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Abstract. Order is essential for XML query processing. Efficient XML
processing with order consideration over relational storage is non-trivial,
especially for complex nested XQuery expressions. The order semantics
may impede efficient query rewriting for nested query blocks. We propose
a general order-sensitive XQuery processing approach involving three
steps. First an algorithm is proposed for inferencing about and then
isolating the order semantics in XQuery expressions specified over virtual
XML views. This turns an ordered XQuery plan into an unordered one
decorated with minimized order context annotations. Then without loss
of semantics, logical optimization via XQuery rewriting can be easily
applied to this transformed query plan. As last step, the translation
of the optimized logical plan into SQL now correctly incorporates the
order context annotations to assure the original order semantics. Our
experiments illustrate the performance gains achievable by our order
handling strategy.

1 Introduction

Since XQuery semantics are order sensitive, order awareness has been identified
as critical for XQuery processors. Order-sensitive XML query processing has
been studied for native XQuery engines, such as TIMBER [10], Natix [6] and
Rainbow [1, 20]. There has also been considerable work on extending relational
query engines to process XQueries over XML documents. See [5] for a survey.

Several aspects of supporting order-sensitive XQuery processing over rela-
tional storage have been successfully tackled in the literature. XML document
order encoding strategies during XML loading, such as Dewey order [15], ORD-
PATH [9], and preorder ranks [3], have been proposed. The order-sensitive XPath
to SQL translation has been studied for these different order encodings [3, 9, 15].
However, the order semantics in general impede efficient query rewriting for
nested query plan blocks. We thus propose a general order-sensitive XQuery
processing approach which overcomes this problem. Our solution does not rely
on any specific relational order-encoding.

Our work relates to recent work on the order processing and duplication
removal of matched pattern trees for the native XQuery engine Timber [10, 11].
The authors propose to use hybrid collections of matched pattern trees to capture
the order semantics of XQuery expressions. Although the proposed techniques
are sufficient for native XQuery processing, their adoption to an XQuery engine
with relational storage faces new challenges, as shown below.
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Motivation Example 1: XML nodes matched by XQuery expressions can be
heterogeneous, due to the wildcard “*” navigation step in XPath expressions
or the union operations in the For and Let clauses. In Figure 1(a), four XML
nodes (b0 to b3) match the given XPath expression for $b. The intermediate
result of the translated SQL thus contains four tuples1. We observe that every
XML node in the matched pattern is represented in a column in the result table
shown at the bottom of the figure. No simple sorting on any individual column
can achieve the ordering of the order by clause, no matter what order encoding
is used. Instead, we have to build an extra ordering column to record the order
information corresponding to the runtime execution.

for $b in document(“B.xml")/B
order by $b/(C|D)[1]
return $b 

b2

c1

b1

d3

b3

c2 d4

nullnullb0
nullc1b2
d4c2b3
d3nullb1

DCB

b0

(a)

for $b in document(“B.xml")/B
order by $b/C[1]
return <result>$b,

{ for $c in $b/C
order by $c
return $c} </result>

b1

c2 c4

c2b1
c4b1

c1b2
c3b2

CB

b2

c1 c3

b1

c2 c4

b2

c3 c1

c2b1
c4b1

c3b2
c1b2

CB

(b)

Fig. 1. Motivation Examples: (a) XQuery with Heterogeneous Matched XML
Nodes; (b) Sorting in Nested XQuery Expressions

Motivation Example 2: We may need to group and sort the results of the
translated SQL queries to achieve correct semantics of nested XQuery expres-
sions. Adding simple sortings into the SQL may not be adequate. As shown in
Figure 1(b), the XQuery expressions first sort the “$b” bindings by the first
“C” child, and then all “C” children of each “$b” binding. The XML nodes and
corresponding tuples on left show the orderings for the outer XQuery expression,
while the right ones show the effect of the inner XQuery expression. Obviously
we cannot achieve the correct ordering by a simple translated SQL order by
clause.

