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A modern query optimizer typically picks a single query plan for all data based on
overall data statistics. However, many have observed that real-life datasets tend to have
non-uniform distributions. Selecting a single query plan may result in ineffective query
execution for possibly large portions of the actual data. In addition most stream query
processing systems, given the volume of data, cannot precisely model the system state
much less account for uncertainty due to continuous variations. Such systems select
a single query plan based upon imprecise statistics. In this paper, we present “Query
Mesh” (or QM), a practical alternative to state-of-the-art data stream processing approaches.
The main idea of QM is to compute multiple routes (i.e., query plans), each designed for
a particular subset of the data with distinct statistical properties. We use terms “plans” and
“routes” interchangeably in our work. A classifier model is induced and used to assign the
best route to process incoming tuples based upon their data characteristics. We formulate
the QM search space and analyze its complexity. Due to the substantial search space, we
propose several cost-based query optimization heuristics designed to effectively find nearly
optimal QMs. We propose the Self-Routing Fabric (SRF) infrastructure that supports query
execution with multiple plans without physically constructing their topologies nor using
a central router like Eddy. We also consider how to support uncertain route specification
and execution in QM which can occur when imprecise statistics lead to more than one
optimal route for a subset of data. Our experimental results indicate that QM consistently
provides better query execution performance and incurs negligible overhead compared to
the alternative state-of-the-art data stream approaches.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Single versus multiple execution plans

Most modern query optimizers determine a single “best” query plan at compile time. Their objective is to find the query
plan with the cheapest execution cost, which typically is estimated based on the average statistics for all data tuples. Since
the cost is estimated using the statistics of the data as a whole, it largely relies on the uniformity of attribute values.
Significant statistical variations of different subsets of data may lead to overall poor query execution performance. The main
drawback here is that such a “monolithic” approach misses important opportunities for effective query optimization [1,2],
as none of the individual tuples may be served well by such an “average” plan.
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Motivating example. Consider monitoring stocks that exhibit “bullish” patterns and appear in recent news and “street
research”, e.g., blogs, web sites, etc. See the query below.

SELECT S.company_name, S.symbol, S.price

FROM Stock as S, News as N, StreetResearch as SR

WHERE matches(S.data, BullishPatterns) /*op1*/

AND contains(S.sector, News[1 hour]) /*op2*/

AND contains(S.company_name, StreetResearch[3 hours]); /*op3*/

WINDOW 60 seconds

The lookup table BullishPatterns contains “bullish” patterns of stock behavior, e.g., “symmetrical triangle” [3]. Operator op1
performs a similarity-based join on the latest financial data (i.e., incoming stock data tuples from the last 60 seconds) with
the BullishPatterns table. Operators op2 and op3 perform the matches on the stock’s sector and the company name with
the news and street research data. Here ci and δi respectively denote the current processing cost per tuple and the current
selectivity of opi respectively.

Suppose it is a bullish market (i.e., stocks are doing well) and the following conditions hold: c1 > c2 > c3 and δ1 >

δ2 > δ3. Given these statistics, the best query processing order is op3, op2, op1. Now suppose the news reports poor crop
harvests. This may hurt companies in the agricultural sector. The price of a company’s stock is often driven by the health
of an industry and may change due to the reaction of investors towards a given industry. Thus for agricultural sector stocks
the news of a poor harvest will likely result in fewer matches with the BullishPatterns table and with more references
in the news and blogs. In this case, δ1 will be relatively lower than δ2 and δ3 for such data tuples. So, op1, op2, op3
may now become the most efficient ordering for processing agricultural sector stock tuples. However, other sectors may
remain unaffected, and hence for them op3, op2, op1 will remain the best ordering. Query execution performance would
be significantly limited if the system continues to use the overall statistics across all data and processes all data using the
same single plan, i.e., op3, op2, op1.

1.2. Additional real-life examples

Some other real-life examples where different subsets of data exhibit rather distinct statistical properties include:

Stock market data. As demonstrated by the above example, stock market data is known to be not uniform [4]. The prices of
stocks quickly reflect information concerning current events and future expectations. While some stocks may go up, others
may go down as a result of the same event.

Internet and communication networks. Network traffic tends to vary depending on its destination or type, e.g., voice or
multimedia. Some destinations may be more popular than others, e.g., certain web sites get higher visitation rates. Different
network traffic may also have different characteristics. In the case of a network congestion, traffic packets will be discarded
by routers with different probabilities. Clearly, utilizing a single plan may lead to highly inefficient query processing for
some or possibly huge fractions of the actual data.

Scientific and environmental data. Most earth science data has a non-uniform spatial distribution, that is, similar values
are found in neighboring areas, while significantly different values often exist in distant areas. In addition, the phenomena
of interest are not uniformly distributed [5].

1.3. Query optimization approaches

We now classify the state-of-art query optimization techniques along two dimensions namely, optimization time and
optimization granularity. Optimization time denotes to when optimization decisions are made. While optimization granularity
defines if the optimization decisions are based upon optimizing 1) all tuples, 2) groups of tuples, or 3) individual tuples
processed. Fig. 1 provides an intuition of where our solution fits compared to the state-of-the art techniques.

In terms of optimization time, some database systems determine query plans in advance at compile time. While others
forego pre-computed plans and “route” tuples on-the-fly at runtime. We observe that these approaches closely resemblance
network communication methods namely, connection-oriented or connection-less. In connection-oriented, a connection with
the receiver is established in advance before passing any data. While in connection-less, data is sent without establishing
an a priori connection, and the next hop of a packet is determined by a router at runtime. The parallel between route
optimization in networking and query optimization in databases is evident. Query operators can be viewed as a “network”
and a query plan as a specific “route” through all operators in the “network”. Given this parallel, we classify the state-of-the-
art techniques according to the optimization time dimension as “route-oriented” and “route-less” solutions. “Route-oriented”
means that routes (i.e., query plans) are established in advance.

Database systems including major commercial DBMSs that determine a query plan a priori employ the route-oriented
paradigm. Systems like Eddy [6] and its descendants [7,8] decide at runtime for every data tuple or batch of tuples which
operator should process it next. Hence they fall under the route-less category.
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Fig. 1. QM versus other optimization techniques.

Most major commercial DBMSs determine a query plan a priori. Almost all route-oriented solutions pre-compute a single
route. This then leads to their main disadvantage, namely optimization coarseness [9,10]. Having a fully established plan also
comes with the advantage that all tuples follow the same execution plan and the execution is thus nearly “overhead-free”.
Furthermore, the size of data tuples does not need to be extended to store processing-related metadata, such as which
operators have been visited.

Some systems at runtime decide for every data tuple which operator to visit next, e.g., Eddy [7,6,8]. Such systems
discover different execution routes for tuples on-the-fly [7,6]. Route-less systems by design are inclined to use multiple
routes. Unfortunately the “optimization decision” (i.e., which operator should process a tuple next) is made continuously,
and in the worst case for every individual tuple, thus resulting in an unavoidable per-tuple route discovery overhead.
This approach ignores the fact that stable conditions tend to dominate query execution time, and that tuples with identical
content or similar statistical properties are likely to be best served by the same route [1]. Furthermore, the size of individual
tuples respectively is relatively larger, as tuples must now carry processing status related metadata.

In summary, optimizing too frequently (i.e., route-less) may discover several plans but likely will waste resources. How-
ever, optimizing too coarsely (i.e., route-oriented) may miss critical opportunities to improve query execution performance.
We thus propose a practical middle-ground approach between these extremes in the form of a “multi route-oriented” solution
called Query Mesh or QM (see Fig. 1).

