
The EVE Approach: View Synchronization
In Dynamic Distributed Environments

Amy J. Lee, Member, IEEE, Anisoara Nica, Member, IEEE, and

Elke A. Rundensteiner, Member, IEEE

Abstract—The construction and maintenance of data warehouses (views) in large-scale environments composed of numerous

distributed and evolving information sources (ISs) such as the WWW has received great attention recently. Such environments are

plagued with changing information because ISs tend to continuously evolve by modifying not only their content but also their query

capabilities and interface and by joining or leaving the environment at any time. We are the first to introduce and address the problem

of schema changes of ISs, while previous work in this area, such as incremental view maintenance, has mainly dealt with data changes

at ISs. In this paper, we outline our solution approach to this challenging new problem of how to adapt views in such evolving

environments. We identify a new view adaptation problem for view evolution in the context of ISs schema changes, which we call View

Synchronization. We also outline the Evolvable View Environment (EVE) approach that we propose as framework for solving the view

synchronization problem, along with our decisions concerning the key design issues surrounding EVE. The main contributions of this

paper are: 1) we provide an E-SQL view definition language with which the view definer can direct the view evolution process, 2) we

introduce a model for information source description which allows a large class of ISs to participate in our system dynamically, 3) we

formally define what constitutes a legal view rewriting, 4) we develop replacement strategies for affected view components which are

designed to meet the preferences expressed by E-SQL, 5) we prove the correctness of the replacement strategies, and 6) we provide

a set of view synchronization algorithms based on those strategies. A prototype of our EVE system has successfully been built using

Java, JDBC, Oracle, and MS Access.

Index Terms—Data warehouses, view maintenance, query rewriting, view adaptation, view synchronization, view definition language

distributed, evolving information sources, and source evolution.

�

1 INTRODUCTION

1.1 Motivation and Problem Definition

ADVANCED applications such as web-based information
services, data warehousing, digital libraries, and data

mining typically create and maintain tailored information
repositories gathered from among a large number of
internetworked information sources (ISs) [42], such as the
World Wide Web. There is generally a large variety and
number of ISs in these modern environments, each modeled
by diverse data models and each supporting different query
interfaces and query processing capabilities. Furthermore,
individual ISs are autonomous, freely updating both their
content and their capabilities, even frequently joining or
leaving the environment.

In order to provide efficient information access in such
environments, relevant data is often retrieved from several
sources, integrated as necessary, and then materialized into
what is called a view in database terminology [42]. In fact,
businesses are beginning to boom that focus exactly on this
type of “middle layer” service by offering to collect related

information (about products or services) from multiple
sources and integrating it into an online resource (view)
easily accessible by potential information seekers. For
instance, many WWW users may be interested in all aspects
of travel information including car rental and hotel fares,
special bargains and flight availabilities of different airlines.
While such information could principally be retrieved by
each of the interested customers by querying many ISs and
integrating the results into a meaningful answer, it is much
preferable if one travel consolidator service were to collect
such travel-related information from different airlines and
travel agent sources on the WWW and to organize such
information into materialized views. Besides providing
simplified and customized information access to customers
who may not have the time nor skill to identify and retrieve
relevant information from all sources, materialized views
may also offer more consistent availability—shielding
customers from the fact that some of the underlying ISs
may temporarily become disconnected as well as offering
better query performance as all information can be retrieved
from a single location.

However, views in such evolving environments introduce
new challenges to the database community [42]. One
important and as of now not yet addressed problem for these
applications is that current view technology generally
supports static a priori-specified view definitions—meaning
that views are assumed to be specified on top of a fixed
environment [17], [35]. Once the underlying ISs change their
capabilities, the views derived from them may become
undefined. It is this problem of view evolution caused by

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2002 931

. A.J. Lee is with the Center for Human Resources, 921 Chatham Lane #100,
Columbus, OH 43221. E-mail: alee@postoffice.chrr.ohio-state.edu.

. A. Nica is with iAnywhere Solutions, 415 Phillip St., Waterloo, Ontario,
Canada N2L 3X2. E-mail: anica@ianywhere.com.

. E.A. Rundensteiner is with the Department of Computer Science,
Worchester Polytechnic Institute, 100 Institute Rd., Worchester, MA
01609-2280. E-mail: rundenst@cs.wpi.edu.

Manuscript received 29 Dec. 1997; revised 8 Sept. 2000; accepted 13 Mar.
2001.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 106131.

1041-4347/02/$17.00 � 2002 IEEE



external environment changes (at the schema level rather
than at the data level as done by practically all previous work
on view maintenance [2], [42], [43]) that we tackle in this
paper. We call this the view synchronization problem [35].
There are two exceptions to this previous view maintenance
work for data changes, namely by Gupta et al. [9] and
Mohania and Dong [24]. While we assume that the evolution
of the affected view definitions is triggered by capability
changes of ISs, Gupta and Mohania assumed that view
redefinition was explicitly requested by the user at the view
site. Hence, previous work on view redefinition did not deal
with the problem of how to salvage the affected view
definitions itself (at the schema level) but was exactly told
how to modify it. Instead they dealt with efficiently managing
changes at the data level to now comply with the modified
view definition. Our problem and solution is thus compli-
mentary to work by others as once we have determined an
acceptable view redefinition then algorithms proposed by
others [9], [24] on how most efficiently to maintain the view, if
materialized, could be applied to our system.

Furthermore, Levy et al. [21] as well as Arens et al. [1]
have taken an alternative approach to information integra-
tion than we propose here based on creating a global domain
model, i.e., an a priori defined type system fixed in time that
defines all possible attributes and relations in a given
domain (“world view”). Over such a domain model,
information providers define views that specify which part
of the world’s data they provide. Consumers also query the
domain model. An algorithm then rewrites a consumer’s
query in terms of the providers’ views currently available
and, thus, provides the consumer with whatever data
happens to be available at the moment.

Here, in our approach we explore the inverse approach
that does neither rely on a globally fixed domain nor on an
ontology of permitted classes of data, both strong assump-
tions that are often not realistic. Rather, views are assumed
to have been built in the traditional way over a number of
base schemas and those views now must be adapted to base
schema changes by rewriting them using information space
redundancy and relaxable view queries as described in this
paper. The benefit of this approach is that no predefined
domain (which is hard to define and to maintain) is
necessary, and that changes in the data provided can still
be accommodated by automatically rewriting user queries
(without human intervention). The core contribution of this
current paper is the development of a solution approach to
make this possible.

In [21], it is necessary to establish a world model before
any source can provide information—a very complicated
and often impossible task. Changes to the world model are
not possible in this approach (and in fact are not discussed
in the published literature on the world view approach). We
expect that it would require a manual redefinition of
possibly all information providers’ and consumers’ queries.
Such a respecification of many/all source descriptions is
obviously not desirable. Another drawback of this alter-
native approach is the insufficient handling of redundancy
in the information space. If two information providers
define partially overlapping view extents, Levy et al.’s
algorithms find the “minimal cover” for the queried data,

i.e., uses information from a randomly picked information

source that satisfies the user’s query. In contrast to this

approach, we can make use of known overlaps of source

data to provide nonequivalent rewrites of queries in the

case of the possible unavailability of one of the sources.
The issues associated with this evolution problem are

now explained by the following example of a travel

scenario, which will serve as the basis for examples

throughout the remainder of the paper.

Example 1. Assume a traveler plans to visit Boston in one

month for pleasure. To make his stay in Boston without

last minute hastiness, he would like to make arrange-

ments for car rental and hotel stay. The query for getting

the necessary information can be specified as an SQL

view definition as follows:

CREATE VIEW Travel-Info-in-BostonAS

SELECT C:Name;C:Address; C:Phone;H:Name;

H:Address;H:Phone

FROM CarRentalC;BostonHotelH

WHERE ðC:V al-Pak-Partnership ¼0 Y es0Þ and
ðH:V al-Pak-Partnership ¼0 Y es0Þ;

ð1Þ

where CarRental and BostonHotel are relations that

contain the car rentals and lodging information in Boston

only.
Assume, for some reason that the BostonHotel

relation cannot be accessed (this effect could be caused
if the IS that provided the BostonHotel relation goes out
of business). In state-of-the-art view technology, execut-
ing the Travel-Info-in-Boston query to get requested data
(or to materialize the view) will then cause an error
message such as “Error: the BostonHotel relation is
undefined”. We, on the other hand, propose several
potential ways to “remedy” this view definition evolu-
tion. To name a few:

1. Assume there is a MAHotel relation that has the
lodging information for the entire Massachusetts
state (that is, MAHotel � BostonHotel). Query 1
can be rewritten to have the BostonHotel relation
replaced by the MAHotel relation. This would
return the initially expected answer plus possibly
additional hotels not in Boston.

2. Assume there is a BackBayHotel relation that
contains the lodging information in the Back Bay
area only (that is, BackBayHotel � BostonHotel).
Query 1 can be rewritten to have the BostonHotel
relation replaced by the BackBayHotel relation,
which is likely to return useful answers for the
traveler but it will not be a complete listing of all
answers for the initial query.

3. The traveler may even be content to have the car
rental information only, since with a car he can
drive around and find a hotel after he arrives in
Boston. In this case, removing the BostonHotel
relation and the attributes referencing the Bos-
tonHotel relation from the Travel-in-Boston query
is acceptable to the user.

932 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2002



As illustrated in Example 1, there may be many alternative
ways to salvage the affected view definition. The research
questions that we hence attempt to answer are:

1. How do we determine which among these possible
alternative synchronization options are acceptable to
the user (as they are not necessarily equivalent)?

2. What type of information must be available to EVE
in order to provide sufficient information for finding
appropriate replacements for the affected compo-
nents of a view definition?

3. What are the criteria for a synchronized view
definition to be considered correct?

4. What are appropriate strategies for finding correct
view synchronizations (replacements) for affected
views?

1.2 The EVE Approach

In this paper, we define a novel paradigm towards
addressing the view synchronization problem that provides
a solution to all of the above research questions. We put
forth that it is important for the person in charge of defining
the virtual information resource (i.e., view) to be able to
express preferences about the view evolution process
(instead of our system making automatic and generic
choices)—as these view definers are the ones that know
the criticality and dispensability of the different compo-
nents of a view for applications and end users of the view.

As these view evolution preferences refer to specific
components of view definition, in our system the view
definer can directly embed their preferences about view
evolution into the view definition itself. We design an
extended view definition language (a derivative of SQL,
which we call Evolvable-SQL or short E-SQL) that incorpo-
rates user preferences for change semantics of the view (see
Section 4). Such view preference specification would allow
us to avoid human interaction each and every time a change
occurs in the environment.

To facilitate the replacement finding task, we exploit a
model for information source description (MISD) for
capturing the capabilities of each IS as well as the
interrelationships between ISs. Similar to the University of
Michigan Digital Library system [29] and the Garlic
project [3], each IS registers its description expressed by
this model in a Meta Knowledge Base (MKB) when
joining the system. This Meta Knowledge Base (MKB)
thus represents a resource that can be exploited when
searching for an appropriate substitution for the affected
components of a view in the global environment.

Based on this solution framework of E-SQL and the
MISD, we introduce strategies for evolving views transpar-
ently. Our proposed view rewriting process, which we call
view synchronization, finds a view redefinition that meets all
view preservation constraints specified by the E-SQL view
definition (VD). That is, it identifies and extracts appro-
priate information from other ISs as replacements of the
affected components of the view definition and produces an
alternative view definition.

Our goal is to “preserve as much as possible” of the
original view extent of the affected view definitions instead
of completely disabling them with each IS change [17], [35].

To the best of our knowledge, our work is the first to study
this view synchronization problem, and no alternate frame-
work designed to solve this problem has been put forth thus
far. A EVE prototype system has been implemented using
Java, JDBC, Oracle, and MS Access, and it is running in the
Database Systems Research Lab at the Worcester Polytech-
nic Institute. An online EVE demonstration can found at the
DSRG project web site at http:\\davis.wpi.edu\dsrg.

The EVE system has also been formally demonstrated in
ACM SIGMOD ’99 [33].

1.3 Outline of Paper

The remainder of the chapter is structured as follows: In
Section 2, we present the EVE framework, and in Section 3, we
introduce a web-based travel agency example used as a
running example throughout the paper. The extended view
definition language, E-SQL, designed to add flexibility to
current view technology is presented in Section 4. In Section 5,
we present the information source description model (MISD),
while criteria for selecting appropriate substitutions for view
components are given in Section 6. In Section 7, we give our
algorithms for the view synchronization problem. Section 8
lists related work in the literature, and Section 9 presents our
conclusions.

2 EVOLVABLE VIEW ENVIRONMENT (EVE)
FRAMEWORK

Our view synchronization process attempts to evolve views
when they are affected by schema changes triggered by the
participating ISs. Next, we present the Evolvable View
Environment (EVE) framework that we propose for tackling
the view synchronization problems in dynamic environ-
ments (Fig. 1).

IS Registration. Our environment can be divided into two
spaces, i.e., the view space and information space. The
information space is populated by a large number of ISs. ISs
are heterogeneous and distributed. Most importantly, they

LEE ET AL.: THE EVE APPROACH: VIEW SYNCHRONIZATION IN DYNAMIC DISTRIBUTED ENVIRONMENTS 933

Fig. 1. The framework of the Evolvable View Environment (EVE).



are dynamic and can autonomously change their capabilities,
when desired. They could even join or leave the system at any
time. An IS is “integrated” in the global framework via a
wrapper that serves as a bridge between the information
space and the view space. The main functionality of a
wrapper is to translate the messages specified in the under-
lying data definition/manipulation languages into a com-
mon language used in the view site, and vice versa. The
wrapper is assumed to be intelligent so that it can extract not
only raw data, but also meta information about the IS, such as
changes at the schema level of the IS, performance data, or
relationships with other ISs.

Meta Knowledge Base (MKB). When an IS joins EVE, it
advertises to the MKB its capabilities, data model (e.g., the
semantic mappings from its concepts to the concepts
already in the MKB), and data content. The information
providers have strong economic incentives to provide the
meta knowledge of their individual ISs as well as the
relationships with other ISs, since populating the MKB
makes their data known by the view users and, thus,
increases the data utilization of their data set (especially, if
they offer the same information at a better price).

