
Discovery of High-Dimensional Inclusion Dependencies∗

Andreas Koeller
Dept. of Computer Science
Montclair State University

Upper Montclair, NJ 07043, USA
Andreas.Koeller@montclair.edu

Elke A. Rundensteiner
Dept. of Computer Science

Worcester Polytechnic Institute
Worcester, MA 01609, USA

rundenst@cs.wpi.edu

Abstract

Determining relationships such as functional or inclu-
sion dependencies within and across databases is impor-
tant for many applications in information integration. When
such information is not available as explicit meta data, it is
possible to discover potential dependencies from the source
database extents. However, the complexity of such discov-
ery problems is typically exponential in the number of at-
tributes.

We have developed an algorithm for the discovery of in-
clusion dependencies across high-dimensional relations in
the order of 100 attributes. This algorithm is the first to ef-
ficiently solve the inclusion-dependency discovery problem.
This is achieved by mapping it into a progressive series of
clique-finding problems in k-uniform hypergraphs and solv-
ing those. Extensive experimental studies confirm the algo-
rithm’s efficiency on a variety of real-world data sets.

1. Introduction

In this work, we are concerned with the discovery of
meta-information (dependencies and interrelationships) in
databases, and in particular with the discovery of inclusion
dependencies (INDs).

Due to the nature of data and its generation, informa-
tion is often stored in multiple places, with large amounts
of redundancy (for example across different departments of
a large enterprise or across multiple companies in the same
field of business). When integrating data sources that are
likely to be (even partly) redundant, such as in the EVE
view integration system [6], a method to discover such re-
dundancies is needed.

∗ This work was performed while Andreas Koeller was a research assis-
tant at Worcester Polytechnic Institute. The work was supported in part by
the NSF NYI grant #IRI 97–96264, the NSF CISE Instrumentation grant
#IRIS 97–29878, and the NSF grant #IIS 9988776.

Also, applications in which data about similar real-world
objects is collected independently will benefit greatly from
redundancy discovery. For example, medical or pharma-
cological databases could be compared for similarities or
overlaps, which could provide important information rele-
vant for the discovery of treatments for certain diseases.

In general, the discovery of INDs will be beneficial in
any effort to integrate or compare unknown databases. A
manual extraction of INDs by domain experts is usually
not feasible due to the large number of information sources
in the world, the potentially high number of attributes in
real-world relations, and a widespread lack of reliable meta-
information about legacy databases. Furthermore, the gen-
eral IND discovery problem has been shown to be NP-hard
as a function of the number of attributes in the relations to
be compared [4].

To the best of our knowledge, the algorithm we are pre-
senting is the first that solves the IND-finding problem for
large numbers of attributes. We are aware of only one other
solution of the IND discovery problem, using a levelwise
enumeration algorithm [3]. It shows good performance for
relations with few attributes but does not scale well to num-
bers of attributes (and in particular maximal IND sizes) be-
yond 10.

The IND discovery problem is loosely related to the
problem of association rule mining (ARM, [1]). However,
with the exception of [7], ARM algorithms are levelwise al-
gorithms in the sense that a “frequent itemset” of length k
is only discovered after all itemsets of lengths 1 . . . (k − 1)
have in some sense been evaluated. Typically, ARM algo-
rithms become feasible by using additional properties of as-
sociation rules (most notably the concept of support), which
are not available to us. For this reason, an adaptation of
such algorithms to IND discovery would show significantly
higher complexity than algorithm FIND2.

In the remainder of this paper, we sketch the main idea
of the FIND2 process while a more extensive description
including mathematical background and algorithmic details
is given in [5].

1

2. Background

Inclusion dependencies are defined as below.

Definition 1 (IND) Let R[a1, a2, . . . , an] and
S[b1, b2, . . . , bm] be (projections on) two relations.
Let X be a sequence of k distinct attribute names
from R and Y a sequence of k distinct attribute names
from S, with 1 ≤ k ≤ min(n,m). Then an inclu-
sion dependency (IND) σ is an assertion of the form
σ = R[X] ⊆ S[Y]. k is called the arity of σ. An IND
σ = (R[a1, . . . , ak] ⊆ S[b1, . . . , bk]) is valid between two
relations R and S if the sets of tuples in R and S satisfy the
assertion given by σ.