The ordering problems shown above are unique to XQuery processing on
relational XML views where order can only appear at the top-level of an SQL
query. The naive approach to guarantee the correct order processing in the SQL
translation is to build an extra order column for each level of the result construc-
tion. Such columns are used to capture the runtime order semantics in each of
the intermediate results. Those columns can be combined and treated as Dewey
order of the result XML. Then a sort at the top-level SQL query can achieve the
correct ordering of the tuples. The OLAP amendment row number() with parti-
tion by and optional order by clauses in SQL99 can be used to achieve this [17].
However, such operations tend to be expensive. In fact in many cases they may
be redundant, since ordering at all levels of the nesting may not be required.

1
For ease of illustration, bi, ci and di are used for both the XML nodes and the atomized values.
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Our approach tackles the above open problem. We propose a general frame-
work to process XQuery expressions on virtual XML views of relational databases.
Our approach first isolates the order semantics in the combined query com-
posed of the user XQuery and the XML view query. Then by identifying and
reasoning about essential order information, we minimize the usage of the ex-
pensive row number() functions. As result we produce a succinct SQL transla-
tion of order-sensitive XQuery expressions. Correctness of the translated SQL is
achieved by “attaching” back the order semantics identified as “essential”.
Contributions. Our contributions include: (1) We propose a general framework
for processing order-sensitive XQuery over virtual XML views defined on rela-
tional databases. (2) We introduce order propagation techniques for the XQuery
algebra [20] to support order isolation in the XQuery plan. (3) We discuss the
strategies for SQL translation with ordered semantics. (4) We implement the
order propagation and isolation approach in the Rainbow XQuery Engine [20].
(5) We report experimental studies illustrating the tradeoff among different SQL
translation strategies.
Outline. The rest of this paper is organized as follows. Section 2 reviews related
work, while Section 3 shows preliminaries. Section 4 enhances the XAT algebra
with order context annotations. Section 5 describes order propagation and order
isolation for order-sensitive XQueries. Different SQL generation strategies are
presented in Section 6. Section 7 provides our experimental study and Section 8
concludes this paper.

2 Related Work
XQuery-to-SQL translation can be broadly classified into two scenarios: XML
Publishing and XML Storage [5]. Since the relational data model is unordered,
XML Publishing of relational data need not consider order semantics [2, 12]. For
XML storage of existing XML data, various order encoding methods have been
proposed in [15, 17].

Order inference has been used for relational query optimization in [13, 19,
14, 8, 7] to reason about the physical tuple order of intermediate results during
execution. We now use similar ideas for the new purpose of logical order inference
in virtual XML views focusing in addition on the hierarchical XML data.

In [4], removing unnecessary duplication elimination and sorting operations
in Galax is discussed for processing complex XPath expressions with backwards
axes. This is orthogonal to our problem. However the approach is complimentary
and could fit into our framework for the purpose of syntax level normalization.

[11] addresses order-sensitive XQuery processing in a pattern tree based na-
tive XQuery engine. Instead different optimization opportunities exist for order-
sensitive XQuery processing over relational XML views, as illustrated by the
motivation examples in Section 1.

3 Preliminaries
3.1 The XQuery Subset
In this paper, we deploy a subset of the XQuery language [16], including nested
FLWOR expressions and order-sensitive functions (e.g., the position function).
With syntax rewriting, such XQuery subset covers a large set of XQuery expres-
sions used in practice. Formal definition of the XQuery subset is in [22].
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3.2 A Running Example of Order-Sensitive XQuery Processing
Given a relational database, a view query defines an XML view over the rela-
tional database bridged through the default XML view [12]. We assume that the
relational constraints are:

PLAY(IID,NAME): Primary Key(IID), Unique(NAME)
MPLAY(IID,PID,NAME): Primary Key(IID), Unique(NAME)
SONG(IID,PID,NAME): Primary Key(IID), Unique(NAME)

Figure 2(b) shows the default XML view query, containing explicit order by
clauses. Such an XML view is ordered. Figure 2(c) shows the simplified schema
tree (with “BAND” omitted) of this view, highlighting the order semantics.
Edges are marked as “Unordered” whenever the view query does not impose any
order by clauses there. We call such an XML view “partially ordered”. Figure 2(d)
shows one “possible” view result. That is, the order among the play elements
can be different from that in Figure 2(d).

