
Semantic Stream Query Optimization Exploiting
Dynamic Metadata

Luping Ding 1 , Karen Works 2 , Elke A. Rundensteiner 3

1Oracle Corporation
Nashua, MA USA

1lisa.ding@oracle.com
2,3Worcester Polytechnic Institute

Worcester, MA USA
2kworks@cs.wpi.edu

3rundenst@cs.wpi.edu

Abstract— Data stream management systems (DSMS) process-
ing long-running queries over large volumes of stream data must
typically deliver time-critical responses. We propose the first
semantic query optimization (SQO) approach that utilizes dynamic
substream metadata at runtime to find a more efficient query
plan than the one selected at compilation time. We identify four
SQO techniques guaranteed to result in performance gains. Based
on classic satisfiability theory we then design a lightweight query
optimization algorithm that efficiently detects SQO opportunities
at runtime. At the logical level, our algorithm instantiates mul-
tiple concurrent SQO plans, each processing different partially
overlapping substreams. Our novel execution paradigm employs
multi-modal operators to support the execution of these concur-
rent SQO logical plans in a single physical plan. This highly agile
execution strategy reduces resource utilization while supporting
lightweight adaptivity. Our extensive experimental study in the
CAPE stream processing system using both synthetic and real
data confirms that our optimization techniques significantly
reduce query execution times, up to 60%, compared to the
traditional approach.

I. INTRODUCTION

A. Exploiting Metadata

Many DSMS systems process long-running continuous
queries over large volumes of real-time data. As data in these
applications is real-time, meta knowledge about cardinality
and data value arrival patterns is typically not obtainable at
the time when compile time query optimization decisions are
made. Similarly, no pre-built index for fast data access is
available to be exploited for query processing at that time.
Therefore, traditional optimization strategies, which heavily
rely on pre-built indices, become inapplicable. Yet such stream
systems may face scalability issues when processing hundreds
or more of concurrent queries, as often experienced by appli-
cations [13], [20].

However meta knowledge on data values may become
available as streaming data is generated [3]. One example of
such metadata is network packet information for web service
requests. If a given destination IP is highly requested, a
router could batch such requests together and concurrently
send metadata about the IP destination along with the packets.
Another example is information generated for environmental
management systems. Consider a fire detection application in

a high-rise business complex where environmental sensor data
is first propagated to a router that processes tuples within a
specified region, then to a gateway that processes tuples for
the respective floor and finally to the fire detection application.
Correspondingly, metadata regarding such data (e.g., declaring
that the next 5000 tuples will be from regionID=26) can easily
be provided along with the actual data with little overhead as
demonstrated by our experiments (Section 7).

Metadata on data values could also be derived by the
query system itself [18]. For example, query systems often
employ a buffer to collect input data. Data in the buffer
may be pre-processed for a variety of reasons, including to
sort for correcting out-of-order arrivals [18] or to perform
load shedding [20]. Such pre-processing could annotate the
data with relevant metadata. While pre-processing may incur
some minimal overhead, the metadata provided could thus
effortlessly be exploited to reap potentially significant benefit
for a large number of down stream queries and applications
as demonstrated by our experiments.

Motivating example: Reconsider the fire detection appli-
cation mentioned above. The incoming sensor stream data
is clustered by regionID. A metadata punctation could be
inserted in front of each cluster to indicate the attribute values
satisfied by tuples in the cluster [21]. We henceforth refer to
such metadata punctuations as a herald as it is a “messenger”
indicating the properties that a particular group of incoming
tuples following it satisfy.

Join (flBelow.temp *1.25)<= flAbove.temp Λ

flBelow.regionID = flAbove.regionID Λ
flBelow.floorID = flAbove.floorID -1

Floor (flAbove)Floor (flBelow)

σregionID>=25 Λ
regionID<=32

σregionID >=25 Λ
regionID <=32

O1 O2

O3

Fig. 1. Query Plan for Example Query Q1.

Consider emergency responders monitoring the progress of

a fire by comparing the temperature of regions on fire on one
floor to the same regions on the floor below. Query Q1, defined
on a stream with schema <floorID, regionID, sensorID, time,
temp>, reports region floor combinations for all regions with
regionIDs within the range [25, 32] where the temperature
observed on the upper floor (i.e., flAbove) is at least 25%
more than the temperature observed at the same region on the
next floor down (i.e., flBelow). The Q1 query plan consists of
2 Select and 1 Join operator (Figure I-A).
Example Query Q1:
SELECT flBelow.regionID, flAbove.floorID
FROM FloorData flBelow, FloorData flAbove
WHERE flBelow.regionID ≥ 25 and flBelow.regionID ≤ 32
and flAbove.regionID ≥ 25 and flAbove.regionID ≤ 32
and flBelow.regionID = flAbove.regionID
and flBelow.floorID = flAbove.floorID - 1
and (flBelow.temp * 1.25) ≤ flAbove.temp

Assume a herald <regionID = [25, 32], time = ∗, temp =
∗; count, 5000> is received, which indicates the next 5000
tuples all satisfy the condition regionID ∈ [25, 32]. These
5000 tuples could bypass the evaluation of the region range
predicate (i.e., operator O1) as they are guaranteed to satisfy it.
Now assume that before reporting data, each router partitions
the sensor data into partitions by temperature. If a herald
<regionID = [25, 28], time = ∗, temp = (−∞, 100.0]; count,
5000> is received, the data conforming to this herald can
also bypass operator O1. Better yet, at operator O3, these
tuples don’t need to join with any tuples originating from the
floor above that belong to the partitions temp<125 as they are
guaranteed not to produce any results. In short, the processing
of these partition pairs could use a much more efficient query
plan (i.e., eliminate the join) than the one selected without
considering heralds. Clearly, such herald-driven optimization
can result in significant savings in query execution costs.

B. Challenges in Herald Driven Optimization

Several important observations regarding herald driven
query optimization can be made. First, heralds are only
available at runtime. Hence query optimization must be con-
ducted at runtime. Second, heralds have lifespans, i.e., the
properties described by a herald are only satisfied by a
particular substream. Thus optimizations driven by a herald
will be applicable for limited periods of time (i.e., particular
substreams). Finally, heralds from multiple streams considered
in collaboration may enable several distinct optimizations.

For example, the herald <regionID = [25, 32], time =
∗, temp = [0.0, 100.0]> from stream flBelow allows the
join computation to be skipped if combined with the herald
<regionID = [25, 30], time = ∗, temp = [150.0, 200.0]>
from flAbove. The join is satisfiable if combined with the
herald <regionID = [25, 30], time = ∗, temp = [90.0, 125.0]>
from flAbove. Hence multiple distinct herald-optimized query
plans may be valid at a time with partially overlapped scopes
(i.e., the applicable substreams of these plans may overlap).

These properties raise serious challenges in designing new
query optimization and execution techniques for exploiting
heralds. First, the query optimization algorithm employed to
find the optimized herald-driven plans must be efficient so

as to identify optimization opportunities at runtime. Second,
the algorithm must be lightweight to minimize the runtime
optimization overhead. Also, a new query execution paradigm
is required to support the concurrent execution of multiple
logical plans on overlapping substreams without duplication
of data storage or of processing. This requires logical plans
on substreams to adaptively phase in and out with negligible
physical plan switching costs [6], [22].

C. State-of-the-Art in Stream Processing

Semantic query optimization (SQO) [5], [14], which utilizes
integrity constraints known at compilation time for query
optimization, has been studied in the context of many con-
sidered static database systems from relational [5], object-
oriented [11], to XML databases [19]. Most recently some
SQO work on stream database systems has been reported [9].
However, these techniques are all conducted at compilation
time and include detection of empty answer set and join/select
elimination & introduction. Furthermore, they all produce one
single optimized plan. We clearly face a different problem.
Namely, the metadata to be exploited each have different
scopes of applicability (i.e., may be valid for a limited period
of time) and are only available at runtime. This requires
lightweight constraint reasoning techniques that incrementally
react to runtime metadata changes.

