
Restructuring Batch View Maintenance Efficiently ∗

Bin Liu, Elke A. Rundensteiner and David Finkel
Worcester Polytechnic Institute, MA, 01609 USA

{binliu | rundenst | dfinkel}@cs.wpi.edu

ABSTRACT
Materialized views defined over distributed data sources are
a well recognized technology for modern applications. State-
of-the-art incremental view maintenance requires O(n2) or
more maintenance queries with n being the number of data
sources in the view definition. In this work, we propose
novel maintenance strategies that dramatically reduce the
number of maintenance queries to remote data sources. The
proposed algorithms have been implemented in a working
prototype system. Experimental studies illustrate that our
algorithms is able to achieve about 400% performance im-
provement in terms of total processing time compared with
existing batch algorithms.

Categories and Subject Descriptors: H.2.4 [Database
Management]: Systems–Distributed databases

General Terms: Algorithms, Performance.

Keywords: Batch Maintenance, Grouping Maintenance.

1. INTRODUCTION
Materialized views [1, 4] that integrate and store data from

distributed data sources are applied to ensure better access,
reliable performance and high availability. They have been
widely used in applications such as decision support sys-
tem, data warehousing and e-business. Materialized views
must be maintained upon source changes in order to provide
quality results. Incremental view maintenance aims at only
computing the deltas of the view result instead of recomput-
ing the view from scratch [2, 9, 1, 8, 3]. Among these works,
the incremental maintaining of batches of updates [8, 6, 5]
is of particular interest because it is attractive from both
a resource and a performance perspective to most practical
systems. are two fold. One,

However, modern data sources are becoming increasingly
large. Rapid changes made to such data sources are com-
mon too. Moreover, the data sources tend to be distributed
over the network. These trends of most practical systems
pose new challenges to efficient materialized view mainte-
nance. State-of-the-art view maintenance strategies require
O(n2) (for batch view maintenance) or more (i.e., for sequen-

∗This work was supported in part by the NSF grant #IIS
9988776.

Copyright is held by the author/owner.
ACM 0-89791-88-6/97/05.

tial maintenance) maintenance queries [9] to remote data
sources with n being the number of data sources in the view
definition. They usually only batch the updates from the
same data source [8, 6, 5]. This mechanism does not scale
for large sized nor for large number of data sources. In this
work, we investigate scalable view maintenance strategies.
The basic idea is to restructure the batch view maintenance
aimed at reducing the number of maintenance queries to re-
mote data sources. Though such reduction in the number
of maintenance queries will increase the complexity of each
such query, we find that it still outperforms existing batch
view maintenance strategies in a significant manner (around
400% improvement) in a majority of the cases.

2. STATE-OF-THE-ART
We use the following example to describe the state-of-

the-art incremental view maintenance. Assume the mate-
rialized view V is defined on 4 data sources represented as
R1 ⊲⊳ R2 ⊲⊳ R3 ⊲⊳ R4. ∆R1, ∆R2, ∆R3, ∆R4 are the corre-
sponding source delta changes that need to be maintained.
The changes to the view extent (∆V) by all these source
delta changes can be computed by Equation (1) [5]. Here
Ri represents the pre-state of the underlying data source,
while R′

i = Ri + ∆Ri is the post-state of the data source.
We refer to each line in Equation (1) as a maintenance step,
e.g., ∆R1 ⊲⊳ R2 ⊲⊳ R3 ⊲⊳ R4, and each join operation within
such a step as a maintenance query, e.g., ∆R1 ⊲⊳ R2.

∆V = ∆R1 ⊲⊳ R2 ⊲⊳ R3 ⊲⊳ R4

+R′

1 ⊲⊳ ∆R2 ⊲⊳ R3 ⊲⊳ R4

+R′

1 ⊲⊳ R′

2 ⊲⊳ ∆R3 ⊲⊳ R4

+R′

1 ⊲⊳ R′

2 ⊲⊳ R′

3 ⊲⊳ ∆R4

(1)

Equation 1 requires O(n2) remote maintenance queries to
compute ∆V where n is the number of data sources.

3. GROUPING MAINTENANCE
Adjacent Grouping. One method to reduce the number
of maintenance queries is to share the common access to the
data sources. As illustrated in Figure 1, we could divide
the four maintenance steps into two groups. The first two
maintenance steps then can be rewritten into (∆R1 ⊲⊳ R2 +
R′

1 ⊲⊳ ∆R2) ⊲⊳ R3 ⊲⊳ R4, while the other two can be rewrit-
ten into (∆R3 ⊲⊳ R4 + ∆R4 ⊲⊳ R′

3) ⊲⊳ R′

2 ⊲⊳ R′

1. Thus, the
total number of maintenance queries will be reduced from
12 to 8 in this case. In general, if we divide maintenance

steps equally, the total number of maintenance queries will
be O(n3/2) [7].

∆R4R3
'R2

'R1
'

R4∆R3R2
'R1

'

R4R3∆R2R1
'

R4R3R2∆R1

Figure 1: Adjacent Grouping

Conditional Grouping. A more aggressive grouping scheme
can compute ∆V using just 2 ∗ (n − 1) maintenance queries
when the view is defined as a linear join (V = R1 ⊲⊳ R2 ⊲⊳

. . . ⊲⊳ Rn), namely, a join condition(s) between each adjacent
pair Ri and Ri+1.