In addition compared to traditional relational databases where the entire dataset and complete statistics about it are
available, data stream management systems (DSMS) work with incomplete datasets and imprecise statistics. In DSMS, the
knowledge about the environment such as data input rates, operator selectivities, attribute values and their distributions
is typically incomplete and is in fact continuously changing. Thus, uncertainty naturally arises during query optimization
in the streaming context. Most query processors in DSMS (similar to their relational counterparts), however, consider all
knowledge to be certain and complete during the optimization phase, which may significantly limit query performance at
runtime [11]. Existing solutions dealing with uncertainty, e.g., [11,8], are primarily single-plan-based and focus on cardinality
estimations for the data as a whole. A more complex structure and a different execution paradigm (that employs unique
plans for distinct subsets of data) makes these solutions for tackling uncertainty insufficient for a multi-route solution like
query mesh.

1.4. Our proposed solution: query mesh

The main idea of QM is to determine multiple execution routes, each optimized for a subset of data with distinct statistical
properties. Then, a classifier model is created based on the computed set of routes and the data characteristics (Fig. 2).
Henceforth we refer to the set of multiple execution routes as a multi-route configuration. At runtime, the classifier deter-
mines the best processing route for incoming tuples. Thereafter each data tuple will travel only on its designated optimal
route. While many classification models could be used, e.g., neural networks, naive bayes, etc. [12], we employ a decision
tree (DT) classifier. Our experiments demonstrate that our DT classifier approach very quickly “zeros-in” on the sought-after
route with typically a small number of comparisons. Additional beneficial features of DT classifiers are covered in Section 4.
Lastly, when there is uncertainty in the statistics collected and for a subset of data more than one route is deemed to be
suitable, then QM supports uncertain route specification by the classifier and execution by the QM executor.

Research challenges. Several practical considerations make this multi-route problem challenging: 1) Finding an optimal
solution is complex, because there is a combinatorial explosion of all possible execution routes for all possible subsets of
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Fig. 2. Optimizer producing logical QM solution.

training data to consider. 2) In addition, the classifier model, the number of execution routes, and the choice of particular
execution routes are strongly dependent on each other. A change in one may cause a modification in the other, subsequently
affecting the cost of the overall QM solution. This raises the proverbial chicken and the egg question. Should the training
data get partitioned first, and then the optimizer finds the routes for the different partitions? Or should it be the other
way around? 3) Query execution with multiple concurrent routes is a challenge. If the execution infrastructure is not well-
designed, the benefits of using multiple distinct routes for different subsets of data may be completely lost. 4) Finally, QM
must be able to support uncertain routes when statistics are known to be based upon unpredictable, dirty, and unreliable
streaming data.

This paper now addresses the above challenges. In particular, the contributions of this paper include:

1) We introduce the Query Mesh model, a general middle-ground query processing approach. QM consists of a classifier
and a multi-route configuration, where each customized route serves data with distinct statistical properties.

2) We employ machine learning measures to induce an efficient classifier operator. Then online the classifier operator
inspects incoming tuples to determine the best routes for each tuple with minimum overhead.

3) We analyze the QM search space and propose an algorithm to find optimal QMs.
4) Due to the large complexity of the search space, finding the optimal QM is not feasible in practice. To address this

issue, we propose a family of innovative cost-based search heuristics for compile-time query optimization that locate
near optimal QMs.

5) We propose the Self-Routing Fabric (or SRF) infrastructure to execute multiple routes in parallel without physically con-
structing the multiple query plans nor utilizing a router like Eddy [13].

6) We also discuss possible extensions to the core QM infrastructure to support the ability to select uncertain routes based
upon imprecise statistics and adjust route decisions mid-execution.

7) Our extensive experiments compare QM to the state-of-the-art techniques, namely route-oriented (i.e., the traditional
“single plan for all data” system [14]) and route-less systems (i.e., the Eddy framework with CBR routing [1]). Our
results show that compared to other systems, QM substantially improves performance. Thus they establish that QM is
indeed a promising paradigm for query optimization.

In this work, we focus in depth on the compile-time QM optimization problem – the characterization of the QM search
space and strategies for finding the best QM configuration at compile time. While our work in [15] centers on the design
of runtime assessment tuning of QM to address the problem of concept drift – a well-known subject in machine learning.
More details on the differences between these two works can be found in Sections 5.3 (discussion on adapting query mesh)
and 2 (related work).

This paper is organized as follows. The QM framework is covered in Section 3. Section 4 discusses the QM optimizer.
While Section 5 describes the QM executor and outlines how we may handle imprecision in routes in QM. Our experimental
study is in Section 6. Finally Sections 2 and 7 cover related work and conclusions, respectively.

2. Related work

Query optimization is a well-studied area, with most effort concentrating on optimizing a single execution plan for all
data [16,17]. QM approach is related to the concept of horizontal partitioning [2], where the main idea is to partition data
so that different partitions can be processed along different physical query plans. In contrast, QM partitions and processes
data along a single physical query plan that supports multiple routes.

In the context of sensor networks, conditional plans [5] generalize serial plans by allowing different predicate evaluation
orders to be used for different tuples based on the values of attributes and the cost of their acquisition. The goal is to reduce
the communication and acquisition costs to minimize the sensor battery consumption. Conditional plans focus on selecting
a single and cheap sensor partitioning attribute. Such an attribute is not necessarily the “best” splitting attribute in a general
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query optimization context. In that respect, QM is a more general model selecting (often several) best splitting attributes
in the classifier based upon machine learning knowledge gained by examining the data distribution. A conditional plan is
typically computed on a powerful computer (a base station) and then the appropriate plan is sent to the different sensor
nodes in the network. Thus, conceptually, still a single-plan strategy is employed locally at each sensor node for execution,
which is another key difference from the QM execution approach.

Although adaptivity is orthogonal to the ideas presented in this paper, several techniques from adaptive query process-
ing [18] are related to QM. Eddies [6], which can adapt at the tuple granularity, is observed to mostly be using a single plan
for nearly all tuples as was indicated in [1] and confirmed by our experiments. We borrow the concept of the SteM (a State
Module) from [8]. SteM is used with an Eddy to allow flexible adaptation of join algorithms, access methods, and the join
spanning tree. The STAIR operator [7] encapsulates the state typically stored inside the join operators and exposes it to the
Eddy. [13] adds batching to Eddies to reduce the tuple-level routing overhead. What differs from Eddy’s batching and our
rusters is that in the former the batching is naive: continuous chunks of k tuples that happened to arrive together in time
are batched and routed together. In QM instead, the tuples are grouped together into the same ruster using the classifier
and share the same customized optimized route.

Related to QM is the content-based routing (CBR) extension of Eddies [1]. CBR focuses on continuously profiling operators
and identifying “classifier attributes” to partition the underlying data into tuple classes that may be best routed differently
by Eddy. One distinguishing characteristic between QM and CBR is that CBR considers only a single-attribute decisions. We
take a more general approach in QM and build a classifier model that implicitly takes multiple attributes (their values’
correlations and statistics) into account to identify distinct data subsets with respect to their execution routes. Although [1]
states that CBR approach does not require “previous knowledge” of the data, the gain ratio metric in CBR is based on a
historic profile of an operator. Finally, CBR inherits several problems associated with Eddies, such as continuous and often
unnecessary re-optimization and re-learning overhead. The classifier attributes are re-computed continuously, even though
the best classifier attribute for an operator may not change frequently [1]. Extending CBR to non-Eddy-based systems,
i.e., systems that pre-compute plans prior to execution is non-trivial, as CBR does not compute full routes and instead
makes its decisions locally and continuously for each operator. In contrast, QM has a much wider scope of applicability as
it addresses query processing using multiple routes in plan-based systems – the standard in database systems. We have
shown experimentally that the QM approach has outperformed Eddies and CBR by a substantial margin.

