining n�m data sources.

Ta ¼
n

m
m
Xm�1
i¼1

½f netðSiÞ þ f joinðSiÞ þ f netðSiþ1Þ�

(

þ
Xn�1
i¼m

½f netðmSiÞ þ f joinðmSiÞ þ f netðmSiþ1Þ�

)
.

The cost of conditional grouping is given in Tc.
Corresponding to the two phase operations as
described in Section 4, Tc is composed of scroll up
and scroll down costs.

Pn�1
i¼1 ½f netð

Pi
j¼1 SjÞ þ

f joinð
Pi

j¼1 SjÞ þ f netð
Piþ1

j¼2 SjÞ� denotes the scroll up
phase cost, which simply sums up the cost of each
maintenance query. While

Pn�1
i¼1 ½f netðiSiÞ þ

f joinðiSiÞ þ f netðiSiþ1Þ� denotes the scroll down phase
cost. It is also a simple summation of queries in the
scroll down phase.

Tc ¼
Xn�1
i¼1

f net

Xi

j¼1

Sj

 !"

þf join

Xi

j¼1

Sj

 !
þ f net

Xiþ1
j¼2

Sj

 !#

þ
Xn�1
i¼1

f netðiSiÞ þ f joinðiSiÞ þ f netðiSiþ1Þ

h i
.

The above formulae show the basic relationship
between the number of maintenance queries and the
complexity (size) of each query as expected.

To highlight the key factors in this trade-off, we
now further simplify the above cost functions. Note
that in a local network environment, the unit cost
(f net) is rather small. We thus can simplify the cost
functions by removing the network cost factors. To
TED P
ROOF

further accentuate this difference, we use S to
represent each Si (assume the size of each delta Di

is the same, 1pipn� 1). Given these two assump-
tions, the cost expressions Tb, Ta and Tc can be
simplified as shown in Fig. 8. The relationship among
our strategies regarding the key cost factors is also
described in Fig. 8. Here the x-axis represents the
number of required maintenance queries, while the y-
axis denotes the average delta size in each main-
tenance query. Note that for the adjacent grouping
approach, we let m ¼

ffiffiffi
n
p

since it is shown to
minimize the number of maintenance queries in this
approach. As can be seen, if the query answering cost
for a large delta is less than that of the sum of the
costs of handling multiple smaller deltas, perfor-
mance improvements are expected by reducing the
number of maintenance queries.

7. Experimental evaluation

7.1. Experimental testbed

We have implemented the proposed strategies
based on the TxnWrap system [6]. TxnWrap is a
multiversion-based view maintenance system which
removes concurrency control concerns from its
maintenance logic. Thus, it is not necessary to apply
compensation for handling concurrent source up-
dates in our setting. The basic TxnWrap system
maintains one single source update at a time using
the known SWEEP algorithm [1]. The batch
TxnWrap [13] combines the updates from the same
data source and maintains the view extent using the
source-specific deltas.

We have conducted our experiments on four
Pentium III 500MHz PCs connected via a local
network. Each PC has 512M memory with Windows
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2000 and Oracle 8i installed. We employ six data
sources with one relation each over three PCs (two
data sources per PC). Each relation has 1,000,000
(1M) tuples with 64 bytes on average of each tuple
size. A materialized join view is defined through equi-
joins upon these six source relations residing on a
separate (the fourth) machine. The view has 1M
tuples with each tuple having 384 bytes on average
(having the attributes of the source relations in-
cluded). All the source deltas are composed of
approximately the same number of insert and delete
tuples. Note that two actual queries are needed when
a single delta contains both insert and delete tuples.
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7.2. Composing maintenance queries

Two ways of composing a maintenance query from
a delta can be distinguished based on source-
dependent properties, namely, whether the source is
cooperative or non-cooperative. A non-cooperative
source only answers maintenance queries (SQL
queries), but offers no other services or control to
the view manager. A cooperative data source would
cooperate with the view manager by allowing to
synchronize processes or to lock its data. To compose
an appropriate maintenance query from a delta
submitted to a non-cooperative data source (i.e.,
evaluating DRitRj), we have to use a composite
SQL query which unions maintenance queries for a
single source update to evaluate the result. A
cooperative source would allow the view manager
to build a temporary table directly at the data source,
UNCORR
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ship the delta data, evaluate it locally and send the
result back.

We now experimentally compare batch mainte-
nance costs using these two methods against sequen-
tial maintenance. In Figs. 9–11, we let the number of
data updates vary from 10 to 100 (and then from 500
to 3000) with all updates from the same data source
(on x-axis). The y-axis represents the total main-
tenance query processing time.

From Fig. 9, the processing time using a composite
query increases slowly. For the temporary table
approach, the increase of the total cost is even
smaller compared to using a composite query. This is
due to the fact that the setup cost (create temporary
table and populate its extent) dominates the actual
maintenance query expenses for small cases. This
also explains that with a small number of updates,
the temporary table approach is more expensive than
the composite query-based approach. The sequential
maintenance processing time increases linearly as
expected.