P303
P202
P101

NAMEIID
PLAY

S5025

S10011
S20012

S6036

S4014
S3013

NAMEPIDIID
SONG

MP303003
MP202002
MP101001

NAMEPIDIID
MPLAY

(a)

<RECORDLIST>
{for $play in doc("dxv.xml")/PLAY/ROW
return

<PLAY>
<BAND> {$play/NAME} </BAND>
{for $song in doc("dxv.xml")/SONG/ROW
where $song/PID = $play/IID
order by $song/IID
return

<SONG> {$song/NAME} </SONG>
}
{for $mplay in doc("dxv.xml")/MPLAY/ROW
where $mplay/PID = $play/IID
return

<MPLAY>
{for $song in doc("dxv.xml")/SONG/ROW
where $song/PID = $mplay/IID
order by $song/NAME
return <SONG> {$song/NAME} </SONG>
}</MPLAY>

}</PLAY>
}</RECORDLIST>

(b)

recordlist

play
*

song

*

Order by
Song.name

mplay

*

song

*

Order by
Song.IID

Unordered

Unordered

(c)

<recordlist>

<play>

<band> <mplay><song>

<play> <play>

<band> <band>

“p1” “p2” “p3”

<song><song>

“s3” “s4” “s5”<song> <song>

“s1” “s2”

<mplay> <mplay><song>

“s6”

(d)

for $uPlay in document(“record.xml")/PLAY
order by $uPlay/SONG[1] 
return $uPlay/BAND,

{ for $uSongin $uPlay/SONG
order by $uSong
return $uSong}

(e)

for $song in document(“record.xml")//SONG
return $song

(f)

Fig. 2. (a) Relational Tables; (b) Default XML View Query; (c) XML View
Schema with Order Information; (d) Order-sensitive XML View; (e) Q1: XQuery
with Nested Orderings; (f) Q2: XQuery with Heterogeneous Matched Patterns.

Order-sensitive user XQueries can be launched over the default XML view.
Figure 2(e) shows a user query using position function and nested orderings. Fig-
ure 2(f) shows another user query with a complex XPath containing “//”. Since
the XPath expression matches multiple paths in the XML view, this complicates
the order of the retrieved SONG elements. We will use these two XQueries to
show our approach of order-sensitive SQL translation.
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[||$play O$sIID >SONG]
GroupBy $play

Combine $dataSongTag

Navigate $song, NAME
$sData

OrderBy $sIID

GroupBy $play

Source “dxv.xml”
$S

Navigate $S,  SONG/ROW
$song

Navigate $song, PID
$sPID

ThetaJoin $pIID=$sPID

Source “dxv.xml”
$P

Navigate $P, PLAY/ROW
$play

Navigate $play, IID
$pIID

Combine $dataPlayTag

Tagger <RECORDLIST/> $dataPlayTag
$record

Tagger <PLAY/> $dataBandTag,$dataSongTag
$dataPlayTag

Tagger <SONG/>$sData
$dataSongTag

Navigate $play, NAME
$bData

Tagger <BAND/>$bdata
$dataBandTag

GroupBy $uPlay

Combine $uSong2

Navigate $uPlay, SONG
$uSong

Select $uNumPos=1

Navigate $P, PLAY
$uPlay

OrderBy$uSong2

Source “record.xml”
$P

$P=$record

POS $uSong
$uNumPos

1

2

3

4

5

6

7

8
9

11
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12

13

14

15

16

17

18

19
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26

27

21

23

24

29

28

[]

[]

[]

[]

[]

[G$play,O$sIID]

[O$uSong]

[]

[O$sIID][O$sIID]

[O$sIID]

[G$play,O$sIID]

[G$play||$play O$sIID > SONG]

[ ||null G$play > PLAY O$sIID > SONG]

[G$uplay,O$sIID]

[]

Navigate $song, IID
$sIID

[]

[G$play,O$sIID]