We have designed a model for information source
descriptions (MISD) [17], [35] that is capable of describing
the content and capabilities of heterogeneous ISs. MISD
captures meta knowledge such as an attribute must have a
certain type (type integrity constraint), one relation can be
meaningful joined with another relation if certain join
constraints are satisfied (join constraint), a fragment of a
relation is partially or completely contained in another
fragment of some other relation (partial/complete informa-
tion constraint), and so on (see Section 5). The IS
descriptions collected in the MKB form an information
pool that is critical in finding appropriate replacements for
view components when view definitions become undefined
(see Section 5) and for translating loosely-specified user
requests into precise query plans [29].

MKB Evolution. When an underlying IS makes a change
to its capabilities (e.g., adds a new relation), the MKB no
longer reveals the IS correctly in the sense that the meta
knowledge describing the IS and the actual capabilities of the
IS are distinct. For this, we have designed the MKB Evolution
process to react to schema changes in the information space.
In our framework, each IS will notify ,via the wrapper
interface, the MKB of any such schema changes so that they
can be properly registered in the MKB. The MKB Evolver
module will then take appropriate actions to update the MKB
[26]. For example, deleting an attribute A from a relation S
may cause the MKB evolver to modify a subset constraint
between two relations S and R, e.g., “S � R”, into the
constraint “S� (project all attributes ofRbesidesA fromR)”.
In other cases, some constraints may have to be completely
removed from the MKB if they contain references to the
deleted attribute.

View Maintenance. The view maintainer tool (Fig. 1) in
general is in charge of propagating data updates executed
on an IS site to all affected views. In our system, this tool
will also be in charge of bringing the view content up-to-
date after the view definition already has been changed by
the view synchronizer in response to a schema change.

View Synchronization. The view synchronizer tool (Fig. 1)
evolves affected views transparently according to users’
preferences expressed by our extended view definition
language E-SQL. View synchronization is the focus of this
paper, and we will present replacement strategies and view
synchronization algorithms in later sections.

Global Consistency Checking Across Sources. There
are two types of inconsistencies (related to meta knowl-
edge) in EVE. The first one is that constraints expressed in
the MKB do not correspond to the information actually
provided by ISs; and the second one is that different
assertions in the MKB contradict each other. The first type
of inconsistency occurs when 1) either an IS provider makes
an error when entering a MISD description, 2) an update
occurred at one IS that causes a constraint that used to hold
to become invalid, or 3) the usage and, hence, content of an
IS changes over time without proper notification to the
MKB. For example, the information provider for IS1 inserts
the fact that the relation R is equivalent to a relation S in
another site IS2 into the MKB. Now, the provider of IS2,
that is not aware of this assertion made about S in IS2,
inserts a new tuple t that makes the assertion become false.

There are alternative approaches for resolving this
inconsistency. For example,

1. insert the tuple t into the relation R as well,
2. reject the insertion into S,
3. modify the invalid assertion in the MKB so that it

becomes valid (i.e., in this case, change 00IS1:R �
IS2:S

00 into 00IS1:R � IS2:S
00Þ; or

4. remove the invalid assertion from the MKB.

Since checking and enforcing constraints across distributed
autonomous ISs are an extremely difficult problem all on its
own, in this work we assume that providers of individual
ISs are in charge of assuring that their data is consistent
with the meta knowledge collected in the MKB. We do not
at this time incorporate a tool into our EVE framework that
resolves possible inconsistencies. However, once being
notified about the entry or removal of some data item by
an IS, EVE will notify the creators of all constraints in the
MKB that may possibly be violated by this data modifica-
tion. For example, on inserting a new tuple t into the
relation S in the above example, both the providers of S and
R are notified that the update occurred and that the
constraint “IS1:R � IS2:S” may now be inconsistent. It is
up to the providers of IS1 and IS2 to determine how to
handle this situation, once given the notification.

MKB Consistency. The second type of MKB consistency
concerns conflicts between the constraints entered in the
MKB and, thus, can be detected by our MKB Consistency
Checker module without help from the IS providers. One
example of this type of conflict is that one information
provider declares that a relation R of IS1 is a strict subset of
a relation S in another site IS2 and, at the same time, the
provider of S claims that the extent of S is a strict subset of
R. This is clearly an inconsistency. Our MKB consistency
checker discovers such controversial meta knowledge using
various types of inference techniques. Once detected,
inconsistent assertions are reported to responsible informa-
tion providers to have the differences resolved.

934 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2002



3 RUNNING EXAMPLE: THE TRAVEL

CONSOLIDATOR SERVICE

To demonstrate our solution approach, we use a travel
consolidator service provider as running example through-
out this paper. Below, we describe the relevant information
sources (expressed using relations in our system) and two
example SQL views, while additional relations and views
are added later in the paper, as needed.

Example 2. Consider a large travel consolidator which has a

headquarter in Detroit, USA, and many branches all over

the world. It helps its customers to arrange flights, car

rentals, hotel reservations, tours, and purchasing insur-

ances. Therefore, the travel consolidator needs to access

many disparate information sources, including domestic

as well as international sites. Since the connections to

external information sites, such as the overseas branches,

are very expensive and have low availability, the travel

consolidator materializes the query results (views) at its

headquarter or other US branches (at the view site).

Some of the relevant ISs are listed in the table in Fig. 2.

Assume the headquarter maintains complete sets of

information of the customers, tours, and tour partici-

pants in the following formats: Customer(SSN, Name,

Address, City, Phone, Age),1 Tour(TourID, TourName,

Type, Duration)—where Type = {luxurious, economy,

super–valued}, and Participate(AcctNo, PSSN, PName,

TourID, StartingDate) that states which customer joins
which tour starting on what day. We further assume the

local branches keep partial sets of information of its local

customers, the tours offered locally, and the participation

information of its local customers. The flight reservation

information FlightRes(PName, Airline, FlightNo, Source,

Dest, Date) is managed by each individual airline

company. Insurance information Accident_Ins(AcctID,

Holder, Amount, Birthday) is kept by each individual
insurance company. The car rental company and lodging

information, CarRental(Name, Address, Phone, City,

State, Country) and Hotel(Name, Address, Phone, City,

State, Country), are managed by each individual com-

pany, respectively.

Let’s assume that the travel agency has a promotion

for the customers who travel to Asia. Therefore, the

travel agency needs to find the customers’ names,
addresses, and phone numbers in order to send promo-

tion letters to these customers or call them by phone. The

view query for getting the necessary information can be

specified as follows:

CREATE VIEWAsia-CustomerAS

SELECT Name;Address; Phone

FROM Customer C; F lightRes F

WHERE ðC:Name ¼ F:PNameÞ AND
ðF:Dest ¼ 0 Asia0Þ

ð2Þ

Note that Query 2 is a static a priori-specified query. We
use this travel consolidator service example to demon-
strate the usage of and interactions among proposed
evolution parameters in later sections.

4 E-SQL: THE VIEW DEFINITION LANGUAGE

A novel principle of our approach is to explore the evolution

of an affected view based on preferences by its definer. In this

section, we thus design the EVE view definition language for

evolvable views, called Evolvable-SQL or E-SQL, for this

purpose. For simplicity’s sake, we assume in this work that

views are defined by the SELECT-FROM-WHERE SQL

syntax with a conjunction of primitive clauses in the WHERE

clause, where a primitive clause has one of the following

forms:

ðhAttribute Namei $ hAttribute NameiÞ

or

ðhAttribute Namei $ hvalueiÞ

with

$ 2 f<;�;¼;; >g:

E-SQL is an extension of the SELECT-FROM-WHERE

queries augmented with specifications for how the query

may be evolved under IS capability changes. EVE attempts to

salvage the affected views by following the evolution

preferences expressed in the evolution parameters of the E-

SQL view definitions. The general format of the E-SQL view

definition language is given in Fig. 3.

In Fig. 3, the set Local_Column_List corresponds to the

local names given to attributes preserved in the view V. The

evolution parameters VE, AD, AR, RD, RR, CD, and CR and

their respective values are defined as given in Fig. 4. In the

table, each type of evolution parameter used in E-SQL is

represented by a row, with column one giving the parameter

name and the abbreviation for the parameter, column two the

LEE ET AL.: THE EVE APPROACH: VIEW SYNCHRONIZATION IN DYNAMIC DISTRIBUTED ENVIRONMENTS 935

Fig. 2. Descriptions of relevant information sources.

1. Note that when it is not necessary to explicitly specify the full name of
an attribute, we omit the IS ID.



possible values of the parameter can take on plus the

associated semantics, and column three the default value.

Definition 1. View Component. The attributes in the SELECT
clause (A), relations in the FROM clause (R), and primitive
clauses in the WHERE clause (C) are the basic units of a view.
These basic units are called the view components of a view.

Two evolution parameters are attached to each view

component. One is the dispensable parameter, denoted as XD
where X could be A, R, or C for attribute, relation, or

primitive clause component, respectively. The dispensable

parameter states whether the view component is essential

and, hence, must be kept in the evolved view (when the

value is false); or the view component could be dropped if a

replacement cannot be found (when the value is true). The

other is the replaceable parameter, denoted as XR with X
likewise defined as above. The replaceable parameter specifies

whether the view component could be replaced in the view

synchronization process (when its value is true) or the view

component cannot be replaced (when the value is false). A

view definer can also specify that the evolved view extent

must be equivalent to (if the value is “� ”), a superset of (if

the value is “� ”), or a subset of (if the value is “� ”), with

respect to the original view extent using the VE parameter.

If no restrictions on the view extent are given, then VE is set

to “� .”

When the parameter setting is omitted from the view

definition, then the default value is assumed. This means

that a conventional SQL query (without explicitly specified

evolution preferences) has well-defined evolution seman-

tics in our system, i.e., anything the user specified in the

original view definition must be preserved exactly as

originally defined in order for the view to be well-defined.

Our extended view definition semantics are thus well-

grounded and compatible with current view technology.

Below we now use an example to demonstrate the utility

and usage of the evolution parameters.

Example 3. Assume the travel agency (i.e., the view definer)
states the following preference when she specifies Query 2:

. The travel agency is willing to put off the phone
marketing strategy as long as it can reach out to
its customers by sending out promotion invitation
letters to them. That is, the customer’s phone
number attribute is dispensable, if it is deleted
from the relation Customer for some reason and a
suitable substitute cannot be found.

. The travel agency will accept the name, address,
and phone number information even if the data
comes from other source(s). (Replacability of
these attributes is permitted.)

. Both relations in the FROM clause are essential
components of the view. (Then, relation replac-
ability is set of false.)

. The Customer relation may be obtained from
other source(s), but not the FlightRes relation.
That is, the Customer relation is replacable.

936 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2002

Fig. 3. General syntax of the E-SQL view definition language.

Fig. 4. View evolution parameters of E-SQL language.



. The first primitive clause in the WHERE clause,

an equijoin operation that joins the Customer

relation with the FlightRes relation by customer’

names, is necessary for the view to be useful to its

users. Thus, the system must maintain it. How-

ever, the data may come from other source(s).
. The second primitive clause, a local condition

specified on the FlightRes relation, finds all the

passengers who travel to Asia. The travel agency

is willing to accept a view without this condition

specified,2 i.e., having the promotion the travel

agency is willing to make contact with more

customers, e.g, those traveling to the Far-East as

well. Thus, sending invitation letters to all

customers traveling by air, but not necessary to

Asia, is acceptable though not desirable.

Expressing all the above preferences for evolution

mentioned above, we now augment the SQL query given

in (2) with the corresponding evolution parameters,

which then results in the E-SQL query given in (4).

CREATE VIEW Asia-Customer ðVE ¼00�00Þ AS
SELECT Name ðAR ¼ trueÞ;Address ðAR ¼ trueÞ;

Phone ðAD ¼ true;AR ¼ trueÞ
FROM Customer C ðRR ¼ trueÞ;FlightRes F
WHERE ðC:Name ¼ F:PNameÞ ðCR ¼ trueÞ

AND ðF:Dest ¼ 0 Asia0Þ ðCD ¼ trueÞ:
ð4Þ

Note that for the view components that have their

evolution parameter values omitted, the default value is

assumed as per Fig. 4. To name a few, the attributes

Name and Address in the SELECT clause are indis-

pensable, and the relation FlightRes is indispensable and

nonreplaceable.

In summary, E-SQL is a base model of extending SQL

with evolution preferences, and many additional extensions

are possible to refine the model. For example, information

of which sources are acceptable as replacements could be

added to the replacement parameter. It is however our goal

to keep the model as simple as possible until a clear need

for a more fine-grained preference model arises driven by

some application needs.

5 MISD: MODEL FOR INFORMATION SOURCE

DESCRIPTION

Information sources may be constructed using different
data models, and the wrapper of each information source
expresses the capabilities of its underlying information
source into a common simple model that is understood by
our EVE system. MISD allows a large divergent class of ISs
to participate in EVE. Fig. 5 summarizes the type of
constraints supported in our current system. Note that
other constraints such as key or foreign key constraints
could easily be added in the future. These descriptions are
collected in a Meta Knowledge Base (MKB) (see Fig. 1),
forming an information pool that is critical in finding
appropriate replacements for view components when view
definitions become undefined.

5.1 Data Content Description

The model used to describe the basic units of information

available in each of the ISs is the relational model. An IS has

a set of relations IS:R1, IS:R2; ; IS:Rn. A base relation is an

n-ary relation with n  2. A relation name is not required to

be unique in the MKB, but the pair (IS name, relation name)

is. That is, if the information source IS exports the relation

R, then IS:R is assumed to be unique in the MKB. A

relation R is described by specifying its information source

and the set of attributes belonging to it as follows:

IS:RðA1; . . . ; AnÞ: ð5Þ

5.2 Type Integrity Constraints

The domain types of the attributes Ai are described using

type integrity constraints, denoted by AiðTypeiÞ. A type

constraint for a relation RðA1; . . . ; AnÞ is specified as:

T CRðAiÞ ¼ ðRðAiÞ � AiðTypeiÞÞ; ð6Þ

where AiðTypeiÞ can be viewed as a one-column relation

with domain type Typei. The type integrity constraint of

T CRðAiÞ says that any of the possible values of the attribute

Ai is contained in the relation AiðTypeiÞ. The type integrity

constraints of the attributes A1 to An of the relation R can be

combined into a single type integrity constraint as follows:

T CRðA1;...;AnÞ ¼
ðRðA1; . . . ; AnÞ � A1ðType1Þ � . . .�AnðTypenÞÞ

ð7Þ

which says that the attribute Ai is of domain type Typei, for

i ¼ 1; . . . ; n. For simplicity, we assume that the attribute

types are primitive.3 If two attributes are exported with the

LEE ET AL.: THE EVE APPROACH: VIEW SYNCHRONIZATION IN DYNAMIC DISTRIBUTED ENVIRONMENTS 937

Fig. 5. Possible types of semantic constraints for IS descriptions.