Present work on runtime query optimization for stream-
ing data [2], [10] focuses on the traditional query rewriting
problem of reordering operators in a query plan using se-
lectivity statistics. No dynamic semantic knowledge has been
considered thus far. In summary, existing work on SQO and
runtime stream query optimization have been separate efforts.
We are the first to combine them to conduct herald-aware
query optimization at runtime. Existing works on punctuations
focus on operator-level optimization, namely, on tuning the
execution logic of individual join or aggregate operators [7],
[8], [16]. Our work instead targets the query plan level, i.e.
to optimize the overall plan structure to minimize execution
costs by for instance skipping some operators completely.

D. Our Contributions: Herald Driven SQO

Our contributions can be summarized as follows:
1. We are the first to explore plan level semantic stream query
optimization that exploits dynamic metadata. In particular,
we identify four herald enabled semantic query optimization
opportunities that parallel the traditional database SQO tech-
niques [5], [14] (Section III-A).
2. To minimize the optimization overhead, we develop an
incremental constraint reasoning algorithm named PredSAT
based on classic satisfiability reasoning theory. PredSAT is
guaranteed to efficiently identify all four herald driven opti-
mization opportunities at runtime (Section III).
3. Multiple concurrent SQO plans may be enabled by heralds
for processing different yet potentially overlapping stream
partitions. We propose a versioned minimum range model for
supporting multiple concurrent logical plans proposed by the
PredSAT algorithm (Section IV).

4. To achieve multiple concurrent logical plans with a single
physical plan, we propose a novel query execution paradigm
employing multi-modal operators with runtime configuration
logic. This paradigm eliminates any replication of operator
states or inter-operator queues, guarantees instantaneous appli-
cation of herald driven query optimization, and requires zero
plan migration effort (Section V).
5. Our extensive experimental study using both synthetic and
real data streams confirms that herald driven optimization
techniques significantly reduce query execution times, up to
60% (Section VIII), as compared to the traditional approach.

II. PRELIMINARIES

Herald Model: Heralds are metadata punctuations [21] inter-
leaved within streaming data. Each herald describes constraints
on the attribute values of a sequence of tuples immediately
following it via attribute patterns. Each corresponds to an
attribute in the stream schema, indicating a range in the domain
of that attribute and a timestamp indicating the scope of
validity of a herald, also called a lifespan. A herald has an
explicitly specified duration, either bounded (the more realistic
scenario in practical applications) or unbounded (specified
as ∞). Using a specified duration is a reasonable approach
because it is not common that constraints in a stream will
remain constant for a large amount of time, much less for
infinity. A duration can be count-based (i.e., a given number
of tuples following the herald) or time-based (i.e., a time range
starting from the herald’s timestamp).

Within the punctuation model, 1) tuples and heralds in the
same input stream are assumed to be received in time stamp
order [21], 2) the constraints must be valid, (i.e., tuples arriving
within a herald’s lifespan must conform to it), and 3) heralds
in the same stream are assumed to not have contradicting
constraints. Thus for any input stream, logically one herald is
valid at any time, namely, the constraint implied by the strictest
herald overwrites those with looser constraints. When a new
herald arrives on a stream while a prior constraint is still active,
its constraints are compared to the constraints in the current
herald. The current herald is updated to the stricter of the two
constraints. If the lifespan of the new stricter herald extends
longer than the current herald’s lifespan, then the lifespan of
the current herald is updated to cover the lifespan of the new
stricter herald. We henceforth focus on the crux of the problem
(i.e., the semantic query optimization) and assume a single
valid herald per each stream.

A herald is denoted as

(< ptn1, ptn2, ..., ptnn >;< lifetype, lifeval >)

where ptni (1 ≤ i ≤ n) is an attribute pattern for the ith

attribute Ai. Lifetype is the type of the lifespan either count or
time which represent the count-based or time-based lifespan
respectively. Lifeval is the value of the lifespan. A herald
indicates that data following it will match the attribute patterns.
Below is an example substream with a herald (in bold) and
subsequent tuples that conform to it. The herald indicates that

for the next 300 tuples following it, the regionID will be within
the range of [200, 400).

schema: regionID, date, temp
(<[200, 400), *, *>: count, 300) – herald
(<201, 2008-02-01, 72.7>) – stream data
(<202, 2008-02-01, 75.6>) – stream data ...

Our Targeted Query. Our work focuses on optimizing pred-
icates as found in join and select expressions. Henceforth,
we focus on example queries containing such predicates.
However, our method would equally work on queries con-
taining additional operators such as group by or aggregation
as the processing of these additional operators would remain
unaffected. Our conjunctive queries are specified as follows:

SELECT <select-list>
FROM <list-of-streams>
WHERE <where-conditions>
[WINDOW <window-specification>]

The where-conditions are of the form p1∧p2∧...∧pn in which
1) pi = z1θz2 (1≤i≤n); 2) zj (j = 1, 2) is either an attribute
or a constant, but z1 and z2 cannot both be constants; 3) θ
is either =, < or ≤. Each predicate pi is henceforth called an
inequality predicate [12], though θ could be “=”.

III. CONSTRAINT REASONING

A. Herald Driven Optimization Strategies

Now, we describe four herald enabled query optimization
cases. All are guaranteed to always lead to query execution
cost reductions. Therefore, no cost-based decision is needed
on deciding whether to apply our proposed optimizations. In
the expressions below, we denote the ranges signaled by a
herald (i.e., the inequalities already satisfied by the data) by
d. Query predicates are denoted by q.
Select data skipping (SDS): If the selection predicate cannot
be satisfied by the input data, the entire conjunctive query
cannot be satisfied by the data. If any unsatisfiable selection
predicate is identified based on the currently valid heralds, the
select operation can skip the corresponding data. Expression
1 is an unsatisfiable selection predicate.

(A > 1000 ∧ A < B)q ∧ (A < 800)d |= False (1)

Join data skipping (JDS): Similarly, whenever an unsatis-
fiable join predicate is detected based on heralds, the join
operation can skip the corresponding data. Expression 2 is
a join query over input streams A and B.

(A > 800 ∧ A < B)q ∧ (B < 800)d |= False (2)

Select elimination (SE): If a selection predicate is known to
always evaluate to true over the input data that conforms to
a herald, it is a redundant predicate regarding the data. Such
data can directly pass through the part of the query that was to
evaluate this redundant predicate. Expression 3 is a redundant
selection predicate where A > 1000.

(A > 1000 ∧ A ≤ B)q ∧ (A > 1200)d |= (A ≤ B)q (3)

Join simplification (JS): Similar to select elimination, any
redundant join predicate regarding a certain herald need not be
evaluated on each tuple that conforms to this herald. Instead, a
cartesian product replaces the join predicate to simply combine
the tuples without first having to execute this redundant join

predicate. Expression 4 is a redundant join predicate where
A < B.

(A < 800 ∧ A < B)q ∧ (B > 1000)d |= True (4)

B. Completeness of Query Optimization

Select/Join data skipping are due to unsatisfiable Select/Join
predicates, while Select elimination and Join simplification are
due to satisfied Select/Join predicates respectively.

Evaluation Result
True False Unknown

Select Select Elimination Query Pause Regular Eval.
Join Join Simplification Query Pause Regular Eval.

TABLE I
QUERY OPTIMIZATION OPPORTUNITIES.

For each predicate in our targeted queries (Section II), the
result from evaluating an input is either true (satisfied), false
(unsatisfiable), or unknown (yet to be evaluated) (Table III-
B). Therefore, the above four optimization cases compose a
complete set of semantic query optimizations based on predi-
cate satisfiability. Each of these optimizations, once identified,
ensures performance gains. There is no need for a complex
cost-based query optimizer. Instead, a lightweight mechanism
for identifying these optimizations is employed.

