
JSetL User’s Manual
Version 1.0

Elio Panegai, Elisabetta Poleo, Gianfranco Rossi
Università di Parma, Dip. di Matematica

Via M. D’Azeglio, 85/A, 43100 Parma (Italy)

gianfranco.rossi@unipr.it panegai@cs.unipr.it

2nd November 2004

Abstract

This is the first edition of the user’s manual for JSetL, a Java library that offers
a number of facilities to support declarative programming like those usually found in
constraint logic programming languages: logical variables, list and set data structures
(possibly partially specified), unification and constraint solving over sets, nondetermin-
ism. JSetL is intended to be used as a general-purpose tool, not devoted to any specific
application. The manual describes all features of JSetL and it shows, through simple
examples, how to use them.

JSetL has been developed at the Department of Mathematics of the University
of Parma (Italy). It is completely written in Java. The full Java code of the JSetL
library, along with sample programs and related material, is available at the JSetL
WEB page http://www.math.unipr.it/~gianfr/JSetL.

i

Contents

1 Introduction 1

2 Logical variables and data structures 1
2.1 Logical variables: the class Lvar . 1
2.2 Lists: the class Lst . 2
2.3 List element insertion and removal . 5
2.4 Sets: the class Set . 7
2.5 Set element insertion . 8
2.6 Utility methods . 9

2.6.1 General utility methods . 9
2.6.2 Utility methods for lists . 11
2.6.3 Utility methods for sets . 13

3 Constraints 13
3.1 Constraint definition . 14
3.2 Equality and inequality constraints . 15
3.3 Set constraints . 17
3.4 Comparison constraints . 18

4 The Constraint Store 20
4.1 The add methods . 20
4.2 The allDifferent method . 20
4.3 The forall methods . 21
4.4 Constraint visualization . 22
4.5 Constraint deletion . 23

5 The Constraint Solver 24
5.1 The solve method . 24
5.2 The finalSolve method . 27
5.3 The solve1 method . 28
5.4 The boolSolve method . 29
5.5 The nextSolution method: finding one solution at a time 29
5.6 The setof method: all solutions . 30
5.7 Computation time . 31

6 User-defined constraints 31
6.1 New constraint definitions . 32
6.2 Implementing nondeterministic new constraints 33
6.3 Using the NewConstraints class . 35

7 Examples 37
7.1 n-queens problem . 37
7.2 Travelling Salesman Problem . 38

A Exception classes 42

ii

1 Introduction

Generally speaking, declarative programming means focusing on what a program does, rather
than on how it does.

Fundamental facilities of a programming language to support this programming paradigm
are:

• high-level data abstractions (e.g., lists, sets, . . .);

• powerful control abstractions (e.g., recursion, non-determinism, . . .)

• facilities to abstract from the order in which statements and expressions are elaborated
(e.g., side-effect freeness, constraint solving, logical variables, . . .).

These facilities can be provided as built-in mechanisms of the language (e.g., in logic
and functional programming languages, such as Haskell and Prolog) and/or they can be
provided by a library written in the language itself (e.g., in ILOG Solver [9, 8] or in JSolver
[3]).

JSetL is a Java library that endows Java with a number of facilities to support declar-
ative programming like those usually found in constraint logic programming languages [7]:
list and set data structures (possibly partially specified), nondeterminism, logical variables,
unification and constraint solving over sets.

Logical variables differ from conventional programming language variables in that their
value is not modifiable (neither by assignment nor by side-effects). Logical variables, along
with unification and constraint solving, are fundamental tools to allow execution order to
be immaterial, hence to support a declarative reading of programs. In JSetL declarative
programming facilities, however, coexist with conventional and object-oriented programming
facilities of Java (see, e.g., [1] for a general discussion about declarative vs. conventional
programming).

The library is carried out as a Java package, and as such it is subject to the common
rules of use defined by the language. The classes of the library must be saved into a folder
named JsetL. To use JSetL in a program it is necessary to import the library by inserting
the statement

import JSetL.*;
at the beginning of the source file. JSetL must be a sub-folder of the folder in which the
classes that import JSetL are saved. Otherwise, the path from root to the library folder
must be added to the variable CLASSPATH.

2 Logical variables and data structures

JSetL provides logical variables and two new kinds of data structures: sets and lists. These
new features are implemented by three new classes, Lvar, Lst, and Set.

2.1 Logical variables: the class Lvar

A logical variable is an instance of the class Lvar. A logical variable with name VarName
can be created by the following Java statement (a logical variable declaration)

Lvar VarName = new Lvar(VarNameExt,VarValue);

where VarNameExt is an optional external name, and VarValue is an optional value for the
variable.

1

The external name VarNameExt is a string value which can be useful when printing
the variable and the possible constraints involving it (if omitted, a default external name
of the form "Lvar n", where n is a unique integer, is assigned to the variable automatically).

The value associated with a logical variable is called a Lvar-value. The type of an
Lvar-value can be either a primitive type (namely, boolean, char, byte, short, int, long,
float, double), or a wrapper class (namely, Boolean, Character, Byte, Short, Integer,
Long, Float, Double), or any library or user defined class, provided it supplies a method
equals for testing equality between two instances of the class itself. In particular, an Lvar-
value can be an instance of Lvar, Lst, or Set.

We say that a logical variable is uninitialized (or that it is unknown) if it has no Lvar-
value associated with it or if its Lvar-value is an uninitialized logical variable or list or set.
Otherwise, we say that the logical variable is initialized. Lvar-values other than uninitialized
logical variables (or lists or sets) are said to be known values. A Lvar-value for a logical
variable can be specified either when the variable is created or as the result of processing
constraints involving the variable itself, in particular, equality constraints.

Example 1. Lvar definitions

Lvar x = new Lvar(); // uninitialized
Lvar y = new Lvar("y"); // uninitialized,

// with ext’l name "y"

Lvar z = new Lvar(2); // initialized (value 2)
Lvar v = new Lvar("w",’a’); // initialized (value ’a’),

// with ext’l name "w"

Lvar w = new Lvar(new Integer(7)); // initialized (value 7)

Lvar t = new Lvar(x); // uninitialized;
// same as variable x

�

Note that, in the last definition of Example 1, the value of the Lvar t is the other Lvar
x: both x and t are uninitialized. If later either x or t get some known Lvar-value v, both
x and t become initialized by (the same value) v.

Basically, Lvar objects are manipulated through constraints (see Sect. 3). Constraints
can be used to set the value of an uninitialized logical variable or to inspect it.

No constraint is allowed to modify the value of a logical variable, by replacing it with a
new one. However, the standard Java assignment between Lvar objects is available and can
be used to modify the value of a logical variable in a non-logical way.

Besides constraints, the class Lvar provides a number of utility methods that allow to
read/write its value, to inspect it (e.g., to test if it is completely specified), to get the external
name of a logical variable, and so on. These methods will be described in detail in Sect. 2.6.

2.2 Lists: the class Lst

A list is an instance of the class Lst whose value is a finite (possibly empty) sequence of
arbitrary Lvar-values (the elements of the list), not necessarily all of the same type. A list
with name LstName can be created in JSetL by the Java statement (a list declaration)

Lst LstName = new Lst(LstNameExt,LstElemValues);

where LstNameExt is an optional external name of the list (the default external name has
the form "Lst n", where n is a unique integer), and LstElemValues is an optional part which
is used to specify the elements of the list (see below).

2

The empty list is denoted by the constant Lst.empty. For instance,

Lst e = Lst.empty;

defines an empty list with name e.
Alternatively, a named list can be introduced as the value of a logical variable and

accessed through the logical variable itself. The statement

Lvar LvarName = new Lvar(new Lst(LstNameExt,LstElemValues));

defines a logical variable with name LvarName whose value is a list.
JSetL allows methods dealing with lists to be applied indifferently both to lists (i.e.,

instances of the Lst class), possibly through the associated list name, and to logical variables
initialized to lists.1

Hereafter, we will usually use the term list–Lvar to refer to the type of a logical variable
whose value, if any, must be a Lst object. This check is performed necessarily at run-
time, and it possibly causes a NotLstException exception to be generated. Analogously,
we will use the term set–Lvar to refer to the type of a logical variable whose value, if any,
must be a Set object. Also this check is performed at run-time, and it possibly causes
a NotSetException exception to be generated. All exceptions defined in JSetL (see
Appendix A) are extensions of the class java.lang.Exception and, like any other exception
in Java, they can be caught, thus avoiding the computation to terminate.

Lists can be created through the new operator, possibly using list declarations, or as the
result of executing utility methods dealing with lists (in particular the element insertion and
removal methods—see Sections 2.3 and 2.6). Lists can be either initialized or uninitialized,
like logical variables. The value of a list (i.e., a Lst-value) is the sequence of its elements.
In particular, when a list is created through the new operator, the value of the list can be
specified in the following ways:

• by passing an array l elems of elements c1, . . . , cn of type t, t any Lvar-value type,
t [] l elems = {c1,...,cn};

as a parameter of the Lst constructor:
new Lst(LstNameExt,l elems).

• by passing the limits l and u of an interval [l, u] of integer numbers which constitute
the elements of the list as parameters of the Lst constructor:

new Lst(LstNameExt,l,u).
If u > l the created list is the empty one.

• by passing a Lst or a list–Lvar object as a parameter of the Lst constructor,
new Lst(LstNameExt,LObj).

In order to write lists in a more convenient way, we will make use of an abstract notation,
which closely resembles that of Prolog. Specifically,

[e1, e2, . . . , en]

1Using Lst objects—instead of logical variables initialized to Lst objects—allows in general a more
controlled usage of the objects. For example, if m is a method not defined for Lst, trying to apply m to a
list will be detected as an error at compile-time, whereas applying m to a logical variable initialized to a list
will only cause an exception to be raised at run-time. Moreover, if l is an uninitialized list, any attempt to
initialize it with a non-list object raises an exception, whereas if l is just an uninitialized logical variable, no
error is detected.

3

is used to denote the list containing n elements e1, e2, . . . , en, while

[]

is used to denote the empty list. Moreover,

[e1, e2, . . . , en |R],

where R is a list, is used to denote a list containing the n elements e1, e2, . . . , en, plus ele-
ments in R. In particular, if R is uninitialized, [e1, e2, . . . , en |R] represents an “unbounded”
list, with elements e1, . . . , en and an unknown part R. Similar abstract notation will be in-
troduced also to represent sets. Unbounded lists and sets are created using element insertion
operations and constraints (see next sections).

Example 2. List declarations

Lst e = Lst.empty; // the empty list
Lst l = new Lst("l"); // an uninitialized list, with ext’l name "l"

Lst i = new Lst("i",4,4+3); // an initialized list,
// with ext’l name "i" and value [4,5,6,7]

int[] v elems = {2,4,8,3};
Lst v = new Lst("v",v elems); // an initialized list,

// with ext’l name "v" and value [2,4,8,3]

�

Note that in a list the order of elements and the repetitions do matter (whereas they do
not matter in a set): for instance, the list [1, 2] is different from the list [2, 1] or from the
list [1, 2, 2]. No typing information on elements of a list are provided, that is elements can
be values of any type allowed for Lvar objects, including (initialized or uninitialized) logical
variables, lists or sets.

A list that contains some elements which are uninitialized logical variables (or lists, or
sets) is said to be a partially specified list. Note that, even if some elements of the list are
not specified, the cardinality of the list is known (i.e., the list is bounded). Elements of a
list which are themselves lists are said to be nested lists. Lists can be nested at any depth
in JSetL.

Example 3. Partially specified and nested lists

Lvar x = new Lvar();

Object[] pl elems = {new Integer(1),x};
Lst pl = new Lst(pl elems); // the list [1,x]

Lst[] nl elems = {l,i,e,v}; // l, i, e, and v are the lists
// defined in Example 2

Lst nl = new Lst(nl elems);

pl is a partially specified list, containing an Integer object and an uninitialized logical variable x.
nl is a list containing four nested lists (both initialized and uninitialized). �

Lists can be manipulated through a number of public methods which are made available
by both the Lst and the Lvar classes. The current version of the JSetL library does not
support constraint over lists, apart from list equality and inequality constraints .2 Lists can

2This limitation will be possibly removed in future releases by integrating other basic constraints over
lists with set constraints as proposed for instance in [5].