While in Section 5.3 we argue that our QM architecture naturally lends itself to adapting an existing query plan with
little effort, in a twin work [15] we dug further into the subtitle challenges specific to the adaptivity of the QM multi-
route system. The concepts presented in [15] are orthogonal and complimentary to the fundamental work in this paper
which focuses on QM optimization and QM execution. More precisely, the contributions of [15] are all related to runtime
assessment tuning. In particular they dealt with QM monitoring, QM concept drift detection, and actuation of the QM
migration. In this work, we instead focus in depth on the compile-time QM optimization problem – how to produce a high
quality QM assuming relatively stable statistics. In particular we explore in detail the QM search cost model, QM search
heuristics, and QM architecture.

Some works have proposed uncertainty-aware solutions for query optimization e.g., [11,8]. They primarily focus on a
single-plan strategy for query execution. While in this work we focus on the impact of imprecise data streams on multi-
route solutions.

In Babcock and Chaudhuri [11], using the probability distribution, the optimizer selects the appropriate query plan after
considering the relative importance of predictability vs. performance preference of the user. Prior to optimization, the user
selects the trade-off between the two goals of predictability and performance (which could be at odds sometimes) to find
the appropriate query plan.

While Raman et al. [8] addresses query optimization by introducing the STAIRS operator, an extension to the ripple join
operator. Beyond the standard join processing, the STAIRS operator allows the system to dynamically adjust the intermediate
tuples stored in the cache to optimally process tuples based upon changes in the selectivity, data arrival rates, and/or
performance of operators in the query plan.

3. The query mesh framework

The QM framework consists of two core components, namely the QM optimizer and QM executor (Fig. 3). For a given
query, the optimizer locates the QM solution (i.e., the classifier and multi-route configuration) with the best query execution
performance. The QM executor instantiates the QM solution as the QM physical runtime infrastructure. The classifier at
runtime assigns the routes for the processing of the incoming tuples based upon their characteristics. The QM executor
using the Self-Routing Fabric executes the query by processing each incoming tuple along the route selected by the classifier.
Full details on the QM optimizer and QM executor are in Sections 4 and 5 respectively.

4. Query mesh optimizer

The optimizer, given a query Q and training dataset T , finds a multi-route QM solution (R , C ) where R is a set of routes
and C is a classifier that results in the lowest execution cost for tuples in T (Fig. 3).
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Fig. 3. Query mesh framework.

4.1. Data model and preliminaries

Our optimizer extends the relational database model to support streaming data environments. In general, we assume
a stream S is a possibly infinite data source of elements 〈s, t〉, where s is a tuple belonging to the schema of S and t is
the timestamp of the element. A query, expressed by the CQL query language [19] as shown in our motivating example
in Section 1, describes the information needs over data streams submitted by a user. A time-based sliding window on a
stream S is a moving window extending to the specified time interval T specifying a computable period of time. Intuitively,
a time-based sliding window defines its output stream over time by sliding an interval of size T time units capturing the
latest portion of a stream. It enables us to limit the number of tuples considered by a query. In this paper, we focus on
select-project-join (SPJ) queries. However, queries containing additional operators such as group by or aggregation can also
be handled by QM. Selection and projection queries are stateless, and thus can be seamlessly inserted into any pipeline in
any order. Thus we focus our discussion on the join operator. We use join operators that are similar to SteM operators [8]
that correspond to a half of a traditional binary join operator. Such join operator is a stateful operator such that it stores
all tuples that have been processed thus far from one input stream so to be able to join them with future incoming tuples
from the other input stream. They are formed over a base stream, and support build (insert), search (probe), and delete
(eviction) operations.

4.2. Training dataset

Using a training dataset T that represents the data and its expected distribution is a common approach in both database
systems [1,20] and data mining prediction models [21]. The dependence of streaming databases on data samples is unavoid-
able, as it is impossible to “see” all of the streaming data a priori.

Selecting a good quality training dataset is challenging. A training dataset’s size and accuracy directly affect the size
of the QM search space and the quality of the resulting QM solution. With a smaller training dataset, we may be able
to enumerate all possible QM solutions, but may not accurately represent the real data. Whereas with a larger training
set, the accuracy may improve, but at the cost of an extremely large search space, making it impossible to enumerate all
solutions.

The selection of a training dataset to accurately depict the data distribution via a sampling technique is a research
topic in its own right. We explored several techniques from statistics, including random sampling with cross-validation and
sampling with bootstrapping [21]. These methods allow the system to estimate how well the selected dataset represents
future as-yet-unseen data, and to re-sample until the desired accuracy is achieved.

In practice, training data can be collected using statistics from previous execution runs of the query or by employing a
similar approach to plan staging [18], where optimization and execution are interleaved. The first stage of query processing
may use a single route for query execution, while simultaneously collecting data statistics and training data. Using the
samples from the first stage as the training dataset, the optimizer then refines the QM solution into multiple routes in a
subsequent phase.

4.3. Query mesh search space

To find an optimal QM solution we must estimate the execution cost for the optimal route for each possible data subset
in the training dataset, i.e., to explore the QM search space. The cardinality of the training dataset directly impacts the size
of the QM search space. When the cardinality of the training dataset is large, a larger number of data subsets are possible.
This causes more differences among statistics and routes which expands the number of QM configurations to be evaluated
by the optimizer. Hence, the training dataset must be selected wisely to be compact yet sufficiently representative of the real
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Fig. 4. Lattice-shaped query mesh search space.

data. To reduce the size of the search space, we perform data condensing on the set of sampled data tuples. The condensing
step aims to select a subset of tuples without degrading its representativeness.

Condensing techniques can be categorized into two main groups, namely, to select a subset of the original tuples or
to modify or generate them [22]. In both cases original data “densities” (i.e., value frequencies) [23] are associated with
the condensed tuples. We implemented the second approach. For more details on the condensing algorithms, we refer
the reader to [23]. Henceforth we refer to a condensed tuple as a training tuple t and the reduced dataset composed of
condensed tuples as a training dataset T . We developed a clear abstraction of the complete QM search space to express the
QM search problem as a movement in the search space.

Example 1. Consider multi-route configuration S1, represented as “xy/zw/stv”, where {x, y}, {z, w}, and {s, t, v} denote
three subsets of training tuples that are respectively being processed by a distinct route. The optimizer may explore the
neighborhood of the multi-route configuration S1 by for instance merging the two subsets {z, w}, and {s, t, v} within multi-
route configuration S1 resulting in multi-route configuration S2: “xy/zwstv”. The improvement of S2 over S1 is measured
by our cost model (Section 4.5).

Since routes are computed based on the training dataset T , the spectrum of possible multi-route configurations ranges
from an individual route per each training tuple in T to a one single route for all tuples in T . Let n denote the cardinality of the
training tuple set T , i.e., n = |T |. The number of possible multi-route configurations explored in the worst case equals the
number of distinct ways of assigning n tuples to k routes. The Bell number Bn [24], the number of different partitions of a
set of n elements, thus describes the size of QM search space. The problem is challenging, as Bn ’s complexity is exponential
(see Eq. (1)). The Bell number [24] can be represented as the sum of Stirling numbers S(n,k) where S(n,k) is the number of
ways to partition a set of cardinality n into exactly k nonempty subsets.

Bn =
n∑

k=1

S(n,k) =
n∑

k=1

(
1

k!
k∑

j=1

(−1)k− j
(

n

k

)
jn

)
. (1)

Example 2. Given 4-element training data set representing the Stock stream, namely, data set in Stock stream {Apple,
Amazon, Google, Ford}. For brevity, we denote Apple as 1, Amazon as 2, Google as 3, and Ford as 4. Thus, {{Apple, Amazon,
Google}, {Ford}} is denoted by “123/4” where “123/4” represents a multi-route configuration containing two routes, namely,
{{Apple, Amazon, Google} and {Ford}}. Then this set could be partitioned in 15 distinct ways: 1234, 1/234, 2/134, 3/124,
4/123, 12/34, 13/24, 14/23, 12/3/4, 1/23/4, 1/2/34, 13/2/4, 14/2/3, 24/1/3, and 1/2/3/4. Hence, in this case, we have B4 = 15.
Fig. 4 illustrates the lattice-shaped QM search space for a set of training tuples of size n = 4. Node “123/4” corresponds to
a multi-route configuration with two routes; one subset of tuples uses route r1 and the rest use route r2. The total number
of different multi-route configurations here equals 15 (B4 = 15). A single basic transformation (e.g., a split of a subset, or
merge of two subsets) would transition from a multi-route configuration (a node in the search space) to its neighbor along
an edge in the space, e.g., “24/13” → “24/1/3”.