Among the four optimization techniques, select/join data
skipping and select elimination parallel the cases covered
by existing SQO techniques, namely, detecting an empty
answer set and predicate elimination respectively [5], [14].
Join simplification is the runtime version of join elimination
(JE) [5], [14]. They both are based on the identification of a
redundant join predicate. Join is composed of the functionality
of Cartesian product and predicates. JE identifies the join
predicates for which both the Cartesian product and the pred-
icates are redundant. Since Cartesian product determines the
schema of the intermediate results, it is logically unavoidable
regardless of any metadata on attribute values such as heralds.
Therefore, at runtime join elimination reduces down to join
simplification, which concatenates tuples from the two inputs
without evaluating any predicates.

The identification of the applicability of any of the four
herald driven optimization strategies outlined above can be
mapped to the classic satisfiability and implication problems
denoted as SAT and IMP [12].

Definition 1: Satisfiability Problem (SAT): Given a conjunc-
tive formula S composed of a set of inequality predicates, the
SAT problem checks whether at least one assignment for S
exists such that S evaluates to true under the assigned values.
If yes, S is said to be satisfiable. Otherwise, S is said to be
unsatisfiable, denoted as S |= False.

Definition 2: Implication Problem (IMP): Given two con-
junctive formulae S and T, both composed of a set of inequality
predicates, the IMP problem checks whether every assignment
that satisfies S also satisfies T. If yes, S is said to imply T,
denoted as S → T .

For both integer and real domains, one of the most effective
SAT/IMP reasoning algorithms proposed in the literature is

the real minimum range algorithm [12] or RMin algorithm.
The RMin algorithm has |S| time complexity for solving the
satisfiability problem and |S|2 + |T | time complexity for the
implication problem for our targeted queries (Section II). Here
|S| and |T | denote the number of predicates in formulas S
and T respectively. Since our work extends RMin to make it
employable for runtime query optimization (Section III-C), we
now review RMin. RMin utilizes the inequality graph defined
below (Definition 3) for representing the set of predicates.

Definition 3: Inequality Graph: An inequality graph for a
conjunctive inequality formula S, denoted as GS = (VS , ES),
is a directed graph. Each node X in VS one-to-one corresponds
to a distinct attribute X in S. Each directed edge from node X
to node Y in ES , labeled with ⊗ and denoted as (X, Y, ⊗),
one-to-one corresponds to an inequality (X ⊗ Y) ∈ S. The
label ⊗ is either < or ≤.

S2.B

S3.C

S4.D

S1.A

500

100

(100, ∞) (-∞, ∞)

Query Predicate:
A>100 and A<B and B<C and B<D and C>500

(a) Minimum Range (-∞, ∞)

(500, ∞)

S2.B

S3.C

S4.D

S1.A

500

100

(100, ∞) (100, ∞)

(b) Real Minimum Range

(500, ∞)

(100, ∞)

Fig. 2. Computing Real Minimum Ranges.

Figure 2(a) shows an example of the inequality graph
for predicate S1.A>100 and S1.A<S2.B and S2.B<S3.C and
S2.B<S4.D and S3.C>500. A circle denotes a variable and a
square denotes a constant. The label of the edge, if not shown,
is assumed to be <. Otherwise it is ≤.

We call a node Y a parent node of a node X (and X a child
of Y) if X can reach Y via a directed edge. We denote the set
of all parent nodes of a node X as parents(X) and the set of
all children nodes of a node X as children(X).

If two nodes X and Y in GS are reachable via paths from
each other, X=Y is implied by S via transitivity. All such
variables and the edges among them are said to form a strongly
connected component, or SCC. As an example, predicate A≤B
and B≤C and C≤A corresponds to an SCC. By transitivity, it
is equal to A=B and B=C and C=A. We use GSc

to denote
the collapsed inequality graph after collapsing each SCC in
GS into a single node. Sc denotes the collapsed inequality
formula from S.

The RMin algorithm then works as follows. For an attribute
X, let CXup = min(Cj) for all constants Cj such that X ≤ Cj ∈
Sc. And let CXlow = max(Ci) for all constants Ci such that X
≥ Ci ∈ Sc. The closed range [CXlow, CXup] is called the closed
minimum range for X. These minimum ranges can be derived
directly from the query. Figure 2(a) shows the minimum ranges
for the attributes for a query with predicate A>100 and A<B
and B<C and B<D and C>500.

The minimum range can be further refined to be the real
minimum range [AXlow, AXup] in which AXlow and AXup denote

the real lower bound and real upper bound of the attribute
X respectively, computed as below. First, attributes in Sc are
sorted in their topological order. Then attributes in Sc are
selected one by one according to their topological order in
Sc. For an attribute X, AXlow = max(Ci, CXlow) for all Ci such
that Ci = AXi

low. Here Xi is X’s child, if the edge from Xi to
X is labeled with ≤; or Ci = AXi

low + 1 if the edge for Xi to
X is labeled with <.

Next, we select attribute X one by one according to the
inverse topological order of Sc. AXup = min(Cj , CXup) for all
Cj such that Cj equal to AXj

up . Here Xj is X’s parent, if the
edge from X to Xj is labeled with ≤; or Cj = A

Xj
up -1 if the

edge from X to Xj is labeled with <.
Figure 2 b shows the refinement of the real lower bounds

of attributes S2.B and S4.D to be 100 instead of -∞ because
these attributes are forced to be greater than S1.A, whose real
lower bound is 100.

Reasoning of the classic SAT and IMP problems using the
real minimum ranges is based on Theorem 3.1. The proof can
be found in [12].

Theorem 3.1: S is satisfiable iff 1) no SCC in GS contains
an edge labeled < & 2) for each attribute X in S, AXlow ≤ AXup.

In addition, if S is satisfiable, S→ T iff 1) for any (X ≤ Y)
∈ T there exists a path from X to Y in GSc

, or AXup ≤ AYlow;
2) for any (X < Y) ∈ T there exists a path from X to Y in
GSc with at least one edge of the path labeled with <, or
AXup < AYlow; 3) for any (X ≤ C) ∈ T, C ≥ AXup; and 4) for
any (X ≥ C) ∈ T, C ≤ AXlow.
In the example in Figure 2, all predicates are satisfiable and
no predicate can be implied by other predicates.

C. Proposed Incremental PredSAT Algorithm
We require near constant time performance for reasoning to

enable herald driven optimization to occur at runtime. Thus
we derive an efficient incremental reasoning algorithm for
identifying the four herald driven SQO opportunities for the
set of registered queries as new heralds arrive.

Herald driven query optimization can be abstracted to the
following satisfiability and implication problems.

Definition 4: Herald Driven Satisfiability (Herald-SAT)
and Implication (Herald-IMP) Problems: Given a set of
inequality query predicates PQ expressed by a query Q, and
a set of inequalities PD satisfied by input data D,
1. Herald-SAT: if ∧

pi∈(PQ∪PD)

|= false , select/join data skipping

by pi can be applied for data D;

2. Herald-IMPS : for a selection predicate ps in PQ,
if ∧

pk∈(PQ∪PD−ps)

→ ps , select elimination can be applied to

the predicate ps;

3. Herald-IMPJ : for a join predicate pj in PQ,
if ∧

pk∈(PQ∪PD−pj)

→ pj , join simplification can be applied to

the predicate pj .
Here ∪ and − denote the set-based union and difference
operations respectively.

