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Abstract such unordered XML views are meaningless. Hence, the or-
der issue has been and for practical purposes can be safely
The XML data is order-sensitive. The order problem, ignored in this scenario.
that is how ordered XML documents and order-sensitive  On the other hand, the XML storage scenario focuses on
queries over it can be efficiently supported when mappedstoring and queryingxisting XML dataThis involves three
into the unordered relational data model, has not yet been steps. First, a storage structure needs to be designedito loa
adequately addressed. In this paper, we present a gen-and maintain the XML data. Typically a relational database
eral approach for supporting order-sensitive XQuery-to- is used for this purpose. Second, a virtual XML viglenti-
SQL translation that works irrespective of the chosen XML- cal to the original XML document is extracted from the re-
to-relational data mapping and the selected order-encgdin lational database. Third, queries against this wrappev vie
method. Our approach, called XSOT, utilizes an order- are translated into SQL statements to be executed against
aware XML algebra representation. We propose order- the relational database. When order is to be considered, the
sensitive rewriting rules at the algebraic level to elimi@a  original XML document order must first bexplicitly cap-
the dependency of the order determining operators on thetured in the relational store along with the other document
implicit XML view order. Furthermore, we introduce a se- information. Then it can be extractediagplicit order into
ries of order-sensitive optimization steps to transforma th the XML view. This “round-trip” would guarantee that the
XML algebra tree for the purpose of efficient SQL trans- extracted XML view has an associated document order like
lation. Lastly, we utilize a template-based approach using any other (regular) XML document. Thereafter an order-
SQL-99 order features to generate SQL statements. sensitive user query can expect to not only get ordered query
result from such views, but also to be able to specify order
oriented predicates to select the desired portion of the.vie
. To answer such order-sensitive user queries, the XQuery-to
1 Introduction SQL translation needs to consider order in the query evalu-
ation and optimization time.
Recent XML management systems [4, 8, 20] bridge re-
lational databases and XML applications by creating XML Motivation. Different loading strategies might be re-
views that wrap the relational base. Such system then anquired to store the XML data into the relational database
swer gueries against the view by translating them into SQL based on application requirements [9]. For example, it has
queries. However, while it is well known that XML [3] is  been shown that an inlining loading strategies is preferred
an ordered data model and XQuery [16] is an order-sensitivewhen the XML schema is available, while an edge loading
query language, aspects related to order have been ignoreghight be chosen when the XML schema is not available.

in most of XQuery-to-SQL solutions [4, 8]. Different order encodings have also been found to be useful
According to [11], the XQuery-to-SQL query translation for different update and query workloads [15]. The exper-
problem can be broadly classified into two scenarkigtL imental study [15] shows that the performances of ordered

Publishingand XML Storage The XML publishing sce- XML queries and updates varies with the particular order
nario studies the translation of queries over the XML views encoding methods (e.g., global vs. local) and the loading
wrapping anexisting relational databaseSince the rela-  strategies (e.g., inline vs. edge) used to build up the rela-
tional data model is not order sensitive, any XML result tional database from the XML model.

view generated over an (un-ordered) relational database is In fact it is possible to use a hybrid of multiple loading
by default not ordered. Ordered XQuery expressions overand order encoding strategies to load one XML document



and schema into the relational database, especially for thebra equivalence rules, classified@sler explicitrules and
purpose of speeding up certain heavily used user queriesSQL-oriented XAT rewriteules, are used to optimize the
and updates. For example, in a music database applicacomposed XAT for subsequent efficient SQL generation.
tion, most users will query their favorite band’s informa- An SQL translation algorithm then converts the optimized
tion, while the administrator may frequently insert or dele ~ XAT into SQL statements (to be evaluated by the underly-
the songs of all bands. One good design may be to or-ing relational engine) and construction operators (to fee ex
der the bands by global order to facilitate fast retrievat, b cuted by theRainbowXQuery engine). We have conducted
encode their songs using Dewey order to optimize perfor- several experiments to verify the feasibility and gengrali
mance for this heavy update workload [15]. Moreover, the of our XSOT approach.

situation may arise when we want to integrate information  Our XSOT approach igeneralin the sense that the SQL
from two different XML documents, where one may have translation techniques are independent of the loading and
been loaded using inline loading with Dewey order encod- encoding strategies used to build the relational database.
ing versus the second document had been loaded using @he reason of this independence is that\thesv queryand
different loading and encoding strategy. theorder-code comparison functiofesncapsulate” both the