[G$play,O$sIID]

[O$sIID]

[G$play||$play O$sIID > SONG]

[G$play||$play O$sIID > SONG]

[G$play||$play O$sIID > SONG]

[ ||RECORDLIST G$play > PLAY O$sIID > SONG]

[G$uplay||PLAY O$sIID > SONG]

[]

OrderBy$uSong

Navigate $uPlay, BAND/text()
$ubData

25

Navigate $uPlay, SONG
$uSong2

GroupBy $uPlay

30
[G$play,O$sIID]

[G$uplay]

[O$uSong2]

[O$sIID]
[G$uplay,O$sIID]

NaturalJoin
[G$uplay||$uPlayO$uSong2  >SONG]

[O$uSong ||$uPlay O$uSong2  >SONG]
31

Combine $uPlay
32

Fig. 3. Composed XAT of View Query and User Query Q1

3.3 The XQuery Algebra: XAT
Our approach uses the XAT algebra [20] as internal representation of the view
query, user query and their composition. A complete discussion of the XAT
algebra is in [22]. The intermediate results of an XAT operator is a sequence
of tuples, named XATTable. An XAT operator is denoted as opout

in (R), where
op is the operator symbol, in represents input parameters, out newly produced
output column and R the input XATTable(s). Figure 3 shows the composition
of the decorrelated XAT trees capturing the user query Q1 and the view query.

The XAT algebra inherits operators from the relational algebra, extended
with order semantics (see Section 4.1). For example, the GroupBy operator
is generated during XAT decorrelation of nested XQuery expressions [18]. The
GroupBy operator groups the tuples of the input XATTable by certain col-
umn(s), and then performs the embedded functions on each group of tuples.
For example, the GroupBy$uPlay embedded with POS$uSong (Nodes 22 and 23
in Figure 3) will change the input: < (p1, s3), (p1, s4), (p2, s5) > into output:
< (p1, s3, 1), (p1, s4, 2), (p2, s5, 1) >. The XAT algebra also introduces new op-
erators to represent XQuery semantics, such as Navigate, Tagger, Combine and
POS. The Navigate operator extracts destination XML nodes from each entry
of XML fragments according to a given XPath expression. Assume the input
column $uP lay of Node 21 in Figure 3 includes two plays p1 and p2, which
have songs s3, s4 and s5 respectively; the output of the Navigate operator is
a sequence of tuples: < (p1, s3), (p1, s4), (p2, s5) >. The Tagger operator con-
structs new XML elements by applying a tagging pattern to each tuple in the
input XATTable. A tagging pattern (e.g., <SONG/> $sData in Node 12 of
Figure 3) is a template for the XML fragment. The Combine operator projects
out certain columns from the input XATTable and merges the contents of the
remaining columns into one tuple. The POS operator captures the semantics of
the position() function. It assigns a row number to each input tuple.
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4 Enhancing XAT with Order Context

4.1 Order Context for XATTable
The order context in [13, 19] represents the tuple order of flat relational tables.
We extend the order context to represent tuple order and XML fragment order
in XAT tables. This extension is essential because: (i) hierarchical XML views
are defined with multiple level sortings; and (ii) XML view queries define only
partial orders in XML views. Figure 2(c) shows a partial order example which
captures the order information in a schema graph. The PLAY and MPLAY nodes
are not ordered, while SONG nodes are ordered according to different columns.

The order context of an XATTable is composed of two parts, denoted as
[TupleOrder||XMLOrder]. TupleOrder captures the tuple ordering and group-
ing properties of an XATTable, while the XMLOrder captures the document
order for an XML fragment. Both parts can be optional. TupleOrder is a se-
quence of order properties: Pi. Each Pi can be either an ordering denoted as
O$c or a grouping denoted as G$c, where $c is a column of the XATTable (the
grouping could be on multiple columns). The tuples in the XATTable are or-
dered (or grouped) first according to P1, with ties broken by P2, and so on. For
each Pi, O$c implies G$c, but not vice versa. The semantics of grouping on mul-
tiple columns G$ci,$cj

are not equal to G$ci
followed by G$cj

. The order context
[G$ci

, G$cj
] implies the order context [G$ci,$cj

], but not vice versa. XMLOrder
is attached to the schema tree of the associated XML fragments. For example,
the XMLOrder of the XATTable after the Tagger operator (Node 19) is shown
in Figure 42.