2. Note that, in general, dropping a local condition is more acceptable
than dropping a join condition, since dropping a join condition may change
the view definition dramatically. For example, replacing a join condition
that returns some subset of tuples by a Cartesian product which then would
return all pairwise combinations of tuples from both relations as view
result.

3. In the future, we plan to allow complex types and a hierarchy of types.
We anticipate that most of the proposed solution approach will continue to
apply to these extended types.



same name, they are assumed to have the same type (which

must be reflected by the type integrity constraints for their

relations).

5.3 Join Constraints

A join constraint between two relations R1 and R2, denoted

as JCR1;R2
, states that tuples in R1 and R2 can be

meaningfully joined if the join condition, i.e., a conjunction

of primitive clauses, is satisfied. If no join constraint is

specified between two relations, then we consider any

possible relationship between them to be coincidential, and,

hence, will not attempt to join between them for replace-

ment purposes. A generic join constraint is as follows:

JCR1;R2
¼ C1 AND � � � AND Clð Þ; ð8Þ

where C1; . . . ; Cl are primitive clauses over the the attributes
of R1 and R2.

Example 4. Some of the join constraints for our running
example presented in Section 3 are given in the table of
Fig. 6.

5.4 Partial/Complete Information Constraints

A partial/complete (PC) constraint between two relations, R1

and R2, states that a (horizontal and/or vertical) fragment

of R1 is semantically contained or equivalent to a

(horizontal and/or vertical) fragment of R2 at all times.

EVE makes use of the PC constraints to decide if an evolved

view extent is equivalent, subset of, or superset of the initial

view extent. A generic PC information constraint between

two relations, R1 and R2, is specified as follows:

PCR1;R2
¼

�
(Ai1

;...;Aik
ð)CðAj1

;...;Ajl
ÞR1Þ

$(An1
;...;Ank

ð)CðAm1
;...;Amt ÞR2Þ

�
;

ð9Þ

where Ai1 ; . . . ; Aik ; Aj1 ; . . . ; Ajl are attributes of R1;

An1 ; . . . ; Ank ; Am1
; . . . ; Amt

are attributes of

R2; T CðR1:AisÞ ¼ T CðR2:AnsÞ;

for s ¼ 1; . . . ; k; and $ is f�;�;�g for the partial (� and � )
or complete (� ) information contraint, respectively.

Example 5. Let Customer(Name, Address, Phone, Age) be a

relation that maintains all the customer information at

the headquarter site, and MABranch(Name, Address) be

a relation that manages the customers who reside in

Massachusetts. The PC constraint shown in (10) states

that the MABranch relation is contained in the Customer

relation:

PCMABranch;Customer ¼
(Name;AddressðMABranchÞ � (Name;AddressðCustomerÞ
� �

:

ð10Þ

6 VIEW EVOLUTION FOUNDATIONS

Given a schema change of an underlying IS, EVE finds

views in the VKB affected by the schema change. The view

synchronizer in EVE attempts to salvage these views by

finding appropriate replacements for the affected view

components. In this chapter, we first define what constitutes

a “legal” view rewriting of an affected view and, then,

introduce replacement strategies for substituting various

affected view components.

6.1 Formal Foundation for View Synchronization

In this section, we give a formal definition of what is

considered to be a legal view rewriting for a view which

became obsolete after a schema change of an underlying

information source. First, we introduce some basic defini-

tions that are used in the legal view rewriting definition.

Definition 2 (Affected View). A view is “affected” by a delete-

attribute/delete-relation schema change if the deleted schema is

referred to in the SELECT, FROM, and/or WHERE clause(s)

of the view.

Definition 3 (Amendable View). An affected view defined as

above is “amendable”, if none of affected view components has

its evolution parameters set to (false; false).

Definition 4 (Evolution Parameter Assignment). When a

view component C0 is used to replace an affected view

component C, the evolution parameters associated with C0

are set by the following rules:

. Rule 1. If C0 is used to replace exactly one view

component C of the original view V , the new evolution

parameters are set to be the same as those of the

original C. Note that C may be replaced by either one

C0 or possibly by more than one new view component.

In this case, we say that each of the new view

components C0 replaces one view component, namely,

C. (See Example 6).

938 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2002

Fig. 6. Relevant join constraints for Example 2.



. Rule 2. Assume a new view component C0 is used to

replace several view components X1; :::; Xk of the

original view with evolution parameter settings being

X1ðpar1;1 ¼ val1;1; par1;2 ¼ val1;2Þ; . . . ;
Xkðpark;1 ¼ valk;1; park;2 ¼ valk;2Þ;

where pari;1 and pari;2 are view evolution parameters

for Xi and vali;j 2 ftrue; falseg. Then, we set the two

evolution parameters of C0 to

�
parC0;1 ¼ ðval1;1AND � � �AND valk;1Þ;
parC0;2 ¼ ðval1;2AND � � � AND valk;2Þ

�
:

(See Example 7).

Next, we show examples applying Rules 1 and 2,

respectively.

Example 6. An example when Rule 1 is applied is given

first. Let a view V 1 be defined as follows:

CREATE VIEW Customer In BostonAS

SELECT C:PhoneðAR ¼ trueÞ; C:Name
FROM Customer C

WHERE ðC:City ¼0 Boston0Þ:

ð11Þ

Assume the Phone attribute is deleted from the

Customer relation. Note that Phone is referenced in the

SELECT clause, but not in the WHERE clause. We

further assume the view synchronizer finds a counter-

part in another relation Phone Customer, which can be

joined with Customer based on attributes other than

Customer:Phone, i.e.,

J CCustomer;Phone Customer ¼
ðCustomer:SSN ¼ Phone Customer:SSNÞ:

Therefore, one rewriting is as follows:

CREATE VIEW Customer In Boston0 AS

SELECT P:Phone ðAR ¼ trueÞ; C:Name
FROM Customer C;

Phone Customer P ðRR ¼ trueÞ
WHERE ðC:City ¼ 0 Boston0Þ AND

ðC:SSN ¼ P:SSNÞ ðCR ¼ trueÞ:

ð12Þ

In this example, the view component C:Phone and its

associated evolution parameters (AR ¼ true) are replaced

by three new view components, all of which are under-

lined in Query (12) (using Rule 1 from Definition 4). Each of

the new view components has its evolution parameters set

equal to that of the replaced view component, i.e., the

replaceability parameter is true due to (AR ¼ true) and

the dispensibility one takes on the default value due toAD
having the default value.

Example 7. This example now shows how Rule 2 is applied.
Let a view Insured Participant be defined as follows:

CREATE VIEW Insured Participant AS

SELECT P:PName ðAD ¼ false;AR ¼ trueÞ;
P :Tour ID

FROM Participate P;Accident Ins A

WHERE ðP:PName ¼ A:HolderÞ
ðCD ¼ true; CR ¼ trueÞ:

ð13Þ

Assume P:PName is deleted from its site. Note that
P:PName is referenced in the SELECT and in the
WHERE clauses. Therefore, one rewriting is as follows:

CREATE VIEW Insured Participant0 AS

SELECT C:Name ðAR ¼ trueÞ; P :TourID
FROM Participate P ;Accident Ins A;

Customer C ðRR ¼ trueÞ
WHERE ðC:Name ¼ A:HolderÞ

ðCD ¼ true; CR ¼ trueÞ AND
ðC:SSN ¼ P:PSSNÞ ðCR ¼ trueÞ:

ð14Þ

In this example, there are four new view components

(underlined) in Insured Participant0. Two among the

four, Customer in the FROM clause and ðC:SSN ¼
P:PSSNÞ in the WHERE clause, are brought in by the

overall replacement process for replacing two affected

view components—P:PName in the SELECT clause and

(P:PName ¼ A:Holder) in the WHERE clause of

Insured Participant. Therefore, their evolution para-

meters are set using Rule 2. That is, the evolution

parameters of Customer and (C:SSN ¼ P:PSSN) are

both set to (false; true).

Definition 5 (Legal Rewriting). Given a schema change CC
and an amendable view V , V 0 is a legal view rewriting for V if

the following properties hold:

P1. The view rewriting V 0 is not affected by the schema
change CC, by either dropping or replacing the affected
view components in V .

P2. V 0 is well-defined and can be evaluated in the evolved
state of the MKB after the schema change.4 That is, any
attributes and relations referred to in V 0 must be
registered in the new state of the MKB.

P3. New view components are added to V 0 only if they are
used to replace some view components in V . That is,
new view components are introduced into V 0 with
some purpose.

P4. The evolution preference conveyed by the evolution
parameters (ignoring the view-extent parameter) speci-
fied in the view V are satisfied by V 0. That is, all the
indispensable view components of V are preserved in V 0,

LEE ET AL.: THE EVE APPROACH: VIEW SYNCHRONIZATION IN DYNAMIC DISTRIBUTED ENVIRONMENTS 939

4. We do not go into depth on how the MKB changes in this paper due to
space limitations.



and the nonreplaceable view components are not
replaced with information taken from other sources.

P5. If the view-extent parameter is different than “approx-

imate” (“� ”), then it must be satisfied by V 0. i.e., the

relationship between the view extents of V 0 and V is

imposed by VE’s value. If V 0 and V have different view

interfaces, i.e., the new view definition V 0 preserves a

subset of the attributes of V , we compare the projections

on the common set of attributes in both views. To state it

more formally, let AttrðV 0Þ and AttrðV Þ be the

interfaces of V 0 and V , respectively, and the relationship

between V 0 and V be defined by (15).

(AttrðV Þ\AttrðV 0ÞðV 0Þ . (AttrðV Þ\AttrðV 0ÞðV Þ: ð15Þ

The view-extent parameter VE = / is satisfied, if the

following relationship between / and . holds:

if view-extent parameter VE is 00�00; then . must be 00�00;

ifview-extent parameter VE is00�00; then . must be 00�00 or00�00; and

if view-extent parameter VE is 00�00; then . must be 00�00 or 00�00:

ð16Þ

P6. If a view component of V is preserved in the view
rewriting V 0, then the evolution parameters attached to
it remain the same as those of the original view
component. For new view components of V 0, the
evolution parameters are set according to the assign-
ment rules defined in Definition 4.

6.2 Replacement Strategies

In this section, we give formal descriptions of what are

considered to be legal replacements for affected view

components under a schema change. Any replacement

strategy that follows these guidelines can then be proven to

be consistent with the evolution semantics of E-SQL views

as defined in Section 4. The proposed substitution guide-

lines represent the foundation based on which we will

validate that the EVE approach can indeed achieve view

preservation in many situations where conventional view

management systems would have to declare the affected

views to be undefined.

6.2.1 Principles of Attribute Substitution

When an attribute R:A referred in the view V (in the

SELECT or WHERE clauses) is deleted from its site, the

view synchronizer attempts to find a substitute to replace

the deleted attribute, if replacing R:A is permitted. An

attribute S:B is said to be an appropriate substitute for R:A if

the following conditions are satisfied.

Condition 1 (Type Match Condition). This condition

requires that S:B has the same domain type as the attribute

R:A. That is, there exist in MKB the following constraints

for some type Type1:

1. T CðS:BÞ = ðSðBÞ � Type1Þ and
2. T CðR:AÞ = ðRðAÞ � Type1Þ.

Condition 2 (Tuple Linkage Condition). This require-
ment demands that there exists a meaningful join relation-
ship between the relations R and S which indicates to us
that it is semantically meaningful to join the two relations
on those attributes. In some cases, the extents of the two
relations may be identical by coincidence even if their
semantic meaning is unrelated, and should not be used to
replace one another. In our model, this means that there
exists a join constraint in the MKB between R and S such
that the attribute R:A is not used in the join condition:

J CR;S ¼ C1ð -J1J1Þ AND � � � AND Cmð -JmJmÞð Þ ¼ Cð -JJÞ; ð17Þ

where for all1 � i � m, -JiJi denotes an ordered list of attributes

defined for R or S,Cið -JiJiÞ is a primitive clause involving those

attributes, and A 62 ð -J1J1 [ . . . [ -JmJmÞ. We use the expression

Cð -JJÞ to denote the conjunction of all primitive clauses inJ CR;S
where -JJ ¼ -J1J1 [ . . . [ -JmJm. In short, Cð -JJÞ is a predicate over R

and S not making use of attribute R.A.

Condition 3 (Extent Satisfaction Condition). We also

need some knowledge about the extent relationships between

the relation R and the relation S used as its replacement,

which in our model would typically be expressed by some PC

or so called containment constraint. For this, let us assume the

value of the view-extent parameter of the view V to be /. We

then impose the extent condition given in (18):

(ððAttrðV Þ\AttrðRÞÞnfR:AgÞ[fS:Bg R fflCð -JJÞ S
� �

.(ððAttrðV Þ\AttrðRÞÞnfR:AgÞ[fR:AgðRÞ;
ð18Þ

where Cð -JJÞ is the join condition defined by Condition 2, that

is R and S are joined using this join criteria given as

semantically-correct by the MKB. And AttrðV Þ represents

all the attributes referred in the SELECT and WHERE

clauses of the view V . ððAttrðV Þ \AttrðRÞÞ denotes all

attributes of R that are in the view (both in the old and new

view), except for R.A and S.B with R.A being replaced by

S.B. The above equation thus indicates that if we take all

attributes of R used in the view extended by the attribute

S.B, where S.B is joined to the remainder using the join

constraint from Condition 2, then all such new tuples are in

the required extent relationship with the original tuples

from R. Note that the projection lists in the above (18)

represent ordered sets with the attribute R:A on the right

hand side having the same position as the attribute S:B on

the left hand side. The extent relationship operator . in (18)

must satisfy the conditions imposed in (16) with respect to

the view-extent parameter VE, unless VE ¼00�00 . If

VE ¼00�00 , then, of course, no rigid extent requirements

need to be imposed. The above condition stated more

formally in (18) is sufficient to assure that the view-extent

parameter VE is always satisfied.

The following theorem states that Conditions 1, 2, and 3 are

sufficient to obtain a legal rewriting by using the attribute S:B

for replacing the attribute R:A in a view definition. By

Definition 5, a rewriting is legal if its view-extent parameter

VE is satisfied.

940 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2002



Theorem 1. Let a view V be defined as follows:

CREATE VIEW V ðVE ¼ /Þ AS
SELECT R:A;R: -DD;R1: -D1D1; . . . ; Rn: -DnDn

FROM R;R1; . . . ; Rn

WHERE CVð -WWÞ;

ð19Þ

where R:A 62 R: -DD.