Besides determining which configuration of data subsets best suits the given query Q and training dataset T , the opti-
mizer must select the best processing route for each data subset in our chosen solution. The best route is the optimal order
in which operators should be processed. Finding an optimal ordering of operators to optimize the query performance for a
given set of data is a well-studied topic [16,17]. Our QM optimizer can employ any of the state-of-the-art techniques [25,
9,26] to locate the single best route for a subset of data based on available statistics for that data partition subset. For ex-
ample the single best route can be found using operator rank [17], dynamic programming [26], or transformation-based [9]
techniques.
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4.4. Creating a classifier

Once a desired QM solution (R , C ) has been selected by the optimizer, a classifier is implemented that associates each
computed route with the specific characteristics of each data subset (Fig. 3). There are many classifiers in the literature,
each with its strengths and weaknesses. Determining a suitable classifier for a given problem is difficult as a classifier’s
performance and quality depends greatly on the characteristics of the data to be classified [21]. While many classification
models could be used, e.g., neural networks, naive bayes, etc. [12], we employ a decision tree (DT) classifier. DT is attractive
for several reasons: First, complex decisions can be approximated by combining simpler local decisions at various levels of
the tree. Second, in contrast to other classifiers, where each tuple is tested against all classes, in a DT classifier, a tuple
is tested against only certain subsets of test conditions so as to eliminate unnecessary computations. The efficiency and
effectiveness of our DT was confirmed by our experimental study.

Many algorithms for DT induction can be found in the literature [12]. Our DT induction algorithm executes in a top–
down recursive manner. At the start, all training tuples and their assigned routes are at the root. Then, they get partitioned
recursively by the tree induction algorithm based on selected test attributes. Test attributes are selected on the basis of the
entropy-based measure, called information gain [12]. Finally, the leaf nodes of the DT contain the route identifiers for the
execution routes that will be assigned to the tuples that reach those leaf nodes after classification. Conditions for stopping
DT growth are either that all training tuples for a given node belong to the same route, no attributes for further partitioning
remain (when this occurs majority voting [12] is employed to assign a class label to the leaf), or no training tuples are left.

4.5. Query mesh cost model

We now describe the cost model we utilize to determine the best QM solution. The best QM solution is the solution with
the lowest estimated execution time for the selected training dataset. This consists of the cost to both classify and execute
each incoming tuple along its classified route.

(1) Cost of routes. Each execution route rq in query q has a per-tuple cost c(rq) to process a tuple. c(rq) represents the
expected time to process a single tuple to completion using rq , meaning either to output or drop the tuple. The cost
of rq is commonly calculated using two characteristics: 1) cost ci(opi) represents a per-tuple cost of opi ∈ rq , and
2) selectivity δ(opi) denotes the fraction of tuples that are expected to satisfy opi .

(2) Cost of classification. The classification cost for processing an incoming tuple is defined as the cost c(DT|rq) of traversing
a single path in the classifier decision tree pdt which starts at the DT root and ends at a leaf node with a route label rq .
c(DT|rq) is a function of the number of nodes in the path |pdt|, multiplied by the cost c(nodei) of computing each test

node in the path c(DT|rq) = ∑|pdt |
i=1 c(nodei).

(3) Multi-route overhead. Maintaining multiple execution routes introduces system overhead (e.g., memory, processing,
etc). For simplicity of presentation, we abstract all overhead associated with a route into a single variable OVH repre-
senting the average overhead per route.

Thus, the total cost of a QM is estimated by

cost(QM) =
( |R|∑

rq=1

frq ∗ (
c(rq) + c(DT|rq)

)) + |R| ∗ OVH (2)

where rq represents a leaf node (i.e., a route) in the DT of the QM solution, |R| the number of leaf nodes in the DT of the
QM solution, and frq the expected fraction of tuples from the training dataset T that at runtime will be mapped via the DT
to rq .

4.6. Optimal query mesh search

As a baseline, we will use the Opt-QM algorithm in Fig. 5 that is guaranteed to find an optimal QM solution. Opt-QM
traverses all multi-route configurations in the search space to locate the optimal QM solution.

Opt-QM. First, Opt-QM computes the power set P (T ) for the given training dataset T (Line 2). The power set of T is the set
of all subsets of T . Using training dataset, the statistics for each subset in the power set is calculated (Line 4). A route is
computed for each subset similar to the methods discussed in Section 4.4 (Line 5). Then different training tuples are run
through the operators to estimate the operators’ costs and selectivities. Next the best routes for each subsets are computed.
Finally the algorithm iterates through all possible partitions of T by composing the subsets, each representing a multi-route
configuration for T . For each partition p composed of the subsets {Si . . . S j } (Line 7), a union of all routes R associated with
it’s subsets is collected (Line 8) and then the classifier C is induced (Line 9). A QM solution is constructed with the routes R
and the classifier C (Line 10), and its cost estimated (Section 4.5). If the new QM has the smallest cost compared to the QM
solutions seen so far, it is kept (Line 12), otherwise it is discarded (Line 14). After exhaustive enumeration of all possible
configurations, the algorithm returns the QM solution with the smallest cost as a result.
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Algorithm Opt-QM (T – training dataset)

1: bestQM ← null; bestQMCost ← ∞
2: P (T ) ← ComputePowerSet(T ) //power set of T
3: for each set S ∈ P (T )

4: S.stats ← stats(S)

5: S.r ← best route for S based on S.stats
6: repeat
7: let p ← {Si . . . S j} //p is a partition of power set P (T )

8: R ← BestRoutes(p) //union of best routes of {Si . . . S j}
9: C ← InduceClassifier(p) //classifier based on data and routes

10: QM ← NewQMSolution(C, R)
11: if (QM.cost < bestQMCost) then
12: bestQM ← QM; bestQMCost ← QM.cost
13: else
14: discard QM //better QM has been found earlier
15: end if
16: until (all partitions p ∈ P (T ) enumerated) //Bn of them
17: return bestQM;

Fig. 5. Optimal QM search algorithm.

Complexity analysis. The complexity of Opt-QM is O (Bn *E). Bn (Section 4.3) represents the cardinality of all multi-route
configurations for the set T . E denotes the time complexity of the particular route computation algorithm used, e.g., E =
O (n2n) for dynamic programming [27]. Clearly with large training datasets, Opt-QM algorithm is not scalable. The problem
of finding one optimal route alone is known to be NP-hard in the general case [17]. Looking for multi-route configurations
further increases the complexity of the problem. Consequently, given both the exponential running time and the space
requirements efficient search heuristics are required in practice to tackle this problem.

4.7. Query mesh search heuristics

We thus now propose a series of cost-based heuristics for finding a good quality QM solution in reasonable time without
enumerating the entire search space. The heuristics have the following three main steps:

Step 1. A start solution QMs is chosen and its cost is computed. It is set as the best solution found so far, bestQM = QMs .
Step 2. A search strategy is iteratively employed by traversing the QM search space to find another solution QM’.
Step 3. QM’s cost is computed and compared to the bestQM cost. If QM’ has a smaller cost, bestQM is replaced with QM’.

We repeat Steps 2–3 until a stop condition is met.