One very important observation on INDs is that a k-ary
IND with k > 1 naturally implies a set of m-ary INDs, with
1 ≤ m ≤ k. That is, for a given valid IND σ = R[A] ⊆
S[B] 1, the IND σ′ = R[A′] ⊆ S[B′] will be valid for any
subset A′ ⊆ A and its corresponding subset B′ ⊆ B. Such
a set of m-ary INDs implied by a k-ary IND has a cardinal-
ity of

(
k
m

)
and is denoted by Σk

m. Note that the validity of
all implied k-ary INDs of a given IND σ is a necessary but
not a sufficient condition for the validity of σ. For example,
(R[A1] ⊆ S[B1]) ∧ (R[A2] ⊆ S[B2]) ∧ (R[A3] ⊆ S[B3])
does not imply R[A1, A2, A3] ⊆ S[B1, B2, B3].

3. Mapping the IND Discovery Problem to a
Graph Problem

The worst-case complexity of the problem is determined
by the number of possible distinct INDs between two re-
lations, which is exponential in the number of attributes in
those relations [5, 4]. In our work, we instead make use of
the fact that it is possible to find a minimal cover of valid
INDs (i.e., a set of INDs from which all valid INDs can be
derived by implication) without even enumerating all valid
INDs, reducing the complexity significantly.

We propose a mapping of our problem into a more
tractable graph problem. We use k-uniform hypergraphs
which are graphs in which each edge is incident to exactly
k nodes. Thus, standard undirected graphs can be consid-
ered “2-uniform hypergraphs”. Furthermore, we extend the
concept of clique (maximal connected subgraph) to hyper-
graphs.

Definition 2 (hyperclique) Let G = (V,E) be a k-
hypergraph. A hyperclique is a set C ⊆ V such that for
each k-subset S of distinct nodes from C, the edge corre-
sponding to S exists in E. The cardinality of a hyperclique
C, denoted by |C|, is the number of nodes in C. As a special
case, a single node with no adjacent edges is a hyperclique
of cardinality 1.

1The notation A means a set of attributes.

In analogy to above, a clique is a hyperclique in a 2-
hypergraph. The mapping from our problem to a graph
problem is achieved as follows:

We first map the set of valid INDs to a set of hypergraphs
Gm (2 ≤ m < k), by making all k-ary valid INDs hyper-
edges in a k-uniform hypergraph. The nodes of all hyper-
graphs (for any k) are formed by the unary INDs. For ex-
ample, the first hypergraph for k = 2 has as its nodes all
valid unary INDs, and as its edges all valid binary INDs.

We then show that, for m = 2 . . . k − 1, any set Σk
m of

INDs implied by a valid σk maps to a hyperclique in the cor-
responding hypergraph Gm. In other words, the only candi-
dates for valid high-arity INDs are those that correspond to
cliques in k-uniform hypergraphs for small k. Those graphs
can be constructed after a relatively small number of IND
validity checks on INDs of very small arity.

3.1. The Clique-Finding Problem

The Clique-Finding Problem (also called the Maxi-
mum Clique Problem) is a well known NP-complete graph
problem. Efficient algorithms for reasonably sized graphs
(i.e., 2-hypergraphs, with up to about 100 nodes) are given
in the literature, e.g., [2]. With our definition of hyper-
cliques (Def. 2), the Clique-Finding Problem extends nat-
urally to k-hypergraphs.

The NP-complexity of the clique-problem is mainly due
to the exponential number of possible cliques in a graph,
although there are polynomial-time algorithms for some
cases. We have developed and implemented an algorithm
called HYPERCLIQUE that finds cliques in k-uniform hy-
pergraphs and, while NP-complete, shows satisfactory per-
formance for relatively sparse graphs with few cliques. Due
to space limitations, we refer to [5] for details.

4. Algorithm FIND2

We now briefly sketch out the algorithm FIND2 (Fig. 1)
which applies clique- and hyperclique-finding techniques to
find inclusion dependencies (INDs). Full details and deriva-
tions can be found in [5]. FIND2 takes as input two relations
R and S, with kR and kS attributes, respectively and re-
turns a generating set of INDs between attributes from R
and S. The algorithm proceeds by first exhaustively val-
idating unary and binary INDs, thus forming the first (2-
uniform) hypergraph (Lines 01-02). A clique-finding al-
gorithm then determines all higher-arity INDs candidates
(Line 06). Since the clique property is necessary but not
sufficient for the validity of a higher-arity IND, each IND
candidate thus discovered must also be checked for valid-
ity (Line 09). Each IND that tests invalid (but is a clique
in the 2-hypergraph) is broken down into its implied 3-ary
INDs, which then form the edges of a 3-hypergraph (Line

2

11). Edges corresponding to invalid INDs are removed
from the 3-hypergraph (Line 05). Then, our algorithm HY-
PERCLIQUE finds new IND candidates, in the manner de-
scribed above (Line 06), with invalid INDs broken down
into 4-ary subsets, and so forth for increasing k. The pro-
cess is repeated until no new cliques are found. At each
phase, some small INDs might be missed and are discov-
ered in line 13 (see [5]). In all of our experiments using real
data sets, the algorithm terminated for k ≤ 6.