Fig. 10 displays the ratio of the sequential
processing time divided by batch processing using
the data obtained from Fig. 9. The higher the ratio,
the larger the performance improvement. We observe
that the improvement of the composite query
approach does no longer increase when the number
of updates is larger than 50 in our current setting.
While for batch maintenance using temporary tables,
the ratio increases steadily.

In Fig. 11, we see that the cost of batch
maintenance using the composite query approach
increases when the number of updates increases. This
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UNCis because a composite query composed of the union
of a large number of queries will result in a huge cost
increase. Thus we instead suggest to divide such a
large number of updates into smaller sub-batches of
queries of size k based on the ratio measured in Fig.
10. The cost of the sum of these subqueries will be
smaller than the cost of this one large composite
query. As seen in Fig. 11, when we choose k equal to
50, the total maintenance cost using a composite
query approach will reach its optimum in our
experiment. However, if we use the temporary table
approach, the total cost is even much lower than that
of the optimized composite query approach. This is
because the ratio of the increase of each such batch
maintenance query to the increase in the number of
source updates is very low.

To summarize, the cost of sequential maintenance
is linear in the number of source updates. The batch
maintenance has a fixed number of maintenance
queries Oðn2Þ with n being the number of data
sources. However, the performance of answering the
batching maintenance queries depends on the meth-
ods for composing maintenance queries from multi-
ple source updates. For the temporary table



ARTICLE IN PRESS

IS : 501

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

B. Liu et al. / Information Systems ] (]]]]) ]]]–]]] 15
EC

approach, the cost does not increase too much as the
number of source updates increases in each delta.
While the batch-query approach does increase non-
linearly as the number of source updates increases
(Fig. 11).

Thus, we expect another crosspoint when compar-
ing the batch-query approach with the sequential
approaches for large numbers of source updates.
While for the temporary table approach, we still
expect the batch maintenance approach to be much
more efficient. The reason is that answering a join
query with a delta containing 1,000,000 tuples may
not be 1000 times higher than answering a main-
tenance query containing 1000 tuples. Without loss
of generality, from now on we utilize this more
efficient temporary table approach to compose
maintenance queries from deltas when comparing
our proposed strategies.

7.3. Changing the number of source updates

Fig. 12 shows the average maintenance time (on
the y-axis) for different maintenance approaches by
varying the number of source updates from 100 to
1000 (on the x-axis). These updates are evenly
distributed among six data sources. That is, for the
k updates, each source delta experiences approxi-
mately k=6 updates. From Fig. 12, the maintenance
cost of all these strategies increases very slowly
because we compose and issue maintenance queries
using the temporary table approach. Seen from Fig.
12, the batch processing is almost four times slower
than the conditional grouping. We also see the
UNCORR
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following maintenance cost relationship: conditional

grouping o adjacent grouping o batch processing.
Thus, with a smaller number of maintenance queries,
we do have less processing time even when the
complexity (size) of each maintenance query in-
creases. Given that the adjacent grouping is a
medium performer between the batch and condi-
tional grouping, we will focus on comparing batch
with conditional grouping in more depth below.

Fig. 13 shows the performance changes of batch
and conditional grouping given an increasing number
of source updates. The maintenance cost of both
approaches increases steadily as the size of each delta
increases. The conditional grouping still outperforms
batch maintenance due to the size of the delta not
being a major factor on the Oracle query cost if we
use the temporary table approach and the condi-
tional grouping has a smaller number of maintenance
queries.

7.4. Impact of the join ratio

We set up 200 updates on six sources (each source
delta change experience about 30 updates) and vary
the join ratio from 0.5 to 3.0 (on x-axis). Join ratio
here represents the average number of tuples affected
by a source change. For example, a join ratio equals
to 2 means that a single update which changes a tuple
in the source may cause 25 tuples to be updated in the
view extent given the view is defined over six sources.
From Fig. 14, we see that the higher the join ratio,
the higher both maintenance costs. A high join ratio
increases the size of each temporary maintenance
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UNCOresult, which in turn increases the time to answer the
maintenance query. In this experiment, the rates,
defined as the batch maintenance cost divided by the
grouping maintenance cost, are 3.06, 2.81, 2.71, 2.42,
and 2.27 for join ratios 1, 1.5, 2, 2.5, and 3,
respectively. Thus, the higher the join ratio, the
closer these two maintenance costs become. This is
because any change in the temporary result size will
be amplified by the join ratio and the conditional
grouping has extra data (null values) that needs to be
processed in the scroll up phase. Thus, the benefit of
having a smaller number of maintenance queries will
be slowly overtaken by the increase of each query
cost.
7.5. Changing the distribution of source updates

We examine the impact of the distribution of 1000
updates among the data sources on the maintenance
performance (Fig. 15). On the x-axis, a distribution
of 1 denotes that we only have one source delta with
1000 updates, while k (2okp6) indicates that we
consider k source deltas with each delta change
having around 1000=k updates. Fig. 15 presents the
cost ratio (batch maintenance cost divided by
conditional grouping cost). Clearly, the more data
sources are involved, the higher the performance
improvement. This is because the total number of
maintenance queries in the batch maintenance
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changes from 5 to 30 queries if we increase the
distribution from 1 to 6 sources, while the condi-
tional grouping only changes from 5 to 10 corre-
spondingly. Thus more improvement is achieved by
further reducing the number of maintenance queries.