4

be manipulated only through a number of utility methods. As such, they require that their
arguments are sufficiently instantiated to be processed. Utility methods for lists will be
completely described in Section 2.6. In the next subsection, however, we already introduce
the element insertion and removal methods for lists, since they play an important role in
the definition and manipulation of lists.

2.3 List element insertion and removal

List element insertion and removal allow the user to add/remove one or more elements
to/from the head or the tail of a given list. These methods do not modify the list on which
they are invoked: rather they build and return a new list obtained by adding/removing the
elements to/from the input list.

In what follows, t represents a Lvar-value type, while l is an expression of type Lst or
list–Lvar used to denote the invocation object.

Note that, for the sake of simplicity, usually we will not distinguish expressions from the
values they denote (i.e., the values obtained by their evaluation). Thus, for instance, if l is
an expression of type Lst, we will say that the list l has some property p instead of saying
that the list denoted by the expression l has some property p. If necessary, however, we can
refer to the value denoted by an expression e by using the notation val(e).

public Lst ins1(t elem)

l.ins1(e) returns a list obtained by adding e as the head element of the list l.

public Lst ins1All(t [] elem array)

l.ins1All(a) returns a list obtained by adding elements of a as the head elements of
the list l, respecting the order they have in a.

public Lst insn(t elem)

Same as ins1 but with element e added as the tail element of l.

public Lst insnAll(t [] elem array)

Same as ins1All but with elements of a added as the tail elements of l.

List insertion (and extraction) methods can be concatenated (left associative). In fact these
methods always return a Lst object, and the returned object can be used as the invocation
object as well.

Example 4. List element insertion

Lvar nil = Lst.empty; // the empty list
Lst l1 = new Lst(nil.ins1(1)); // the list [1]

Lvar x = new Lvar();

Lst l2 = new Lst(l1.ins1(2+3).ins1(x)); // the list [x,5,1]
// (x uninitialized var.)

int[] l3 elems = {1,2,3};
Lst l3 = new Lst(nil.ins1All(l3 elems)); // the list [1,2,3]

Lst r = new Lst(); // an uninitialized list
Lst ul = new Lst(r.ins1(1)); // the unbounded list [1 | r]

5

�

Using the insertion methods ins1 and ins1All it is possible to build unbounded partially
specified lists, that is lists with a certain number of (either known or unknown) elements
e1, ..., en and a “rest” of the list, represented by an uninitialized list r (i.e., using the abstract
notation, [e1, . . . , en | r]). List ul of Example 4, for instance, is an unbounded partially
specified list.

Note that list [e1, . . . , en|r] is completely different from list [e1, . . . , en, r] that is a partially
specified, though bounded, list. As a matter of fact, the number of elements of the second
list is equal to n + 1, whereas for the first list we can only say that the number of elements
is ≥ n.

The ins1 and ins1All methods can be invoked on any kind of lists. Conversely, the
insn and insnAll methods, which are intended to work on the tail of lists, are thought for
initialized and bounded lists only, where the tail elements are known. However, we prefer
to allow these methods to be invoked also on unbounded lists, without causing any error or
raising any exception. If l is an unbounded list, methods insn and insnAll invoked on l
are executed as usual but taking into account only the known part of l, while the rest is
neglected. Thus, for instance, ul.insn(2), where ul is the unbounded list defined above,
returns the list [1,2].

public Lst ext1(Lvar elem)

l.ext1(x), with x an uninitialized Lvar, returns a list obtained by extracting the
head element from the list l and assigning its value to x. If x is already initialized, a
InitLvarException exception is raised. If l is not initialized a NotInitVarException
exception is raised. If l is the empty list, a EmptyLstException exception is raised.

public Lst extn(Lvar elem)

Same as ext1 but with element x extracted from the tail of the list l.

public Lst ext1() and public Lst extn()

Same as l.ext1(x) and l.extn(x) but the element extracted from l is not assigned
to any variable.

Example 5. List element removal

Let l2 and l3 be the lists defined in Example 4.

Lst l4 = new Lst(l2.ext1().ext1()); // the list [1]
Lst l5 = new Lst(l3.ext1(x).insn(x)); // the list [2,3,1]

// (x uninitialized var.)
�

Like methods insn and insnAll, also extn is thought for bounded lists. If l is an
unbounded list, extn is executed as usual but taking into account only the known part of
l, while the rest is neglected. Thus, for instance, ul.extn(x), where x is an uninitialized
logical variable, returns the uninitialized list r.

6

2.4 Sets: the class Set

A set is a data structure, similar to a list, except that the order of elements and repetitions
do not matter. In JSetL a set is defined as an instance of the class Set. Its value is a finite
(possibly empty) collection of arbitrary Lvar-values (the elements of the set). A set with
name SetName can be created in JSetL by the Java statement (a set declaration)

Set SetName = new Set(SetNameExt,SetElemValues);

where SetNameExt is an optional external name of the set (the default external name has
the form "Set n", where n is a unique integer), and SetElemValues is an optional part which
is used to specify the elements of the set when the set is created (see below).

The empty set is denoted by the constant Set.empty.
Like lists, a named set can be introduced also as the value of a logical variable and

accessed through it. Methods and constraints dealing with sets, however, can be applied
indifferently both to sets (i.e., instances of the Set class), possibly through the associated
set name, and to logical variables initialized to sets.

Sets can be created through the new operator, possibly using set declarations, or as the
result of executing utility methods dealing with sets (see Sections 2.5 and 2.6). Sets can be
either initialized or uninitialized, like logical variables and lists. The value of a set (i.e., a
Set-value) is the collection of its elements. In particular, when a set is created through the
new operator, the value of the set can be specified in exactly the same ways seen for lists:
by passing an array of its elements or the limits of an interval of integer numbers or a Set
or a set–Lvar object.

The notation we will use to write sets is similar to the one used for lists, apart using
the curly brackets instead of the square brackets. For instance, the set containing the three
elements a, b, and c will be represented as {a, b, c}, and the empty set will be represented
as { }. Moreover,

{e1, e2, . . . , en | S},

where S is a possibly uninitialized set, is used to denote a set containing elements e1, e2,
. . . , en, plus elements in S.

Example 6. Set definitions

Set e = Set.empty; // the empty set
Set s = new Set("s"); // an uninitialized set, with ext’l name "s"

Set i = new Set("i",4,4+3); // an initialized set,
// with ext’l name "i" and value {4,5,6,7}

int[] v elems = {2,4,8,3};
Set v = new Set("v",v elems); // an initialized set,

// with ext’l name "v" and value {2,4,8,3}
�

Note that in a set the order of elements and the repetitions do not matter. Thus two
Set objects may have different values but denote the same set. For example, the Set-values
{1,2}, {2,1} and {1,2,2} all represent the same set.3

Elements of a set can be also logical variables (or lists or sets), possibly uninitialized.
Sets that contain uninitialized elements are said to be partially specified sets. Like lists, sets
can also be nested, at any depth.

3This observation would require to distinguish in general between the value of a Set object—which may
contain also duplicated elements—and the set it denotes. However, for the sake of simplicity, usually we will
not distinguish between the two notions, using the term set to refer to both of them.

7

Example 7. Partially specified and nested sets

Lvar x = new Lvar();

Object[] ps elems = {new Integer(1),x};
Set ps = new Set(ps elems); // the partially specified set {1,x}

Set[] ns elems = {s,i,e,v}; // s, i, e, and v are the sets
// defined in Example 6

Set ns = new Set(ns elems); // a set containing four nested sets
�

Note that, differently from lists, the cardinality of a partially specified set is not deter-
mined precisely, even if it is bounded. For example, the cardinality of the set ps of Example
7 can be 1 or 2 depending on whether x will be subsequently instantiated to a value equal
to 1 or different from 1, respectively.

Sets are manipulated mainly through constraints (see Sect. 3). Besides constraints,
element insertion operations, as well as a limited number of utility methods, are provided by
JSetL for working with sets. Insertion operations, which are fundamental for the definition
of sets, are described in the next subsection; other utilities methods will be described in
Section 2.6.

2.5 Set element insertion

JSetL provides two methods for inserting elements in a set: ins, for the insertion of a single
element, and insAll for the insertion of an array of elements. Since the order of elements
in a set is not important, it is not necessary to provide distinct methods for head and tail
insertion because they would produce the same set.

ins and insAll can be invoked on any kind of set (namely, completely or partially
specified, bounded or unbounded), with no restriction on the presence of uninitialized logical
variables in their arguments. Both methods do not modify the set on which they are invoked:
rather they build and return a new set obtained by adding the elements to the set.

In what follows, t represents a Lvar-value type, while s is an expression of type Set or
set–Lvar used to denote the invocation object.

public Set ins(t elem)

s.ins(e) returns a set obtained by adding e to the set s (i.e., s ∪ {e}).

public Set insAll(t [] elem array)

s.ins1All(a), with a array of elements of type t, returns a set obtained by adding all
elements of a to the set s.

The ins and insAll methods can be concatenated (left associative). In fact these methods
always return a Set object, and the returned object can be used as the invocation object as
well.

Example 8. Set element insertion

8

Lvar nil = new Lvar(Set.empty); // the empty set
Set s1 = new Set(nil.ins(1)); // the set {1}

Lvar x = new Lvar();

Set s2 = new Set(s1.ins(2+3).ins(x)); // the set {5,1,x}
// (x uninitialized var.)

int[] s3 elems = {1,2,3};
Set s3 = new Set(nil.insAll(s3 elems)); // the set {1,2,3}

Set r = new Set(); // an uninitialized set
Set us = new Set(r.ins(1)); // the unbounded set {1 | r}

�

Note that using the insertion methods ins and insAll it is possible to build unbounded
partially specified sets, that is sets with a certain number of (either known or unknown)
elements e1, ..., en, and a “rest” of the set, represented by an uninitialized set r (i.e., using
the abstract notation, {e1, . . . , en | r}). Set us of Example 8, for instance, is an unbounded
partially specified set.

The Set class does not provide any extraction methods like those seen for lists. Set
element extraction, instead, is carried on by using constraints, in particular, the less and
differ constraints (see Section 3). As a matter of fact, set element extraction can involve
nondeterministic choices. For example, the extraction of the uninitialized Lvar x from
the (known) set {1, 2, 3} does not yield a unique solution, being 1, 2 or 3 all admissible
values for x. Similarly, even the extraction of a known element from a set, can involve a
nondeterministic choice. For example, the extraction of 1 from the set {1, 2, x}, with x an
uninitialized logical variable, can return either the set {2}, if the value of x is 1 or 2, or
the set {2, x} if on the contrary the value of x is different from 1. The extraction of one or
more elements from a set is deterministic only if the element is known, the set is bounded
and all its elements are known; in the other cases it involves some nondeterministic choice.
Therefore, instead of providing extraction methods that impose strong restrictions on the
form of their arguments (to make the methods deterministic), we prefer to leave the duty of
implementing set extraction to the constraint manager, which can handle correctly also the
nondeterministic cases.

2.6 Utility methods

JSetL provides a number of utility methods which can be applied to logical variables, lists
and sets. Some of them are general and can be applied to any logical variable, list or set,
either instantiated or not. Others are specific either for lists or for sets.

2.6.1 General utility methods

In the description of the following methods, the invocation object o is an expression of type
Lvar or Lst or Set.

public boolean known()

o.known() returns true if o is initialized and false otherwise.

public boolean unknown()

o.unknown() returns true if o is uninitialized and false otherwise.