Heralds dynamically become valid at runtime. To identify
possible optimization opportunities enabled by heralds would
require the RMin algorithm to be invoked for each new herald
received. The RMin algorithm has |S|2+ |T | time complexity
(Section II) where |S| and |T | denote the number of predicates
in formulas S and T. As the number of inequalities increases
when more heralds are received, a significant reasoning over-
head may be incurred. However, we observe that only a single
pattern for a given attribute on a stream can be specified in
each herald (Section II). Thus running the RMin algorithm
over all inequalities triggers unnecessary reasoning. Instead,
we design an incremental algorithm based on RMin called
PredSAT (for Predicate SATisfiability reasoning). PredSAT
limits the reasoning scope to only relevant inequalities, namely
those that could enable any of the four optimization strategies
(Section III-A) if combined with the new herald.

PredSAT algorithm: When a query is registered, the Pred-
SAT algorithm constructs the inequality graph with real min-
imum ranges as induced by the query per RMin [12]. During
query execution, PredSAT further refines the real minimum
ranges based on the newly received herald. The refined mini-
mum ranges are called herald minimum ranges. If a herald h
with predicate X ≤ C is received, only the real upper bound
of the node X and all the descendant nodes of X may possibly
be affected (i.e., further tightened). Thus PredSAT starts from
node X. If AXup ≤ C, the algorithm stops. Otherwise, a
refined upper bound C is computed for X. Then it proceeds
to check X’s children nodes in a breadth-first manner and
terminates when an examined node has a real upper bound
already < C. In the worst case where each node is connected
to every other node the PredSat algorithm would have the
same time complexity as RMin. In the average case, the time
complexity is much smaller because only a small part of the
query inequality graphs is traversed and in many cases after
one local interval is adjusted within the graph the traversal
terminates (Section VIII).
When computing herald minimum ranges, the PredSAT algo-
rithm checks for optimization opportunities as follows:
1. Unsatisfiable query. PQ is unsatisfiable if there exists a
variable X in Sc, AX

up < AX
low .

2. Redundant selection predicate. For ps: X < Cq ,∧
pi∈(PQ−{ps})∪{m}

→ ps if ∧
PQ−{ps}

is satisfiable and AX
up > C (i.e.,

C < Cq). Therefore, ps is redundant.
3. Redundant join predicate. For pj : X < Y,∧
pi∈(PQ−{pj})∪{m}

→ pj if PQ − {pj} is satisfiable and Y ∈

parent(X)) and AY
low > C . Therefore, pj is redundant

The proof is straightforward, hence eliminated for space.
Similarly, given a herald m: X ≥ C, we determine
1. PQ is unsatisfiable if AX

up < AX
low .

2. For ps: X > Cq ,
∧

pi∈(PQ−{ps})∪{m}
→ ps if PQ − {ps} is

satisfiable and AX
low < C (i.e., Cq < C) .

3. For pj : X > Y , ∧
(PQ−{pj})∪{m}

→ pj if PQ−{pj} is satisfiable

and Y ∈ children(X)), AY
up < C .

Example: For query predicate A>100 and A<B and B<C

and B<D and C>500, the real minimum ranges are computed
from the predicate (Figure III-Ca). When a herald indicating
S2.B < 300 is received from S2, the real upper bounds of
attributes S1.A and S2.B are updated from ∞ to 300. The
real upper bound of S2.B (300) is now less than the real
lower bound of S3.C (500) (Figure III-Cb). Based on PredSAT
algorithm, the join predicate S2.B < S3.C now becomes
redundant for processing substreams described by this herald
and the output of evaluating selection on stream S3. From
the original query predicate, when a herald indicating S1.A
< 50 is received, the real upper bound of attribute S1.A is
updated to be 50, which is lower than its real lower bound
(100) (Figure III-Ce). This indicates that the predicate S1.A >
100 is unsatisfiable for the substream described by this herald.
Similarly, Figures III-C c & f show the cases of redundant
select predicate and unsatisfiable join predicates respectively
based on the PredSAT algorithm.

S2.B

S3.C

S4.D

S1.A

500

100

(100, ∞) (100, ∞)

(100, ∞)

(500, ∞)

Query Predicate:

A>100 and A<B and B<C and B<D and C>500

S2.B

S3.C

S4.D

S1.A100

(100, 300) (100, 300)

(100, ∞)

(500, ∞)

S
2
.B < 300

500

(a) Initial

(b) Redundant Join

S2.B

S3.C

S4.D

S1.A100

(200, 300)

(100, ∞)

(500, ∞)

S
1
.A > 200

500

(c) Redundant Select

S2.B

S3.C

S4.D

S1.A

500

100

(100, ∞) (100, ∞)

(100, ∞)

(500, ∞)

S2.B

S3.C

S4.D

S1.A100

(100, 50) (100, ∞)

(100, ∞)

(500, ∞)

S
1
.A < 50

500

(d) Initial

(e) Unsatisfiable Select

S2.B

S3.C

S4.D

S1.A

500

100

(100, 50) (100, 50)

(100, ∞)

(500, ∞)

(f) Unsatisfiable Join

S
2
.B < 50

(200, 300)

Fig. 3. Example of PredSAT Reasoning.

D. Mapping to a Logical SQO Plan

Once an optimization opportunity is identified for some
substreams, an SQO plan can be generated to process these
substreams. The remaining substreams would continue to be
serviced by the default plan. The SQO plan generation follows
the rules described in Equations 5 - 8 with ∪ representing
union all. Sm, Sm1 and Sm2 represent the substreams de-
scribed by heralds h, h1 and h2 respectively. σp, ./p and ×
denote the select operation with predicate p, the join operation
with predicate p, and the Cartesian product respectively.

Select elimination for Sh : σp(S1 ∪ Sh) = σp(S1) ∪ Sh (5)

Select data skipping for Sh : σp(S1 ∪ Sh) = σp(S1) (6)

Join simplification for (Sh1, Sh2) : (7)

(S1 ∪ Sh1) ./p (S2 ∪ Sh2) = S1 ./p Sh2 ∪ S2 ./p Sh1

∪S1 ./p S2 ∪ Sh1 × Sh2

Join data skipping for (Sh1, Sh2) : (8)

(S1 ∪ Sh1) ./p (S2 ∪ Sh2) = S1 ./p Sh2 ∪ S2 ./p Sh1

∪S1 ./p S2

SQO plan example: Once an optimization opportunity is
identified for some substreams, an SQO plan can be generated
to process these substreams. The remaining substreams would
continue to be serviced by the default plan (Figure III-D).
When the herald m with A<500 is received, the join predicate
S1.A < S2.B is identified to be redundant regarding the
substream described by m. Therefore, an SQO plan with the
join operator replaced with a Cartesian product operator would
logically need to be plugged in to process the substream
described by m and the S2 stream. The results of these two
plans are merged to produce the complete final result.

S2

Query Predicate: S1.A<S2.B and S2.B>1000

Cartesian
Product

S1

Join A<B

Select B>1000

A<500 A = *B = * B = *

Merge
Join A<B

S2

Select B>1000

S1

A<500

A = * B = *

Select B>1000

S2S1

(a) Regular Plan (b) SQO Plan

Fig. 4. Mapping Reasoning Result to SQO Plans.

IV. MULTIPLE LOGICAL PLANS

During query execution, multiple heralds on the same
stream attribute may be received over time. In addition, a sin-
gle herald may enable multiple optimizations when combined
with heralds from other streams. Thus we support overlapping
validity scopes of multiple concurrent SQO plans.

Query Predicate:
S1.A<S2.B and S2.B>1000

Timeline

[h4] B<1500

0

S1

S2

[h3] B>2000

[h1] A>2000 [h2] A<500

Join A<B

S2.[h3]S1.[h1]

Cartesian
Product

S2.[h3]S1.[h2]

Join A<B

S2.[h4]

S1.[h2] Select B>1000

Fig. 5. Query Plans with Scopes.

Consider a query over two input streams S1 and S2 with
predicates S1.A < S2.B and S2.B > 1000 (Figure IV).
Assume that the data received from the input stream S1 is
described by two heralds in sequence: h1: A > 2000 and h2:
A < 500. Also, the data received from stream S2 is described
by two heralds in sequence: h3: B > 2000 and h4: B < 1500.