All three steps in unison have a significant impact on the quality of the final QM solution. We thus design the most
appropriate strategy for each step. Typically, after a start solution is chosen, the search strategy performs walks in the
search space via a limited number of moves. If a poor start solution is picked, the search strategy may never reach a
quality QM. We now investigate various schemes to address the following questions: 1) How to pick a promising start QM
solution? 2) What search strategies are effective at improving the start solution? 3) When should the search terminate (i.e.,
stop condition)?

Selecting a start solution. One approach is to pick a start solution based on the similarity of data content. Given a training
dataset T , a content-driven approach (or CDA) partitions training tuples based on the respective similarity of their values. The
motivation is that similar content likely means similar selectivities, and thus the same best routes. Each attribute domain is
partitioned based on a pre-defined threshold that prescribes how “close” the content of training tuples are to one another.
For a discrete domain it could be a set of values. For a continuous domain it could be a range. This is akin to data clustering.
After the content-based groups are determined, the best route for each group is computed. This corresponds to the starting
QM solution. The quantity and the quality of routes selected for this starting solution depend on the partitioning function.
Clearly during the search process, the optimizer will consider other solutions in the QM search space, which means that
these initially content-based groups may still be merged into larger groups as dictated by the particular search strategy and
the associated estimated costs of the new QM solution. The advantage of CDA is that it is intuitive, rather simple, and can
produce distinct subsets quickly.

An alternative route-driven approach (or RDA) is to first compute the routes for each of the training tuples separately.
Thereafter, tuples are “grouped” by similarity of their respectively assigned routes, i.e., groups of “route-equivalent” tuples.
Then the classifier model is induced. The motivation here is that tuples with different values may still share the same best
route. In other words, RDA is capable of finding groups of arbitrary “shape”, i.e., tuples with very different content may still
be found to belong to the same group and thus may help create a more efficient QM solution.

Other QM start solution approaches include random-pick (RP), where a QM with the smallest cost out of x randomly
selected solutions is chosen, and extreme-1-route (or E1R), which picks a QM solution where all data is processed using the
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Algorithm II-QM (bestQM – start QM solution)

1: bestQMCost ← bestQM.cost
2: while (not stop condition) do
3: QM ← start solution (using methods from Section 4.7)
4: while (not local_minimum(QM)) do
5: QM’ ← random solution in NEIGHBORS(QM)
6: if (cost(QM’) < cost(QM)) then
7: QM ← QM’
8: end if
9: end while

10: if (QM.cost < cost(bestQM)) then
11: bestQM ← QM
12: end if
13: end while
14: return bestQM;

Fig. 6. II search strategy for QM.

same (single) route and the classifier is empty. E1R relies on the search strategy to divide the data into particular subsets to
determine the next QM solution.

Selecting a stop condition. The stop condition largely depends on the QM search strategy used. In general, query mesh search
may stop when either k iterations have gone by, or the solution did not improve in the last several rounds, i.e., the search
process plateaued. Alternatively, the search can be bounded by time or resources, e.g., when memory limits are reached.

Search strategy. Many search algorithms can be found in the literature – each with its own respective strengths and
weaknesses. We chose randomized search strategies, in particular, iterative improvement and simulated annealing. Such
approaches are guaranteed to find a good QM solution in a reasonable amount of time [28]. They thus serve as viable
alternatives to the prohibitively expensive optimal QM search (Section 4.3).

Iterative improvement QM search (II-QM). Fig. 6 sketches the iterative improvement QM search strategy or II-QM. The
inner loop of II-QM, also called a local optimization, starts at a given start QM solution and improves it by repeatedly
accepting random downhill moves (i.e., QMs with decreasing costs) until it reaches a local minimum. II-QM repeats such
local optimizations until a stop condition is met. Then it returns the local minimum with the lowest cost found. The
procedure is repeated various times, each time starting at a new QM start solution, until a stop condition is met. Then
the algorithm compares the local minima found and chooses the solution with the lowest cost. As time approaches ∞,
the probability that II-QM will visit the global minimum approaches 1. Thus with enough repetitions of the first steps, the
algorithm locates a solution close to the global minimum.

Example 3. We now explain the above II-QM search method using an example. For this, consider the scenario from Ex-
ample 1. Assume the optimizer selects 1/234 (i.e., {Apple}, {Amazon, Google, Ford}) as the start QM solution for the Stock
stream. Then it tries to improve the initial QM solution by randomly considering neighbors in the search space, which in
this case, would correspond to taking downhill moves. Specifically, 1/23/4, 1/24/3, 1/2/34 are the neighboring states in the
search space. Assume now that 1/23/4 is the local minimum among the three alternative solutions, because Amazon, and
Google, belonging to the same sector in the stock market, tend to have similar data characteristics. Consequently, the cost of
such partition may be lower than that of the other two QM solutions. The optimizer repeats the above search process now
from the current best solution, say 1/23/4, again considering its neighbors. This process continues until a local minimum is
found, i.e., the neighboring QM solutions have more costs than the currently best QM solution. Beyond that, the optimizer
repeats the complete search process by starting over with a different start solution QM each time. For instance, it selects
1234 as its start solution, and then finds out 123/4 is the local minimum as Apple, Amazon, and Google all belong to the
same sector in the stock market. The optimizer compares the cost of the new local minimum solution 123/4 with the cur-
rent best solution 1/23/4 and updates the best solution if the newly found solution has lower cost. The optimizer repeats
the above search process until a stop condition is met.

Simulated annealing QM (SA-QM). In simulated annealing (SA-QM in Fig. 7), initially the “temperature” τ parameter is set to
high to allow a great deal of random movement in the search space. Later the “temperature” parameter is lowered, and thus
less and less random movement is allowed, until the solution settles into a final “frozen” state. This allows the heuristic
to sample the solution space widely when the “temperature” is high, and then gradually move towards simple steepest
ascent/descent as the “temperature” cools. Thus the search can move out of local optima during the high temperature
phase. SA-QM accepts a worsening move with a certain probability. This probability declines as τ declines, by analogy the
randomness in the movements decreases as the temperature falls. When τ is small enough the algorithm accepts only the
improving moves.
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Algorithm SA-QM (bestQM – start QM solution)

1: QM = bestQM
2: Choose a random neighbor of QM and call it QM’
3: δ = cost(QM’) − cost(QM) //Decide to accept the new query mesh or not
4: if (δ � 0) then
5: QM = QM’ //QM’ is better than or same as QM
6: else
7: QM = QM’ with probability e

−δ
τ

8: end if
9: if (stop condition is met) then

10: exit with QM as final solution
11: else
12: reduce temperature by setting τ = ρ*τ , and go to Step 1
13: end if
14: return bestQM;

Fig. 7. Simulated annealing QM search strategy.

Example 4. This example of the SA-QM search algorithm is based on the scenario in Example 1. Assume the optimizer
chooses 1/234 as its start QM solution. It then chooses its random neighbor 1/23/4 as QM’. The cost of 1/23/4 would
be lower than 1/234 as 2 (i.e., Amazon) and 3 (i.e., Google) share the similar data characteristics. Thus δ is less than 0.
Therefore, 1/23/4 is considered as the current best QM solution. Thereafter, we again select a neighbor of the current
best QM solution, 1/23/4, which in this case is 1/2/3/4 as the new QM’. Assume here that the new QM’ does not have a
better cost than QM, but it is similar. In that case, with a probability (driven by the current “temperature” setting), the
optimizer may still accept this new QM’. This allows the search in the beginning to be relatively generous in exploring
the space. Over time, the temperature would be reduced, meaning, that the probability that a new solution QM’ would be
considered as next search step becomes smaller and smaller over time. In other words, later in the search, the optimizer
will tend to only search directly neighbors in the local minimal space being examined. As a result, 1/234 → 1/23/4 →
1/2/3/4 → 12/3/4 → 123/4 could be one of the possible movements that reach the optimal solution in the lattice-shaped
search space.