RECORDLIST

PLAY

SONG MPLAY

SONG

G$play

O$sIID G$mplay

O$sName

Fig. 4. The XMLOrder in the output XATTable of Node 19.

4.2 Functional Dependencies and Keys

We use the functional dependencies of the base relational tables to propagate
the order context through the XAT tree. The constraints of an XATTable can
be determined utilizing rules similar to those in [13, 19]. We omit the details here
due to space limitation. We use the constraints for the following purposes:

– Minimize the order context by removing redundant orderings (groupings).
– Retrieve trivial orderings and groupings if needed during order propagation.

“Trivial” [13] implies that it can be omitted. For example, a key constraint
implies a trivial grouping on the key column(s).

– Check the compatibility of order contexts.
2

For ease of illustration, the XAT tree and order contexts shown in Figure 4 include only part of
the XML view query.
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5 Order Propagation and Isolation

The identification and isolation of the order semantics of the XAT tree is accom-
plished in two traversals. First the bottom-up traversal (complete order propa-
gation) computes the order contexts of all intermediate XATTables. Second the
top-down traversal (selective order isolation) identifies the operators that indeed
require the order context to produce correct results, i.e., the essential ones.

5.1 Order Context Propagation
The order contexts of XATTables originate from explicit sorting in the XML
view query. They then are propagated through the operators in the XAT tree to
form the ordered XML view and the ordered user XQuery result. We call the pro-
cedure of determining the order contexts of the XATTables Order Propagation.
Figure 3 illustrates the propagation of the order context through the composed
XAT tree. The order context is associated with each XATTable and attached
to edges between operators. During the propagation, the XMLOrder part of
the input order context will always be carried on to the output, except when
the corresponding XML fragments are navigated into or are projected out. The
propagation of TupleOrder of the XATTable depends not only on the operator
semantics but also the constraints in the XATTable.
Select, Project and Tagger. The TupleOrder in the output XATTable of
most unary operators, such as Select, Project and Tagger, inherits the TupleOrder
of the input XATTable. If one column in the TupleOrder of the input XATTable
is projected out, it is also removed from the output order context.
Join. Suppose OCL and OCR denote the order contexts of the left and right
input XATTables of a Join operator. Then the TupleOrder of the output order
context inherits the TupleOrder in OCL. The TupleOrder of OCR is attached to
the output order context if the TupleOrder of the OCL is not empty. Otherwise,
the TupleOrder of OCR is discarded.

Here all ordering and grouping properties in the left input XATTable, even if
trivial, need to be included in OCL for the empty test and order propagation. For
example, suppose the left input XATTable has a unique identifier (c1, c2) (i.e.
key constraint), then Gc1,c2 is trivial since all groups consist of only one tuple.
But it is no longer trivial in the Join output since a 1 to m joining between the
left and right input tuples may exist.
OrderBy. An OrderBy operator sorting on c1, c2, ... will generate a new or-
der context [Oc1 , Oc2 , ...]. The propagation of the order context associated with
its input XATTable through the OrderBy operator is determined by the com-
patibility of the order contexts. For example, [Gc1 , Gc2 ] is not compatible with
the explicit sorting on c2. Thus the explicit sorting overwrites the output or-
der context as [Oc2 ] only. But [Gc1 , Gc2 ] is compatible with ordering on (c1)
or on (c1, c2, c3) with the output order context then being set to [Oc1 , Gc2 ] and
[Oc1 , Oc2 , Oc3 ] respectively. In Figure 3 the OrderBy operator (Node 25) sorts by
$uSong. The input order context [G$play] is compatible with this sorting, since
G$play is implied by O$uSong due to the selection (Node 24).
GroupBy. Similar with OrderBy, the propagation of TupleOrder through the
GroupBy is also determined by the compatibility between the input order context
and the generated order context. For example, if the input tuples have been
sorted on column $c1 and the grouping is done on column $c2, where $c2 is a
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key column, then the output order context of the GroupBy operator is [O$c1 ],
with G$c2 being a trivial grouping. For example in Figure 3 the generated order
context G$uPlay of the GroupBy operator (Node 23) is compatible with the input
order context [G$uPlay, O$sIID], since $uP lay is a key.
Navigate. The Navigate operator passes the TupleOrder of its input order con-
text to its output order context. If the input TupleOrder including the trivial
groupings (if any) is not empty, the extracted order from the XML fragment
will be attached to the end of the input TupleOrder. Otherwise the output
TupleOrder is empty. Different permutations of the same set of Navigates may
result in different order contexts. For example, consider two Navigate operators
$a/b and $a/c. If we perform $a/b before $a/c , then the final order context will
be [O$a, O$b, O$c]. If we perform the two Navigates in the opposite order, then the
output tuple order will be [O$a, O$c, O$b]. This illustrates the limitation of han-
dling order using query plan rewriting. Our effort of order isolation in Section 5.2
is thus necessary. The output order context of the Navigate operator includes the
XMLOrder extracted from its input order context. For example in Figure 3 the
Navigate operator (Node 21) extracts the XMLOrder: (PLAY