9

public boolean isGround()

o.isGround() returns true if o is ground, that is if it does not contain any uninitialized
variable, and false otherwise.

public String name()

o.name() returns the external name associated with o.

public String giveName(String name)

o.giveName(s) assigns the string s to the object o as its external name and returns
s.

public Object value()

o.value() returns the value of o if o is initialized, null otherwise.

public void print()

o.print() prints the value of o to the standard output stream. If o is uninitialized,
the output is the external name of o (either defined by the user or the default one),
preceded by the character ’ ’.4 Lists and sets are printed following the syntactic
conventions of Prolog. For example, if o is the list [x,y,2|k], with x an initialized
logical variable with value "alpha", y an uninitialized logical variable with external
name "y", and k an uninitialized list with no external name specified for it, o.print()
produces the following output:

[alpha, y,2| Lst 1]

where "Lst 1" is the default external name automatically assigned to k.

public void output()

o.output() prints the external name of the object o followed by its value, that is,

ObjName = ObjValue

or followed by the special constant unknown if the object is uninitialized. For example,
given the logical variable x, the statement

x.output();

will produce the output

x = 2

if x has external name "x" and value 2; the output

X = unknown

if x has external name "x" and it is uninitialized; the output

Lvar 1 = 3

if x has no external name and its value is 3.
4The character ’ ’ is used to distinguish variable names from other strings and characters printed on the

output stream.

10

public Object read()

o.read() reads from the standard input stream an Lvar-value, assigns it to the ob-
ject o and returns the read value as its result. o must be an uninitialized logical
variable (or list, or set); otherwise, a InitLvarException (or InitLstException, or
InitSetException) exception is raised.

Lvar-values which are read through the read method must be written according to
the following syntactic rules: numbers have the usual form of numerical literals in
Java; (single) characters must be preceded (and possibly followed) by a single quote,
while strings are preceded (and possibly followed) by double quotes; lists and sets
are sequences of readable Lvar-values, separated by commas, and delimited between
square and curly brackets, respectively. Sets and lists can be nested at any level,
but they must be bounded and completely specified, that is uninitialized variables
cannot occur as their elements. If the input value does not satisfy these rules an
IOException() is raised.

As an example, if x is an uninitialized logical variable, the statement x.read() initial-
izes x as follows:

input value assigned to x

{1,’e’,["aaa",2]} the set {1,e,[aaa,2]}
’alpha the character a
"alpha" the string alpha

If x would be declared as a Set variable, only the first input value in the above example
would be acceptable (whereas the others will cause an exception NotSetException to
be raised).

If some other symbols appear after the right-hand delimiter of the input value (e.g., af-
ter the closed curly bracket), these symbols, up to the next carriage-return or new-line
symbol, are simply ignored. For example, the input value {1,’e’,["aaa",2]}xyw,zjk
is considered equivalent to {1,’e’,["aaa",2]}, while ’a’aabbaabb or ’aaabbaabb are
considered equivalent to ’a’.

public Character readChar()

public String readString()

o.readChar() and o.readString() read from the standard input stream a character
value and a string value, respectively, assign the read values to the object o and return
the read values as their result. o must be an uninitialized logical variable, otherwise,
a InitLvarException exception is raised.

Differently from the read method, o.readChar() and o.readString() do not require
that the character and string values to be read are written between quotes. Note that,
using the readChar method, if more than one character is typed in, those following
the first one are ignored.

2.6.2 Utility methods for lists

In the description of the following methods, t represents a Lvar-value type, while the
invocation object l is an expression of type Lst or list–Lvar. When the method is invoked,
l must be initialized, otherwise a NotInitVarException exception is generated.

11

public boolean inl(t elem)

l.inl(e) returns true if e is an element of the list l, otherwise it returns false. e must
be ground, that is it must not contain any uninitialized variable when the method is
executed; otherwise, a NotInitVarException exception is raised.

public boolean ninl(t elem)

l.ninl(e) returns true if e is not an element of the list l, and false otherwise. l and
e must be ground; otherwise, a NotInitVarException exception is raised.

public Object get(int index)

l.get(i) returns the i-th element of the list l. If the value of i is smaller than 0 or
greater than the length of the list l, an ArrayIndexOutOfBoundsException exception
is raised.

public Lst concat(Lst list)

If l is the list [a1, ..., an] and m is the list [b1, ..., bm], l.concat(m) returns the list
obtained by concatenating l and m, i.e., [a1, ..., an, b1, ..., bm]. Lists l and m remain
unchanged.

This method is thought for initialized and bounded lists only. However, we prefer to
allow the method to be invoked also on unbounded lists, without causing any error or
raising any exception. If l is an unbounded list, l.concat(m) returns the list obtained
by concatenating l and m but taking into account only the known parts of the two lists,
while the unknown rests are neglected. Thus, for instance, ll.concat(l2), where ll
is the unbounded list [1,2,3|x] and l2 is the list [6,7], returns the bounded list
[1,2,3,6,7].

public boolean isEmpty()

l.isEmpty() returns true if l is the empty list, false otherwise.

public int size()

l.size() returns the length of the list l, that is the number of elements of the list.
For example, if l is the list [1,2,x], with x an uninitialized logical variable, l.size()
returns 3. In particular, if l is the empty list, l.size() returns 0.

public Set toSet()

l.toSet() returns a Set object whose elements are those of the list l.

public Set toSet(String name)

l.toSet(s) returns a Set object whose elements are those of the list l and whose
external name is the string s.

public static Lst mkLst(int n)

Lst.mkLst(n) returns a list composed of n uninitialized Lvar objects.

12

2.6.3 Utility methods for sets

In the description of the following methods, t represents a Lvar-value type, while the
invocation object s is an expression of type Set or set–Lvar. When the method is invoked,
s must be initialized, otherwise a NotInitVarException exception is generated.

public Set concat(Set T)

If s is a set with value {a1, ..., an} and t is a set with value {b1, ..., bm}, s.concat(t)
returns a set with value {a1, ..., an, b1, ..., bm}. Sets s and t remain unchanged.

Note that a1, ..., an, b1, ..., bm are not necessarily all distinct elements. For example,
if the value of s is {1,2}, and the value of t is {2,1}, s.concat(t) returns the Set-
value {1,2,2,1} which actually denotes the set containing two elements, 1 and 2. As
another example, if the value of s is {1,x}, and the value of t is {2,y}, with x and y
uninitialized variables, s.concat(t) returns the Set-value {1,x,2,y} which actually
denotes many sets, depending on the values that x and y will possibly assume: equal
to 1 or 2, different from 1 and 2 but with the same value for both x and y, and so on.

The concat method for sets is thought for initialized and bounded sets only. However,
like in the case of lists, we prefer to allow the concat method to be invoked also on
unbounded sets, taking into account only the known parts of the two sets. Thus, for
instance, sl.concat(s2), where sl is the unbounded set {1,2,3|x} and s2 is the set
{6,7}, returns the bounded set {1,2,3,6,7}.

public boolean isEmpty()

s.isEmpty() returns true if s is the empty set. false otherwise.

public static Set mkSet(int n)

Set.mkSet(n) returns a set composed of n uninitialized Lvar objects.

Other operations on sets, such as equality, membership and not membership, union (which
generalizes the concat method shown above), and so on, which are inherently nondetermin-
istic, are provided as constraints, and will be presented in the next section.

3 Constraints

Basic set-theoretical operations, as well as equalities, inequalities and integer comparison
expressions, are dealt with as constraints. Constraint expressions are evaluated even if they
contain uninitialized variables. Their evaluation is carried on in the context of the current
collection of active constraints C (the constraint store) using a powerful (set) constraint
solver, which allows us to compute with partially specified data. Basically, constraints are
added to the constraint store using the add method and their resolution is performed by
calling the solve method, which implements the constraint solver. The solver nondeter-
ministically searches for a solution that satisfies all constraints introduced in the constraint
store. If there is no solution, a Failure exception is generated; otherwise the computation
terminates with success when the first solution is found. Constraints that are not solved are
left in the constraint store: they will be used later to narrow the set of possible values that
can be assigned to uninitialized variables.

13

In this section, we give the definition of the constraints that JSetL is able to deal with
and we introduce the methods that are used to add constraints to the constraint store.
Constraint solving and the relevant methods (in particular, the solve method), will be
introduced in the next section.

3.1 Constraint definition

In JSetL an atomic constraint is an expression of one of the forms:

• e1.op (e2)

• e1.op (e2, e3)

where op is one of a collection of predefined methods provided by classes Lvar, Lst and Set,
and e1, e2 and e3 are expressions whose type depends on op.

More precisely, the types of e1, e2 and e3 are defined as follows. Let LvarExpr be the
type of an object representing an arithmetic expression possibly involving int–Lvar objects
and built using the arithmetic methods sum, sub, mul, div, and mod (see Sect. 3.4).5 Let l1
be an expression of type Lvar or Lst or Set or LvarExpr, l2 be an expression of type Lvar-
value (see Section 2.1) or LvarExpr, s, s1, s2, s3 be expressions of type Set or set–Lvar,
i1 be an expression of type int–Lvar or LvarExpr, and i2 be an expression of type int or
Integer or int–Lvar or LvarExpr.

JSetL provides the following atomic constraints (here we use the val operator to make
explicit the distinction between expressions and values):

• Equality and inequality: l1.eq (l2), l1.neq (l2),
whose meaning is val(l1) = val(l2), val(l1) 6= val(l2)

• Membership and not membership: l1.in (s), l1.nin (s),
whose meaning is val(l1) ∈ val(s), val(l1) 6∈ val(s)

• Inclusion and not inclusion: s1.subset (s2), s1.nsubset (s2),
whose meaning is val(s1) ⊆ val(s2), val(s1) 6⊆ val(s2)

• Union and not union: s1.union (s2, s3), s1.nunion (s2, s3),
whose meaning is val(s1) = val(s2) ∪ val(s3), val(s1) 6= val(s2) ∪ val(s3)

• Intersection and not intersection: s1.inters (s2, s3), s1.ninters (s2, s3),
whose meaning is val(s1) = val(s2) ∩ val(s3), val(s1) 6= val(s2) ∩ val(s3)

• Disjunction and not disjunction: s1.disj (s2), s1.ndisj (s2),
whose meaning is val(s1) ∩ val(s2) 6= ∅, val(s1) ∩ val(s2) = ∅

• Difference and not difference: s1.differ (s2, s3), s1.ndiffer (s2, s3),
whose meaning is val(s1) = val(s2)\val(s3), val(s1) 6= val(s2)\val(s3)

• Less: s1.less (l1, s2),
whose meaning is val(l1) ∈ val(s1) ∧ val(s2) = val(s1)\{val(l1)}

• Comparison constraints: i1.le (i2), i1.lt (i2), i1.ge (i2), i1.gt (i2),
whose meaning is val(i1) ≤ val(i2), val(i1) < val(i2), val(i1) ≥ val(i2), val(i1) >
val(i2).

5Similarly to lists and sets, we use the term int–Lvar to refer to the type of a logical variable whose value,
if any, must be of type int or Integer. As usual this check is performed at run-time, and it possibly causes
a NotIntLvarException exception to be generated.

14

A constraint is either an atomic constraint or (recursively) the conjunction of two or
more atomic constraints c1, c2,. . . , cn:

c1.and (c2)and (cn)

Example 9. JSetL constraints

Let x, y, and z be logical variables and r, s, and t be sets.

r.eq(s); // equality between sets
t.union(r,s); // t = r ∪ s

x.eq(y).and(x.eq(3)).and(y.neq(z)); // x = y ∧ x = 3 ∧ y 6= z

�

Constraints are implemented as public methods of the Lvar, Lst and Set classes. All
atomic constraint methods return a result of type StoreElem, that is a data structure that
contains all information concerning the relevant constraint. The and method returns a
Vector of StoreElem. StoreElem objects constitute the elements of the constraint store.
In what follows, however, we will not distinguish between the expression that represents a
constraint and the StoreElem object obtained by the evaluation of this expression, using
the term (atomic) constraint for both of them.

The addition of a constraint C to the constraint store is mainly performed by calling the
add method of the Solver class:

Solver.add(C)

This method, along with a few other methods for adding constraints to the constraint
store, will be examined in detail in Section 4. After constraints have been added to the
constraint store, one can invoke their resolution by calling the solve method of the Solver
class:

Solver.solve()

The solve method searches for a solution that satisfies all the constraints introduced
in the constraint store. If a solution is found then the invocation of the solve method
terminates with success; otherwise, if there is no solution, a Failure exception is generated.
The default action for this exception is the immediate termination of the current thread. The
exception, however, can be caught by the program and dealt with as preferred. Constraint
solving and the related methods will be described in detail in Section 5.