The lifespans of these heralds are marked by the rectangles
enclosing the substream of tuples directly below the herald
predicate (bottom left of Figure IV). We denote the substreams
that conform to these heralds as S1.[h1], S1.[h2], S2.[h3]
and S2.[h4] respectively. Observe the following applicable
optimizations to the given input substreams: select elimination
(B>1000) of S2.[h3] and join simplification (S1.A<S2.B)
for (S1.[h2], S2.[h3]), and join data skipping for (S1.[h1],
S2.[h4]). For substream pair (S1.[h2], S2.[h4]), no herald
driven optimization is applicable. Thus, for the input streams
received so far, potentially four distinct query plans may need
to be constructed to best serve each of these four cases. Such
plans are called SQO logical plans. The scope of an SQO
logical plan is defined as the set of substreams that need to be
processed by the plan.

Herald h1 contributes to the formation of two SQO logical
plans, one solo and one in combination with another herald
h2. To capture all possible herald driven optimization oppor-
tunities based on all currently valid heralds, we now propose a
versioned real minimum range concept. We call the real lower
and upper bounds for each attribute X computed based on
query predicates query lower bound (or QXlow) and query upper
bound (or QXup) respectively. Obviously, each attribute has a
minimum range across a query referred to as the single query
minimum range. The query upper and lower bounds of an
attribute may be further refined by heralds received at runtime.
As multiple heralds may be received for a single attribute,
an attribute may be associated with multiple lower and upper
bounds respectively (a.k.a. herald lower and upper bounds).
The ith herald lower and upper bounds are denoted as AXlow,i
and AXup,i. The herald lower and upper bounds are maintained
in two lists respectively associated with the attribute.

During query execution, each time a new herald is received,
if either the herald lower or upper bound can be tightened
then a new herald lower or upper bound is created and
appended to the end of the corresponding list. Whenever such
change occurs, optimization reasoning is triggered. During
the reasoning, all herald bounds of the attributes visited are
examined. For queries with windows, the PredSAT algorithm
is applied and then the herald’s lifespan is compared to the
window constraint during query processing.

V. RUNTIME EXECUTION

Given input streams containing heralds, multiple SQO
logical plans may be concurrently applicable to different
combinations of substreams. In addition, the scopes of the
SQO plans may share common substreams. Thus, we cannot
default to a traditional single-plan solution, which would
need to employ an online plan migration technique [22] to
continuously switch back and forth from the current plan to
another plan in the middle of query execution. Instead, we
must support the efficient execution of multiple query plans
concurrently. However, to process tuples in multiple query
plans may incur significant data duplication in operator input
queues and states as different plans may share input and
intermediate substreams.

In view of this, we now propose a new query execution
paradigm that tackles this challenge by supporting multiple
concurrent logical query plans but physically corresponds to
a single plan. The five key features of our proposed execution
paradigm are:
1. Data partitioning. We partition data based on heralds. This
allows different substreams to be served by the most suitable
execution logic and then associate herald metadata with the
respective stream subpartitions.
2. Multi-modal operators. We design query operators with
configurable execution logic. Rather than using one algorithm
for all incoming data, our query operators, guided by the query
optimizer, apply customized algorithms to data from different
stream partitions.
3. Lightweight control table. We design a control structure
that enables customized execution logic for particular stream
partitions by toggling a flag in the control table located in each
query operator upon arrival of a herald-aware partition.
4. Isolated operator tuning. The configuration of an operator’s
logic is internal to the operator itself. Being localized, it does
not affect the functioning of other operators nor the correctness
of overall query processing.
5. Partition propagation. Each operator is equipped with
the ability to propagate data partition information. This al-
lows the configuration of a downstream operator without re-
partitioning.

Our multi-modal operators support the implementation of
several logically distinct query functionalities. More precisely,
each multi-mode operator realizes the physical processing
of several different logical operators. For example our join
operator may act as a theta-join, cartesian product, or no
operator at all using the evaluate, pass, and skip modes respec-
tively. Multiple logical query plans can thus be represented
by one single plan composed of multi-modal operators. At
runtime our query plan ”adapts” the processing to react to
both traditional and herald supported tuples realizing different
logical operators and thus different logical plans.

Some significant advantages of our execution paradigm are:
1. It avoids data duplication by physically maintaining a

single plan.
2. It avoids duplicate computations for tasks such as state

insertion or purging or due to multiple logical plans working
on overlapping input substreams.

3. It reduces system overhead by avoiding context switching
among the otherwise much larger set of operators and even
between different plans.

A. Multi-Modal Operators

To assure agility of operators, we equip our herald query op-
erators with multiple execution modes configurable at runtime.
That is, the operator processes every batch of data described
by a herald in its most efficient manner as determined by the
optimizer. This achieves multiple SQO logical plans within
one single physical plan.

To configure its execution logic at runtime, each operator
is equipped with a control table containing instructions on

how to process herald partitions. The operator uses the herald
associated with the partition to probe the control table and
get the corresponding instruction. Based on the instruction,
the operator applies the appropriate execution strategy to the
current data partition. For instance, a select operator may
either directly output the partition (select elimination), drop
the partition (select data skipping) or evaluate the partition
using regular predicate checking.

The control table is probed each time a new herald partition
is received. Thus it needs to be probe-efficient. We implement
the control table as a hash table with the partition ID as hash
key. Thus instructions for a given partition are retrieved with
a single lookup. The control table is updated at runtime by the
operator configurator component of the herald driven semantic
query optimizer. New entries are added into the control table as
new herald-driven SQO opportunities are identified. To prevent
the control table from growing in an unbounded fashion,
existing entries are removed when the corresponding partitions
have been processed.

B. Multi-Modal Select Operator

The select operator differentiates between three types of data
partitions: 1) Pass partition where all tuples are guaranteed
to satisfy the selection predicate; 2) Skip partition where all
tuples are guaranteed to not satisfy the selection predicate;
and 3) Unknown partition where it is unknown if any of its
tuples will satisfy the selection predicate or not.

The select operator directly propagates any pass partition
to its output stream (due to select elimination) and discards
any skip partition (due to query pause) without evaluating
any of their tuples. Tuples in the unknown partitions will be
evaluated against the selection predicate via the regular select
operator. This design enables one single operator to achieve
three distinct query plans by applying three distinct logics to
process its input data.

In the control table of the select operator, each hash entry
contains a list of <PartitionID, ActionFlag> pairs. The action
flag can be one of three values: 0 to pass, 1 to skip, and 2 to
evaluate (for Pass, Skip, and Unknown partitions respectively).

During query execution, when an input partition is received,
the select operator first checks whether it is an anonymous
partition (i.e., with partition ID 0). If yes, then no herald
is associated with this partition. Thus, the select operator
evaluates tuples in this partition per the regular select operator.
Otherwise, the partition ID is used to probe the control table. If
a match is found, the corresponding action flag will be used to
trigger the suitable execution logic to be applied to the tuples
in the partition.

C. Multi-Modal Join Operator

The multi-modal join operator is associated with two control
tables corresponding to its two input streams respectively.
Similar to the control table of select, each control table for the
join operator is hashed on the partition ID. Each hash entry
contains a list of <LeftPID, RightPID, ActionFlag> triples
indicating if the corresponding pair of partitions should be

passed (per join simplification), skipped (per join skipping),
or evaluated.

When a new partition p is received from the left input
stream, the join operator first checks its partition ID. If it
is an anonymous partition, the join operator processes tuples
in this partition as a regular join (i.e., no optimization is
done). Otherwise, the partition ID is used to probe the control
table for the right input. If a match is found, the <LeftPID,
RightPID, ActionFlag> triples in the list are enumerated. For
each triple, the join logic indicated by action is applied to the
left-side partition with ID LeftPID and the right-side partition
with ID RightPID. Processing of partitions received from the
right input stream is similar.