Let S and S:B be a relation and one of its attributes,

respectively, that satisfy Conditions 1, 2, and 3. Let the view

V 0 be obtained from V by replacing all occurrences of the

attribute R:A in the view V with the attribute S:B and adding

the condition Cð -JJÞ from the join constraint J CR;S defined in

(17) to the WHERE clause. V 0 obtained in this way is shown

in (20) (where the new view components are underlined).

CREATE VIEW V ðVE ¼ /Þ AS
SELECT S:B;R: -DD;R1: -D1D1; . . . ; Rn: -DnDn

FROM S;R;R1; . . . ; Rn

WHERE CV0ðð -WW n fR:AgÞ [ fS:BgÞ AND Cð -JJÞ;

ð20Þ

where CV0ðð -WW n fR:AgÞ [ fS:BgÞ is the conjunction of

primitive clauses in the WHERE clause of the view V defined

in (19) where all occurrences of the attribute R:A were

replaced by the attribute S:B.
Then, V 0 / V .

In the view definition in (19), we assume that Ri: -DiDi

denotes a subset of attributes from relation Ri projected out

in this view. And, CVð -WW Þ is a complex condition over

possibly all relations R;R1; . . . ; Rn in the FROM clause.

Now, let us assume that S and S.B are a relation and a

corresponding attribute respectively that according to

above meet all attribute substitution criteria (that is,

Conditions 1, 2, and 3). This means that by Condition 2,

there exists a join constraint for R and S in the MKB along

the line of the Tuple Linkage Condition, and by Condition 3,

there exists a PC constraint in the MKB along the line of the

Extent relationship. Then, we can rewrite V simply by 1)

replacing R.A by S.B everywhere in V and 2) by adding the

required condition (taken from the join constraint from

Condition 2) between R and S to link S with the view in a

semantically meaningful manner. This replacement is

exactly what is more formally listed in (20).

Proof. The proof for this theorem is lengthy and, thus, is

given in the appendix (Appendix A) instead.

The following lemmas are now special cases of PCs and

J Cs constraints that are sufficient to assure that Conditions 1,

2, and 3 hold. When we know that the three conditions hold,

then this in turn by Theorem 1 would imply that in these

cases, the relation S corresponds to a good replacement for

relation R. Thus, these theorems below establish guidelines as

to what meta knowledge in the form of PCs and JCs

constraints would be sufficient for a replacement to be

considered legal. In other words, it provides us with

situations when Theorem 1 is applicable.

Lemma 1. Let V be defined as in (19) and / ¼ 00�00 . Let S be a

relation with the following constraints:

I. JCR;S ¼ R: -A1A1 ¼ S: -B1B1

� �
with A 62 -A1A1;

II. PCR;S ¼ (R: -AAðRÞ � (S: -BBðSÞð Þ with

1.

R:A 2 R: -AA;R: -A1A1 � R: -AA;

AttrðV Þ \AttrðRÞ � R: -AA;

and
2. S:B 2 S: -BB, S: -B1B1 � S: -BB;
3. R:A, R: -A1A1, and S:B, S: -B1B1 have the same position

in the attribute vectors R: -AA and S: -BB, respectively.

Then, Conditions 1, 2, and 3 are satisfied for . ¼00�00 for the

relation S and the attribute S:B.

Lemma 1 examines now the special case that 00VE ¼�00 ,

i.e., that the new view extent will be a superset or equal to

the old view extent. In this case, Constraint (I) in the above

lemma assures that the join constraint between R and S

required by the Tuple Linkage Condition indeed exists in

the MKB. In particular, it assures that the attribute R.A, to

be dropped from R by this attribute substitution will not be

used by this join condition. Hence, the Tuple Linkage

Condition (Condition 2) then holds. Constraint (II) in the

above lemma assures that relation R and its replacement

relation S stand in the right extent relationship. It is, of

course, sufficient to only consider in this attributes of R that

are used in the view, the other ones are irrelevant. This first

assures the Type Match condition (Condition 1) to also

hold. Finally, Constraint (II) assures that all tuples of R for

the attributes of interest are all contained in S, including the

attributes used by the “join criteria.” Hence, R joined with S

on this join field given by Constraint (I) in Lemma 1 will get

us all the old extent of R back and possibly some additional

tuples. Since R00 �00 S, we have . ¼00�00 .

Lemma 2. Let V be defined as in (19) and / ¼00�00 . Let S be a

relation with the following costraints:

I. JCR;S ¼ R: -A1A1 ¼ S: -B1B1 AND fCð -JJÞ
� �

w i t h A 62
ð -A1A1 [ -JJÞ and Cð -JJÞ a conjunction of local5 primitive
clauses.

II. PCR;S ¼ (R: -AAðRÞ � (S: -BBðSÞð Þ with

1.

R:A 2 R: -AA;R: -A1A1 � R: -AA;

AttrðV Þ \AttrðRÞ � R: -AA;

and
2. S:B 2 S: -BB, S: -B1B1 � S: -BB,
3. R:A, R: -A1A1 and S:B, S: -B1B1 have the same position

in the attribute vectors R: -AA and S: -BB, respectively.

LEE ET AL.: THE EVE APPROACH: VIEW SYNCHRONIZATION IN DYNAMIC DISTRIBUTED ENVIRONMENTS 941

5. A local primitive clause is a predicate having only one attribute (e.g.,
R:C > 20).



Then, Conditions 1, 2, and 3 are satisfied for . ¼ 00�00 for the
relation S and the attribute S:B.

Lemma 2 instead examines the case that VE ¼ 00�00 , i.e.,

that we must assure that the view rewriting process

produces a smaller or equal extent than the old view extent

when replacing R.A by S.B. This is very similar to Lemma 1,

requiring that both an appropriate join and PC constraint

can be identified. The main difference now is that

additional conditions may be placed on JC that further

restrict what the output view may hold in terms of its

extent. Given that S is possibly smaller in terms of number

of tuples than R, then it may, of course, be possible that the

final view extent may also be smaller when using the

attribute from S instead from R.

The above lemmas are special cases of Theorem 1 and

their proofs are similiar to the one of Theorem 1 (See

Appendix A). They are omitted here.

6.2.2 Principles of Relation Substitution

When a relation IS1:R referred to in the FROM clause of a

view V is deleted from its site, the view synchronizer will

under certain conditions, e.g., checking the relevant evolu-

tion parameters to see whether the view V can be evolved,

attempt to find a substitution for it. In this case, we do not

require any join constraint between R and S, since R will be

completed removed and, thus, replaced by S. Instead, the

conditions set up below check that a) S has all necessary

attributes in its interface and b) that the subchunk of S used

in the rewritten view will indeed stand in a correct set

relationship with the extent of R. This replacement of a

complete relation is thus simpler than just replacing one

attribute as done in Section 6.2.1.

A relation IS2:S is said to be an appropriate substitute for

IS1:R if the following three conditions are satisfied.

Condition 1 (Type Match Condition). All attributes of

relation S that are used as replacements for attributes of

relationRmust have the same domain type, respectively, i.e.,

there exist type constraints: T CðAÞ ¼ ð RðAÞ � AðTypeÞ Þ
and T CðBÞ ¼ ð SðBÞ � BðTypeÞ Þ in the MKB for all attribute

pairs ðR:A; S:BÞ used for substitution.

Condition 2 (Minimal Preservation Condition). This

condition requires that relation S must contain at least the

corresponding attributes of the relation R that are indis-

pensable and replaceable in the view V . That is, all the

attributes of R in the SELECT clause with AD ¼ false and

AR ¼ true and all the attributes of the relationR that appear

in the WHERE clause in a condition C with CD ¼ false and

CR ¼ true must have acceptable counterparts in relation S.

Otherwise, the new view using S would no longer be legal by

Definition 5.

This requirement can now formally be stated as given

below. We use the notation AttrðV ðRÞÞSELECTðd; rÞ to denote

all the attributes of the relation R from the SELECT clause

with the evolution parameters set to d and r ( d and r can be

false or true), respectively:

AttrðV ðRÞÞSELECTðd; rÞ ¼fR:A j R:A in SELECT clause;

ADðR:AÞ ¼ d;ARðR:AÞ ¼ rg:
ð21Þ

And, we use AttrðV ðRÞÞWHEREðd; rÞ, for the set of all the

attributes of relation R used in primitive clauses of the

WHERE clause which have the evolution parameters set to

d and r, respectively:

AttrðV ðRÞÞWHEREðd; rÞ ¼ fR:A j R:A in a condition C from

WHERE clause; CDðCÞ ¼ d; CRðCÞ ¼ rg:
ð22Þ

With the notations defined above, we can formally state

the minimal preservation condition as:

Case 1. VE ¼00�00 or 00 �00 .

AttrðV ðRÞÞSELECTðfalse; trueÞ
[AttrðV ðRÞÞWHEREðfalse; falseÞ
[AttrðV ðRÞÞWHEREðfalse; trueÞ
[ [AttrðV ðRÞÞWHEREðtrue; falseÞ
[AttrðV ðRÞÞWHEREðtrue; trueÞ � S:

ð23Þ

Case 2. VE ¼ 00�00 .

AttrðV ðRÞÞSELECTðfalse; trueÞ[
AttrðV ðRÞÞWHEREðfalse; trueÞ � S:

ð24Þ

In short, the minimal preservation constraint states that

all attributes of R that are essential for the view (i.e., the

indispensable attributes) and replaceable (i.e., their attri-

bute-replaceable evolution parameter values are set to true)

must be obtained from S. Moreover, if the view-extent

evolution parameter is 00 �00 , then all attributes of R used in

the WHERE clause must have replacements in S (we cannot

drop a condition from the WHERE clause and still have the

view-extent evolution parameter satisfied). Clearly, this is a

necessary (but not sufficient) condition in order for the

relation R to be replaced by S.

Condition 3 (Extent Satisfaction Condition). Since our goal

is to replace R by S, we must determine their extent

relationship. Let the value of the view-extent parameter of

the view V be /. The following condition is sufficient to have

the view-extent parameter VE satisfied:

( -BBðSÞ . ( -AAðRÞ; ð25Þ

where -AA2 R must be a superset of the attributes covered by

S (i.e., attributes mentioned in the minimal preservation

condition) and -BB refers to the attributes in S that are used as

replacements for attributes R: -AA. This just says that all

subtuples in the view are in the correct extent relationship

by this view evolution constraint.
Thus, the following conditions must hold:

Case 1. VE ¼ 00�00 or 00 �00 .

942 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2002



AttrðV ðRÞÞSELECTðfalse; trueÞ
[AttrðV ðRÞÞWHEREðfalse; falseÞ
[AttrðV ðRÞÞWHEREðfalse; trueÞ[
[AttrðV ðRÞÞWHEREðtrue; falseÞ
[AttrðV ðRÞÞWHEREðtrue; trueÞ � -AA:

ð26Þ

The first part of this equation simply states that any

attribute projected by the view and is not dispensible must

be kept. The remainder of this equation then states that all

attributes used to constrain the original view, i.e., used in

conditions in the WHERE clause, must still be preserved in

the new rewritten view, otherwise it is guaranteed to be a

subset of the old view.

Case 2. VE ¼ 00�00 .

AttrðV ðRÞÞSELECTðfalse; trueÞ[
AttrðV ðRÞÞWHEREðfalse; trueÞ � -AA:

ð27Þ

In this case, the first part of this equation remains

unchanged. The second part however now only assures that

the attributes used in conditions that are replacable but not

dispensible are preserved. We no longer have to assure that

the extent is a subset, hence having dropped some of the

original predicates from the WHERE clause will be

acceptable.

Finally, we also require that the values of / and . must

satisfy the property from (16), unless the value of the view-

extent parameter has no rigid constraint and is “approx-

imate”, i.e., / 6¼� . This assures that the extent relationship

of the old with the new view alignes up in the same subset

relationship as the old relation R with the new relation S.

The above three conditions are sufficient to have the

view-extent evolution parameter VE satisfied when S is

used to replace the relation R. Note that they are however

not necessary. This is exactly what is stated in a formal

manner in the following theorem.

Theorem 2. Let a view V be defined as follows:

CREATE VIEW V ðVE ¼ /Þ AS
SELECT R: -DD;R1: -D1D1; . . . ; Rn: -DnDn

FROM R;R1; . . . ; Rn

WHERE CVð -WWÞ;

ð28Þ

where all attributes of R in -WW are denoted by R: -D0D0, and all

other notations are otherwise equal to those in the view

definition in Theorem 1.

Let S be a relation that satisfies Conditions 1, 2, and 3 for

relation substitution. Let the view V 0 be obtained from V by

replacingRwith S and replacing all the attributes ofRwith the

corresponding attributes of S. V 0 obtained in this way is shown

in (29) (where the new view components are underlined).

CREATE VIEW V 0 ðVE ¼ /Þ AS
SELECT S: -FF;R1: -D1D1; . . . ; Rn: -DnDn

FROM S;R1; . . . ; Rn

WHERE CV0ðð -WW nR: -D0D0Þ [ S: -F 0F 0Þ:

ð29Þ

In (29), S: -FF are the attributes from S: -BB corresponding to the

attributes from R: -AA \R: -DD. S: -F 0F 0 are the attributes from S: -BB

corresponding to the attributes from R: -AA \R: -D0D0. CV0ðð -WW n
R: -D0D0Þ [ S: -F 0F 0Þ is the conjunction of primitive clauses in the

WHERE clause of the view V defined in (28) where all

occurrences of the attributes R: -D0D0 were replaced by the

corresponding attributes in S: -F 0F 0 or the conditions containing

attributes from R: -D0D0 were dropped (if it is legal to do so).
Then, V 0 / V .

In (29), the attributes S: -FF from S: -BB are used to denote

correspondances with the attributes from R: -AA \R: -DD. For

those, we can observe the following. From Conditions 2 and

3, we have that S: -FF corresponds to a superset of the

attributes in AttrðV ðRÞÞSELECTðfalse; trueÞ. Similarly, S: -F 0F 0,

refers to the attributes from S: -BB that correspond to the

attributes from R: -AA \R: -D0D0. From Conditions 2 and 3, we

have that this must be the set of all the attributes of R from

the WHERE clause in Case 1 and, in Case 2, it contains at

least the attributes from AttrðV ðRÞÞWHEREðfalse; trueÞ.
Proof. The proof for this theorem is lengthy and, thus, is

given in the appendix (Appendix B) instead.