3.2 Equality and inequality constraints

Let us see some simple examples involving equality and inequality constraints.

Example 10. Equality and inequality constraints.

Let x, y, and z be uninitialized logical variables.

Solver.add(x.eq(3)); // equality constraint x = 3
Solver.add(y.neq(x)); // inequality constraint y 6= x

Solver.add(x.eq(z)); // equality constraint x = z

The constraint added to the constraint store is (using an intuitive abstract notation): x =
3 ∧ y 6= x ∧ x = z. The same effect can be obtained by executing:

Solver.add(x.eq(3).and(y.neq(x)).and(x.eq(z)));

The constraint is satisfiable. After the execution of the solve method, the logical variables
x and z have both value 3, while y remains uninitialized. �

15

Example 11. Unsatisfiable equality and inequality.

Let x be an uninitialized logical variable and y a logical variable initialized to 1.

Solver.add(x.neq(1)); // inequality constraint x 6= 1
Solver.add(y.eq(x)); // equality constraint 1 = x

The constraint added to the constraint store is : x = 1 ∧ 1 6= x. Clearly, the constraint is
unsatisfiable, and a Failure exception will be raised by the constraint solver. �

The logical variables involved in equality and inequality constraints can also be instances
of classes Lst and Set or they can be Lvar initialized to lists or sets.

Example 12. Equalities and inequalities involving sets.

Let x, y, and z be uninitialized logical variables and s be a Set variable initialized to the set
{1,2,3}.

Solver.add(x.eq(3)); // equality constraint x = 3

Solver.add(y.neq(x)); // inequality constraint y 6= x

Solver.add(z.eq(y)); // equality constraint z 6= y

Solver.add(z.eq(s)); // equality constraint z = s

The constraint added to the constraint store is: x = 3 ∧ y 6= x ∧ z 6= y ∧ z = {1, 2, 3}. The
constraint is satisfiable. After the execution of the solve method, the logical variable x is
initialized to 3, while y and z have value equal to the set {1,2,3}. �

Solving equality constraints, in particular equalities between lists and sets, implies in
general the ability to solve unification problems (in particular, set unification; cf., e.g., [6]).
Unification of two possibly partially specified lists/sets means finding an assignment of values
to uninitialized variables occurring in them (if any), that makes them equal in the underlying
list/set theory. For lists, two lists are equal simply if each element of one list is equal to the
element that appears in the same position in the other list (i.e., the lists are identical). For
sets, in any reasonable set theory, two sets are equal if their elements are equal disregarding
their order and possible repetitions. Thus, for instance, the equality between the lists [x, 2]
and [1, y], x and y uninitialized logical variables, is satisfied by x = 1 and y = 2, while the
equality between the lists [x, 2] and [y, 1] or between [x, 2] and [1, 1, y] are not satisfiable,
since there are no values for x and y that make the two lists identical. Conversely, the set
equalities {x, 2} = {y, 1} and {x, 2} = {1, 1, y} are satisfied by x = 1 and y = 2.

It is important to notice that a set unification problem can admit more than one solution.
For example, the constraint {x, y} = {z, 2} is satisfied by x, y and z equal to 2 or by x = z
and y = 2 or by y = z and x = 2. The constraint solver is able to compute, one after the
other, all solutions for a given unification problem.

The most interesting (and complex) cases for list and set unification, however, are those
dealing with unbounded lists and sets. Let us see some examples involving such kinds of
lists and sets.

Example 13. Unification between unbounded lists.

Let lr, mr be uninitialized lists, and x, z be uninitialized logical variables.

Lst l = new Lst(lr.ins1(x).insn(2)); // l is [x,2 | lr]
Lst m = new Lst(mr.ins1(1).insn(z).insn(3).insn(4)); // m is [1,z,3,4 | mr]
Solver.add(l.eq(m)); // equality constraint

16

The constraint added to the constraint store is: [x, 2 | lr] = [1, z, 3, 4 | mr]. This constraint
is then rewritten by the constraint solver to the new constraint (in solved form) x = 1 ∧ z =
2 ∧ lr = [3, 4 | mr]. The constraint is trivially satisfiable. �

Example 14. Unification between unbounded sets.

Let sr and tr be uninitialized sets, and x, y and z be uninitialized logical variables.

Set s = new Set(sr.ins(y).ins(1)); // s is {y,1 | sr}
Set t = new Set(tr.ins(z).ins(2).ins(x)); // t is {z,2,x | tr}
Solver.add(s.eq(t)); // equality constraint

The constraint added to the constraint store is: {y, 1 | sr} = {z, 2, x | tr}. A possible solution
for it nondeterministically computed by the solver is: x = 1 ∧ y = z ∧ sr = {2 | tr}, with
y and z uninitialized variables. �

Note that also inequality constraints between partially specified lists and sets can have
more than one solution. For example, the constraint [x, y] 6= [1, 2] is satisfied if at least one
of the constraints x 6= 1 or y 6= 2 is satisfied (that is, logically, if the formula x 6= 1 ∨ y 6= 2
is true). In practice, the constraint solver computes each one of the possible solutions one
at a time, nondeterministically. As another example, the similar constraint {x, y} 6= {1, 2}
admits four distinct solutions: x 6= 1 ∧ x 6= 2, y 6= 1 ∧ y 6= 2, x 6= 1 ∧ y 6= 1, x 6= 2 ∧ y 6= 2.
All of them are nondeterministically computed by the constraint solver.

3.3 Set constraints

Let us analyze some particularly interesting cases involving atomic constraints based on
set-theoretical operations (i.e., set constraints).

In all these constraints, expressions s, s1, s2, and s3 can be uninitialized Lvar or Set
objects. The constraint solver is always able to solve all these cases, leaving the solved form
constraint in the constraint store or generating a Failure exception.

As an example, let us consider a membership constraint x ∈ s, where s is an uninitialized
set, to be added to the constraint store:

Solver.add(x.in(s));

The constraint solver rewrites this constraint to the equality constraint

s = {x | N}

where N is a newly generated uninitialized Set object, which states, in terms of equality,
that s must contain x plus “something else”, denoted by N.

Notice that the in and nin constraints are quite different from the inl and ninl methods
for lists. The latter are simple tests that allow to establish whether a known element belongs
or not to a known list. Conversely, the in and nin set constraints can be invoked also on
uninitialized sets with unknown elements. Thus, for instance, the in constraint can be used
to obtain nondeterministically all elements of a set, or to build a set that contains a given
element (as in the above example).

Sets involved in set constraints can also be partially specified, either bounded or un-
bounded. Let us consider the following simple example.

Example 15. Constraints using unbounded sets.

Let sr and tr be uninitialized sets, and x be an uninitialized logical variable.

17

Set s = new Set(sr.ins(1)); // s is {1 | sr}
Set t = new Set(tr.ins(x)); // t is {x | tr}
Solver.add(s.disj(t)); // disjointness constraint

s and t are unbounded sets. The constraint added to the constraint store admits one solution,
specifically: x 6= 1 ∧ 1 6∈ tr ∧ x 6∈ sr ∧ tr ∩ sr = ∅. sr and tr remain uninitialized but a
new constraint stating that tr and sr must be disjoint sets is added to the constraint store.
�

All set constraints are invertible, that is all parameters, as well as the invocation object,
of the constraints can be used either for input or for output. In the following example, we
consider the constraint t = r ∪ s with s an uninitialized set, and r and t two sets with a
known value. Thus, r and t serve as input parameter and s as the output parameter.

Example 16. Invertibility.

Set r = new Set(Set.empty.ins(1).ins(2)); // s is {1,2}
Set t = new Set(r.ins(3).ins(4));; // t is {1,2,3,4}
Set s = new Set(); // an uninitialized set
Solver.add(t.union(r,s)); // union constraint

The constraint added to the constraint store is {1, 2, 3, 4} = {1, 2}∪s. One possible solution
for this constraint (actually, the first one returned by the JSetL constraint solver) is s =
{3, 4}.

Note that this is not the only possible solution. In fact if we add also the constraint
s 6= {3, 4}, the previous solution does not fulfill the new constraint, and the solver looks for
another solution that satisfies the whole constraint. One such solution is s = {2, 3, 4}. �

3.4 Comparison constraints

Besides equality, inequality and set constraints, JSetL provides a limited support for com-
parison constraints over integer numbers. Comparison constraints have the form i1.op(i2),
where i1 is an expression of type int–Lvar, i2 is an expression of type int or Integer or
int–Lvar, and op is one of the following comparison operators: le, lt, ge, gt.

Comparison constraints in JSetL can be used only as simple tests of known values, not
as real constraints over integers. As a matter of fact, comparison constraints are evaluated
only if all their arguments are known values, that is no uninitialized logical variable occurs in
them. Otherwise, the constraint is simply left unchanged in the constraint store: its solution
is delayed until both its arguments possibly become completely known. If some comparison
constraints are still unresolved at the end of the invocation of the constraint solver, then
either a NotIntLvarException exception is generated or the invocation terminates normally,
depending on which method of the Solver class has been used to invoke the solver (see
Sect. 5). Anyway, the comparison constraints left in the constraint store are not further
elaborated. For example, if we add the constraint x < y ∧ x > y (e.g., by executing
the statement Solver.add(x.le(y).and(x.gt(y)))), and x and y are uninitialized logical
variables, the JSetL solver is not able to detect the inconsistency and the added constraints
are simply left unchanged in the constraint store.6

6Extensions of the constraint solving capabilities of the JSetL constraint solver are planned for future
releases of the library. In particular, following the approach in [4], we plan to integrate the current set
constraint solver with a solver over finite domains[2], which would allow us to deal with basic operations
over integers as constraints with almost no restriction on the instantiation of expressions that can occur in
them.

18

Like all other constraints, however, comparison constraints are “sensible” to backtrack-
ing, that is, values of logical variables possibly occurring in them can be modified due to
backtracking and the constraint re-evaluated accordingly. Let us consider the following
example.

Example 17. Comparison constraints.

Let x, y, and z be logical variables and s be the set {2,5,8}.
Solver.add(x.in(s).and(y.in(s)).and(z.in(s))); // membership constraints
Solver.add(x.gt(y).and(y.lt(z))); // comparison constraints

According to the first constraint, x, y, and z must belong to the set {2,5,8}. The first
solution computed by the constraint solver is likely to be x = 2 ∧ y = 2 ∧ z = 2. However,
when also the second constraint, i.e., x > y ∧ y < z, is required to be satisfied, then a failure
is detected. Then, new values for x, y, and z are computed and the comparison constraints
evaluated again, using the new values for the logical variables. Finally, the constraint solver
determines a possible solution for the given constraints: x = 5 ∧ y = 2 ∧ z = 5. �

Expressions i1 and i2 in comparison constraints can be also compound arithmetic ex-
pressions, e.g. (x + y) ∗ 2. Variables possibly occurring in these expressions must be logical
variables to allow the constraint solver to handle them properly (in particular during back-
tracking).7

JavaSet provides five methods which can be used to write complex arithmetic expressions
involving logical variables:

public LvarExpr sum(t e)
public LvarExpr sub(t e)
public LvarExpr mul(t e)
public LvarExpr div(t e)
public LvarExpr mod(t e)

where e is an expression of type int or Integer or int–Lvar or LvarExpr. All these methods
return a LvarExpr object as their result and they can be concatenated to represent compound
expressions. LvarExpr objects can be used in comparison constraints and in equality and
inequality constraints, both as the invocation object and as the argument of the invocation.
LvarExpr objects can be used also in membership and not membership constraints as the
invocation object.

Example 18. Constraints using LvarExpr objects.

Let us consider the following system: L1 + L2− L3 = L4− 1
L1 + m− L2 ∗ L3 6= n + m
L1/m + L2 ∗ n ≥ L3

where L1, L2, L3, L4 are the unknowns to be computed. This system can be written using
constraints as follows:

Solver.add(L1.sum(L2).sub(L3).eq(L4.sub(1)));

Solver.add(L1.sum(m).sub(L2.mul(L3)).neq(n + m));

Solver.add(L1.div(m).sum(L2.mul(n)).ge(L3));

7Conventional programming variables can be used in comparison constraints as well, but their values will
be fixed to the values they have when the constraint is added to the constraint store, with no possibility to
be modified through backtracking.