Consider the example in Figure IV. If the partitions corre-
sponding to heralds h1, h2, h3 and h4 have partition IDs 1,
2, 3 and 4 respectively. Then the control table of the select
operator has one entry (3, Pass). The control table for the
left input of the join operator (i.e. S1) has two entries with
keys being partition IDs 1 and 2 respectively. The partition ID
1 entry contains a list with one element (1, 4, DROP). The
partition ID 2 entry contains a list with one element (2, 3,
PASS). Correspondingly, the control table of the right input of
the join operator, which is the output of the select operator, has
two entries with keys being partition ID 3 and 4 respectively.
The partition ID 3 entry contains a list with one element (3,
2, PASS). The partition ID 4 entry contains a list with one
element (4, 1, DROP).

D. Partition ID Propagation

The herald driven data partitioning is initially conducted for
source input streams. For the proposed semantic optimization
to be applied to non-leaf operators as well, the partition IDs
associated with source stream partitions need to be propagated
through the query plan.

The propagation rules for the select operator are as follows.
Each Pass partition is sent to the output stream of the select
operator with its current partition ID. For each Unknown
partition, if at least one tuple satisfies the selection predicate,
a result partition is created with the current partition ID and
will contain all tuples in the input partition that satisfy the
selection predicate.

The join operator each time processes a new partition from
one of its inputs, joining it with all existing partitions in the
state of the other input. For each pair of partitions that may
produce join results, the operator creates a result partition with
the partition ID being the combination of the partition IDs of
the two input partitions.

E. Herald Data Partitioning

Streams are partitioned based on heralds. A partition could
be a source or an intermediate partition. Source partitions
are obtained by partitioning source streams. There are two
types of source partitions: 1) a herald partition contains tuples
described by a single herald, and 2) a anonymous partition
contains tuples not described by any herald. Intermediate
partitions are produced as output of select or join operators.

An intermediate partition generated by a join may contain
tuples from; 1) two source partitions, 2) a source partition and
an intermediate partition, or 3) two intermediate partitions.
Therefore, an intermediate partition can also be a herald
partition, containing tuples described by n herald(s) (n≥1),
or an anonymous partition.

Each source partition is assigned a stream-wise unique ID.
The default partition ID 0 is reserved for any anonymous
partition, while each new herald source partition is assigned
the next available partition ID. The partition ID of an inter-
mediate partition is the concatenation of the partition IDs of
its component partitions.

VI. HERALD-AWARE STREAM ENGINE

The framework of our herald aware stream processing
engine is shown in Figure VI. The arrows represent communi-
cation between components. When a query is registered in the
stream engine, the static query optimizer is invoked to conduct
traditional query optimization without considering any heralds.
Then the execution plan is sent to and executed by the query
execution engine. The runtime query optimizer dynamically
optimizes the query during execution. It is composed of
the statistics-based and the herald driven semantic query
optimizer. The statistics-based optimizer adjusts the query
plan shape based on statistics about operator selectivities [10]
gathered by the statistics collector.

Static Query
Optimizer

Herald-Driven
Semantic Query Optimizer

Optimization
Reasoner

Operator
Configurator

Statistics-Based Optimizer

Stream
Receiver

Stream/Query
Registration

Metadata
Manager

Runtime Query
Optimizer

Query Execution
Engine Runtime Query Optimizer

Statistics
Collector

Fig. 6. Herald-Aware Stream Engine.

The herald driven optimizer, the focus of this work, is then
continuously applied in the latest query plan as described in
this paper. In particular, it consists of the optimization reasoner
and operator configurator. Each time a herald is received,
the herald driven optimizer is invoked. During each of its
runs, the reasoner identifies new optimization opportunities
and computes the SQO logical plans. Then the operator
configurator configures the control table of the corresponding
operators which allows the SQO logic plans to be realized.

Our experiments demonstrate that the reasoner has negligi-
ble overhead (Section VIII). Even if it were to ever lag behind
the query execution, the correctness of query processing would
not be affected. Rather it simply would cause the optimization
of operator shortcutting to not be maximally exploited, i.e., not
all possible optimizations may be applied.

The stream receiver feeds the tuples to the query execution
engine, and forwards heralds to the metadata manager which
maintains both integrity and runtime herald constraints.

VII. HERALD COST ANALYSIS

We now analyze the estimated execution time of processing
a given workload of tuples using heralds. Notations are in
Table II. The execution time of a workload containing nt
tuples processed using traditional query processing simply
equals the regular processing costs to process the nt tuples
(nt ∗ TQi). In contrast, the execution time of a workload
containing nt tuples and nh heralds processed using heralds
(WLQi

) equals the regular processing costs to process the nt
tuples (nt ∗ TQi

) plus the overhead to support the nh heralds
(nh ∗Hoh) minus the cost eliminated due to some operators
being skipped (

∑no
i=1 nsopi ∗ Topi) (Equation 9).

Notation Meaning
Qi a query
opi an operator
nh number of heralds in a given workload
no number of operators opi in Qi

nsopi number of times operator opi is skipped by a given workload
nt number of tuples in a given workload
TQi

est exec time of a tuple through Qi using regular processing
WLQi

est exec time of a given workload through Qi using herald processing
Topi

avg per-tuple execution time of opi
Hoh estimated overhead to support a single herald

TABLE II
NOTATIONS.

WLQi
= (nt ∗ TQi

) + (nh ∗Hoh)− (

no∑
i=1

nsopi ∗ Topi
) (9)

The overhead to support heralds Hoh is the sum of the cost
to execute the PredSat algorithm for each incoming herald
(Section III-C) plus for each operator the cost to support
multiple execution modes implemented via a simple hash
lookup (i.e., constant lookup time). Our experiments (Section
VIII) confirm that the overhead to support heralds is negligible
compared to the skip savings, i.e., (

∑no
i=1 nsopi ∗ Topi) ≥

(nh ∗Hoh).

VIII. EXPERIMENTAL STUDY

A. Experimental Setup

Our experiments using both synthetic and real data streams
compare the execution time of workloads using heralds (Her-
ald) to traditional query processing (Regular). Each method is
implemented in the CAPE stream engine [17]. The Windows
XP test machine has a 2.66GHz Intel(R) Pentium 4 processor
and 448MB RAM.

B. Evaluating Single Operator Optimization

First we use a synthetic data set to explore in controlled
context the effect of different parameter settings on the per-
formance. To focus on the cost saved by short cutting a single
operator, we deploy the query in Figure IV.
Synthetic Data: We created a benchmark system to generate
synthetic data streams that controls data distributions and
arrival rates. Our experiments vary the following parameters.
1. Average partition size is the average number of tuples in
each partition. The size follows uniform distribution.
2. Selectivity of the select operator is defined as Nout

Nin
with

Nout and Nin (the total number of output and of input tuples

0

20

40
60

80

100

120

140
160

180

200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Partition Drop Rate - Join

T
o

ta
l

E
xe

cu
ti

o
n

 T
im

e
(m

il
li

se
co

n
d

s)

Herald regular

0

200

400

600

800

1000

1200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Partition Drop Rate - Join

T
o

ta
l

E
xe

cu
ti

o
n

 T
im

e
(m

il
li

se
co

n
d

s)

Herald Regular

0

1000

2000

3000

4000

5000

6000

7000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Partition Drop Rate - Join

T
o

ta
l

E
xe

cu
ti

o
n

 T
im

e
(m

il
li

se
co

n
d

s)

Herald Regular

a) Par. Size:20, σSelect=0.2, σJoin=0.1. b) Par. Size:50, σSelect=0.2, σJoin=0.1. c) Par. Size:100, σSelect=0.2, σJoin=0.1.