7 VIEW SYNCHRONIZATION ALGORITHMS

In this section, we present the view synchronization

algorithms which serve as proof of concept that adaptability

of views can indeed be achieved within our proposed EVE

framework. For the remainder, we make the following

simplifying assumptions:

. A relation R appears in the FROM clause only once.

. At least one attribute of R is referenced in the
SELECT and/or WHERE clause, i.e., no redundant
relations are listed in the FROM clause.

. We consider precisely-defined view queries only

and not loosely-specified ones as studied in [29].

This means that view queries are assumed to prefix

the names of relations and attributes with the

identifiers of the ISs to which they belong to, if

needed to disambiguiate names.

We believe our solution approach could be easily
adapted for a more general case when the assumptions
are relaxed. The schema changes supported in EVE and,
thus, treated below are listed next:

1. del-attr(IS.R.A): delete the attribute A from the
relation R residing at site IS.

2. add-attr(IS.R.A): add an attribute A to the relation R
at site IS.

3. chg-attr-name(IS.R.A,B): change an attribute’s name
from A to B in the relation R at site IS.

4. del-rel(IS.R): delete the relation R from the site IS.
5. add-rel(IS.R): add a relation R to the site IS.

LEE ET AL.: THE EVE APPROACH: VIEW SYNCHRONIZATION IN DYNAMIC DISTRIBUTED ENVIRONMENTS 943



6. chg-rel-name(IS.R,S): change the relation’s name
from R to S at site IS.

7.1 The Delete-Attribute Evolution
Operator-del-attrðIS1:R:AÞ

Deleting the attribute A from IS1:R could potentially affect
a view V in three ways:

1. A appears in the SELECT clause of V only.
2. A appears in the WHERE clause of V only.
3. A appears in both the SELECT and WHERE clauses

of V (i.e., a combination of cases 1 and 2).

Below, we now provide solutions to each of these three
cases one by one.
Case 1. A appears in the SELECT clause of V only.

When an attribute is deleted from the SELECT clause,

the view synchronizer decides whether V is amendable by

taking the attribute’s attribute-dispensable AD and attribute-

replaceable AR parameters, and the view-extent VE parameter

into account to decide whether the affected view can be

evolved into a valid view definition. The view evolution

algorithm (VEA) for this case is listed below.

(Algorithm 1) VEA-delete-attribute(A,SELECT).

00. Success = TRUE

01. IF attribute-replaceable (A) = FALSE

02. THEN IF attribute-dispensable (A) = TRUE

03. THEN drop A from V /* report success */

04. ELSE /* attribute-dispensable (A) = FALSE */

05. Success = FALSE /* report failure */

06. END IF
07. ELSE /* attribute-replaceable (A) = TRUE */

08. IF attribute-dispensable (A) = TRUE

09. THEN find-substitute-select (A, B)

/* see Section 6.2.1 */

10. IF found

11. THEN replace-attribute (A,B)

/* report success */

12. ELSE /* not found */
13. drop A from V

/* report success */

14. END IF

15. ELSE /* attribute-dispensable (A) = false */

16. find-substitute-select (A, B)

/* see Section 6.2.1 */

17. IF found

18. THEN replace-attribute (A,B)
/* report success */

19. ELSE /* not found */

20. Success = FALSE /* report failure */

21. END IF

22. END IF

23. END IF

(Algorithm 2) PROCEDURE replace-attribute(R.A,S.B).

begin

1. drop A from the SELECT clause

2. add the relation S, that B belongs to, to the FROM clause

along with R.
3. add the join constraint between R and S to the WHERE

clause (Section 6.2.1).

4. add B to the SELECT clause

end

(Algorithm 3) Boolean PROCEDURE

find-substitute-select (in: R.A, out: S.B).

begin

the strategy of appropriate attribute substitution is

outlined in Section 6.2.1.

end

Next, we use an example to show how the view

synchronization algorithm finds a legal rewriting for a

view affected by a delete-attribute schema change.

Example 8. For easy reference, we redisplay Query (8) first

introduced in Section 4.

CREATE VIEW Asia-Customer ðVE ¼ 00�00Þ AS
SELECT ðName;Address; Phone

ðAD ¼ true;AR ¼ trueÞ
FROM Customer C ðRR ¼ trueÞ;FlightResF
WHERE ðC:Name ¼ F:PNameÞ ðCR ¼ trueÞ

AND ðF:Dest ¼ 0 Asia0Þ ðCD ¼ trueÞ

ð30Þ

We assume that the travel agency has the Customer relation

backed up at the Boston branch to guarantee availability and

reliability of the information service. That is, our MKB holds

the PC constraint ðCustomerBak � CustomerÞ and the join

constraint

ðJ CCustomerBak;Customer ¼
ðCustomerBak:Name ¼ Customer:NameÞÞ:

Assume the Phone attribute is deleted from the Customer

relation at the headquarter. Upon receiving this del-attr(Cus-
tomer.Phone) notification, the view synchronizer checks with

the MKB in order to find an “appropriate” counterpart of it

(based on the process in Section 6.2.1). In this case,

CustomerBak.Phone is found to be a promising candidate.

In this example, Steps 16-19 of the View Evolution Algorithm

VEA-delete-attribute (Algorithm 1) are executed. Using this

algorithm, one valid strategy of rewriting Asia-Customer

into Asia-Customer
0

thus results into (31) (new components

are underlined):

CREATE VIEW Asia-Customer ðVE ¼00�00Þ AS
SELECT ðName;Address

C2:PhoneðAD ¼ true;AR ¼ trueÞ
FROM Customer C ðRR ¼ true;FlightResF;

CustomerBak C2 ðRD ¼ true;RR ¼ trueÞ
WHERE ðC:Name ¼ F:PNameÞ AND ðF:Dest ¼ 0 Asia0Þ

ðCD ¼ trueÞAND
ðC2:Name ¼ C:NameÞðCD ¼ true; CR ¼ trueÞ

ð31Þ

944 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2002



This legal rewriting uses the join constraint

JCCustomerBak;Customer
to obtain the phone number from the relation CustomerBak.

Note that there may be several alternative solutions for

salvaging a view. For example, if the Name and Address

attributes in Query (30) are allowed to be taken from other

sources, then the Customer relation could be replaced

entirely by the CustomerBak relation—even if only the

attribute Phone is deleted from the Customer relation but

not the entire Customer relation. The main advantage of the

latter rewriting is that the join operation between the

relations Customer and CustomerBak can be avoided

entirely, which should reduce the view computation and

view maintenance costs. Our current view synchronizer

starts with the simplest strategy of view rewriting and

progressively explores alternative more complex view

synchronization solutions until one is found that is valid

given the view evolution constraints as well as the

constraints in the MKB. Hence, while our current view

synchronizer will find one solution for view evolution if one

exists based on our chosen set of view synchronization

algorithms, it is not guaranteed to select the “best” one. In

the future, we will explore optimization strategies that

address the issue of selecting the “best” solution for view

evolution given cost criteria, such as costs of accessing ISs,

availability and contracts with ISs, communication costs,

view self-maintainability, etc.
Case 2. A appears in the WHERE clause of V only.

When a condition in the WHERE clause is affected

because one of its operands A is deleted from its IS, our

system takes the condition-dispensable CD, condition-replace-

able CR, and view-extent VE parameters into account to

decide whether the affected view is amendable. If it is

amendable, then the view synchronizer tries to remedy it.

The view evolution algorithm that handles cases when one

or more WHERE conditions of a view V, denoted by c =

(R:A $ operand2), are affected by the removal of the

attribute A is given next.

(Algorithm 4) VEA-delete-attribute(A,WHERE).

01. C = {affected conditions}
02. Success = TRUE

03. WHILE (C != empty) AND (Success) DO

04. take c from C

05. IF condition-replaceable (c) = FALSE

06. IF condition-dispensable (c) = TRUE

07. THEN

08. C = C - c; drop c from V;

09. ELSE /* condition-dispensable (c) = FALSE */
10. Success = FALSE

11. END IF

12. ELSE /* condition-replaceable (c) = TRUE */

13. IF condition-dispensable (c) = TRUE

14. THEN find-substitute-condition (c, c1)

/* see Section 6.2.1 */

15. IF found
16. THEN replace-condition (c,c1)

17. ELSE /* not found */

18. drop c from V

19. END IF

20. C = C - c

21. ELSE /* condition-dispensable (c) = FALSE */

22. find-substitute-condition (c, c1) /*

see Section 6.2.1 */
23. IF found

24. THEN replace-condition (c,c1)

25. C = C - c

26. ELSE /* not found */

27. Success = FALSE

28. END IF

29. END IF

30. END IF
31. END DO

(Algorithm 5)

Boolean PROCEDUREfind-substitute-condition(C,C’).

begin

// Section 6.2.1 describes how substitution C’ for
C is found

// by finding replacements for its attributes.

end

(Algorithm 6) PROCEDURE replace-condition (C,C’).

// C ¼ ðR:A $ operand2Þ
// C0 ¼ ðS:B $ operand2Þ

1. drop C from the WHERE clause

2. add the relation S, that B belongs to, to the FROM clause

3. add the join constraint between R and S to the WHERE

clause

4. add C0 to the WHERE clause

Example 9. Let’s assume a view is specified on

R1ðA1; A2Þ; R2ðB1; B2Þ;

and R3ðC1; C2Þ as follows:

CREATE VIEW V ðVE ¼ 00�00Þ
SELECT A2; B1; B2; C2

FROM R1; R2; R3

WHERE ðA1 ¼ B1Þ ðCD ¼ true; CR ¼ trueÞ
AND ðA1 ¼ C1Þ ðCD ¼ true; CR ¼ trueÞ:

Fig. 7a shows a valid database state of

R1ðA1; A2Þ; R2ðB1; B2Þ; R3ðC1; C2Þ;

and Fig. 7b the view extent of V derived from R1; R2, and

R3 (with one tuple). In the view definition V ,

R1ðA1; A2Þ; R2ðB1; B2Þ, and R3ðC1; C2Þ are related to each

other through the join conditions: (A1 ¼ B1) and

(A1 ¼ C1) (see Fig. 7c).
Let’s assume that the information provider of R

decides to delete R:A1. Obviously, both of the primitive

LEE ET AL.: THE EVE APPROACH: VIEW SYNCHRONIZATION IN DYNAMIC DISTRIBUTED ENVIRONMENTS 945



clauses in the WHERE clause of the view definition V are
affected. When EVE fails to find appropriate replace-
ments for these conditions, both primitive clauses are
dropped since their condition-dispensable(CD) parameters
are set to true. Hence, V is rewritten into V

0
as follows:

CREATE VIEW V ðVE ¼ 00�00Þ
SELECT A2; B1; B2; C2

FROM R1; R2; R3:

ð33Þ

That is, the original view definition V becomes a
Cartesian product in V

0
, because the new view definition

V
0

has an empty WHERE clause and the relations have
no common attribute names, hence, no natural join takes
place. In the redefined view definition V

0
, R1; R2, and R3

are no longer related to each other through any join
conditions. As a consequence, the view extent now
contains eight instead of one tuples (see Fig. 8a).

When a condition from the WHERE clause has to be

dropped (as in the above example), more sophisticated

techniques could be used to evolve the view in order to

preserve the original view to a larger degree. The basic idea

is to make inferences based on the implicit constraints

hidden in the conditions of the original WHERE clause to

help our system preserve the original view. While there are

several potential solution approaches, we propose below

one such technique that improves upon the algorithm

described above.

(Algorithm 7) PROCEDURE replace-condition*(C,C’).

1. Find any implicit constraints in the WHERE clause by

computing the transitive closure of the conditions;

2. Add these implicit constraints to the WHERE clause;

3. Remove the affected conditions from the WHERE clause.

To be more precise, let’s consider a view definition V

with a conjunction C of primitive clauses in the WHERE

clause and attribute A appearing only in the WHERE

clause. Let C0 be the conjunction of all the primitive clauses
in C which don’t use the attribute A (i.e., C0 is obtained from
C by dropping the primitive clauses that contain A). Let C00
be obtained from C by finding first the transitive closure of C
and then removing the primitive clauses that contain
attribute A (see Step 1 to Step 3 from above). Let V 0 be
obtained from V by replacing the conjunction C with C0 in
the WHERE clause; and V 00 be obtained from V by replacing
the conjunction C with C00 in the WHERE clause. Then, we
have that V � V 00 � V 0 for any database instance. The proof
of this statement follows immediately from the theorem of
containment for conjunctive queries with built-in predicate
given by Ullman in [41].

Example 10. Continuing with the above example, our
system finds an implicit constraint in the WHERE clause
between R2 and R3, namely, R2:B1 ¼ R3:C1, derived
from R2:B1 ¼ R1:A1 and R1:A1 ¼ R3:C1 by transitivity.
We add this constraint into the WHERE clause. After
removing the conditions containing A1, the WHERE

clause is left with one join condition: B1 ¼ C1. As shown
in Fig. 8b, R2 is joined with R3 in the modified view V 00

through the join condition B1 ¼ C1, but R2 and R3 are
not joined with R1 any longer (hence, the Cartesian
product is used to combine these two relations in the
modified view). The evolved view definition V 00 is given
below:

CREATE VIEW V 00ðVE ¼ 00�00Þ AS
SELECT A2; B1; B2; C2

FROM R1; R2; R3

WHERE ðB1 ¼ C1ÞðCD ¼ true; CR ¼ trueÞ:

ð34Þ

946 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2002

Fig. 7. Example data set.

Fig. 8. Two alternative ways to evolve V. (a) Redefined view: V 0. (b) Redefined view: V 00



In this case, our system is able to preserve the original
view “to a larger degree” in the sense of only generating

one superfluous tuple compared to the original view

extent. (See Fig. 8a versus 8b). While in V
0
, all the

information of R1; R2, and R3 is dumped to the user, V 00

comes close to providing to the user only what he

requested to begin with. It is not only less meaningful,

but also more expensive to ship such extra unneeded data.

Case 3. A appears in both the SELECT and WHERE
clauses of V.

The main idea is to 1) go through the affected view
components of V once to decide the possibility of view
evolution and 2) if V has the potential to be evolved, then
find a substitute for the affected SELECT component and, if
no failure happens when replacing/dropping the SELECT
component, replace the WHERE components by the
corresponding substitute, as needed.

(Algorithm 8) VEA-delete-attribute(A,ALL).