19

where L1, L2, L3, L4 are logical variables, and n, m are integer variables. �

Finally, an implementation remark. Comparison constraints are implemented as methods
of the Lvar class. Actually, if a more complete treatment of integer constraints would be
provided, it could be convenient to provide also a new class, which extends the Integer
class, and which encapsulates all methods used to implement comparison constraints and
LvarExpr objects (similarly to the Lst and Set classes).

4 The Constraint Store

The constraint store (hereafter, abbreviated CS) contains the collection of all active con-
straints in a running program. JSetL provides methods through which the program can
add new constraints to the CS, visualize the content of the CS, and remove (all) constraints
from the CS. General constraints are added to the CS by using either the add method or
the forall method. Moreover, the allDifferent method is used to deal with a special
case of inequality constraints. Constraint visualization and removal is performed by the
showStore and clearStore methods, respectively. All these methods are implemented as
static methods of the Solver class.

4.1 The add methods

public static void add(StoreElem AtomicConstr)

Solver.add(c), where c is an atomic constraint, adds c to the CS.

public static void add(Vector Constr)

Solver.add(c1.and(c2)....and(cn)), adds the n atomic constraints c1, c2,. . . ,cn to
the CS (note that the and method, which is used to define a conjunction of atomic
constraints, returns a vector of StoreElem objects).

The statement Solver.add(c1.and(c2)....and(cn)) is equivalent to the sequence of state-
ments:

Solver.add(c1);
Solver.add(c2);
. . .
Solver.add(cn);

The order in which atomic constraints are added to the constraint store is completely
immaterial.

4.2 The allDifferent method

Let AggrType be either a Lst, a Set, a list–Lvar or a set–Lvar type.

public static void allDifferent(AggrType A)

Solver.allDifferent(a), where a is either a (bounded) list or set containing n ele-
ments e1,. . . ,en, adds the atomic constraints ei 6= ej to the CS, for all i, j in 1, . . . , n.
If a is not initialized or it is an unbounded list or set, no exception is raised and, in
the second case, only the known part is used to add inequality constraints.

20

As an example, if r is the set {x,y,z}, with x, y, z uninitialized logical variables, the
invocation Solver.allDifferent(r) adds to the CS the new constraint x 6= y ∧ x 6=
z ∧ y 6= z. A more complex example is presented in Section 7.1.

4.3 The forall methods

The forall methods allow to state that a given constraint C must hold for each element of
a given set s.

Let StoreElemType be either a StoreElem or a vector of StoreElem type.

public static void forall (Lvar x, Set s, StoreElemType c) throws Failure

Solver.forall(x,s,C), where x is an uninitialized logical variable and C is a con-
straint containing x, adds to the CS an instance of C for each element e of s with
the value of x in the instance of C initialized to e. Logically, this is the so-called
Restricted Universal Quantifier (cf., e.g., [6]), (∀x ∈ s)C, whose logical meaning is
∀x((x ∈ s) → C).

C can be a constraint of any type, either atomic or a conjunction of atomic constraints. The
only restriction on C is that C must contain at least one occurrence of the variable x8.

Example 19. Simple use of forall.

Lvar x = new Lvar(); // an uninitialized l. var.
int[] s elems = {2,8,5};
Set s = new Set(s elems); // the set {2,8,5}
Solver.forall(x,s,x.ge(0)); // (∀x ∈ {2, 8, 5})x ≥ 0

The constraint added to the CS is 2 ≥ 0 ∧ 8 ≥ 0 ∧ 5 ≥ 0 which is clearly satisfiable. If the
invocation of the forall method is replaced by

Solver.forall(x,s,(x.ge(0)).and(x.le(5))); // (∀x ∈ {2, 8, 5})x ≥ 0 ∧ x ≤ 5

the constraint added to the CS is 2 ≥ 0 ∧ 2 ≤ 5 ∧ 8 ≥ 0 ∧ 8 ≤ 5 ∧ 5 ≥ 0 ∧ 5 ≤ 5 which is
clearly not satisfiable. �

The set s in an invocation Solver.forall(x,s,C) can be also uninitialized or, if ini-
tialized, it can be either bound or unbound, and in both cases it can contain uninitialized
logical variables as its elements. In all these cases, the subsequent call of the constraint
solver will nondeterministically compute all possible values for the uninitialized variables
occurring in s such that the constraint C is satisfied. Hence, the forall method can be
used not only to “iterate” over all elements of a given set, but also to generate the set, or
part of the set, whose elements satisfy a given property.

Example 20. forall over partially specified sets.

Let x, y, and z be uninitialized logical variables.

int[] r elems = {2,4};
Set r = new Set(s elems); // the set {2,4}
Set s = new Set(Set.empty.ins(y).ins(z)); // the partially specified set {y,z}
Solver.forall(x,s,x.in(r)); // (∀x ∈ {y, z})x ∈ {2, 4}

The constraint added to the CS is y ∈ {2, 4} ∧ z ∈ {2, 4} which is clearly satisfiable and the
first solution found by the constraint solver will be y = 2 ∧ z = 4 (see Section 5.5). �

8In the current version, no automatic check is performed to enforce the invocation of a forall method
to satisfy all the restrictions on its format. Rather, this is left to users’s accuracy.

21

The constraint C that occurs in the invocation of a forall method, Solver.forall(x,s,
C), can contain also other uninitialized logical variables y1, y2,. . . ,yn. In this case, the in-
stances of C which are added to the CS all share the same variables y1, y2,. . . ,yn. For
example, Solver.forall(x,{1,2,3},x.neq(y)), with x and y uninitialized logical vari-
ables, adds to the CS the constraint 1 6= y ∧ 2 6= y ∧ 3 6= y.

There are situations, however, in which one wants to have different instances of the
variables y1, y2,. . . ,yn for each different instance of the constraint C added to the CS by
the forall method. Logically, this corresponds to consider variables y1, y2,. . . ,yn in C
as existentially quantified within the scope of the Restricted Universal Quantifier, that is,
∀x((x ∈ s) → ∃y1, . . . , yn(C)).

For this purpose, JSetL provides also a variant of the forall method that allows the
user to specify which logical variables possibly occurring in C must be considered as “local”.
Let LVarsType be either a Lvar or an array of Lvar type.

public static void forall(Lvar x, Set s, LVarsType Y, StoreElemType c)
throws Failure

Solver.forall(x,s,Y,C), where Y is an uninitialized logical variable or an array of
uninitialized logical variables, adds to the CS an instance of C for each element e of
s with the value of x in the instance of C initialized to e and all occurrences of the
variables Y replaced by newly created logical variables.
For example, Solver.forall(x,{1,2,3},y,x.neq(y)), with x and y uninitialized
logical variables, adds to the CS the constraint 1 6= y1 ∧ 2 6= y2 ∧ 3 6= y3, with
y1, y2, y3 newly generated uninitialized logical variables.

As a more concrete example, let us consider the problem of checking whether all elements
of a given set s are pairs, i.e., they have the form [y1,y2], for any y1 and y2.

Example 21. forall with local variables.
Lvar x = new Lvar(); // an uninitialized l. var.
Lvar y1 = new Lvar(); // an uninitialized l. var.
Lvar y2 = new Lvar(); // an uninitialized l. var.
Lvar[] Y = {y1,y2}; // an array of two l. var’s.
Lst pair = Lst.empty.ins1(y1).insn(y2); // the list [y1,y2]
Solver.forall(x,s,Y,x.eq(pair)); // ∀x(x ∈ s→ ∃y1, y2 x = [y1, y2])

Let s be the set {[1,3],[1,2],[2,3]}. The constraint added to the CS is: [1, 3] = [y11, y21]∧
[1, 2] = [y12, y22] ∧ [2, 3] = [y13, y23] which is clearly satisfiable. Note that, if y1 and y2
were not defined as “local” to the invocation of the forall method (i.e., the Y parameter is
omitted), all equality constraints added to the CS would have the same variables y1, y2 and
the whole constraint turns out to be unsatisfiable. �

4.4 Constraint visualization

Constraints stored in the constraint store can be visualized by using the static method
showStore() of class Solver.

At each moment, the CS is constituted by all atomic constraints that have been added
to the CS and not yet processed by the constraint solver, and by the irreducible (or solved
form) constraints, that is those atomic constraints that have been processed by the solver
and that cannot be further simplified (see Sect. 5). In fact, constraints can be completely
eliminated by the constraint solver (logically, they are rewritten to true) or they can be
rewritten to a simplified irreducible form, and as such left in the CS.

22

public static void showStore()

If the CS contains the atomic constraints C1, C2, . . . , Cn, Solver.showStore() prints
on the standard output the line:

Constraint store: C̃1 C̃2 ...C̃n

where C̃i is the string obtained from Ci by replacing the names of all uninitialized
variables which possibly occur in it with the associated external names, either user
defined or the default ones. If the CS is empty, instead, the following line is printed:

Constraint store: empty

This method can be invoked everywhere in the program and it shows the CS state at the
moment it is invoked.

Example 22. Constraint visualization.

Lvar x = new Lvar("x"); // an uninitialized l. var.
Lvar y = new Lvar("y"); // an uninitialized l. var.
Lvar z = new Lvar(); // an uninitialized l. var.
Solver.add(x.neq(Lst.empty.ins1(y)); // the constraint x 6= [y]
Solver.add(x.eq(Lst.empty.ins1(z)); // the constraint x = [z]
Solver.add(z.in(Set.empty.ins(1)); // the constraint z ∈ {1}
Solver.showStore();

When the showStore method is invoked the CS contains the constraint x 6= [y]∧ x = [z]∧ z ∈
{1} which is printed by the showStore as follows:

Constraint store: x.neq([y]) x.eq([Lvar 1]) Lvar 1.in({1})

If the following statements are executed subsequently:

Solver.solve(); // calling the constraint solver
Solver.showStore();

we get:

Constraint store: y.neq(1) �

y.neq(1) (i.e. y 6= 1) is an irreducible constraint and as such it is left in the CS, while
all other constraints are eliminated. In particular, equality constraints of the form x = v,
where x is an uninitialized logical variable and v any Lvar-value, are always eliminated by
the constraint solver, and x becomes initialized to v.

4.5 Constraint deletion

The static method clearStore() of class Solver allows to delete all constraints contained
in the constraint store. After the invocation of this method the constraint store is empty.
clearStore| can be invoked everywhere in the program.

23

5 The Constraint Solver

The approach adopted for constraint solving in JSetL is the same developed for CLP(SET)
[6] and used also in Singleton [10]. The CLP(SET) constraint solver tries to reduce any
conjunction of atomic constraints to a simplified form - called the solved form - which is
proved to be satisfiable. The success of this reduction allows one to conclude the satisfiability
of the original collection of constraints. On the contrary, the detection of a failure (logically,
the reduction to false) implies the unsatisfiability of the original constraints.

A conjunction of atomic constraints C is in solved form if it is empty or all its constituting
constraints have one of the following forms (where x, xi are uninitialized logical variables or
sets, and t is an expression of any Lvar-value type):

1. x = t, and x does not occur neither in t, nor in the other constraints of C;

2. x 6= t, and x does not occur in t;

3. t 6∈ x, and x does not occur in t;

4. x3 = x1 ∪ x2, with x1 6≡ x2 and there are no inequalities of the form xi 6= t or t 6= xi

in C for all i = 1, 2, 3;

5. x1 ‖ x2, and x1 6≡ x2.

A solved form constraint obtained from a constraint C represent a solution for C. A
constraint C can have more than one solution. The JSetL constraint solver is able to find
nondeterministically all correct solutions for a given constraint. Nondeterminism is handled
through choice points and backtracking. Once the constraint reduction process detects a
failure, the computation backtracks to the most recently created choice point (chronological
backtracking). If no choice point is left open the whole reduction process fails and the
Failure exception is generated.

We say that the invocation of a method calling (directly or indirectly) the constraint
solver terminates with failure if its execution causes the Failure exception to be raised;
otherwise we say that it terminates with success. The default action for this exception is
the immediate termination of the current thread. The exception, however, can be caught
by the program and dealt with as preferred.