0

100

200

300

400

500

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Partition Drop Rate - Join

T
o

ta
l

E
xe

cu
ti

o
n

 T
im

e
(m

il
li

se
co

n
d

s)

Herald Regular

0

500

1000

1500

2000

2500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Partition Drop Rate - Join
T

o
ta

l
E

xe
cu

ti
o

n
 T

im
e

(m
il

li
se

co
n

d
s)

Herald Regular

0

200

400

600

800

1000

1200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Partition Pass Rate - Join

T
o

ta
l

E
xe

cu
ti

o
n

 T
im

e
(m

il
li

se
co

n
d

s)

Herald Regular

d) Par. Size:50, σSelect=0.1, σJoin=0.1. e) Par. Size:50, σSelect=0.4, σJoin=0.1. f) Par. Size:50, σSelect=0.2, σJoin=0.1.

Fig. 7. Single Operator Optimization Experimental results.

respectively). Selectivity of join is Nout

N1∗N2
with Nout, N1 and

N2 (the total number of output, of left and right input tuples
respectively).
3. Partition pass/drop rate of the select operator is defined
as Ppass

Pin
(or Pdrop

Pin
). Here Ppass (or Pdrop) is the number of

partitions that produce full (or no) results. Pin is the number of
partitions. The partition pass (or drop) rate of the join operator
is defined as Ppass

P1∗P2
(or Pdrop

P1∗P2
). Ppass (or Pdrop) is the number

of partitions pairs that produce full (or no) join results. P1 and
P2 are the number of partitions from the left and right input
respectively.

Partition drop rate: We first evaluate the effect of join data
skipping. The partition drop rate is varied from 0 to 1 in
increments of 0.1 to control the frequency of skips (Figure
7 b). The partition drop rate is the number of partitions that
can be eliminated from processing (i.e., dropped). When the
partition drop rate is low (i.e., close to 0), few partitions are
dropped. While when the partition drop rate is high (i.e., close
to 1), many if not all partitions are dropped. The average
partition size is set to be 50 tuples. The selectivities of the
select and the join operators are 0.2 and 0.1 respectively. As
the partition drop rate increases, i.e., nsi increases (Section
VII), the herald execution time decreases (as HTQi

decreases).
While no significant change in the regular approach’s execu-
tion time is observed (i.e., nt ∗ TQi

remains constant) (Figure
7 b). When the drop rate reaches 0.9, the herald approach has
more than 80% reduction in execution time compared to the
regular approach. This result is promising because with just
a small partition size (i.e., 50 tuples per partition) and low
selectivity of the underlying select operator (i.e., when only
10% of its input data actually reaches the join), the herald
approach already achieves significant performance gains.

Now, we evaluate select optimization. To test the optimiza-
tion of select data skipping, we vary the partition drop rate.
The average partition size is set to 50 tuples. The selectivity
of the select and join operators are both set to 0.1. No
performance gains were observed by the herald approach. We

0

100

200

300

400

500

600

700

800

900

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Partition Drop Rate - Select

T
o

ta
l

E
xe

cu
ti

o
n

 T
im

e
(m

il
li

se
co

n
d

s)

Herald Regular

Fig. 8. Select Data Skipping Experimental results.

thus increase the average partition size to 200 tuples, and
reduce the selectivity of both the select and the join operators
to 0.01. This time we observe a reduction in execution time by
the herald approach (Figure 8). Clearly, select data skipping
for relatively small partition sizes and moderate select and
join selectivities can only achieve modest performance gains
because the cost of join is dominant.
Partition sizes: Next, we investigate the role the average
partition size plays in affecting the performance gains by
studying scenarios with different partition sizes, namely, 20,
50, and 100 as depicted in Figures 7 a, b, and c respectively.
All the other configurations remain the same as in the previous
experiment. While the trends in all three experiments is
similar, the gains achieved by the herald method increase as
the partition size increases. This is due to the fact that the
amortized optimization overhead is reduced by the increase in
batch size (i.e., nh ∗Hoh is reduced).
Operator selectivity: Next, we study the effect of selectivity
of an operator. The selectivity of the underlying select operator
determines the number of tuples to be processed by the
subsequent join operator. We vary the selectivity of the select
operator from 0.1, 0.2, to 0.4, average partition size is again 50
tuples, and the join selectivity is 0.1, as depicted in Figures 7
d, b, and e respectively. When the selectivity increases, the
performance gains by the herald-driven SQO also increase
(Figures 7 d, b, and e). Note here that each query to begin
with will have different costs (see changes in y axis) due to
the varying selectivity. This is because when the selectivity of
the select operator increases, more data is processed by the join

Number of Operators

T
o
ta
l
E
x
e
c
u
ti
o
n
 T
im
e
 (
m
ill
is
e
c
o
n
d
s
)

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

1 2

145.1

1,098.7

200.8

1,568.2

Herald
Regular

Number of Operators

T
o
ta
l
E
x
e
c
u
ti
o
n
 T
im
e
 (
m
ill
is
e
c
o
n
d
s
)

0

25,000

50,000

75,000

100,000

125,000

3 4

9,564.9

76,736

13,879.2

114,575.4Herald
Regular

T
o
ta
l
E
x
e
c
u
ti
o
n
 T
im
e
 (
m
ill
is
e
c
o
n
d
s
)

0

100

200

300

400

500

600

700

800

900

1,000

1Q 2Q 3Q 4Q 5Q

145.1

243.1

343.9

436.4

600.3

200.8

348

500.3

631.5

839.9
Herald
Regular

a) Par. Size:50, σJoin=0.1, Drop Rate=0.5. b) Par. Size:50, σJoin=0.1, Drop Rate=0.5. c) Par. Size:50, σJoin=0.1, Drop Rate=0.5.

Fig. 9. Multi-Query Workloads Experimental results.

operator (i.e., nt increases). Bigger performance gains can thus
be achieved by employing herald-driven optimization because
in essence the partition sizes arriving at the join remain larger
(i.e., nsi increases).
Pass rate: Now, we evaluate the impact of the pass rate.
The average partition size is 50 tuples. The selectivities of
the select and the join operators are 0.2 and 0.1 respectively.
The partition pass rate is varied from 0 to 1 by 0.1. Similar
to the drop rate, the herald approach significantly reduces the
execution time (i.e., HTQi

decreases) as the partition pass rate
increases (i.e., nsi increases) (Figure 7 f).

C. Multi-Query Workloads

Next using the synthetic data we measure the costs saved
by short cutting multiple operators when varying the query
complexity and workload.
Query complexity: First, we vary the number of join operators
in a single query. Each query executes a pipeline of join oper-
ators. The average partition size is 50. The partition pass/drop
rate is set to 50%. Each join operator has a selectivity of
approximately 10%. By varying the number of operators from
1 to 4 (Figures 9 a and b) herald outperforms the regular
approach by 29.5% on average. The performance (i.e., how
much more results the herald approach produced compared
to the traditional approach) of a query containing a single
join operator was 27.7%. For each join added to the query
the cost saved slightly increases. This is as expected because
as the number of joins in the query increases so does the
number of opportunities for herald aware optimizations to take
place (i.e., as no increases nsi may increase). This experiment
demonstrates that for complex queries the herald approach
consistently outperforms the regular approach.
Number of queries: We now evaluate the overhead of work-
loads with different numbers of queries. Each query executes
the join operator outlined in the above query complexity
experiment. We vary the number of queries from 1 to 5 (Figure
9 c). On average the herald approach outperforms the regular
approach by 29.7% indicating that the average savings per
query within the workload are similar. The individual savings
range from 27.7% to 31.2%. This experiment demonstrates
that the gains made by heralds (i.e., skipping operators) are
not affected by the number of queries in a system, rather it
depends on the number and type of skip opportunities within
the workload. Beyond that, running multiple queries using the
herald approach has little overhead as the number of operators

skipped by a query is unaffected by other queries.