1. AC1 = affected-components (A) /* find components

that reference A in V */

2. Success = TRUE
3. WHILE (AC1 != empty) AND (Success) DO

4. get component from AC1

5. IF ( dispensable (component) = FALSE

AND replaceable (component) = FALSE )

6. THEN Success = FALSE

7. END IF

8. AC1 = AC1 - component

9. END DO
10. IF (Success) /* it is possible to evolve V */

11. THEN call VEA-delete-attribute (A,SELECT);

12. IF (Success)

13. THEN /* use substitute for SELECT

component, if found */

14. call VEA-delete-attribute’(A,WHERE);

15. END IF

16. END IF

VEA-delete-attribute’(A,WHERE) is identical to VEA-
delete-attribute(A,WHERE) procedure introduced earlier,
except that now if a replacement of A by A0 had been found
by the successful execution of the VEA-Delete-Attribute(A
,SELECT) procedure earlier, then use A0 in place of A in the
WHERE clause without taking any further replacement steps.

7.2 The Add-Attribute Evolution Operator

This add-attr(IS.R.A) operator reports that a new attribute A
has been added to the relation R at site IS. We assume EVE
does not attempt to further optimize existing views using
the newly added attribute, so this schema change does not
affect any of the existing views in our current system.

7.3 The Change-Attribute-Name Evolution Operator

This chg-attr-name(IS.R.A,B) operator changes the name of
an attribute A of IS:R to a new name B. This operation does
not affect the view definitions that refer to R:A, assuming
our system keeps a name-mapping table in the MKB along
with other meta knowledge. Even if a name changes more
than once, our system could keep track of this information

in the same entry of the name mapping table. The alternate
solution of identifying all locations where the old name of
the attribute was being used both in the MKB and in the
VKB and replacing the old name by the new name is also
straightforward, yet potentially expensive.

7.4 The Delete-Relation Evolution Operator

The delete-relation operator removes a relation R from its
IS, and it affects views that reference R in their FROM
clauses. Since 1) several attributes of the deleted relation R
may be referenced in a view definition and 2) it is generally
more expensive to find an appropriate replacement for an
affected view component that references an attribute of R
than to check the possibility of view evolution, we propose
to handle the view synchronization problem in two steps.
First, we evaluate the possibility of view evolution by
examining the view evolving parameters of each of the
affected view components in V. Basically, if there is an
affected view component whose evolving parameters are
(dispensable(component) = false, and replaceable(component) =
false), then it is impossible to evolve the view definition. As
soon as we decide that evolving a component of V is
impossible (given its evolving parameters), our system will
report failure without looking further.

Otherwise, the second stage is to find appropriate
replacements for the affected view components using a
simple (one-step) solution shown below.

(Algorithm 9) VEA-delete-relation(R).

01. tempSet = affected-components (VD,R)

/* view components referring to
r attrs(R) */

02. code = 2 /* code = 1, must find replacement;

2, good if finds replacement */

03. WHILE ( tempSet != empty) AND ( code != 1) DO

/* test for possibility of evolution */

04. BEGIN /* WHILE */

05. component = get-component(tempSet)

06. IF ( dispensable (component) = FALSE AND
replaceable (component) = FALSE ) THEN

07. return failure with msg ”VD cannot be evolved”

08. ELSE IF ( dispensable (component) = FALSE ) THEN

09. BEGIN

10. code = 1 /* some view component is

indispensable, must find replacement */

11. tempSet = tempSet - component

12. END
13. END /* WHILE */

14. /* possible to evolve VD */

15. IF ( replaceable (R) = FALSE )

16. THEN IF ( code = 1 )

17. THEN return failure with msg

”VD cannot be evolved”

18. ELSE drop affected-component (VD,R)

from VD
19. ELSE /* replaceable (R) = TRUE */

20. BEGIN

21. found = find-substitute-relation (VD,R,S)

22. IF (NOT found) THEN

23. THEN IF ( code = 1 )

LEE ET AL.: THE EVE APPROACH: VIEW SYNCHRONIZATION IN DYNAMIC DISTRIBUTED ENVIRONMENTS 947



24. THEN return failure with msg
”VD cannot be evolved”

25. ELSE drop affected-component

(VD,R) from VD

26. ELSE /* found */

27. replace-relation (R,S)

28. END /* replaceable (R) = TRUE */

Note that affected-components(R, V ) set contains the
relation R listed in the FROM clause, the attributes of R
preserved in the SELECT clause, and the conditions in the
WHERE clause that have one or two attributes of R as their
operands.

(Algorithm 10) PROCEDURE replace-relation(R,S).

01. tempSet = affected-attr-components (VD,R)
U affected-condition-component (VD,R)

02. While (tempSet != empty) DO

03. BEGIN /* WHILE */

04. component = get-component (tempSet)

04. IF substitute S.B for component exists IN S

05. THEN replace component by S.B

06. ELSE drop component from VD

07. tempSet = tempSet - component
08. END /* WHILE */

09. replace R by S in FROM clause of VD

7.5 The Add-Relation Evolution Operator

This add-rel(IS.R) operator adds a new relation R to the IS
site. It does not affect any views described in VKB, since
none of the existing views refer to this new relation.

7.6 The Change-Relation-Name Evolution Operator

This chg-rel-name(IS.R,S) operator changes the name of the
relation from R to S at site IS. Similarly to the chg-attr-name
operation, this operation does not affect the view definitions
that refer to R, assuming our system keeps a name-mapping
table in the MKB along with other meta knowledge.

8 RELATED WORK

To our knowledge, we are the first to study the problem of
view synchronization caused by schema changes of partici-
pating ISs. In [35], we establish a taxonomy of view
adaptation problems that identifies alternate dimensions of
the problem space, and, hence, serves as a framework for
characterizing and, hence, distinguishing our view synchro-
nization problem from other (previously studied) view
adaptation problems. In [17], we then lay the basis for the
solutions presented in this current paper by introducing the
overall EVE solution framework, in particular the idea of
associating evolution preferences with view specifications.
However, formal criteria of correctness for view synchroni-
zation and actual algorithms for achieving view synchroniza-
tion for all basic schema change operations are the key
contributions of this current work. We also develop as well as
prove theorems on the correctness of the proposed replace-
ment strategies. The synchronization algorithms we intro-
duce here are based on containment constraints, while of
course view synchronization can also be explored for other

types of meta knowledge, such as functional dependencies or
join constraints—then requiring new appropriate strategies
[7]. In more recent work, we have also looked at a cost model
for trading off the quality versus cost aspects of none-
quivalent rewritings generated by view synchronization [12],
[13]. While no one has addressed the topic of view
synchronization as such, there are several issues we address
for EVE that relate to work done before in other contexts as
now described below.

Gupta et al. [9] and Mohania and Dong [24] address the
problem of how most efficiently to maintain a materialized
view after a view redefinition explicitly initiated by the user
takes place. They study under which conditions this view
maintenance can take place without requiring access to base
relations, i.e., the self-maintainability issue. Their algo-
rithms could potentially be applied in the context of our
overall framework, once EVE has determined an acceptable
view redefinition. Their results are thus complimentary to
our work.

Some work has been done on rewriting queries using
materialized views [16], [20], [19], [38], [15], [40], [39]. This
work is relevant to the EVE project, although it generally
deals with rewriting queries into equivalent ones using
underlying views. Cohen et al. [5] discuss the problem of
rewriting aggregate queries using views.

Work on the World View concept by Levy et al. [21] is
closely related to ours in terms of its goal of information
integration, but not the approach taken. In [21], the notion
of the world-view is introduced as a global, fixed domain
model of a certain part of the world on which both
information providers and consumers must define views.
This work is in some sense an approach inverse to ours [35].
Where Levy et al. describe information sources in terms of a
world model, we incrementally establish our world model
in terms of the available sources. Levy’s model provides a
solution to a subset of problems that we also solve. It is
however necessary to establish a world model before any
source can provide information—a very complicated and
often impossible task. Changes to the world model are not
possible in this approach or would require a manual
redefinition of both information providers’ and consumers’
queries. Another drawback of the approach is the insuffi-
cient handling of redundancy in the information space. If
two information providers define partially overlapping
view extents, Levy’s algorithms find the minimal cover for
the queried data, i.e., uses information from a randomly
picked information source that satisfies the user’s query. In
contrast to this approach, we can make use of known
overlaps of source data to provide nonequivalent rewrites
of queries in the case of the possible unavailability of one of
the sources. With the help of a quality measure (QC-Value
[14]), we can also decide which of a number of given
information sources provides the best answer to a query.

The DWQ (Data Warehouse Quality) Esprit Project [25],
[11] addresses many problems related to the quality of data
warehouses. In this context, they also investigate the issues
of evolution of data warehouses. Quix [32] describes a
process model for the capture of all changes made to any
component of a data warehouse management system into a
meta repository. Such changes may include the addition or

948 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2002



removal of a view by the (human) data manager, Thus, like
EVE, they make use of a meta repository in support of data
warehouse evolution. However, their focus is on the
methodology and management of the process of the meta
repository design to assure quality of a data warehouse,
while our particular problem of generating nonequivalent
view rewritings over evolving warehouses and establishing
preference models for evolution have not been addressed in
the DWQ project.

Papakonstantinou et al. [31], [30] are pursuing the goal of
information gathering across multiple sources. Their pro-
posed language OEM assumes queries that explicitly list the
source identifiers of the database from which the data is to
be taken. Like our meta knowledge model, their data model
allows information sources to describe their capabilities
(including their schema properties), but they don’t assume
that these capabilities could be changed and, thus, they do
not address the view synchronization problem. The same
author has also done work on query rewriting without
using views, for example, in capabilities-based query rewriting
for mediator-based systems [23], in which a query (or
multiple queries) are formulated based on query capabil-
ities of underlying sources. Florescu et al. [8] have worked
on a similar problem in multidatabase systems with an
ODMG-based meta model.

The EVE system can be seen as an information integra-
tion system using view technology to gather and customize
data across heterogeneous ISs. On this venue, related work
that addresses the problem of information integration are
among others, like the SIMS [1] and SoftBot [7] projects. In
the SIMS project, a unified schema is a priori defined and
the user interaction with the system is via queries posed
against the unified schema. Although addressing different
issues, SIMS’s process of translating a user query into
subqueries targeting external relations raises some of the
same problems as finding the right substitution for an
affected view component in EVE. The SoftBot project has a
very different approach to query processing as they assume
that the system has to discover the “link” among data
sources that are described by action schemas. While related
to our view synchronization algorithms, the SoftBot plan-
ning process also has to discover connections among ISs
when very different source description languages are used.
The two projects do not address the particular problem of
evolution under schema changes of participating informa-
tion sources.

CoBase by Chu et al. [4], [6] relates to our work in that
they also use the notion of relaxation of the query extent,
similar to our E-SQL approach [35]. Chu et al. established
an SQL, extension called CSQL (cooperative SQL), which
relaxes the strictness of SQL-where-conditions, i.e., it relaxes
restrictions on the extent, but not the interface of a view
query, as E-SQL does. Given explictly available knowledge
about an application’s domain, queries can be relaxed in a
stepwise manner by altering local WHERE-conditions of a
query until it returns approximate results to a user. Chu et
al.’s work differs from ours in that it is limited to relaxing
the values of local conditions in queries, whereas we handle
relaxation of all elements in a Project-Select-Join-SQL-query.
In contrast to CSQL, in which a manually established order

of relaxation of conditions is needed to compare two
rewriting possibilities, we have also defined a comprehen-
sive model of quality and cost to automatically assess the
desirability of a query rewriting [13], [14] (of which our
algorithms would normally generate several) in order to
help a view synchronization algorithm to find tradeoffs
among query rewritings.

Lakshmanan et al. [22] discuss an SQL extension called
SchemaSQL. SchemaSQL can query not only the data of a
relational database but also the schema such as sets of
attribute and relation names, and can treat such sets of meta
data analogously to and simultaneously with regular data
within one query. This language then can be used by a
database designer to describe schema transformations
between diverging relational schemas. The automatic
generation of query restructurings (a la view synchroniza-
tion) or preference models for evolution are not within the
scope of query language design per se and, thus, are not
considered in the SchemaSQL work. SchemaSQL and E-
SQL are complimentary, and extensions of our E-SQL
preference model to now also work for SchemaSQL (that is,
meta data) queries would be one among several possibly
interesting future works.

In an earlier project on transparent schema evolution (TSE)
technology [36], [37], we had explored a solution to a different
yet related evolution problem, namely, to use view technol-
ogy to handle schema changes transparently. However, this
TSE work is all done in a centralized environment, assuming
one single global database that is cooperating, i.e., that is
maintaining all information possibly still used by any views
defined on top of it. In the TSE framework, a user specifies
schema changes against her special-tailored view schema
defined over one common base schema. The TSE system is
responsible for deriving an alternate view schema to simulate
the effects of schema evolution while preserving the current
view schemas. In TSE, the existing view schemas are not
affected by schema changes, because the original base schema
upon which they all are defined is always preserved. Unlike
the problem addressed in this current paper, a delete
operation specified against a view is not actually executed
as a delete against the base schema rather simply desired data
is hidden from that particular view. Thus, the view evolution
problem of EVE is not an issue in TSE.

In the University of Michigan Digital Library project [27],
[28], we have proposed the Dynamic Information Integration
Model (DIIM) to allow ISs to dynamically participate in an
information integration system. The DIIM query language
allows loosely specified queries that the DIIM system refines
into executable, well-defined queries based on the schema
descriptions each IS exports when joining the DIIM system.
For this, the notion of connected relations is introduced as a
natural extension of the concept of full disjunction [10]. In the
default case, when only natural joins are defined in the IS
descriptions in the MKB it then can be shown that the
semantics of these two concepts (connected rules and full
disjunction) are equivalent [28]. AI planning techniques are
used in DIIM for query refinement. In EVE, instead, we now
assume that precise (SQL) queries are used to define views
(instead of loosely-specified ones) and, thus, query refine-
ment in the sense of DIIM is not needed.

LEE ET AL.: THE EVE APPROACH: VIEW SYNCHRONIZATION IN DYNAMIC DISTRIBUTED ENVIRONMENTS 949



9 CONCLUSION

9.1 Current Status of the EVE System

A prototype of the EVE system has been implemented by

members of the Database Systems Research Group (DSRG) at

Worcester Polytechnic Institute. The EVE graphical user

interface, the MKB, the MKB evolver, the VKB, and the view

synchronizer are implemented using Java, and the participat-

ing ISs are built on top of Oracle and Microsoft Access. The

communication between EVE and the information space is

via JDBC. The view synchronization algorithms for the

different basic schema changes presented in Section 7 have

been fully implemented. An online EVE demonstration can

found at the DSRG web site at http://davis.wpi.edu/dsrg.