Solved form constraints are irreducible constraints. As such, they are left in the current
constraint store and possibly passed ahead to a new invocation of the constraint solver.
Conversely, constraints not in solved form are always eliminated (i.e., rewritten to either
true or false) or reduced to solved form constraints by the constraint solving process.

The JSetL constraint solver is implemented by the class Solver. The main method for
constraint solving is the solve method. Besides this, the class Solver supplies other five
methods for constraint solving: finalSolve, solve1, boolSolve, nextSolution, Setof.

5.1 The solve method

public static void solve()

Solver.solve() either detects that the constraint in the CS is unsatisfiable and raises
a Failure exception, or it transforms nondeterministically the constraint in the CS
into a constraint in weak solved form.

The weak solved form for a constraint C is defined exactly as the solved form except that:

24

• C can contain comparison constraints involving uninitialized logical variables;

• the conditions over inequality and union constraints in the definition of the solved
form (item 4) are relaxed.

The weak solved form is not guaranteed to be satisfiable in general (see examples below).
However, if a constraint in weak solved form does not contain neither unresolved comparison
constraints nor union constraints, then it is in solved form and as such it is guaranteed to
be satisfiable (see also the description of the finalSolve method.

The constraint solving process performed by the solve method involves in general choice
points and backtracking, as shown in the following example.

Example 23. Constraint solving.

Let s be the set {x,y,z}, where x, y, z are uninitialized logical variables, and r be the set
{1,2,3}.

Solver.add(r.eq(s)); // set unification r = s

Solver.add(x.neq(1)); // x 6= 1

Solver.solve(); // calling the constraint solver
x.output();

The output generated by this code fragment is:
x = 2

The value for x is computed through backtracking. Solving the set unification problem
{x,y,z}={1,2,3} nondeterministically returns one of the six different solutions:

x = 1, y = 2, z = 3,
x = 1, y = 3, z = 2,
x = 2, y = 3, z = 1, . . .

and so on. Assuming the first computed value for x is 1, then the other constraint, x.neq(1),
turns out to be not satisfied. Thus, backtracking forces the solver to find another solution
for x, namely x = 2. In this case, the conjunction of the two given constraints is satisfied,
and the invocation of the solve method terminates successfully. �

The constraint solver can be invoked more than once. Constraint solving is incremental.
Every time the solve method is invoked it does not restart solving the constraint from
the beginning but it restarts from the point reached by the last invocation of solve. In
particular, the choice points left open by a previous call to the solver are still open and
they are explored by the new invocation if needed (see also the nextSolution method). For
instance, if at the end of the code fragment of Example 23, we add the following statements:

Solver.add(Lst.empty.ins1(x).neq(Lst.empty.ins1(2))); // add constraint [x] 6= [2]

Solver.solve();

x.output();

the output generated is:
x = 3

Often a single invocation of the solve method is enough. Sometimes however it may
be useful or necessary to invoke the solve method more than once. For instance, when
the considered problem requires the introduction of a large number of constraints it can be
useful to add “intermediate” calls to the solve method so that possible unsatisfiability can
be detected without having to explore the whole search space. On the other hand, in the

25

case of satisfiable constraint the computational time is not increased by the addition of some
calls to the solve method, since every time it is invoked the solve method restarts to solve
the constraint from the point reached by the last invocation.

There are also cases in which the invocation of more than one solve is necessary. This
happens, generally, whenever the results of the evaluation of the constraints in the CS—in
particular the initializations of logical variables—need to be used in the subsequent compu-
tation. The following method exemplifies this situation.

Example 24. Incremental constraint solving.

Compute the sum of all elements in a set of integers s.

public static int sumAll(Set s) throws Failure

{
int sum = 0;

while (!s.isEmpty())

{
Lvar a = new Lvar();

Set r = new Set();

Solver.add(s.less(a,r));

Solver.solve();

int newElem = ((Integer)a.value()).intValue();

sum = sum + newElem;

}
return sum;

}

At each step a less constraint is added to the CS to extract an element from the set s and
the extracted element is added to the partial sum obtained by the preceding step. After the
introduction of each less constraint it is necessary to invoke the solve method, because
at the subsequent step it is necessary to know the new set on which the sumAll method is
invoked. �

The following example shows how the user can handle the situation in which the con-
straint solver has detected a failure (i.e., the constraint in the CS is unsatisfiable).

Example 25. Failure handling.

public static void testFailure()

{
try {

Lvar z1 = new Lvar();

Lvar z2 = new Lvar();

Solver.add(z1.eq(z2));

Solver.add(z1.neq(z2));

Solver.solve();

return;
}

catch(Failure e)

{
System.out.print("No solution found");

}
}

�

26

The weak solved form generated by the solve method is not guaranteed to be satisfiable.

Example 26. Unsatisfiable weak solved form.

If the following sequence of statements is executed

Solver.add(x.le(y).and(x.gt(y)));
Solver.solve();

with x and y uninitialized logical variables, the CS will contain at the end the weak solved
form constraint x < y ∧ y > x which is clearly unsatisfiable.

Analogously, the following sequence of statements

Solver.add(x.subset(y).and(y.subset(x)).and(x.neq(y)));
Solver.solve();

with x and y uninitialized sets, causes the constraint solver to produce the following constraint
(left in the CS): y = x∪ y ∧ x = y∪ x ∧ x 6= y which is in weak solved form but it is clearly
unsatisfiable. �

All these situations can be handled properly by using the finalSolve method (see
Sect. 5.2) which performs all checks necessary to guarantee that the output constraint is in
solved form (hence satisfiable).

5.2 The finalSolve method

The finalSolve method is defined exactly as the solve method, but it generates a solved
form constraint. If the constraint solving process is successful, therefore, the constraint left
in CS by a finalSolve invocation is guaranteed to be satisfiable.

The finalSolve method actually invokes the solve method but it performs also a
final global check on the generated constraint. If the constraint turns out to be unsatis-
fiable then a Failure exception is raised. If, on the contrary, the constraint solver de-
tects that the CS still contains comparison constraints with uninitialized logical variables—
i.e., the constraint solver finds out that it has not enough information to decide—then a
Uninitialized Variable in arithmetical expression exception is raised.9 Otherwise,
it terminates successfully.

For example, using the finalSolve method (instead of the solve method) in the pro-
grams of Example 26, we get an Uninitialized Variable in arithmetical expression
exception for the first call, and the detection of a failure (hence, a Failure exception) for
the second one.

The finalSolve method can be used in place of the solve method or it can be used in
conjunction with it. In the second case, the finalSolve method is usually called at the end
of the constraint solving process, after one or more invocations of the solve method. This
technique can be useful, on the one hand, to gain some execution efficiency since the global
check is performed only once. On the other hand, it can be useful whenever comparison
constraints are involved as a way to delay constraints that are not enough specified: specifi-
cally, comparison constraints which contain uninitialized variables are simply postponed by
the solve method, until the finalSolve method is invoked.

9As already observed, the current version of the JSetL constraint solver is not able to deal with integer
arithmetic constraints in a complete way. These limitations will be possibly overcome in future releases.

27

5.3 The solve1 method

The solve1 method is defined exactly as the solve method, but it does not keep track of
the possible unexplored alternatives. In case of backtracking, those alternatives are simply
not considered.10

The solve method and the solve1 method have exactly the same behavior as concerns
the first solution that is possibly found. In particular, in both cases they perform a nonde-
terministic search of the whole search space, using choice points and backtracking as needed.
The difference between the two methods becomes evident if the problem admits more than
one solution and we want to get also (some of) the other solutions. Using solve1 we are
not able to find any other solution: any attempt to force backtracking will cause a Failure
exception to be raised.

The solve1 method, therefore, can be useful whenever one is not interested in computing
all solutions but just the first one. In these cases the use of the solve1 allows one to
drastically prune the search tree, possibly leading to better execution efficiency.

Example 27. Using solve1.

Check whether s is a subset of t, i.e., s ⊆ t.

public static boolean mySubset(Set s, Set t)

{
try {

if(s.isEmpty()) return true;

else

{
Lvar x = new Lvar();

Set r = new Set();

Solver.add(s.less(x,r));

Solver.add(x.in(t));

Solver.solve1();

return mySubset(r,t);

}}
catch(Failure e)

{
return false

}
}

Using solve1 instead of solve allows us to extract elements from set s in a deterministic
way, that is with a fixed ordering. Thus, in case of backtracking, all other possible orderings
for set s are not taken into account. If, for instance, s1 is the set {1,2,3,4} and s2 is the set
{5}, the invocation mySubset(s1,s2) returns false after 4 attempts to solve the membership
constraint x.in(t). Using solve, in contrast, would cause all possible permutations of set
s1 to be considered (4! possibilities), before concluding that no solution can satisfy the given
constraints. �

The solve1 method must be used with care, since it can cause (useful) solutions to be
lost. In the above example, if s1 is the set {x,y}, with x and y uninitialized variables, and
s2 is the set {1,2}, the invocation mySubset(s1,s2) returns true with x and y initialized
to 1, while all other solutions (namely, x = 1 ∧ y = 2, x = 2 ∧ y = 1, x = 2 ∧ y = 2) are

10This is akin to the “cut” built-in predicate of Prolog, whose purpose is that of “cutting” open alternatives
in the search space.

28

not taken into account, even if we force backtracking (with constraint handling) in order to
explore the whole search space. All possible solutions are found if, in contrast, we use the
solve method.

5.4 The boolSolve method

public static boolean boolSolve()

The behavior of the boolSolve method is like that of the solve method, except that
it returns true if the constraint solving process is successful and false if the constraint
solver detects that the constraint in the CS is unsatisfiable (in this case, differently
from the solve method no exception is raised).

Note that the boolSolve method can be always replaced by the proper use of the solve
method and the exception handling facilities to catch the Failure exception possibly gen-
erated by the constraint solver.

5.5 The nextSolution method: finding one solution at a time

The nextSolution method is defined like the boolSolve method, but, in case of multiple
solutions, it allows to find a new solution each time it is called.

nextSolution can be invoked only after a solve (or a boolSolve or a finalSolve) has
been invoked. The solve (or boolSolve or finalSolve) invocation finds the first solution
(if any) for the constraint in the CS. The subsequent invocation of the nextSolution method
forces a failure and a new solution, if any, is computed through backtracking. At any time,
the result of the nextSolution call can be tested to check whether a solution has been
found or not. Thus, repeated calls to nextSolution allow the user to find one at a time all
possible solutions for a given constraint.

Example 28. Getting one solution at a time.

Let x be an uninitialized logical variable with eternal name "x" and s be the set {1,2,3}.

Solver.add(x.in(s));

Solver.solve();

x.output();

Solver.nextSolution();

x.output();

Solver.nextSolution();

x.output();

The output produced by this program is:

x = 1

x = 2

x = 3

Note that if in the above code the calls to nextSolution are replaced by calls to solve then
the output produced is:

x = 1

x = 1

x = 1

�

29

5.6 The setof method: all solutions

The setof method allows us to explore the whole search space generated by the (nondeter-
ministic) solution of a given constraint C and to collect into a set all the computed solutions
for a specified variable x.

Let LType be either a Lvar or a Lst or a Set type.

public static void setof(LType x) throws Failure

Solver.setof(x), where x is an uninitialized logical variable (or list, or set), returns
as its result the set of all possible values of x for which the constraint in the CS turns
out to be satisfiable.

In other words, the setof method allows us to define a set by property (or intensionally)
rather than by enumeration of all its elements (or extensionally). The property is represented
by the current content of the CS. Specifically, if C is the constraint in the CS, the set denoted
by Solver.setof(x) is the set s of all x such that C is true, that is, in logical terms,

∀x((x ∈ s) ↔ C).

The following two examples show simple usages of the setof method.

Example 29. Using the setof method: collecting a set of integer.

Compute the set of all even numbers greater than 0 and less or equal to 10.

Set s = new Set(1,10);

Lvar x = new Lvar();

Solver.add(x.in(s)); // add the constraint x ∈ s

Solver.add(x.mod(2).eq(0))); // add the constraint x mod 2 = 0
Solver.setof(x).output(); // collect and print all solutions for x

The output generated is: {2,4,6,8,10}. �

Example 30. Using the setof method: collecting a set of sets .