5. Query mesh executor

5.1. Physical QM instantiation

The QM executor takes the QM solution, namely, the classifier and set of routes, found by the optimizer and instantiates
a QM runtime infrastructure (Fig. 3). The runtime infrastructure consists of the Online Classifier operator and the Self-Routing
Fabric (SRF) in which operators self-route tuples according to best routes (Fig. 9). SRF infrastructure consists of two main
structures. 1) The Operator Index Array (OI-array) stores pointers to all query operators. Each index i corresponds to a unique
operator opi . Index “0” is reserved for the SRF global output queue, where query result tuples are sent. 2) The Operator
Modules (Op-modules) are the actual query operators, e.g., selection, join, etc.

Arriving tuples are classified into “routable clusters” – groups of tuples with the same route, using a classification win-
dow WTC , where WTC is a tumbling window. We use a tumbling window, because it partitions a stream into non-overlapping
consecutive windows, so that a tuple is classified only once. If tuples within a time window are known to be correlated,
then the classification overhead can be minimized by classifying one tuple per window and then sending the rest of the
tuples along the same route as the classified tuple. We denote a set of tuples that due to classification are assigned to the
same route a routable cluster, or short “ruster”.

Definition 1 (Ruster). Let Si be a data stream. A routable cluster RC is a window-bounded set of data tuples {s1 . . . sk} ⊆
Si[WTC] assigned to the same route ri by the classifier. Tuples in the ruster have timestamps in the time interval [RC.ts −
WTC,RC.ts], where RC.ts is the time of tuple classification and WTC is the classification window size.

In this paper, we focus on select-project-join (SPJ) queries. However, queries containing additional operators such as
group by or aggregation can also be handled by QM. Selection and projection queries are stateless, and thus can be seam-
lessly inserted into any pipeline in any order. Thus we focus our discussion on the join operator. We use one-way-join-probe
(OJP) operators, for joins, which are similar to SteM operators [8] that correspond to a half of a traditional join operator.
They are formed over a base stream, and support the insert, search, and delete operations. The choice for our join imple-
mentation is influenced by our desire to support all possible routes. Such an approach ensures that each data subset can
be executed along its optimal route – without any special treatment of states. Traditional join operator implementations
are binary, i.e., they are formed over rigidly encapsulate pairs of states of two different streams within one atomic unit,
i.e., the operator. The composition of the incoming streams (and hence their state) is directly coupled to the route taken
by the tuples thus far. Furthermore, when composing two such binary operators into a pipeline, the states in the down-
stream binary operators may now also be holding intermediate tuples produced by up-stream join operators. To support
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Algorithm ConstructSRF (QM – logical QM solution)

1: OPT ← new operator translation hash table
2: for each r ∈ QM.R do
3: for each op ∈ r do
4: O ← (op) Union O
5: end for
6: end for
7: SRF.OI-Array ← new Array[1 + |O |]
8: op_index ← 1 //0-th index is reserved for result tuples
9: for each op ∈ O do

10: OPT[op] ← op_index
11: SRF.OI-Array[op_index++] ← new PhysOp(op)
12: end for
13: ReplaceLogicalLabelsInOnlineClassifier(OPT)
14: return;

Fig. 8. Physical instantiation of SRF.

Fig. 9. QM physical runtime infrastructure.

all possible routes using traditional join operators, the system would need to support careful treatment of these states,
including their reuse across different pipelines and their migration as done in [29]. Thus to avoid this additional complexity
and overhead we adopt a unary join solution [8] and focus on the core ideas of query mesh infrastructure and optimiza-
tion.

Before starting query execution, the SRF infrastructure is instantiated (see pseudo-code in Fig. 8). The algorithm takes as
input a logical specification of QM from the optimizer. First it iterates through the operators in the routes of QM (i.e., QM.R),
and computes a union of all operators denoted by O (Lines 2–6). Thereafter, the OI-Array is instantiated (Line 7) with the
“0-th” index being reserved (Line 8), and with a physical instance of each operator assigned to one position in the array
(Lines 9–12). The OPT hash table stores the mapping between the logical operators and their physical instances (Line 10).
It is used during the instantiation to update the logical routes with their physical counterparts (Line 13). Label replacement
simply updates the classifier labels with operators’ physical ids in the SRF. This step is done only once at instantiation time
to eliminate the burden of continuous logical-to-physical operator translation at runtime.

5.2. Physical execution

When new tuples arrive, they are first processed by the online classifier operator. To keep memory and CPU overhead
minimal, the routing decisions are applied to groups of tuples, denoted as “route clusters” (or short “rusters”), rather than
individual tuples. Thereafter, the rusters are forwarded into the SRF for query evaluation (Fig. 9). In contrast to simple tuple
batches, rusters are based on the semantics of sharing the same execution route. Hence, a ruster conceptually is different
from both a batch of tuples (e.g., grouping tuples that arrive contiguously in time) [13], as well as from a traditional cluster
(e.g., grouping tuples based on similar values). The pre-computed route for a ruster is stored in a route token (short r-token).
R-tokens are metadata tuples, similar to streaming punctuations [30], embedded inside data streams, thus partitioning data
streams into rusters. What distinguishes r-tokens from other streaming metadata is that 1) they are “self-describing” as they
carry routing instructions and 2) that routes in the r-tokens are specified in the form of an operator id stack.

A ruster is routed to the operator that is currently the top node in its routing stack. OI-array enables the knowledge of
the “location” of other operators. After an operator is done processing the ruster, the operator “pops” the top node in its
routing stack, and then forwards the ruster to the next operator. If all tuples from a ruster are dropped by an operator, then
the r-token can also be discarded. When the r-token operator stack is empty, the ruster tuples are forwarded to the global
output queue for content dismissal.
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Example 5. A runtime execution is depicted by a thick black arrow in Fig. 9. Consider the scenario from Example 1. When
new tuples from the Stock stream arrive, the online classifier operator first processes them based on their domain values.
In this case, the routing decision for {Apple, Amazon, Google} is op3, op2, op1. Namely, the new tuples should join with the
news and street research news and then join with BullishPatterns, as these stocks from IT sector exhibit better performance
on profitability. Consequently, op1 has higher selectivity (i.e., producing more results) than the other two operators. On the
other hand, the routing decision for {Ford} is op1, op2, op3 as the company exhibits BearPatterns in recent stock market
and thus op1 is likely to produce less results. As a result, a route, r1 = 〈op3,op2,op1〉, for {Apple, Amazon, Google} will be
encoded in an r-token as a stack 〈3,2,1〉, where ‘3’ and ‘1’ are the first and last operators in the route respectively. And a
second route, r2 = 〈op1,op2,op3〉, for {Ford} will be encoded in an r-token as a stack 〈1,2,3〉.

For r1, it is first routed to op3 as op3 is the top node in its routing stack. op3 joins the new arrival stock tuples with
the street research tuples held in its state, and then sends the intermediate results to next operator on r1’s routing stack
(i.e., op2). Consequently, op2 uses the incoming tuples from op3 to probe and join with its state (i.e., news), and sends the
updated intermediate results to the last operator op1. In the end, op1 receives the tuples from op2 and uses them to join
with BullPattern so as to produce the final outputs. r2 would follow the same process, except the join ordering is different.

The QM architecture supports concurrent execution of multiple routes. Furthermore, SRF eliminates the need for any
central router. This removes the “backflow” bottleneck problem present in Eddy where tuples are continuously sent back
to the router to determine which operator to use next [13]. The runtime strategy of SRF provides an architectural query
processing approach that naturally supports multi-query execution. An encoding for route shared possibly amongst multiple
queries may also be stored in an r-token. This enables SRF to process such rusters just as it would for a single query.

5.3. Discussion of adapting query mesh

The beauty of our QM design detailed in this work is that, unlike classical hard coded route solutions, it now enables
adaptivity in routes within a single physical operation, namely the change of the classifier. The optimizer is run on a separate
thread offline. The optimizer starts with the current QM solution (i.e., classifier model and multi routes) and searches for
a better QM solution. If a better QM solution is located only a simple pointer re-assignment to the new classifier object is
needed. As an additional benefit, at runtime, both an older and a newer QM solution can concurrently be executed within
the same infrastructure.