The EVE system has also been formally demonstrated at

ACM SIGMOD’99 [33].

9.2 Contributions

Our effort is one of the first works to study the new problem
of view definition adaptation in dynamic environments.
This problem, which we call view synchronization, corre-
sponds to the process of adapting view definitions triggered
by schema changes of ISs. We propose the Evolvable View
Environment (EVE) architecture as a generic framework
within which to solve view adaptation when underlying ISs
change their schema. The EVE approach is described in
detail in the current paper. To summarize, the main
contributions of this paper are:

. The identification of an open problem with current
view technology in the context of dynamic large-
scale environments such as the WWW, which we
coin the view synchronization problem.

. The development of a general solution approach
(and architecture), called the EVE framework, for
addressing this view evolution problem based on the
concept of view synchronization.

. The proposal of an extended view definition
language, called E-SQL, that is capable of defining
flexible views by incorporating view change prefer-
ences into the view definition.

. The design of an IS description model, called MISD,
that can capture capabilities of diverse ISs and, thus,
serves as foundation for the view synchronization
process.

. The development of formal foundations for view
evolution and correctness criteria for the replace-
ment of affected components of a view definition
with alternate components.

. The introduction of a complete set of algorithms for

view synchronization for all standard schema

changes. The proposed algorithms generate view

definitions as output that are consistent with both

the change semantics expressed by E-SQL as well as

the MISD descriptions captured in the meta

knowledge base (MKB).
. The presentation of several scenarios that demon-

strate that EVE maintains views in situations where
state-of-the-art view technology would simply ren-
der the views undefined.

. The implementation of EVE concepts in a working
system to demonstrate the feasibility of the proposed
ideas, and its demonstration at ACM SIGMOD’99).

9.3 Future Directions

This paper has opened up a new direction of research by
identifying view synchronization as an important and so far
unexplored problem of current view technology in dynamic
large-scale environments such as the WWW. This work has
laid a solid foundation for addressing the new problem of
how to maintain views in dynamic environments, and is
thus likely to be beneficial for many diverse applications
including Web-based information services, electronic cata-
log providers, etc.

In a recent article in the Communications of ACM [34],
we lay out a large array of possible future tasks to spawn in
this area. In fact, we have already embarked on attempting
to tackle some of these open issues, including models for
capturing the quality as well as the cost of nonequivalent
rewritings produced by view synchronization algorithms
[13] as well as algorithms for view maintenance of the view
extent under both schema and data changes of the sources
[44], [45].

APPENDIX A

PROOF FOR THEOREM 1

Proof. Case 1. VE ¼ / ¼00�00 and . 2 f00�00 ; 00 �00g.
We have to prove that for . 2 f00�00 ; 00 �00 vg in

Condition 3, V 0 is a subset of V , i.e., V 0 � V .
Let t0 be a tuple in the view V 0, t0 2 V 0. Then, there

exist some tuples in S, R, R1; . . . ; Rn that have been used
to derive the tuple t0 in V 0. I.e., the following properties
hold:

1. 9tS 2 S, such that t0½S:B% ¼ tS½S:B%,
2. 9t0R 2 R, such that t0½R: -DD% ¼ t0R½R: -DD%,
3. for all 1 � i � n, 9ti 2 Ri, such that,

t0½Ri: -DiDi% ¼ ti½Ri: -DiDi%;

4. tS; t
0
R; t1; . . . tn derive t0 in V 0,

5. CV0ðtS½S:B%; t0R; t1; . . . tnÞ
6 is satisfied,

6. CðtS; t0RÞ is satisfied.
Property (6) implies that tS and t0R are two tuples of
S andR, respectively, that derive a tuple in the left
hand relation from (18) of Condition 3. That is,

9g 2 (ððAttrðV Þ\AttrðRÞÞnfR:AgÞ[fS:BgðR fflCð -JJÞ SÞ
� �

such that

g ¼ (ððAttrðV Þ\AttrðRÞÞnfR:AgÞ[fS:Bg t0R fflCðtS ;t0RÞ tS

� �
:

Then, from Condition 3 (with . 2 f00�00 ; 00 �00g),
we have that there exists tR 2 R such that,

950 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2002

6. Even so, the conjuction of primitive clauses CV0 is defined on a subset
of attributes (i.e., ðð -WWfR:AgÞ [ fS:BgÞ) of the tuples tS; t

0
R; . . . tn, we use this

notation to denote the conjunction CV0 applied to this set of tuples. We stress
the fact that the tuple tS has at most one attribute in ðð -WWfR:AgÞ [ fS:BgÞ,
that is S:B.



7.

g

�
¼ (ððAttrðV Þ\AttrðRÞÞnfR:AgÞ[fS:Bg

�
t0R fflCðtS ;t0RÞ tS

��

¼ (ððAttrðV Þ\AttrðRÞÞnfR:AgÞ[fR:AgtR:

We want to show that tR 2 R, t1 2 R1; . . . ; tn 2 Rn

derive a tuple t in V such that t ¼ t0.
From (7), we have that

8. tR½R:A% ¼ tS½S:B% and
9. tR½R: -DD% ¼ t0R½R: -DD% (because

R: -DD � ðððAttrðV Þ \AttrðRÞÞ n fR:AgÞ [ fS:BgÞÞ:

Properties (5) and (8) imply,
10. CVðtR; t1; . . . ; tnÞ is satisfied.

From (8), (9) and (10) we have that,
11. the tuples tR 2 R, t1 2 R1; . . . ; tn 2 Rn derive a

tuple t 2 V .
Properties (8), (9), and the fact that t1; . . . ; tn derive

t0 2 V 0 as well (properties (3) and (4)), imply,
12. t ¼ t0.

From (11) and (12), we have that t0 2 V . Since t0

was an arbitrarily chosen tuple of V 0, we have

proven that V 0 � V .

Case 2. VE ¼ / ¼00�00 and . 200�00;00 �00g.
We have to prove that for

. 2 f00�00 ; 00 �00g

in Condition 3, V is a subset of V 0, i.e., V 0 � V . Let t be a

tuple in V , t 2 V . Then, there exist some tuples in R,

R1; . . . ; Rn that derive t in V . Thus, the following proper-

ties are true:

1. 9tR 2 R, such that t½R: -DD% ¼ tR½R: -DD%, and t½R:A% ¼
tR½R:A%

2. for all 1 � i � n, 9ti 2 Ri, such that,

t½Ri: -DiDi% ¼ ti½Ri: -DiDi%;

3. tR; t1; . . . tn derive t in V ,
4. CVðtR; t1; . . . tnÞ is satisfied.

By definition, we know that

tR½AttrðV Þ \AttrðRÞ% 2
(ððAttrðV Þ\AttrðRÞÞnfR:AgÞ[fR:AgðRÞ:

Then, from Condition 3 (with . 2 00�00 ; 00 �00g),

there exists t0R 2 R and tS 2 S such that:
5.

tR½AttrðV Þ \AttrðRÞ% ¼
(ððAttrðV Þ\AttrðRÞÞnfR:AgÞ[fS:Bgðt0R fflCðt0

R
;tSÞ tSÞ:

Property (5) implies,
6. tR½R:A% ¼ tS½S:B%,
7.

t0R½ðAttrðV Þ \AttrðRÞÞ n fR:Ag% ¼
tR½ðAttrðV Þ \AttrðRÞÞ n fR:Ag%;

8. Cðt0R; tSÞ is satisfied.
Properties (6) and (7) imply that,

9. CV0ðtS½S:B%; t0R; t1; . . . ; tnÞ is satisfied.
We want to prove that the tuples tS; t

0
R; t1; . . . ; tn

derive a tuple t0 inV 0, and this tuple is equal to t, i.e.,

t0 ¼ t.
Properties (8) and (9) state that the tuples

tS; t
0
R; t1; . . . ; tn satisfy the two conditions from the

WHERE clause of the viewV 0, thus this set of tuples

derive a tuple t0 in V 0.
From (1), (2), (3), (6), and (7) we have that t0 is equal

to t. More precisely,

10. t0½S:B% ¼ tS½S:B% ¼
ð6Þ
tR½R:A% ¼

ð1Þ
t½R:A%,

11. t0½R: -DD% ¼ t0R½R: -DD% ¼ð7Þ tR½R: -DD% ¼ð1Þ t½R: -DD%,
12. for all 1 � i � n, t0½Ri: -DiDi% ¼ ti½Ri: -DiDi% ¼

ð2Þ
t½Ri: -DiDi%.

Hence, we can conclude that t0 ¼ t. Since, t was
chosen arbitrary from V , we have proven that V 0 � V .

Case 3. VE ¼ / ¼00�00 and . ¼00�00 .
We want to show that V 0 � V when . ¼ 00�00 in

Condition 3. Hence, we have to prove two inclusions:

I. V 0 � V and
II. V 0 � V .

The inclusion (I) is implied by Case 1 proven above
when . ¼ 00�00 .7 Similarly, the inclusion (II) is implied
by Case 2 with . ¼00�00 . Thus, we conclude that V � V 0.tu

APPENDIX B

PROOF FOR THEOREM 2

Proof. Case 1. VE ¼ / ¼00�00 and . 2 f00�00;00 �00g:
We have to prove that for . 2 f00�00;00 �00g in Condi-

tion 3, V 0 is a subset of V (for common attributes). That is,
V 0 �( V .8 For this particular case we have to impose that
all attributes of R that appear in the WHERE clause are
replaced by attributes of S. That is

1. CV0ðð -WW nR: -D0D0Þ [ S: -F 0F 0Þ has the same set of primi-
tive clauses as CVð -WW Þ9 WHERE clause are dropped
in V 0 then in general we cannot prove V 0 �( V .
And, jR: -D0D0j ¼ jS: -F 0F 0j.
Let t0 be a tuple in the view V 0, t0 2 V 0.
Then, there exists some tuples in S, R1; . . . ; Rn

that derive the tuple t0 in V 0. I.e., the following

properties hold:
2. 9tS 2 S, such that t0½S: -FF % ¼ tS½S: -FF %,
3. for all 1 � i � n, 9ti 2 Ri, such that

t0½Ri: -DiDi% ¼ ti½Ri: -DiDi%;

4. tS; t1; . . . tn derive t0 in V 0,

LEE ET AL.: THE EVE APPROACH: VIEW SYNCHRONIZATION IN DYNAMIC DISTRIBUTED ENVIRONMENTS 951

7 . C a s e s 1 a n d 2 a r e m o r e g e n e r a l c a s e s p r o v e n f o r
. 2 f00�00;00 �00g and f00�00;00 �00g, respectively.

8. �( is defined in ½%
9. If some of the clauses in the WHERE clause are dropped in V 0, then, in

general, we cannot prove V 0 �( V .



5. CV0ðtS ½S: -F 0F 0%; t1; . . . tnÞ is satisfied.
From Condition 3 we have that the attributes of S
used in the new view definition are among the
ones used in the (25). That is,

6. S: -FF; S: -F 0F 0 � S: -BB.
Then, from (25) (with

. 2 f00�00;00 �00gÞ

we have that there exists a tuple tR 2 R such that,
7. tS ½S: -BB% ¼ tR½R: -AA%.

We want to show that tR 2 R, t1 2 R1; . . . ; tn 2 Rn

derive a tuple t in V such that t ¼( t
0.

From (1), (6), and (7) we have that,
8. tS ½S: -F 0F 0% ¼ tR½R: -D0D0%10 are all the attributes of S that

replace attributes of R (they must include at least
the indispensable and replaceable attributes of R
described in the Condition 2).
From (1),(5), and (8) we have

9. CVðtR½R: -D0D0%; t1; . . . tnÞ is satisfied.11

Then, from (9), we can deduce that,
10. the tuples tR 2 R, t1 2 R1; . . . ; tn 2 Rn derive a

tuple t in V .
Now let’s prove that t ¼( t

0. From (3) and (10), we
have that,

11. for all 1 � i � n, (ti 2 Ri),

t0½Ri: -DiDi% ¼
ð2Þ
ti½Ri: -DiDi% ¼

ð9Þ
t½Ri: -DiDi%:

From (2) and (8) we have that

12. t0½S: -FF % ¼ð1Þ tS½S: -FF % ¼(
ð7Þ

tR½R: -DD% ¼ð9Þ t½R: -DD%.
In (11) and (12), we have proven that t ¼( t

0.
Since, t0 was an arbitrary chosen tuple of V 0, we
have proven that V 0 �( V .

Case 2. VE ¼ / ¼00�00 and . 2 f00�00 ; 00 �00g.
We have to prove that for

. 2 f00�00;00 �00g

in Condition 3, V is a subset of V 0, i.e., V 0 �( V .
Let t be a tuple in V , t 2 V . Then, there exist some

tuples in R, R1; . . . ; Rn that derive t in V . Thus, the
following properties are true:

1. 9tR 2 R, such that t½R: -DD% ¼ tR½R: -DD%,
2. for all 1 � i � n, 9ti 2 Ri, such that,

t½Ri: -DiDi% ¼ ti½Ri: -DiDi%;

3. tR; t1; . . . tn derive t in V ,
4. CVðtR; t1; . . . tnÞ is satisfied.

From Condition 3 (with . 2 f00�00;00 �00g ), there
exists tS 2 S such that,

5. tR½R: -AA% ¼ tS½S: -BB%. Property (5) implies,
6. tS ½S: -F 0F 0% ¼( tR½R: -D0D0%,
7. tS ½S: -FF % ¼( tR½R: -DD%.

We want to prove that the tuples tS; t1; . . . ; tn
derive a tuple t0 in V 0 and this tuple is equal to t,
i.e., t0 ¼( t.
Property (6) implies that,

8. CV0ðtS½S: -F 0F 0%; t1; . . . ; tnÞ12 is satisfied.

Properties (8) states that the tuples tS; t1; . . . ; tn
satisfy the condition from the WHERE clause of the

viewV 0, thus this set of tuples derive a tuple t0 inV 0.
From (2), (3), (4), (7), and (8), we have that t0 is

equal to t. More precisely,

9. t0½S: -FF % ¼ tS ½S: -FF % ¼(
ð7Þ

tR½R: -DD% ¼ð1Þ t½R: -DD%,
10. for all 1 � i � n, t0½Ri: -DiDi% ¼ ti½Ri: -DiDi% ¼

ð2Þ
t½Ri: -DiDi%.