Compute the set of all subsets (i.e., the powerset) of a given set s.

public static Set powerset(Set s) throws Failure

{
Set r = new Set(); // an uninitialized set
Solver.add(r.subset(s)); // add constraint r ⊆ s

return Solver.setof(r); // collect all solutions for r

}

If s is the set {’a’,’b’} (and the CS is empty), the set returned by powerset(s) is {{},
{’a’}, {’b’}, {’a’,’b’}}. �

Very often, the constraint in CS contains uninitialized logical variables when the setof
method is called. From a logical point of view, these variables must be considered as exis-
tentially quantified within the scope of the intensional definition of the set s. That is, if C
is the constraint in the CS and y1, y2,. . . ,yn are the uninitialized logical variables in C, the
set s denoted by Solver.setof(x) is

∀x((x ∈ s) ↔ ∃y1, . . . , yn(C)).

30

Example 31. setof over constraints with uninitialized variables.

Given a set s compute the set of all pairs [x,y] such that x and y belong to s and x 6= y.

Lvar x = new Lvar();

Lvar y = new Lvar();

Lst pair = new Lst(Lst.empty.ins1(x).insn(y)); // a pair [x,y]

Solver.add(x.in(s)); // add the constraint x ∈ s

Solver.add(y.in(s)); // add the constraint y ∈ s

Solver.add(x.neq(y)); // add the constraint x 6= y

Solver.setof(pair).output(); // collect and print all solutions for x

If s is the set {1,2,3,4} (and the CS is empty), the set printed by this code fragment is

{[1,2],[1,3],[1,4],[2,1],[2,3],[2,4],[3,1],[3,2],[3,4],[4,1],[4,2],[4,3]}.

�

The setof method uses the finalSolve method to compute one after the other all
solutions that satisfy the constraint in the CS. After each solution has been computed,
setof forces a failure and a new choice (if any) is considered through backtracking. Each
value computed for the parameter of the setof invocation is collected into a set which is
returned as the result of the invocation. At the end of the setof execution the constraint
in the CS is in solved form (possibly empty).11

Variables x and y in the above example are intended to be used as “local” to the setof
invocation. As such their values after this invocation are unspecified (implementation de-
pendent) and cannot be relied on.

5.7 Computation time

The Solver class provides also two methods for getting and printing the execution time.

public static double getTime()

Solver.getTime() returns as its result the time in seconds from the beginning of the
main thread execution.

public static void printTime()

Solver.printTime() computes the time in seconds from the beginning of the main
thread execution and prints it on the standard output stream with the format time =
n sec, where n is the computed time.

6 User-defined constraints

JSetL allows the user to define new constraints, and in particular constraints whose solution
involves nondeterminism. User-defined constraints are dealt with as the built-in constraints:
they can be added to the constraint store using the add method and solved using the Solver
methods for constraint solving.

11Precisely, if the given constraint admits more than one solution—each one represented by a different
solved form—the last computed solved form is the one left in the CS at the end of the execution of the setof

method.

31

Definitions of user-defined constraints, however, require some programming conven-
tions to be respected.12 In particular, all definitions must be provided as part of the
NewConstraints class. This class extends the Solver class and must be defined as part
of the JSetL package:

package JsetL;

public class NewConstraints extends Solver

{
New constraint definitions

}

6.1 New constraint definitions

Let us assume the user wants to define a new constraint named newc with n arguments a1,
. . . , an of type t1, . . . , tn, respectively. To do this, the user has to define three new methods
in the class NewConstraints.

The first method provides the definition of newc as a constraint:

public static StoreElem newc(t1 a1, ..., tn an)

{
StoreElem s = new StoreElem(k,a1,...,an);
return s;

}

This method creates an instance of the class StoreElem which is used to store the new
constraint within the CS. The instance contains all parameters for the newc constraint, along
with an integer k which will be used by the solver to uniquely identify the new constraint.
k is called the constraint internal code and must be an integer (greater than 100 and not
equal to the ones previously used).

Whenever a program wants to add a newc constraint to the CS it can invoke the add
method of the Solver class as follows:

Solver.add(NewConstraints.newc(e1,...,en))

where e1,. . . ,en are expressions of type t1,. . . ,tn respectively.

The second method that must be included in the NewConstraints class, called user code,
is used to associate the new constraint internal code with the actual implementation of the
constraint itself:

protected static void user code(int c, StoreElem s) throws Failure

{
switch(c)

{ ...

case k: newc(s); break;
. . . }

return s;

}

For each new user-defined constraint defined in the program, with associated internal
code j, the user code method must provide a new case alternative for value j in the

12This task will be simplified in next releases by the adoption of suitable preprocessing tools that auto-
matically force the program to conform to these conventions.

32

switch statement. The purpose of this alternative is simply to invoke the method which
implements the associated constraint. The user code method is called directly by the solver
whenever it detects that the constraint internal code of the atomic constraint it is processing
does not correspond to any built-in constraint. Conversely, the user code method can not
be invoked by any method in the user program.

Finally, the NewConstraints class must provide a method which implements the con-
straint solving procedure for the new constraint:

protected static void newc(StoreElem s) throws Failure

{
t1 a1 = (t1)s.arg1;

...

tn an =(tn)s.argn;

implementation of constraint newc
}

The values of the parameters passed to the constraint when added to the CS can be
retrieved by accessing the protected data members arg1, arg2,. . . ,argn of the object s of
class StoreElem (in the current version, the number of arguments is limited to 4).

6.2 Implementing nondeterministic new constraints

Constraint solving for a new constraint can require nondeterminism. JSetL provides a num-
ber of facilities for nondeterminism handling which can be exploited in the implementation
of the constraint within the NewConstraints class (since these facilities are implemented
as protected they can be used in the NewConstraints class, not in the user program code).
In order to exploit these facilities, however, the user has to adhere to some programming
conventions.

Let the definition of the constraint solving procedure for the newc constraint to be based
on m different nondeterministic alternatives. Then the user must provide a switch statement
with m case blocks (numbered from 0 to m− 1), one for each nondeterministic alternative,
as follows:

protected static void newc(StoreElem s) throws Failure

{
t1 a1 = (t1)s.arg1;

...

tn an =(tn)s.argn;

switch(s.caseControl)
{
case 0:

Backtracking.add ChoicePoint(s);

alternative 1
return;

case 1:

Backtracking.add ChoicePoint(s);

alternative 2
return;
. . .

case m:

alternative m
return;

}

33

}

The control expression of the switch statement is the caseControl attribute of the store
element s associated with the newc constraint (default value: 0). Each case block, but the
last one, creates a choice point and adds it to the stack of the alternatives by executing the
statement add ChoicePoint(s). The remaining code of the case block provides the actual
implementation of this alternative.

As an example we show a fully nondeterministic recursive definition of the classical list
concatenation operation (concat). concat takes three lists as its parameters, l1, l2, l3,
and succeeds if l3 is the concatenation of l1 and l2.

Example 32. The new constraint concat.

class NewConstraints

{
public static StoreElem concat(Lst l1, Lst l2, Lst l3)

{
StoreElem s = new StoreElem(n,l1,l2,l3);
return s;

}

protected static void user code(int c, StoreElem s)
throws Failure

{
switch(c)

{ ...

case n: concat(s); break;
. . . }

return s;

}

protected static void concat(StoreElem s)

throws Failure

{
Lst l1 = (Lst)s.arg1;

Lst l2 = (Lst)s.arg2;

Lst l3 =(Lst)s.arg3;

switch(s.caseControl)
{
case 0:

Backtracking.add ChoicePoint(s);

add(l1.eq(Lst.empty));

add(l2.eq(l3));

return;
case 1:

Lvar x = new Lvar();

Lst l1new = new Lst();

Lst l3new = new Lst();

add(l1.eq(l1new.ins1(x))); // l1 = [x | l1new]
add(l3.eq(l3new.ins1(x))); // l3 = [x | l3new]
add(concat(l1new,l2,l3new)); // concat(l1new,l2,l3new)
return;

}

34

}
}

concat can be used both to check if a given concatenation of lists holds and to build any
of the three lists, given any of the other two. Such flexibility is obtained by using unification
and nondeterminism. The first (nondeterministic) alternative of the switch statement states
that when l1 is the empty list, l2 and l3 must be equal. The second alternative deals with
the case in which the first element of l1 is x so that l3 is obtained by inserting x as the
head element of the list l3new which is obtained (recursively) by concatenating the rest of
l1 (i.e., l1new) with l2.13

If, for instance, l1 is [1,2,3], l2 is [4,5], and l3 is an uninitialized list, execution of
the statement

Solver.add(NewConstraints.concat(l1,l2,l3))
and the subsequent call to Solver.solve(), will set l3 equal to [1,2,3,4,5]. If, on the
contrary, l1 and l2 are uninitialized lists and l3 is the list [1,2,3,4,5], execution of the
same two statements will cause l1 and l2 to get the values [] and [1,2,3,4,5], respectively.
This is just one of the six different solutions for the given constraint (the others being,
l1 = [1] ∧ l2 = [2, 3, 4, 5], l1 = [1, 2] ∧ l2 = [3, 4, 5], and so on). �

6.3 Using the NewConstraints class

Besides the definition of new methods to be used as (real) constraints in the current com-
putation, the user can exploit the facilities provided by the NewConstraints class whenever
he/she wants a part of his/her program to be “sensible” to backtracking.

As an example, let us consider the following trivial program fragment, where we assume
that x is an uninitialized logical variable (with external name "x") and s is the set {0,1}.

Solver.add(x.in(s));

Solver.solve();

x.output();

Solver.add(x.neq(0));

Solver.solve();

One could expect that this program (and in particular the output statement) prints all
values nondeterministically assigned to x, namely, 0 and 1. Unfortunately, this is not true:
indeed only the first value assigned to x is printed.

The problem is caused by the fact that nondeterminism in JSetL is confined to constraint
solving: backtracking allows the computation to go back to the nearest open choice point
within the constraint solver, but it does not allow to “re-execute” user program code. In
this example, the output statement is not re-executed when the second alternative for the
x.in(s) constraint is taken into account.

The problem can be avoided using the NewConstraints class. The piece of code that
requires to be re-executed is defined as the body of a new constraint in the NewConstraints
class, with proper parameter passing. The code in the original program then is replaced by
a call to the add method which adds the new constraint to the CS. With reference to the
above example, we can define a new constraint in NewConstraints, named printVar, which
simply invokes the output method on its argument x:14

13Note that if we use an if statement in place of the switch, with the if condition simply checking whether
l1 is the empty list, then concat continues to work correctly whenever the first and second list are given
and the third list has to be computed out of them. Conversely, this method can no longer be used in the
other direction, i.e. to split the third list into its two components lists.

14Besides the new methods that implements the new constraint also the other two interface methods

35

protected static void printVar(StoreElem s) throws Failure

{
Lvar x = (Lvar)s.arg1;

x.output();

return;
}

Then the original program fragment is modified as follows:

Solver.add(x.in(s));

Solver.solve();

Solver.add(NewConstraints.printVar(x));

Solver.add(x.neq(0));

Solver.solve();

With these changes, execution of this program causes all values assigned to x to be printed,
that is:

x = 0

x = 1

As a more complex example, let us consider the following program fragment, where we
assume that x and s are defined as in the above example, y is an uninitialized logical variable,
and s1 and s2 are the sets {’a’,’b’} and {’c’,’d’}, respectively.

Solver.add(x.in(s));

Solver.solve();

if (x.value().equals(new Integer(0)) Solver.add(y.in(s1));

else Solver.add(y.in(s2));

Solver.add(y.eq(’c’));

Solver.solve();

x.output();

Assume that when evaluating the if condition the value of the logical variable x is 0 and
therefore that the constraint y.in(s1) is added to the constraint store. When, subsequently,
a failure is detected (due to the inconsistent constraints on y stored in the CS), backtracking
will allow to consider a different value for x, namely 1, but the if condition is no longer
evaluated. The constraint solver will examine the constraint store again, with the new value
for x, but still with the constraint y.in(s1) added to it and it will detect a failure again.
Observe that if the first value assigned to x would be 1 (instead of 0), the computation
would terminate successfully.