It is obvious that hard-coding XQuery processing engine Order'enCOding and the data |Oading diverSity. Our XSOT
for one fixed order-encoding and loading combination is not framework is thus able to re-apply the techniques from the
practicaL Deve'oping an array of many different mapp|ng XML publ|5h|ng scenario in this XML Storage Scenario, in
and encoding specific query optimization and translatien al Particular query composition and optimization. lefficient
gorithms as done in [15] also not manageable in practical.Sinceé most computation intensive operations (sucas
There is C|ear|y a need to devek)p Ogenera| XQuery- derB» can be pUShed down to the relational engine, while
to-SQL translation approach handling any existing flexible only a few operators, which can be evaluated efficiently, re-
encoding and loading strategies as well as possible futuremain for the XQuery native engine.
ones. This is exactly the focus of our work. Contributions. (1) We propose a general framework

Utilizing both XQuery and relational technologies in fOF XQuery-to-SQL order-sensitive translation (XSOT) ap-
harmony within the context of order handling can be a proach. (2) We extend the XML algebra tree (XAT) n
difficult task for two reasons. One, besides the document[zo] to support the _order-sensmve XQ_uery sema_nt@s. .(3)
order, the user XQuery may impose new order on the XML We pr_esent SQL-oriented order_-s_en5|t|ve XAT optimization
query result through expliciDrder By clauses as well as technlqges. 4) We.pr.opolse efﬂment order SQL stateme_znts
through the structure of theestedFLOWR expressions of ~deneration and optimization techniques. (5) We have im-
the user query. The query result reflects in an interreIatedplerr_‘emed our XSOT gpproach using the Ralr_1bow XQuery
manner both the impliciXML document orderand the Ef_‘g'”e [20]. (6) Experiments are ShO_W” to verify the gener-
order explicitly imposed by th&Query expression [16]. ality and to assess_the SQL translatl_on performance in dif-
Both order aspects have to be taken care of in the XQuery-ferer‘t order-encodmg and XML loading scenarios.
to-SQL translation. Two, recent XML-relational systems Outline.  Section 2 introduces our XSO_T system frame-
[4, 8] push as much as possible of the query execution intoVOrk @nd necessary background in particular the XQuery
the SQL engine, while leaving only construction operations 2/9€bra representation. Order preserving loading stexteg
(Taggers) for extraction to the middle-ware system. When 2nd order sensitive XQuery examples are described in Sec-
we consider order in SQL translation, the question arisestion 3. Sec_tl_on 4 discusses t_he optimization tgchnlqugs for
whether we indeed want to push all order operations downorder-sensitive SQL translation. The translation algonit

into the relational engine. Due to the fact that the nested!S Presented in Section 5. Section 6 provides experimental

SQL syntax destroys the order, translating as much asstudies. Section 7 reviews the related work while Section 8
' provides the conclusions.

possible computation into SQL might force the engine
to perform extra explicit sorting. As we will show, such
redundant sorting may cause the generated SQL statemer2 The XSOT Framework
to become highly inefficient.

As shown in Fig. 1, the architecture of XSOT in-
XSOT Approach. The XQuery-to-SQL Order-sensitive cludes two core subsystems, namely an order-preserving
Translation KSOT) approach presented in this paper is the XML Mapping Manageand an order-sensitivéQuery En-
first general order-handling approach that tackles the@bov gine. First, the order-preserving XMMapping Manager
challenges. Being built on top of the tiRainbowXML maps the original XML documents with their corresponding
Query Engine [20], XSOT uses an XML algebratree (XAT) schemaswhen available (e.g., Fig. 2) into the relational st
as internal representation of both the view and user queriesage. We embed the XML document order encoding tech-
as well as their composition. A series of order-aware alge- niques [15] into the loading strategies [6] and lossless-ly



load XML document into the relational back-end. Lossless- represent the order operationgiew Composethen com-

ly loading here means that the identical XML document can bines the two XATs into oneomposed XADy replacing

be extracted back out. Fig. 3(a) shows the result for the all leaf nodes of the user XAT with the view XAT [4, 21].

local-order inline loading. The XAT Optimizeroptimizes this composed XAT with
Second, the Rainbow XQuery engine is extended to sup-order in consideration. This includes a qudgcorrelation

port order-sensitive XQuery-to-SQL translation. A vidtua step to replace the costly nestiR@R operator [18, 19] and

default XML viewextracted from the relational tables is au- several optimization rules. We focus in particular on the

tomatically computed by the system. This default view cor- addition of the order rewrite rules as described in Section 4

responds to a one-to-one mapping between the hierarchical Theoptimized XATan be conceptually divided into the

XML model and the flat relational data model. The databasetop XML construction portion and the bottom computation

administrator then writes\aew quenover the default XML portion. TheSQL generatotranslates the bottom portion

view. The view can be ordered appropriately based on theinto SQL using the order-based SQL template using the al-

explicitly captured XML document order. Fig. 3(b) depicts gorithms shown in Section 5. The generated order-sensitive

the view query expressed in the XQuery language. Itis usedSQL queries are sent to the relational engine. Kh&L

to reconstruct a view identical to the original XML doc- generatortakes the SQL query result and publishes it as the

ument (Fig. 2) from the inlined relational database. The final XML query result to the application user.

order code comparisoffunction defined by the database

administrator is used to compare two order codes. It thus

hides the diversity between different order-encodingstra 3  Qrder-sensitive XML Algebra Tree
gies from users.