Hence, we can conclude that t0 ¼( t. Since, t was

chosen arbitrary from V , we have proven that

V 0 �( V .

Case 3. VE ¼ / ¼00�00 and . ¼00�00 .
We want to show that V 0 �( V when . ¼00�00 in

Condition 3. Hence, we have to prove two inclusions:

I. V 0 �( V and
II. V 0 �( V .

The inclusion (I) is implied by Case 1 proven above
when . ¼ 00�00 with the restriction imposed in (1).

Similarly, the inclusion (II) is implied by Case 2 with

. ¼00�00 . Then, we conclude that V �( V
0 when the

restriction imposed in Case 1 at (1) is satisfied. tu

ACKNOWLEDGMENTS

The authors would like to thank students at the University
of Michigan Database Group and at the Database Systems
Research Group at WPI for their interactions on this
research. In particular, we thank Andreas Koeller, Yong
Li, Xin Zhang, and Esther Dubin (CRA summer research
student) for helping to proofread the paper and for
implementing components of the EVE system. This work
was supported in part by the US National Science
Foundation NYI grant #IRI 94-57609. The authors would
also like to thank their industrial sponsors, in particular,
IBM and Informix.

REFERENCES

[1] Y. Arens, C.A. Knoblock, and W.-M. Shen, “Query Reformulation
for Dynamic Information Integration,” J. Intelligent Information
Systems, vol. 6, nos. 2/3, pp. 99-130, 1996.

[2] J.A. Blakeley, N. Coburn, and P.-A. Larson, “Updating Derived
Relations: Detecting Irrelevant and Autonomously Computable
Updates,” ACM Trans. Database Systems, vol. 14, no. 3, pp. 369-400,
Sept. 1989.

[3] M.J. Carey, L.M. Haas, P.M. Schwarz, M. Arya, W.F. Cody, R.
Fagin, M. Flickner, A.W. Luniewski, W. Niblack, D. Petkovic, J.H.
Williams, J. Thomas, and E.L. Wimmers, “Towards Heteroge-
neous Multimedia Information Systems: The Garlic Approach,”
Proc. Fifth Int’l Workshop Research Issues in Data Eng. (RIDE):
Distributed Object Management, 1995.

[4] W.W. Chu, M.A. Merzbacher, and L. Berkovich, “The Design and
Implementation of CoBase,” SIGMOD Record, vol. 22, no. 2,
pp. 517-522, June 1993.

[5] S. Cohen, W. Nutt, and A. Serebrenik, “Rewriting Aggregate
Queries Using Views,” Proc. ACM Symp. Principles of Database
Systems, C. Papadimitriou, ed., May 1999.

[6] W.W. Chu, H. Yang, K. Chiang, M. Minock, G. Chow, and C.
Larson, “CoBase: A Scalable and Extensible Cooperative Informa-
tion System,” Intelligent Information Systems (JIIS), vol. 6, nos. 2/3,
pp. 223-259, 1996.

952 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2002

10. From (1), we have that j S: -FF 0 j ¼ j R: -DD0 j .
11. HERE IS THE PLACE WHERE WITHOUT (1) we cannot prove

V 0 � V .

12. Note that this case can be proven, in general, when CV0 is
obtained from CV by dropping some of the conditions and replacing
the attributes of R.



[7] O. Etzioni and D. Weld, “A Softbot-Based Interface to the
Internet,” Comm. ACM, vol. 37, no. 7, pp. 72-76, July 1994.

[8] D. Florescu, L. Raschid, and P. Valduriez, “Using Heterogenous
Equivalence for Query Rewriting in Multidatabase Systems,” Proc.
Third Int’l Conf. Cooperative Information Systems, 1995.

[9] A. Gupta, H.V. Jagadish, and I.S. Mumick, “Data Integration
Using Self-Maintainable Views,” Proc. Int’l Conf. Extending
Database Technology (EDBT), pp. 140-144, 1996.

[10] S. Galindo-Legaria, “Outerjoins as Disjunctions,” Proc. SIGMOD,
pp. 348-358, 1994.

[11] M. Jarke, M.A. Jeusfeld, C. Quix, and P. Vassil-iadis, “Architecture
and Quality in Data Warehouses: An Extended Repository
Approach,” Information Systems, vol. 24, no. 3, pp. 229-253, 1999.

[12] A.J. Lee, A. Koeller, A. Nica, and E.A. Rundensteiner, “Data
Warehouse Evolution: Trade-Offs between Quality and Cost of
Query Rewritings,” Technical Report WPI-CS-TR-98-2, revised in
1999., Worcester Polytechnic Inst., Dept. of Computer Science,
1998.

[13] A.J. Lee, A. Koeller, A. Nica, and E.A. Rundensteiner, “Data
Warehouse Evolution: Trade-Offs between Quality and Cost of
Query Rewritings,” Proc. IEEE Int’l Conf. Data Eng., Poster Session
p. 255, Mar. 1999.

[14] A.J. Lee, A. Koeller, A. Nica, and E.A. Rundensteiner, “Non-
Equivalent Query Rewritings,” Proc. Int’l Database Conf., pp. 248-
262, July 1999.

[15] A.Y. Levy, A.O. Mendelzon, and Y. Sagiv, “Answering Queries
Using Views,” Proc. ACM Symp. Principles of Database Systems,
pp. 95-104, May 1995.

[16] A. Levy, I.S. Mumick, Y. Sagiv, and O. Shmueli, “Equivalence,
Query Reachability and Satisfiability in Datalog Extensions,” Proc.
12th ACM SIGACT-SIGMOD-SIGART Symp. Principles of Database
Systems, pp. 109-122, May 1993.

[17] A.J. Lee, A. Nica, and E.A. Rundensteiner, “Keeping Virtual
Information Resources Up and Running,” Proc. IBM Centre for
Advanced Studies Conf. (CASCON ’97), pp. 1-14, Nov. 1997. (Best
paper award.)

[18] A.J. Lee, A. Nica, and E.A. Rundensteiner, “The EVE Framework:
View Synchronization in Evolving Environments,” Technical
Report WPI-CS-TR-97-4, Worcester Polytechnic Inst. Dept. of
Computer Science, 1997.

[19] A.Y. Levy, A. Rajaraman, and J.D. Ullman, “Answering Queries
Using Limited External Processors,” Proc. 15th ACM Symp.
Principals of Database Systems (pods), pp. 227-237, June 1996.

[20] A. Levy and Y. Sagiv, “Constraints and Redundancy in Datalog,”
Proc. 11th ACM SIGACT-SIGMOD-SIGART Symp. Principles of
Database Systems, pp. 67-80, June 1992.

[21] A.Y. Levy, D. Srivastava, and T. Kirk, “Data Model and Query
Evaluation in Global Information Systems,” J. Intelligent Informa-
tion Systems, special issue on Networked Information Discovery
and Retrieval, vol. 5, no. 2, pp. 121-143, 1995.

[22] L.V.S. Lakshmanan, F. Sadri, and I.N. Subramanian, “SchemaSQ-
L—A Language for Interoperability in Relational Multi-Database
Systems,” Proc. 22nd Int’l Conf. Very Large Data Bases,
T.M. Vijayaraman et al., eds., pp. 239-250, Sept. 1996.

[23] C. Li, R. Yerneni, V. Vassalos, H. Garcı́a-Molina, Y. Papakon-
stantinou, J.D. Ullman, and M. Valiveti, “Capability Based
Mediation in TSIMMIS,” Proc. SIGMOD, pp. 564-566, 1998.

[24] M. Mohania and G. Dong, “Algorithms for Adapting Materialized
Views in Data Warehouses,” Proc. Int’l Symp. Cooperative Database
Systems for Advanced Applications, Dec. 1996.

[25] Y. Vassiliou and M. Jarke, “Data Warehouse Quality: A Review of
the DWQ Project,” Proc. Second Conf. Information Quality, 1997.

[26] A. Nica, A.J. Lee, and E.A. Rundensteiner, “The Complex
Substitution Algorithm for View Synchronization,” Technical
Report WPI-CS-TR-97-8, Worcester Polytechnic Inst. Dept. of
Computer Science 1997.

[27] A. Nica, A.J. Lee, and E.A. Rundensteiner, “The CVS Algorithm
for View Synchronization in Evolvable Large-Scale Information
Systems,” Proc. Int’l Conf. Extending Database Technology (EDBT
’98), pp. 359-373, Mar. 1998.

[28] A. Nica and E.A. Rundensteiner, “Loosely-Specified Query
Processing in Large-Scale Information Systems,” Int’l J. Cooperative
Information Systems, vol. 7, no. 1, pp. 77-104, 1998.

[29] A. Nica and E.A. Rundensteiner, “On Translating Loosely-
Specified Queries into Executable Plans in Large-Scale Informa-
tion Systems,” Proc. Second IFCIS Int’l Conf. Cooperative Information
Systems CoopIS ’97, pp. 213-222, June 1997.

[30] Y. Papakonstantinou, H. Garcı́a-Molina, and J. Ullman, “Med-
maker: A Mediation System Based on Declarative Specifications,”
Proc. IEEE Int’l Conf. Data Eng., 1996.

[31] Y. Papakonstantinou, H. Garcı́a-Molina, and J. Widom, “Object
Exchange Across Heterogeneous Information Sources,” Proc. IEEE
Int’l Conf. Data Eng., pp. 251-260, Mar. 1995.

[32] C. Quix, “Repository Support for Data Warehouse Evolution,”
Proc. Int’l Workshop Design and Management of Data Warehouses
(DMDW ’99), pp. 4.1-4.9, June 1999.

[33] E.A. Rundensteiner, A. Koeller, X. Zhang, A. Lee, A. Nica, A.
VanWyk, and Y. Li, “Evolvable View Environment,” Proc.
SIGMOD’99 Demo Session, pp. 553-555, May/June 1999.

[34] E.A. Rundensteiner, A. Koeller, and X. Zhang, “Maintaining Data
Warehouses over Changing Information Sources,” Comm. ACM,
vol. 43, no. 6, pp. 57-62, June 2000.

[35] E.A. Rundensteiner, A.J. Lee, and A. Nica, “On Preserving Views
in Evolving Environments,” Proc. Fourth Int’l Workshop Knowledge
Representation Meets Databases (KRDB’97): Intelligent Access to
Heterogeneous Information, pp. 13.1-13.11, Aug. 1997.

[36] Y.G. Ra and E.A. Rundensteiner, “A Transparent OO Schema
Change Approach Using View Schema Evolution,” IEEE Int’l
Conf. Data Eng., pp. 165-172, Mar. 1995.

[37] Y.G. Ra and E.A. Rundensteiner, “A Transparent Schema-
Evolution System Based on Object-Oriented View Technology,”
IEEE Trans. Knowledge and Data Eng., vol. 10, no. 4, July/Aug.
1998.

[38] A. Rajaraman, Y. Sagiv, and J.D. Ullman, “Answering Queries
Using Templates With Binding Patterns,” Proc. ACM Symp.
Principles of Database Systems, pp. 105-112, May 1995.

[39] A. Rajaraman and J.D. Ullman, “Integrating Information by
Outerjoins and Full Disjunctions,” Proc. ACM Symp. Principles of
Database Systems, pp. 238-248, 1996.

[40] D. Srivastava, S. Dar, H.V. Jagadish, and A.Y. Levy, “Answering
Queries with Aggregation Using Views,” Proc. Int’l Conf. Very
Large Data Bases, pp. 318-329, 1996.

[41] J.D. Ullman, Principle of Database and Knowledge-Base Systems.
Computer Science Press, 1989.

[42] J. Widom, “Research Problems in Data Warehousing,” Proc. Int’l
Conf. Information and Knowledge Management, pp. 25-30, Nov. 1995.

[43] Y. Zhuge, H. Garcı́a-Molina, J. Hammer, and J. Widom, “View
Maintenance in a Warehousing Environment,” Proc. SIGMOD,
pp. 316-327, May 1995.

[44] X. Zhang and E.A. Rundensteiner, “Integrating the Maintenance
and Synchronization of Data Warehouses Using a Cooperative
Framework” Information Systems, vol. 27, no. 4, pp. 219-243, 2002.

[45] X. Zhang and E.A. Rundensteiner, “DyDa: Dynamic Data Ware-
house Maintenance in a Fully Concurrent Environment,” Data
Warehousing and Knowledge Discovery, Sept. 2000.

Amy Lee the received BA degree in economics
from the National Chung-Hsing University, Tai-
pei, Taiwan, the MA degree in economics and
the MS degree in computer science from
University of Minnesota, Minneapolis, and the
PhD degree from the University of Michigan,
Ann Arbor. She was an assistant professor in
the Department of Information and Systems
Management at the Hong Kong University of
Science and Technology. Her current research

interests include data warehousing over distributed information sources,
web information systems, and knowledge management. Dr. Lee is
currently a systems developer/engineer with the Center for Human
Resource Research, Columbus, Ohio.

LEE ET AL.: THE EVE APPROACH: VIEW SYNCHRONIZATION IN DYNAMIC DISTRIBUTED ENVIRONMENTS 953



Anisoara Nica received the MS and PhD
degrees in electrical engineering and computer
science from University of Michigan, Ann Arbor,
in 1997 and 1999, respectively. Since 1998, she
has been a part of the Research and Develop-
ment team at the iAnywhere Solutions, a
subsidiary of Sybase, Inc. Her research interests
include query processing, query optimization,
and mobile and wireless computing.

Elke Rundensteiner received the BS degree
(Vordiplom) from the J.W. Goethe University,
Frankfurt, West Germany, the MS degree from
Florida State University, and the PhD degree
from the University of California, Irvine, all in
computer science. She is currently an associate
professor in the Department of Computer
Science at the Worcester Polytechnic Institute,
after having been a faculty member at the
University of Michigan, Ann Arbor. Dr. Runden-

steiner has been active in the database research community for more
than 15 years. Her current research interests include database evolution
and migration, web data management, data warehousing for distributed
systems, and information integration, exploration and visualization. She
has published more than 100 publications in these and related areas.
Her research has been funded by government agencies including US
National Science Foundation, ARPA, NASA, CRA, DOT, and by industry
including IBM, Verizon Labs, GTE, AT&T, Intel, Informix, and GE. Dr.
Rundensteiner has received numerous honors, including Fulbright, US
National Science Foundation Young Investigator, and IBM Partnership
Award.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publication/dilb.

954 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2002