Again the problem is caused by the fact that backtracking allows to consider all possible
values for x, but the if statement is no longer re-executed after backtracking took place.

The problem can be solved in the same way shown before. The piece of code that
requires to be re-executed, that is actions of the if statement, are implemented as a new
constraint (called condAdd) within the NewConstraints class. The if condition is rendered
through equality and inequality constraints, while the two alternatives of the if statement
are implemented as two nondeterministic cases of the new constraint definition.

protected static void condAdd(StoreElem c)

throws Failure

{
Lvar x = (Lvar)c.arg1;

required by the definition of a new constraint must be suitably defined in the NewConstraints class, as
shown in Sect. 6.1.

36

Lvar y = (Lvar)c.arg2;

Set s1 = (Set)c.arg3;

Set s2 = (Set)c.arg4;

switch(c.caseControl)
{
case 0:

Backtracking.add ChoicePoint(c);

add(x.eq(0));

add(y.in(s1));

return;
case 1:

add(x.eq(1));

add(y.in(s2));

return;
}

}

The original code fragment is modified as follows

Solver.add(x.in(s));

Solver.solve();

Solver.add(NewConstraints.condAdd(x,y,s1,s2));

Solver.add(y.eq(’c’));

Solver.solve();

x.output();

With these changes, the behaviour is the expected one: the program terminates successfully,
printing x = 1.

7 Examples

In this section we present two simple examples that show how to use the JSetL library to
solve constraint satisfaction problems, and in particular how to use sets and set constraints.
The considered problema are the well known n-queens problem and the traveling salesman
problem.

7.1 n-queens problem

The n-queens problem consists in trying to place N queens on a N × N chess board such
that no two queens attack each other, i.e., no two queens are placed on the same row, the
same column or the same diagonal.

To model the problem we observe that any solution will have a queen on each row and
one on each column. We can then represent each row with a logical variable, r0, ..., rN−1.
For every row there are N columns on which we can place the queen. If we identify the
columns with the integer 0, ..., N − 1, the resolution of the problem consists in assigning a
value among 0 and N − 1 to each of the N logical variables r0, ..., rN−1 such that

(i) ri 6= rj

(ii) rj + j − ri 6= i
(iii) ri + j − rj 6= i

for each i 6= j, 0 ≤ i, j ≤ N − 1. The first inequality states that two queens can not be
placed on the same column, while the other two inequalities state that two queens can not
be placed on the same diagonal.

37

The following is the Java program for n-queens problem using JSetL (with N = 4).

import JSetL.*;

import java.io.*;

class Queens

{
public static final int N = 4;

public static void main (String[] args) throws IOException,Failure

{
Set colmns = new Set(0,N-1); // a set of N integers 0..N − 1 representing columns
Lst rows = Lst.mkLst(N); // a list of N l. var’s representing rows

for(int i = 0; i < N; i++) // assign a distinct int. in 0..N − 1 to each var. in rows

Solver.add(((Lvar)rows.get(i)).in(colmns));

Solver.allDifferent(rows);

for(int i = 0; i < N-1; i++) // add constraints on diagonals
for(int j = i+1; j < N; j++){

Solver.add(((Lvar)rows.get(j)).sum(j).sub((Lvar)rows.get(i)).neq(i));

Solver.add(((Lvar)rows.get(i)).sum(j).sub((Lvar)rows.get(j)).neq(i));

}
Solver.solve(); // check constraints

for(int i = 0; i < N; i++) { // print a solution
System.out.print("\n Queen "+i+" = ");

((Lvar)rows.get(i)).print();

}
return;

}
}

Integers in set colmns indicate the columns on which the queens can be placed. Logical
variables in list rows indicate the rows of the chess board. A value c in the i-th Lvar of rows
indicates a queen placed in row i at column c. The allDifferent method assures that only
one queen is placed on each different column. The other two constraints added to the CS
through the add method implement inequalities (ii) and (iii) (note that rows.get(i) and
rows.get(j) denote the i-th and the j-th Lvar of the list rows, respectively).

A possible solution printed by this program is:

Queen0 = 1

Queen1 = 3

Queen2 = 0

Queen3 = 2

that represents the situation depicted in Figure 1.

7.2 Travelling Salesman Problem

As a second example we consider a simplified version of the traveling salesman problem.
Given a directed labeled graph G, the traveling salesman problem (TSP) consists in

determining whether there is a path in G starting from a source node, passing exactly once
for every other node, and returning in the initial node (here we are making the simplification

38

Q
Q

Q
Q

Figure 1: A solution for the n-queen problem with n = 4.

of not considering costs attached to edges; the problem, and the proposed solution, however,
can be straightforwardly extended to weighted graphs as well, where the goal is that of
finding a path of global cost less than a constant k).

A directed labeled graph G can be represented as a pair 〈N,E〉 where N is the set of
nodes and E is the set of edges, and each edge has the form 〈n1, n2〉, with n1, n2 ∈ N . This
representation of graphs has an immediate implementation using JSetL ’s data structures:
N can be implemented as a Set object containing simple elements (e.g., strings), and E as
a Set object whose elements are lists (i.e., Lst objects) of two nodes. If E contains the list
[a, b] it means that the graph contains an arc from node a to node b (note that arcs can be
conveniently implemented using sets—instead of lists—if the graph if undirected).

The following is the Java program which is able to solve the (simplified) TSP problem
using JSetL.

import JSetL.*;

import java.io.*;

class Tsp {

static Set visited = Set.empty;

static Lst path = Lst.empty;

static int n;

public static void main (String[] args)

throws IOException, Failure

{

InputStreamReader reader = new InputStreamReader(System.in);

BufferedReader in = new BufferedReader(reader);

Set nodes = readNodes(in);

Set edges = readArcs(in,nodes);

Lvar source = readSource(in);

Solver.add(source.in(nodes));

Solver.solve();

visited = visited.ins(source);

path = path.ins1(source);

tsp(edges,source,source);

showPath();

return;

}

39

public static void tsp(Set edges,Lvar source,Lvar startNode)

throws Failure

{

Lvar nextNode = new Lvar();

Lst newArc = new Lst(Lst.empty.ins1(startNode).insn(nextNode));

Solver.add(newArc.in(edges));

Solver.add(nextNode.nin(visited));

Solver.solve();

visited = visited.ins(nextNode);

path = path.insn(nextNode);

if(path.size() < n) tsp(edges,source,nextNode);

else tspLast(edges,source,nextNode);

return;

}

public static void tspLast(Set edges,Lvar source,Lvar lastNode)

throws Failure

{

Lst backArc = new Lst(Lst.empty.ins1(source).ins1(lastNode));

Solver.add(backArc.in(edges));

Solver.solve();

return;

}

public static Set readNodes(BufferedReader in)

throws IOException

{ ... }

public static Set readArcs(BufferedReader in,Set nodes)

throws IOException

{ ... }

public static Lvar readSource(BufferedReader in)

throws IOException

{ ... }

public static void showPath()

throws IOException

{ ... }

}

The set visited is the set of all the already examined nodes, while the list path is used
to store the computed path. Initially they are both empty. The main method first asks the
user to supply the nodes and the edges of the graph, and then the initial node which is stored
in the logical variable source. We assume the interaction with the user is implemented by
methods readNodes, readArcs, readSource in some reasonable way.

Methods tsp and tspLast provide our solution to the TSP. Statements in the main
method preceding the invocation of the tsp method state that the source node must belong
to the set of nodes of the given graph G and that it must be added to the set of visited
nodes and (as the first element) to the list that represents the computed path. Then the tsp

40

method is called with source as the start node startNode. The definition of the tsp method
simply states that an edge leaving from node startNode and ending in a node nextNode
not yet visited must belong to the set of edges of G. If these constraints are satisfiable, then
nextNode is added to the set of visited nodes as well as to the computed path, and the tsp
method is called recursively with nextNode as the new initial node, unless all nodes have
been already visited. In the last case, the tspLast method is called instead; this method
simply states that there must be an edge (backEdge) from the last visited node to the initial
one.

If the problem admits at least one solution the invocation of the tsp method within the
main method terminates successfully. Thus the main method can invoke showPath() which
prints the solution stored in path.

The following is an example of a program execution (assuming suitable user interaction
is implemented by methods readNodes, readArcs, readSource and showPath):

Insert the set of all nodes (separated by blanks): a b c d e

Insert the nodes reachable from a : b c

Insert the nodes reachable from b : a e

Insert the nodes reachable from c : b

Insert the nodes reachable from d : a

Insert the nodes reachable from e : d

Insert the initial node: a

Path: a -> c -> b -> e -> d -> a

References

[1] K.R. Apt and A. Schaerf. Programming in Alma-0, or Imperative and Declarative
Programming Reconciled. In Frontiers of Combining Systems 2, D.M. Gabbay and
M. de Rijke (editors),Research Studies Press Ltd, 1-16, 2000.

[2] D. Diaz, P. Codognet. A minimal extension of the Wam for CLP(fd). In Proc. of the
10th International Conference on Logic Programming, 1993.

[3] A. Chun. Constraint programming in Java with JSolver. In Proc. of Practical Applica-
tions of Constraint Logic Programming PACLP99, 1999.

[4] A. Dal Palù, A. Dovier, E. Pontelli, and G. Rossi. Integrating Finite Domain Constraints
and CLP with Sets. In PPDP’03 — Proc. of the Fifth ACM SIGPLAN Conference on
Principles and Practice of Declarative Programming, ACM Press, 219–229, 2003.

[5] A. Dovier, C. Piazza, and G. Rossi. A uniform approach to constraint-solving for lists,
multisets, compact lists, and sets Research Report “Quaderni del Dipartimento di
Matematica”, Università di Parma, n.235, September 200.

[6] A. Dovier, C. Piazza, E. Pontelli, and G. Rossi. Sets and constraint logic programming.
ACM TOPLAS, 22(5), 861–931, 2000.

41

[7] J. Jaffar and M. J. Maher. Constraint Logic Programming: A Survey. Journal of Logic
Programming 19–20, 1994, 503–581.

[8] ILOG Optimisation Suite - White Paper. Available at www.ilog.com/products/
optimisation/tech/optimisation/whitepaper.pdf.

[9] M. Leconte and J.-F. Puget. Beyond the Glass Box: Constraints as Objects. In Proc.
of the 1995 International Symposium on Logic Programming, MIT press, pp. 513-527.

[10] G. Rossi. Set-based Nondeterministic Declarative Programming in SINGLETON. In
11th Int.l Workshop on Functional and (constraint) Logic Programming, Electronic
Notes in Theoretical Computer Science, Vol. 76, Elsevier Science B. V., 17 pages, 2002.

A Exception classes

In this appendix we give a brief description of all the exception classes of JSetL. Class
Failure extends class Exception: it defines a “controlled” exception, hence it has to be
declared in the throws clause of all methods that may (either directly or indirectly) generate
exceptions of this type. All other classes extend class RuntimeException: they define
“uncontrolled” exceptions, that is they can be generated without being declared in the
throws clauses.

EmptyLstException

This exception ir raised whenever the ext1 and the extn methods are applied to an
empty list.

Failure

This exception is raised whenever the constraint solver finds that the constraint in the
CS has no solution.

InitLvarException, InitLstException, InitSetException

These exceptions are raised whenever we try to apply to an initialized Lvar or Lst or
Set object a method that requires an uninitialized one.

NotDefinedConstraint

This exception is raised whenever we try to add to the CS a constraint that is neither
a predefined constraint nor a user-defined constraint.

NotInitVarException

This exception is raised whenever we try to apply to an uninitialized Lvar or Lst or
Set object a method that requires an initialized one.

NotIntLvarException

This exception is raised whenever an arithmetic operator or a comparison constraint
is applied to an Lvar initialized with a not integer value.

42

NotLstException

This exception is raised whenever a method of class Lst is applied to an Lvar initialized
with a not Lst-value.

NotSetException

This exception is raised whenever a method of class Set is applied to an Lvar initialized
with a not Set-value.

Uninitialized Variable in arithmetical expression

This exception is raised whenever the finalSolve method finds that unresolved com-
parison constraints are still present in CS at the end of the computation.

43