O$sIID−−−−−→ SONG)
from the XML fragment. The output order context is [G$uPlay, O$sIID].
Combine. The Combine operator forms the XMLOrder in the output or-
der context. In case that Combine is embedded in a GroupBy operator, the
formed XMLOrder will use the grouping column(s) as the relative column(s).
If Combine is not in a GroupBy operator, null will be used for the relative
column. For example, in Figure 3, the Combine operator (Node 13) forms:

$play
O$sIID−−−−−→ SONG.

5.2 Isolating Ordered Semantics in XAT Tree

In the query plan of the user XQuery, if the semantics of an operator are defined
based on the tuple order of its input XATTable, we classify this operator as
an order essential operator. The order context associated with the input
XATTable is called an essential order context.

In a top-down traversal of the XAT tree representing the user XQuery, we
now identify all order-essential operators and bind them with their input order
context for possible relocation in future rewriting steps. This denotes the Order
Isolation phase. In Figure 3, the Combine operator (Node 30), which originates
from the user XQuery, is an order-essential operator, since all tuples must be
sorted correctly before being “packed” into a collection in the result XML. All
operators capturing order sensitive functions are also order-essential operators,
e.g., the POS operator (Node 22). An XAT tree, with all OrderBy operators
removed and essential order contexts attached to the associated operators, is
called an Order Annotated XAT Tree.

Intuitively the order-essential operators determine the only positions in the
query tree where the order context has to be enforced. By enforcing the essential
order contexts, the ordered semantics of XQuery are captured. The XAT tree
can be optimized now ignoring all OrderBy operators during the subsequent
rewriting phase. After applying order-insensitive XQuery rewriting rules, the
correct order semantics is restored by inserting explicit sorts below each order
essential operator. The optimized annotated XAT tree is shown in Figure 5.
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Details of the XAT rewriting are beyond the scope of this paper and can be
found in [21].

Navigate $song, NAME
$sData, $sData2

Source “dxv.xml”
$S

Navigate $S,  SONG/ROW
$song

Navigate $song, PID
$sPID

ThetaJoin $pIID=$sPID

Source “dxv.xml”
$P

Navigate $P, PLAY/ROW
$play

Navigate $play, IID
$pIID

Navigate $play, NAME
$bData

GroupBy $pIID

Select $uNumPos=1

POS $sIID
$uNumPos

1

2

4

5

6

9

10

7

83

13

11

12

[O$sIID]

Navigate $song, IID
$sIID

GroupBy $pIID

Combine $sData2

[O$sData2]

NaturalJoin

[O$sData ||$uPlay O$sData2  >SONG]

Combine $uPlay
17

14

15

16

Fig. 5. Optimized XAT Tree

WITH Q1 (bData, pIID, sData, sData2, sIID) AS 
(SELECT P.NAME, P.IID, S.NAME, S.NAME, S.IID