01 : Set V ← genValidUnaryINDs(R,S)
02 : Set E2 ← genValidBinaryINDs(R,S, V)
//initialize result set with unconnected nodes
//(i.e., cliques of size 1)

03 : Set res ← {v ∈ V |degree(v) = 0}
04 : for m ← 2 . . . kS − 1
05 : Graph Gm ← (V, validINDs(Em))
06 : Set I ← genCliquesAndCheckAsINDs(Gm)
07 : Set Ctmp ← ∅
//collect invalid cliques into Ctmp

08 : forall (c ∈ I)
09 : if (c is valid ∧ |c| ≥ m) res ← res ∪ c
10 : if (c is invalid ∧ |c| ≥ (m + 1))

Ctmp ← Ctmp ∪ c
//generate edges for the next hypergraph Gm+1

11 : Em+1 ← genKAryINDsFromCliques
(m + 1, Ctmp)

12 : if (Em+1 = ∅) return res
13 : res ← res ∪ genSubINDs(m,Em+1, res)
14 : return res

Figure 1. Algorithm FIND2.

A complete explanation of the algorithm’s functions, in-
cluding a correctness and complexity discussion, can be
found in [5].

5. Discussion

We implemented algorithm FIND2 in Java over Oracle 8i
relational databases (using JDBC). We ran a large suite of
experiments, comparing our algorithm to well-known lev-
elwise strategies (“Apriori” class of algorithms), as well as
testing the algorithm’s performance on multiple data sets
obtained from the UC Irvine KDD Archive.

We found that algorithm FIND2 finds large INDs (50-
100 attributes in relations of 5,000-100,000 tuples) in rea-
sonable time (minutes to a few hours). As one example, the
discovery of a 30-ary IND in a training set (two relations
of 41 attributes each, with 4500 and 5000 tuples, respec-

tively) took about 350 seconds. Note that the implementa-
tion used standard SQL queries to determine IND validity
and significant speedups are possible with more careful im-
plementation. Also, the algorithm scales linearly in the size
of base relations, even in the simple SQL-based implemen-
tation used. The full set of experiments can be found in [5].

6. Conclusions

In this paper, we have proposed an algorithm called
FIND2 for the problem of discovering inclusion dependen-
cies over high-dimensional databases. With our solution,
it is possible to automatically compare two databases with
known schema, but unknown interrelationships, and iden-
tify inclusion dependencies between their attributes. As
our algorithm discovers database interrelationships, it is
useful for a variety of purposes, such as the identification
of database duplicates or the comparison of large multi-
dimensional databases. The discovery of inclusion depen-
dencies is a hard problem, with inherent NP-complexity [4].
By mapping the problem to a set of graph problems, we
achieve a significant improvement in performance over the
naı̈ve algorithm. Due to space limitations, we can only give
a very brief overview over the work. A more detailed treat-
ment can be found in [5].

References

[1] R. Agrawal and S. Ramakrishnan. Fast algorithms for mining
association rules. In Proc. Intl. Conf. on Very Large Data-
bases (VLDB), pages 487–499, 1994.

[2] C. Bron and J. Kerbosch. Finding all cliques of an undirected
graph. Communications of the ACM, 16(9):575–577, Septem-
ber 1973.

[3] F. de Marchi, S. Lopes, and J.-M. Petit. Efficient algorithms
for mining inclusion dependencies. In Proceedings of In-
ternational Conference on Extending Database Technology
(EDBT), pages 464–476, 2002.

[4] M. Kantola, H. Mannila, K. J. Räihä, and H. Siirtola. Dis-
covering functional and inclusion dependencies in relational
databases. International J. of Intelligent Systems, 7:591–607,
1992.

[5] A. Koeller and E. A. Rundensteiner. Discovery of high-
dimensional inclusion dependencies. Technical Report WPI-
CS-TR-02-15, Worcester Polytechnic Institute, Dept. of
Computer Science, 2002.

[6] A. J. Lee, A. Koeller, A. Nica, and E. A. Rundensteiner.
Data Warehouse Evolution: Trade-offs between Quality and
Cost of Query Rewritings. In Proceedings of IEEE Interna-
tional Conference on Data Engineering, Special Poster Ses-
sion, page 255, Sydney, Australia, March 1999.

[7] M. J. Zaki. Scalable algorithms for association mining. IEEE
Transactions on Knowledge and Data Engineering (TKDE),
12(3):372–390, May/June 2000.

3