Due to the routing flexibility of our proposed architecture, there is no migration delay. Although routes (i.e., query plans)
are pre-computed, their topology is not physically constructed. Instead, the SRF infrastructure provides distributed routing
by query operators based on the plan specification assigned by the classifier to particular batches of tuples, i.e., rusters.
This physical separation between the component that determines which plans should be used for execution (the optimizer)
and the component that actually executes the plans based on the specifications (the executor) makes QM adaptivity so
light-weight. In other words we get adaptivity for free in this network.

Lastly, subtle issues of adaptivity of QM are studied in [15], where the goal is to address the concept drift problem –
a well-known subject in machine learning. Namely [15] addresses the problem of how to efficiently decide when to tune
and what subcomponent of the overall QM solution to tune. See the related work section (Section 2) for more discussion.

5.4. Discussion of imprecise-routing in query mesh

Compared to a single-plan solution, where uncertainty may be present in only one route, a multi-route solution may
have uncertainty in several routes. Route uncertainty occurs when there is uncertainty in operators’ selectivities and costs –
two key factors used by the classifier to select the routes. By uncertainty in routes we mean uncertainty in the costing of
routes. This leads to ambiguity about the best operator ordering. To resolve this issue, we now consider how to best support
uncertain route specification and execution in query mesh.

For this, we now relax the query mesh infrastructure and allow the classifier to select more than one route for a given
subset of data. More precisely, if for a given subset of data more than one route is estimated to have a similar execution
costs (Section 4.5) then these routes will be combined to form an uncertain route specification. To enable uncertain route
specification, we introduce a small modification to the route encoding: the r-token 〈2,3|1,4〉 indicates that ‘2’ is the first
operator in the route, ‘3’ or ‘1’ is the next, etc. The encoding 3|1 depicts the uncertainty about the order of these two
operators.

The QM executor must be adjusted to support execution of these uncertain routes. More precisely, when operator opi
is done processing a ruster, if there is uncertainty about which should be the next operator then opi selects one of the
possible subsequent operators in the ruster and update the ruster accordingly. In order to select the sequence of operators
in the uncertain route to actually follow, we employ a simple feedback mechanism similar to lottery scheduling. In this
approach, each operator would randomly select the next operator to follow on the uncertain route from among the set of
possible next destination operators in the uncertain route. Initially, all possible next destination operators in the uncertain
route are given an equal probability slice (in the so-called lottery wheel). A random coin toss, using that given probability
model, would then be used to select which operator to actually utilize at a given time. In addition, we would keep track
of the effectiveness of this choice made by counting the number of output tuples produced for this tuple by the chosen
operator. This information would then be recorded for this operator with respect to the subset of tuples that this current
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Table 1
Defaults used in the experiments.

Parameter Value Description

D Poisson Default data distribution
|A| 6 # of attributes in tuple schema
|S| 1000 tuples Size of sample tuple set
|T | 10 tuples Size of training tuple set (after data condensing)
Start Solu. Route-Driven QM start solution strategy
Search Strat. II-QM QM search strategy
Stop Cond. k = 3 # of iterations in the search
W TC 1000 tuples Classification window size
Ruster size 100 tuples ruster size

tuple belongs to. That is, we would incrementally adjust the subset specific estimated selectivity recorded for that operator.
Subsequently, the probability slice assigned to this destination operator would be increased, if the selectivity was low.
Hence the next time a choice would need to be made at this location for this uncertain route, the random selection of
the destination operators in the uncertain route would now be somewhat biased based on the adjusted relative sizes of
probability slices (the adjusted lottery wheel).

To update the ruster when the top of the stack contains uncertainty encoding, the operator removes the chosen next
operator from the set of possible operators in the ruster. If the uncertain set now contains only one operator then the
uncertainty encoding is removed (i.e., there is only one choice for the next operator) otherwise the uncertainty encoding
remains. Reconsider the example above. If 3 is selected as the next operator then the ruster will be updated to 〈1,4〉.
However, if the r-token was 〈3|1|4〉 and 3 was selected as the next operator then the ruster would be updated to 〈1|4〉.

6. Experimental evaluation

Experimental setup. All our experiments are run on a machine with Java 1.6.0.0, Windows Vista with Intel(R) Core(TM)
Duo CPU @1.86GHz processor and 2GB of RAM. Similar to [7,1,8], our experiments use both real and synthetic data sources
which we describe in more detail below.

We compare the performance of QM against the traditional “single plan for all data” system [14] (or SP) and the “multi-
route-less” system [6] (or MR). For SP, we use a multi-way join (MJoin) [14] operator. MJoin is a generalization of symmetric
binary join algorithms shown to provide the best plan for each stream, and thus it is our choice for SP. For MR, we use
the Eddy framework with CBR routing [1], which is the closest approach in the literature to QM. CBR continuously profiles
operators and identifies “classifier attributes” to partition the underlying data into tuple classes used by the router to
determine which operator to send tuples to next. To ensure an even comparison, all systems were implemented in the same
platform, namely, CAPE [31], a Java-based continuous query engine, and each implementation used as much of the same
codebase as possible.

Our experiments include the measurement of several metrics: 1) the average output rate and execution time, 2) the
execution-runtime overhead, 3) the total number of tuples produced, 4) the effect of training set size, and 5) the effect of
the start solution. Besides comparing our QM solution against alternative strategies, we also study the impact of different
features of our solution on the effectiveness of our optimizer, most notably metrics 4 and 5 above.

6.1. Data sets and queries

Stocks-News-Blogs-Currency dataset. We have implemented a data polling application that collects NYSE stock prices,
foreign currency exchange rates (provided via web service by Yahoo Finance), news and blogs on different subjects (provided
via RSS feeds).

Lab dataset. This dataset contains readings from sensors in the Intel Research, Berkeley Lab. The original dataset [1] con-
sists of a single stream sensor readings. We have partitioned this dataset by sensor locations into several data streams.
Each stream corresponds to a group of sensors in close proximity to each other. The sensor readings are sent to CAPE in
generation order, as they would have been were the tuples submitted by the sensors in real-time.

Synthetic data sets. To establish data skew, we employ the Uniform and Poisson data distributions. These distributions model
many real-life phenomena (Table 2). The default data properties, distribution parameters and system parameters used are
depicted in Tables 1 and 2.

Queries. We deploy N-way join queries, as N-way join queries are among the core and most expensive queries in database
systems. Such queries are commonly used to discover correlations across data coming from different sources and to compose
complex results. In the context of Stocks-News-Blogs-Currency dataset, such a query may be useful for making a decision on
a stock purchase, e.g., to estimate expected fall or rise in stock prices based on the latest news. For sensor data, this type of
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Table 2
Distribution statistics.

Data distributions

Name Parameters Application examples

Uniform α ∈ {. . . , β − 1, β}
β ∈ {α,α + 1, . . .}
X ∈ {α, . . . , β − 1, β}

• Long-term patterns of data
• Distribution of moving objects in some
geographic areas

Poisson 0 < λ < ∞
X ∈ {0,1, . . .}

• Service times in a system
• # people at a counter
• # of times web server accessed per minute

Uniform (α = 0, β = 100): min: 0.0, max: 100.0, med: 49.0, mean: 49.7, ave.dev: 25.2,
st.dev: 29.14, var: 849.18, skew: 0.05, kurt: −1.18

Poisson (λ = 1): min: 0.0, max: 7.0, med: 1.0, mean: 0.97, ave.dev: 0.74, st.dev: 1.01,
var: 1.02, skew: 1.17, kurt: 1.89

Table 3
Defaults used in the experiments.