FROM PLAY P, SONG S WHERE P.IID = S.PID)

WITH Q2 (bData, pIID, sData, uNumPos) AS
(SELECT Q1.bData, Q1.pIID, Q1.sData, row_number()
OVER (PARTITION BY Q1.pIID ORDER BY Q1.sIID)  
uNumPos FROM Q1)

WITH Q3 (bData, pIID, sData) AS
(SELECT Q2.bData, Q2.pIID, Q2.sData FROM Q2
WHERE Q2.uNumPos = 1)

WITH Q4 (bData, pIID, sData, sData2) AS
(SELECT Q1.bData, Q1.pIID, Q3.sData, Q1.sData2 FROM Q1,Q3
WHERE Q1.pIID=Q3.pIID ORDER BY Q3.sData, Q2.sData2)

SELECT * FROM Q4

Fig. 6. SQL Translation for Q1

6 Order-aware SQL Translation

XML-to-SQL translation based on XML algebra usually assumes some XML
middle-ware above the relational engine. For this a simple middle-ware having
limited processor and memory resources is commonly desired [12]. We follow the
same trend here and limit the computation in the middle-ware to be achievable
in a single pass over the SQL results. Many operators of the XAT algebra can
be achieved in the middle-ware, such as Tagger, Combine, Select, Position and
their combinations. The OrderBy and GroupBy operators can clearly not be
evaluated by such one-pass middle-ware, unless the input has been sorted by the
SQL engine correspondingly.

6.1 SQL Translation for Incompatible Result Orderings
In Figure 5, we can see that the ordering of the left and right branches of the
query plan are incompatible with each other. That is, the left branch requires the
intermediate result being sorted first on $pIID then on $sIID, while the right
branch requires first on $pIID then on $sData2. For such cases, an additional
order column, which can be the $sData2 column after the selection, must be
used for the top-level sorting in SQL. The ordering compatibility checking rules
of intermediate results are the same as the rules for order context checking.

The SQL generation is conducted in a bottom up fashion along the XAT
tree. Each time we try to include the parent operator in the current SQL block.
Nested SQL statements will be generated otherwise. For the example Q1, the
generated SQL is shown in Figure 6. We use the with clause in SQL99 for clarity.

6.2 SQL Translation for Multiple Path Matching
We use the example XQuery Q2 for illustration of the order-sensitive SQL trans-
lation for complex XPath expressions. Q2 retrieves all SONG elements with an
XPath matching multiple paths in the XML view. Then each path can be inde-
pendently translated into an SQL query. Instead of simply combining the results
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of the SQL queries, order-sensitive query translation needs to sort the XML el-
ements from different paths correctly according to the ordered semantics of the
XML view. The ordered semantics of the XML view include the following three
categories of parent-child orders in the schema tree:

– Sorting Order: If the child node Nc is sorted under the parent node Np,
we call the parent-child order sorting order, denoted as S(Np, Nc) = $col,
with $col as the sorting column(s).

– Grouping Order: If the child node Nc is grouped under the parent node Np,
we call the parent-child order grouping order, denoted as G(Np, Nc) = $col,
with $col as the grouping column(s).

– Edge Order: The order among the sibling nodes Nc below a parent node
Np in the schema tree is called the edge order, denoted as E(Np, Nc) = i,
i ∈ N, which means Nc is the ith child of Np.

In the XML schema tree in Figure 2(c), sorting order is: S(PLAY, SONG)
= $sIID; grouping order is G(PLAY, MPLAY ) = $mplay; and edge order is
E(PLAY, SONG) = 1. These orders determine the ordering of the XML el-
ements retrieved by the XPath expressions. In Q2 there are two paths in the
XML view schema matching the XPath expression: “//SONG”. We can con-
struct a new order column for the SONG elements using concatenation of the
parent-child orders along the path in a root-to-leaf direction. In case that both
edge order and sorting order (or grouping order) exist for a parent-child pair, the
edge order is concatenated prior to the sorting order. Sorting by the constructed
order column after the union operations can achieve the correct ordering of the
SONG elements. We show the translated SQL for Q2 in Figure 7(a)3.
Alternative Computation Separation Strategies.