Rainbow XML Algebra Tree. Given that to date no
standard XML algebra for query processing purposes has
emerged, we will work here with the XML algebra named
XAT [22] to represent the XQuery expression in the Rain-
bow query engine [20]. Fig. 5 depicts the correlated XAT
representation for the view query (Fig. 3(b)).

Legend The intermediate data model for the XAT algebra is a

GeﬁQ table model nameHBAT table An XAT table R is an order-

F— sensitive table of tuplefs (e.g.,t; € R), where the column
names represent either a variable binding from the user or
view XQuery, e.g.$record from Figure 4, or an internally
generated variable name, e$r0l;. Each celk;; in a tuple
can store an XML node or a sequence of nodes.

Typically, an XAT operator takes as input one or more
XAT tables and produces an XAT table as output. In gen-
eral, an XAT operator is denoted ag?“!(s), whereop is
the operator symbolpn represents the input parametens;
the newly produced output column asthe input source(s)
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Figure 1. The Architecture of XSOT

<xs:schema xmins:xsd="http://www.w3.0org/XMLSchema|><RECORDLIST>
<xs:element name="RECORDLIST"> <PLAY>
<xs:complexType> <BAND> Misfits </BAND>
<xs:element name="PLAY" <SONG> She </SONG>
minoccurs="1" maxOccurs="unbounded">(| </PLAY>
<xs:complexType> <PLAY>

XAT Ordered
Tuple
‘SQL Streams
2

Bl

RDBMS

<xs:sequence>

minoccurs="1"/>
</xs:sequence>
<Ixs:complexType>
</xs:element>
</xs:complexType>

<xs:element name="BAND" type="xs:string"/>
<xs:element name="SONG" type="xs:string"

<BAND> Back Street Boy </BAND>|
<SONG> Bullet </SONG>
<SONG> We Are 138 </SONG>
</PLAY>
<PLAY>
<BAND> Project X </BAND>
<SONG> SXE Revenge </SONG>
<SONG> Shutdown </SONG>

for that operator. The XAT operators are classified into two
general categorieXML operatorandXAT SQL operators
Here we restrict our discussion to the core subset of the XAT
algebra operators [22].

XAT SQL operators correspond to the relational com-
plete subset of the XAT algebra. They incluBel ect
o.(R), Cart esi anProduct x(R,P), ThetaJoi n X,

(R, P), Lef t Qut er Joi n X, (R, P), Di stinct 6(R),

G oupBy Veol[1..n] (R7 fUTLC) andOr der By Teol[l..n] (R)v
where R and P denote XAT tables. Those operators are
equivalent to their relational counterparts, with the addi
tional requirements that the order among the tuples in the
input XAT table(s) is reflected in the order among the tu-
ples in the output XAT table. For example, in the output
XAT table of Sel ect , the relative order between each pair

</PLAY>
</RECORDLIST>

(b) record.xml

</xs:element>
</xs:schema>

(a) record.xsd

Figure 2. XML Schema and Document

To access the data, a user formulatesar queryover
the XML view. The RainbowXAT generatorrepresents
both the view query and the user query>dslL Algebra
Trees(XAT), namedview XATanduser XATrespectively.
Particularly, order specific operators, such asG@muderBy
operator and th@ositionfunction operator, are utilized to



<RECORDLIST>
FOR $play IN
document(“temp/dxv.xml")/PLAY/ROW
ORDER BY $play/POSITION/text()
RETURN
<PLAY>
FOR $song IN
document(“temp/dxv.xml")/SONG/ROV
[PID/text() = $play/IID/text()]
ORDER BY $s0ng/POSITION/text()
RETURN
<SONG>
$50ng/SONG_PCDATA/text()
</SONG>
</PLAY>
</RECORDLIST>

RECO
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Figure 3. (a) Relational Database from Inlining

Loading with Local-Order and (b) View Query
over Fia.(a)

<RESULT> <RESULT>
FOR $record in document(“record.xml’ <SONG>
RETURN We are 138
<SONG> Shutdown
$record/PLAY/SONG[2]/text() </SONG>
</SONG> </RESULT>
</RESULT>

Figure 4. An Order-sensitive Query and Query
Result Example
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of tuples corresponds to the relative order between thoseThe basic XML algebra needs to be extended. A new

two tuples in its input XAT table. Th€&r der By opera-

tor, however, orders the tuples by the values in the columnspurpose. Théosi ti on POS<!