a) Select- Drop Rate=0.75 b) Join- Drop Rate=0.75

Fig. 10. Real Data Set Results

D. Evaluating Optimization Using Real Data

Now we verify the effectiveness of the herald approach
when applied to real data. We utilize a herald creation operator
that pre-processes all incoming tuples and creates appropriate
heralds. In these experiments we measure the cost required to
create heralds and saved by short cutting operators.
Real Data Set: The real data was collected from 54 sen-
sors deployed in the Intel Berkeley Research lab between
February 28th and April 5th, 2004 (http://berkeley.intel-
research.net/labdata/). We equally divided the sensors and
group them group based upon their physical locations into
4 regions. In each experiment the herald creation operator
clusters incoming sensor stream data by region.
Selection: To evaluate the optimization of select data skipping
(Figure 10 a), we design a query for an environmental engineer
responsible for locating all incoming sensor data from a single
region. In this case data from three of the four regions is
skipped. We observe that the cost to create heralds is indeed
modest (about 5% of regular processing cost). A modest gain
of 4% when comparing the complete herald approach (i.e.,
both the cost to create and execute heralds) to the regular
approach can be observed.
Join: To evaluate the optimization of the join data skipping
(Figure 10 b), we design a query for fire fighters monitoring
the spread of a fire the reports the temperature of regions
adjacent to a region on fire. In this case data from three of
the four regions is skipped. We observe that the cost to create
heralds was again very modest (about 3% of regular processing
cost). In this case, the complete herald approach out performs
the regular approach by 13%.

E. Summary of Experimental Findings

We summarize key findings here. First, we observed sig-
nificant performance gains by using our herald-driven opti-
mization when partition drop/pass rates are medium or high.
Also, the performance gains of the herald approach increase
as the partition drop/pass rate increases, as the selectivities
of the underlying operators increase, and as the partition
size increases. All experiments include the actual optimization
reasoning overhead which is thus shown to be negligible. In
particular, the overhead does not significantly increase due to
query complexity and/or workload. In fact the overhead in all
cases never diminished from the gains achieved by heralds.

IX. RELATED WORK

Existing semantic query optimization (SQO) work employs
schema knowledge or integrity constraints to perform compile
time query optimization [9], [5], [14]. It has been extensively
studied in traditional databases [5], [14] and more recently
in stream database systems [9]. In the streaming context,
[3] uses integrity constraints to optimize memory usage by
purging operator states. We instead focus on utilizing dynamic
metadata about attribute values to conduct efficient query
optimization at run-time.

Existing work utilizing dynamic meta data (a.k.a. punctu-
ations) focuses on the design of single query operators such
as joins [7], [8] or the compile-time detection of “unsafe”
queries with unbounded operator states [15]. [16] exploits
punctuations to mark the sliding window boundary to handle
disorder. Our focus is on plan level optimization enabling
different stream partitions to be processed by logically distinct
plans based on semantic knowledge. Also prior work only
considers reordering of operators as in traditional databases
whereas we instead partially or completely skip operators.

Much streaming database research has focused on runtime
query optimization. [2], [10], [22] exploit runtime statistics on
operator selectivities to adaptively reorder the operators in the
query plan. Unlike our work, only a single logical plan is used
during execution and no operators are skipped.

In Eddies [1], [6], individual tuples are adaptively routed
through the operator network based on localized heuristics
instead of using optimizer-generated query paths. Our work
differs from Eddies in numerous significant aspects; 1) adap-
tation of Eddies is selectivity-driven while our adaptation is
semantics-driven, and 2) we completely skip or pass certain
query logic based on semantic knowledge. While Eddies
only changes the order of operators as in traditional query
optimization, but never skips any of them.

Similar to [4], we employ different plans for different data.
But [4] adapts the operator execution orders for different data
similar to traditional (syntactic) query optimization. In our
work, to process a particular batch of data, some operators
may be skipped while other operators may be executed in a
more efficient way.

X. CONCLUSION

In this paper, we have proposed the first data stream
SQO approach that exploits dynamic metadata at runtime. We
designed four herald driven SQO techniques that once applied
guarantee performance gains. A lightweight constraint reason-
ing algorithm based on classic satisfiability theory efficiently
identifies SQO opportunities at runtime upon the receipt of
heralds. To optimize resource usage in supporting multiple
concurrent SQO plans with different yet overlapping scopes,
a novel query execution paradigm employs multi-modal opera-
tors to achieve multiple logical plans with one single physical
plan. Our experimental study using both synthetic and real
data confirms that our herald driven optimization techniques
significantly and consistently reduce query execution times
compared to traditional DSMS approaches.
Acknowledgment: We thank D. Dougherty, M. Mani and peers
in WPI database research group for useful inputs. This work
is supported by the following grants: NSF 0917017, NSF CNS
CRI 0551584, NSF 0414567, and GAANN.

REFERENCES

[1] R. Avnur and et. al. Eddies: Continuously adaptive query processing.
In SIGMOD, pages 261–272, 2000.

[2] S. Babu and et. al. Adaptive ordering of pipelined stream filters. In
SIGMOD, pages 407–418, 2004.

[3] S. Babu and et. al. Exploiting k-constraints to reduce memory overhead
in continuous queries over data streams. TODS, 29(3):545–580, Sep
2004.

[4] P. Bizarro and et. al. Content-based routing: Different plans for different
data. In VLDB, pages 757–768, 2005.

[5] Q. Cheng and et. al. Implementation of two semantic query optimization
techniques in db2 universal database. In VLDB, pages 687–698, 1999.

[6] A. Deshpande and et. al. Lifting the burden of history from adaptive
query processing. In VLDB, pages 948–959, 2004.

[7] L. Ding and et. al. Joining punctuated streams. In EDBT, pages 587–
604, 2004.

[8] L. Ding and E. A. Rundensteiner. Evaluating window joins over
punctuated streams. In CIKM, pages 98–107, 2004.

[9] P. M. Fischer and et. al. Stream schema: Providing and exploiting static
metadata for data stream processing. In EDBT, 2010.

[10] L. Golab and et. al. Processing sliding window multi-joins in continuous
queries over data streams. In VLDB, pages 500–511, 2003.

[11] J. Grant and et. al. Semantic query optimization for object databases.
In ICDE, pages 444–453, 1997.

[12] S. Guo and et. al. Solving satisfiability and implication problems in
database systems. TODS, 21(2):270–293, 1996.

[13] M. A. Hammad and et. al. Scheduling for shared window joins over
data streams. In VLDB, pages 297–308, 2003.

[14] J. J. King. Quist: A system for semantic query optimization in relational
databases. In VLDB, pages 510–517, 1981.

[15] H. Li and et. al. Safety guarantee of continuous join queries over
punctuated data streams. In VLDB, pages 19–30, 2006.

[16] J. Li and et. al. Semantics and evaluation techniques for window
aggregates in data streams. In SIGMOD, pages 311–322, 2005.

[17] E. A. Rundensteiner and et. al. Cape: Continuous query engine with
heterogeneous-grained adaptivity. In VLDB, pages 1353–1356, 2004.

[18] U. Srivastava and J. Widom. Flexible time management in data stream
systems. In PODS, pages 263–274, 2004.

[19] H. Su and et. al. Semantic query optimization for xquery over xml
streams. In VLDB, pages 277–288, 2005.

[20] N. Tatbul and et. al. Load shedding in a data stream manager. In VLDB,
pages 309–320, 2003.

[21] P. A. Tucker and et. al. Exploiting punctuation semantics in continuous
data streams. TKDE, 15(3):555–568, 2003.

[22] Y. Zhu and et. al. Dynamic plan migration for continuous queries over
data streams. In SIGMOD, pages 431–442, 2004.