The union operator can be achieved using sorted merge on common columns
in the middle-ware by one scan of the pre-sorted result sets. More precisely, one
union operator is attached above every parent node that has multiple children
(matching paths) in the XML view schema tree. Thus according to different al-
locations of the union operations in or out of the relational engine, alternative
computation pushdown strategies are achievable. Figure 7(b) shows one alter-
native SQL translation. QLeft and QRight provide the two sorted inputs for the
sorted merge union in the middle-ware.

The SQL is generated as follows: 1) separate the schema tree into upper
part and lower part, all the union operators of the upper part are done in the
middle-ware; 2) for each path, the parent-child orders below the lowest union
operator done in the middle-ware are used to construct the new order column
using concatenations; 3) sort by the parent-child orders top-down along each
path and the order column constructed (if any).

Pushing more union operators into the relational engine will have a smaller
number of SQL queries but suffer from sorting on order columns constructed
at runtime. Performing sorted merge union operators in the middle-ware will
require a large number of cheap SQL queries, since the sorting can be done
utilizing indices. This results in a performance tradeoff. The search space for
identifying optimal strategies is linear in the number of possible union operators.
3

We assume that the length of the strings for the IIDs are the same for one table.
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SELECT NAME 
FROM ( SELECT S.NAME, P.IID||’.’||’1’||’.’||S.IID as song_order

FROM PLAY P, SONG S
WHERE P.IID = S.PID
UNION ALL
SELECT S.NAME, P.IID||’.’||’2’||’.’||M.IID||’.’||S.NAME as song_order
FROM PLAY P, MPLAY M, SONG S 
WHERE P.IID = M.PID AND M.IID = S.PID

) Q1
ORDER BY Q1.song_order

(a)

QLeft:

SELECT S.NAME
FROM PLAY P, SONG S
WHERE P.IID = S.PID
ORDER BY P.IID, S.IID
QRight:

SELECT NAME 
FROM ( SELECT S.NAME, P.IID, M.IID||’.’||S.NAME as song_order

FROM PLAY P, MPLAY M, SONG S 
WHERE P.IID = M.PID AND M.IID = S.PID

) Q1
ORDER BY Q1.IID, Q1.song_order

(b)

Fig. 7. Translated SQL for Merging Multiple Matched Paths.

7 Experimental Study

We have implemented the order-sensitive XQuery processing over XML views in
the RainbowCore [20] system. We have conducted the performance comparisons
among the different order-sensitive SQL translation strategies (Section 6). The
experiments are done on a Linux machine with two P3 1GHz CPUs and 1GB
memory running Oracle 9.

We compare the performance of the computation separation strategies for the
union operators attached to the schema tree formed by multiple matching paths.
We compare the execution costs based on the two SQL translations depicted in
Figure 7(a) and 7(b). The dataset used includes 1000 to 10000 PLAYs having on
average 50 SONGs and 10 MPLAYs per PLAY. Each MPLAY has on average 50
SONGs. The performance comparison of SQL translation in Figure 7(a) versus
Figure 7(b) is shown in Figure 8(a) (without any index) and Figure 8(b) (with
an index on the primary key).
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Fig. 8. Cost Comparison of SQL Translation for Multiple Matching Paths.

When no index is used, the two strategies perform similarly. When an index
is present, pushing less union operators into the relational engine outperforms
the alternative. The performance difference is increasing with the growth in the
size of the relational tables. This experiment demonstrates that pushing less
union operators into the relational engine is better than other strategies when
indices are deployed.

8 Conclusions

The order semantics of XQuery are crucial for many application domains. We
propose a generic approach for inference and isolation of the order semantics
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in virtual XML views. Our approach turns the order-sensitive XQuery plans
into unordered plans by utilizing order context annotations. Alternatives for
SQL translation with order context are also discussed. Performance differences
among them are illustrated through an experimental study.
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