Parameter Value Description

Data Arrival Poisson Data arrival distribution

μ 500 msec Mean inter-arrival rate

|Tdq| 1000 Maximum # of tuples dequeued by an
operator at a time

p 3 # of skewed partitions per stream. Partition
selectivities result in a different best
operator ordering compared to if the
overall stream statistics were used

|T | 100 tuples Size of training tuple set

H SA Default heuristic used to find query meshes

Start Solution Content-Driven Query mesh start solution strategy

W TC 1000 tuples Classification window size

Ruster size 100 tuples Minimum ruster size

Fig. 10. Experimental results.

query may help to detect fire “hotspots” or for automatic temperature control inside buildings. The sliding windows on the
timestamps present in the data (as opposed to the clock times when tuples arrived to the system during a particular test
run are used). This ensures that the query answers are the same regardless of the rate at which the dataset is streamed to
the system or the order of tuple processing. For the experiments run using synthetic data, the default values used in the
experiments are listed in Table 3. The query is an equi-join of 10 streams, i.e., S0 
� S1 . . . S9 
� S10.

6.2. Results and analysis

Average output rate and execution time. We now compare QM to SP and MR using the synthetic data. We execute MR
in two modes: with and without batching streams to reduce execution overhead [13]. The batch size is set to 100, which
is similar to the max ruster size parameter in QM (Table 1). Each query is run for 25 minutes several times using these
different solutions. The results averaged over all runs for the average output rate and the average execution time per tuple
are depicted in Figs. 10 a and b respectively.
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Fig. 11. Experimental results.

We now consider the worst case scenario for QM, namely, when the data is uniform. In this case, QM tends to default to
a single route per stream solution. Occasionally, due to sampling, QM uses two routes to process tuples from a stream. This
is expected as the dataset is not skewed and can be optimally processed by a single query plan. No benefit can be gained
from trying to find distinct routes during optimization and then processing rusters of tuples that all have the same route.
In this case, we observe on average QM is 2.2% worse than SP in terms of their output rate, better by 39% than MR + CBR
without batching, and better by 24% than MR + CBR with batching (Fig. 10 a).

For Poisson distribution, we observed that QM on average has 27% higher output rate than MR + CBR without batch-
ing, 18% higher than MR + CBR with batching and 44% higher output rate than SP. The average execution time per tuple
(Fig. 10 b) follows a similar trend. Our results show that QM has a low overhead as there is no significant degradation in
performance if datasets are not skewed, and has significant improvements in performance if they are.

Execution-runtime overhead. Now we compare runtime overhead of QM and MR.1 Fig. 10 c reports the overheads per
workload of tuples relative to the total execution cost (in black). A workload is a set of data tuples received and processed
over a 1 minute time interval. For both QM and MR, we considered any execution cost that are not the actual query
processing to be a runtime overhead. Our code calculates the time spent on such overhead versus regular query processing.

In QM, tuples are grouped together into the same ruster based on the classification. The classifier model considers the
data values and the similarity of statistics when assigning routes. Thus all tuples in a ruster are guaranteed to share the
same best route. Furthermore, QM’s runtime infrastructure based on SRF enables the query operators to route data tuples
nearly overhead-free, thus eliminating the rerouting overhead associated with Eddies. The only runtime overhead incurred
in QM is the initial classification to determine the execution plan for arriving data, which was on average measured to be
very small, less than 2% of the query execution cost (Fig. 10 c). The classifier in our case is small in height (maximum 2–3
levels). Thus the DT traversal is cheap similar in cost to inexpensive select conditions. Additional system overheads include
scheduling of the online classifier.

MR suffers from continuous re-optimization and re-learning overheads. In MR, the router continuously profiles operators
and identifies “classifier attributes” to determine which operator to send tuples to next [6]. The learning overhead may be
unnecessary as the best classifier attribute for an operator does not change very often, as was indicated in [1]. Furthermore,
MR experiences the “backflow” overhead, where tuples get continuously routed back to the Eddy operator that has to re-
examine the tuples and forward them to the next best deemed operator for processing. Batching attempts to reduce MR
overhead. However, even with batching in Eddy [13] the runtime overhead is not significantly improved as “backflow” is
still expensive [13]. Without any batching, the runtime overhead in MR + CBR algorithm amounted to nearly 20% of the
total execution cost. These overheads limit query performance and the benefit obtained from Eddy.

Total number of tuples produced. Fig. 11 indicates the total number of tuples produced by the three execution models over
time. We ran queries for over an hour and show the average output for the first 60 minutes. We can observe that over time
the total number of tuples output by QM is significantly larger than those by either SP or MRL solutions. In the SP approach,
single-plan optimization coarseness leads to producing a lot of intermediate results filling up the queues and hindering the
performance of the system. Whereas the multi-route-less system suffers from the “backflow” overhead, where tuples get

1 We did not measure SP runtime overheads, as all data is processed using one route, and thus no overhead regarding how the data should be processed
is incurred.
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Fig. 12. Effect of training set.

Fig. 13. Effect of start solution.

continuously routed back to the central router operator that has to re-examine the tuples and forward them to the next
operator for processing.

The trend is similar to the synthetic dataset experiment, namely, query mesh outperforms the other two alternatives,
although not by as much. Fig. 11 b shows the total number of tuples produced using the real-life datasets (Section 6.1).

Effect of training set size. We now study the effect of the training set size T on the cost of the QM optimizer and the
resulting quality of QMs. Fig. 12 shows the optimizer search time with various sizes of T (i.e., from 8 to 100 tuples) using
SA-QM and II-QM search heuristics (Section 4.7). These results support our hypothesis that larger training sets increase the
QM optimization cost.

Effect of start solution. Here, we evaluate the effect of the start solution (Section 4.7) on the quality of the resulting QM
configuration with the proposed heuristic-based search. We chose tuple output rate as our measure to estimate the quality
of query meshes. Fig. 13 shows the performance for different query meshes, computed when the optimizer employed
different start solution approaches. As can be seen, all QMs are pretty close in quality (except for the Extreme-1 which
is a single-plan start solution strategy). The Route-Driven approach results in a slightly better QM that is 6% better than
Extreme-N QM, 10% better than Content-Driven QM, 12% better than Random QM and 19% better than Extreme-1 QM. It is no
surprise that Extreme-N’s quality is close to Route-Driven’s QM, as the former is a “special case” of the latter approach.

6.3. Summary of experimental results

The main findings of our experimental study can be summarized as: 1) QM improves execution time and output rate by
up to 44% better than that experienced from state-of-art i.e., SP. 2) In the worst case when the data is uniform and thus a
traditional single route solution would have been ideal, QM’s performance is only 2% slower than SP. The key here is that in
this case QM succeeds to default to a single-plan setup. 3) The runtime overhead of QM is very small (2–3% at most) relative
to the overall query processing cost. In all our experiments we show actual measurements of system runs, i.e., all overheads
are included in the numbers shown. These experiments show that QM can achieve significant performance improvements
over alternative solutions, and thus presents a promising new paradigm for query processing.

7. Conclusion

In this paper, we have proposed a novel query processing approach called Query Mesh (or QM). QM is a middle-ground
solution between plan-based systems using a single plan and the continuously re-optimizing solutions like Eddies. QM offers
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numerous advantages over the state-of-the-art techniques. First, to find the best processing strategy for different subsets
of data, QM uses machine learning techniques to discover relationships between the data and processing routes. Second,
QM, being comprehensive, provides innovative solutions to both query optimization and processing. Third, QM execution
infrastructure facilitates shared operator processing and has near-zero route execution overhead. Fourth, we sketch how QM
could be extended to handle query optimization issues that arise when there are imprecise statistics by supporting the
selection and execution of uncertain routes. Fifth, our most important contribution is to show that QM can significantly
improve performance over alternative solutions, and thus is a promising paradigm for query optimization. This result opens
opportunities for exploration into this novel multi-route paradigm.
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