7.6. Impact of the network delay

To evaluate the impact of different data transfer
rates of the network, we insert delay factors to model
the data shipping costs. The delay is generated based
on the average time to transfer one tuple. For
example, if we assume that the average time of
transferring a tuple with 64 bytes is ‘, then it takes
100 � 2 � ‘ to transfer one delta with 100 tuples with
128 bytes each. We set up six source delta changes
with about 180 updates each (a total of 1000 data
updates) and we let ‘ vary from 0 to 200ms. In Fig.
16, both maintenance costs grow steadily as the
network cost of each maintenance query is increas-
ing. In a typical network environment where the
transfer time of one tuple with 64 bytes is less than
100ms, conditional grouping is more efficient than
the batch method because we have a smaller number
of maintenance queries. However, in a slow network,
i.e., when the average transfer time for one tuple is
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larger than 200ms, then the gain achieved by
reducing the number of maintenance queries is
overtaken by the increase in the network cost of
each query. This is caused by having some extra data
(null values) to be transferred in the conditional
grouping. This extra data becomes a burden in a slow
network.

8. Related work

Maintaining materialized views under source
updates is one important issue in many applications
such as information integration and data ware-
housing [10]. Early work has studied incremental
view maintenance assuming no concurrency [7,20]. In
approaches that need to send maintenance queries to
the data sources, especially in a environment with
autonomous data sources, concurrency problems can
arise. Maintenance strategies such as [1,5,6,10,11]
have focused on handling anomaly problems due to
concurrent updates among data sources.

From both a resource and performance perspec-
tive, incrementally maintaining batches of updates is
of particular interest. That is, changes to the sources
can be buffered and propagated periodically to
maintain the view extent. Refs. [3,7,12,13,21,22]
propose algorithms to maintain materialized views
incrementally using source-based batching. Salem et
al. [3] proposed an asynchronous view maintenance
algorithm using delta changes of data sources. Labio
et al. [12] proposed a batch maintenance algorithm
which can be applied to maintain a set of views. In
our previous work [13], we have proposed a batch
view maintenance strategy that works even when
both data and schema changes may happen on data
sources. However, all these existing approaches are
only concerned with batching updates from the same
source. Recent work [23] proposes an efficient
maintenance strategy that exploits the asymmetry
among different components of the maintenance
cost. Lee et al. [19] introduce a delta propagation
strategy that also reduces the number of maintenance
queries to data sources. It is close to our proposed
adjacent grouping approach. However, none of the
above have considered how to group heterogeneous
deltas to further reduce the number of maintenance
queries—as undertaken by our work.

Posse [24] introduced a view maintenance optimi-
zation framework. This work focuses on the order in
which these source deltas are to be installed (to be
maintained). While in our work here, we explore the
optimizations at a lower level. That is, given delta
PROOF

changes, we study how to compose maintenance
queries to data sources to calculate the maintenance
results more efficiently.

Distributed query optimization [16,25,26] focuses
on query optimization in a distributed environment.
It provides algorithms for join ordering and for
allocating query operators to resources. This is
orthogonal to what we have explored here since our
work focuses on how to reduce the number of
maintenance queries given the join ordering has been
decided. Making use of shared common expressions
has been well studied in multiple query optimization
[18,27]. As we have discussed, such common expres-
sions are usually too large to be evaluated in a
maintenance plan. For example, the common sub-
expression such as R3tR4t � � �tRn for the first
two maintenance steps in Fig. 4(a) is too expensive to
evaluate. This is because each data source may be
huge compared to the deltas. Instead, we identify the
common sources and share the access to them. In our
context, such common sources could possibly even be
manually identified because the maintenance queries
are relatively fixed given a view definition.
TED
9. Conclusion

In this paper, we have taken a fresh new look at
how to restructure a batch view maintenance plan to
optimize the view maintenance performance when
maintaining a large batch of source updates. This
optimization is achieved by dramatically reducing the
number of maintenance queries to remote data
sources. A series of novel grouping maintenance
strategies have been proposed and implemented in a
working prototype. Our experimental studies illus-
trate that maintenance performance can be signifi-
cantly improved by having a smaller number of
maintenance queries. In particular, our conditional
grouping strategy is almost four times faster com-
pared with the typical batch maintenance in a
majority of the cases.

As a next step, we are investigating how to
combine the distributed query processing techniques
with grouping strategies we have described in this
paper to further optimize the maintenance perfor-
mance. For example, we explore how to choose the
best linear path in the join graph for grouping
maintenance among many possible linear paths, and
how to efficiently maintain complex (i.e., cyclic) join
views.
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