(a-1) Query 1 to R2 (a-2) Query 2 to R3 (a-3) Query 3 to R4

∆R4R3
'R2

'R1
'

R4∆R3R2
'R1

'

R4R3∆R2R1
'

R4R3R2∆R1

∆R4R3
'R2

'R1
'

R4∆R3R2
'R1

'

R4R3∆R2R1
'

R4R3R2∆R1

∆R4R3
'R2

'R1
'

R4∆R3R2
'R1

'

R4R3∆R2R1
'

R4R3R2∆R1

(b-3) Query 3 to R1(b-2) Query 2 to R2(b-1) Query 1 to R3

∆R4R3
'R2

'R1
'

R4∆R3R2
'R1

'

R4R3∆R2R1
'

R4R3R2∆R1

∆R4R3
'R2

'R1
'

R4∆R3R2
'R1

'

R4R3∆R2R1
'

R4R3R2∆R1

∆R4R3
'R2

'R1
'

R4∆R3R2
'R1

'

R4R3∆R2R1
'

R4R3R2∆R1

(a) Scroll Up Phase

(b) Scroll Down Phase

Figure 2: Conditional Grouping

We now describe this grouping strategy based on the above
example view definition. There are two phases for this group-
ing strategy. The first is the scroll up phase (Figure 2(a)),
which sends ∆R1 to data source R2 and evaluates the result
∆R1 ⊲⊳ R2. After we get the result, we union the result
with ∆R2 and generate a combined maintenance query to
data source R3. We get ∆R1 ⊲⊳ R2 ⊲⊳ R3 and ∆R2 ⊲⊳ R3

as the second query result. Then we union ∆R3 into this
second query result and compose the maintenance query to
R4. The result of the scroll-up phase is {∆R1 ⊲⊳ R2 ⊲⊳ R3 ⊲⊳

R4, ∆R2 ⊲⊳ R3 ⊲⊳ R4, ∆R3 ⊲⊳ R4}. The scroll down phase
(Figure 2(b)) computes the remaining part of the queries.
As in Figure 2(b), the first maintenance query in this phase
evaluates ∆R4 ⊲⊳ R′

3. The second maintenance query com-
bines the result of the first query (∆R4 ⊲⊳ R′

3) with the cor-
responding part of the scroll-up phase result (∆R3 ⊲⊳ R4)
and evaluates them against ∆R′

2. We go on with this pro-
cess until we reach the data source R1 to get the final result
of ∆V . Thus, the total number of maintenance queries in
this case is reduced from 12 to 6.

Details of the algorithm such as how to group different
deltas and how to maintain views beyond simple linear joins
are omitted here due to space limitation. Readers can refer
[7] for in-depth discussions.

4. EXPERIMENTS
We have implemented above maintenance strategies within

the TxnWrap system [3]. The experiments are conducted on
four Pentium III 500MHz PCs connected via a local network
with 512M memory, running Windows 2000 and Oracle 8i.
We employ six data sources with one relation each over three
PCs. Each relation has 1M tuples with 64 bytes on aver-
age of each tuple size. A materialized join view is defined
through equi-joins upon these six source relations residing
on the fourth machine. The view contains 1M tuples with
each tuple having 384 bytes on average. All the source deltas
are composed of approximately the same number of insert
and delete tuples. Two queries are needed when a single
delta contains both insert and delete tuples.

1k 5k 10k 15k 20k 25k
Batch (s) 821.7 842.7 876.7 947.8 1031.2 1108.4
Cond. (s) 247.6 260.2 289.4 316.3 357.3 437.1

Due to space constraints, we only compare the perfor-
mance of batch and conditional grouping given the total
number of source updates changing from 1k to 25k. A com-
prehensive study can be found in [7]. Seen from the above
table, we can see that the conditional grouping outperforms
batch maintenance due to the conditional grouping having
a smaller number of maintenance queries.

5. CONCLUSION
We have proposed two novel maintenance algorithms that

require a smaller number of maintenance queries to remote
data sources. The experimental studies illustrate that main-
tenance performance can be significantly improved by our
proposed solutions compared with the typical batch mainte-
nance in the literature.

6. REFERENCES
[1] D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek. Efficient

View Maintenance at Data Warehouses. In Proceedings of
SIGMOD, pages 417–427, 1997.

[2] J. A. Blakeley, P.-A. Larson, and F. W. Tompa. Efficiently
Updating Materialized Views. In Proceedings of SIGMOD,
pages 61–71, May 1986.

[3] S. Chen, B. Liu, and E. A. Rundensteiner. Multiversion
Based View Maintenance over Distributed Data Sources.
ACM Transactions on Database Systems (TODS), 2004, to
appear.

[4] A. Gupta and I. Mumick. Maintenance of Materialized
Views: Problems, Techniques, and Applications. IEEE Data
Engineering Bulletin, 18(2):3–19, 1995.

[5] W. J. Labio, R. Yerneni, and H. Garćıa-Molina. Shrinking
the Warehouse Updated Window. In Proceedings of
SIGMOD, pages 383–395, June 1999.

[6] B. Liu, S. Chen, and E. A. Rundensteiner. Batch Data
Warehouse Maintenance in Dynamic Environments. In
CIKM’02, pages 68–75, Nov 2002.

[7] B. Liu, E. A. Rundensteiner, and D. Finkel. Restructuring
View Maintenance Plans for Large Update Batches.
Technical Report WPI-CS-TR-03-29, WPI, 2003.

[8] K. Salem, K. S. Beyer, R. Cochrane, and B. G. Lindsay. How
To Roll a Join: Asynchronous Incremental View
Maintenance. In SIGMOD, pages 129–140, 2000.

[9] Y. Zhuge, H. Garćıa-Molina, J. Hammer, and J. Widom.
View Maintenance in a Warehousing Environment. In
Proceedings of SIGMOD, pages 316–327, May 1995.