given as argument.
The XML operators, used to represent the XML specific
operations, are defined belo@our ce S, is always
a leaf operator in an algebra tree. It takes the XML docu-
mentzmlDoc as input and outputs an XAT table with a
single columrcol’ and a single tupléout; = (c11), where
the cellcy; contains the entire XML document.
Navi gat e qsggf:path(R) unnests the element-
subelement relationship. For each tupie; from the
input XAT table R, it creates a sequence af output
tuplestouty), wherel < [ < m, m = [tinj[col]/path,

toutg-l) [col'] = (ting[col]/path)]l].
Combi ne C.,(R) groups the content of all cells corre-
sponding tacol into one sequence (with duplicates). Given
the inputR with m tuplestin;, 1 < j < m, Conbi ne
outputs one tupleout (¢), wheretout[col] c

L—ijjzltinj [col].

Tagger T;OZ(R) constructs new XML nodes by apply-
ing the tagging patternto each input tuple. A pattegnis a
template of a valid XML fragment [3] with parameters be-
ing column names, e.gs; result > col < /result >. For
each tuplefin; from R, it creates one output tupteut;,
wheretout,|[col] contains the constructed XML node ob-
tained by evaluating the patteprfor the values irtin;.

XAT Order Extension. The order-sensitive user
XQueries includdPosi t i on andRange predicates [15].

operator namedPosi ti on function is added for this

¢ (R) function appends a
new columncol’ to the input XAT tableR to represent the
relative positions of its tuples ordered &yl. Fig. 6 depicts
the correlated XAT for the user query in Fig. 4.

Since the user query XAT is defined over the view in-
stead of the relational database, it needs to be composed
with the view query to be evaluated over the relational data.
A Composed XATFigure 7) is thus generated by replacing
the Sour ce node in the decorrelated user XAT with the
decorrelated view XAT. For keeping correct order seman-
tics of XAT through the decorrelation procedure, a set of
order-sensitive decorrelation rules is used [19]. For exam
ple, theOr der By operator in the inner query tree has to be
grouped on its context, namely the outer FOR binding. For
details please refer to [19].

4 XAT Optimization with Order
4.1 Order Dictionary

The operators in XAT can be classified as either
order-determining or non-order-determining. Ander-
determining XAT operatdmposes a new order on the out-
put (e.g.,Or der By). A non-order-determining XAT op-
erator just preserves and propagates order through. As
identified by the thick-lined nodes in Figure 7, the order-
determining XAT in the user XAT query tree includes
the Posi t i on function and its context nodér oupBy.
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XAT for Order Sensitive User XQuery {

in Fig. 4
Figure 7. XAT Composing View Query with User Query

While in the view portion, it includes thér der By and its (DXV), which refers to the relational column storing the or-

context nodes (her@ oupBy). der encoding values. Note that the first line of the Order
In a view defined by a FLWOR expression, the or- Dictionary represents the root of the view. Since it is al-

der of the view elements is determined by the “OrderBy” ways a single XML element, we thus denote its order code

clauses. For example, in Fig. 3, the order of the re- as “NULL"(no order really matters here).

sult structure “PLAY” is decided by the clause “OrderBy

$play/POSITION/text()". It thus in turn is decided by the 4.2 Order-sensitive XAT Optimization
order-determining XAT operatofdavi gat e (node 3) and

O der By (node 4) in Fig. 7 according to the view query. The order-sensitive XAT optimization includes two

However, this connection between the view order and gieps. (1)Order explicit step As we mentioned before,
order-determining operators in XAT is not captured by the e yser order-determining XAT depends on the order of
view XAT itself. Thus a metadata table is created in par- yhe yview, which isimplicit. Eliminating this dependency
allel with the Ioadlrlg_procedure to capture this connegtion . open more opportunities for optimization. In other
named therder Dictionary words, we need to change thsiti on andrange
function from filtering on the data column (by its implicit

XML PATH Order Code

RECORDLIST NOLD physical position) to filtering on the order code column
RECORDLIST/PLAY PLAY/ROW/POSITION (by its explicit order value). (2) Th&QL-oriented XAT
R oS TIoN optimization steptransforms the XAT tree for efficient
order-preserving SQL translation. The purpose is to push
Table 1. Order Dictionary for Relational as many as possible operators down to the bottom of
Database in Fig. 3 the XAT tree, as long as they have the corresponding

relational operations. The rewrite rules used here include
the Computation push-dow®rder pull-upandOrderStep
The Order Dictionaryis a generic table that is suitable rewrite rules. Fig. 9 depicts the final optimized XAT for
for any encoding strategies and loading methods. For ex-our running example.
ample, Table 1 represents the Order Dictionary for the re-
lational database in Fig. 3 ThéML Path column stores  Step 1: Order Explicit. As a commonly used optimiza-
the XPath of all XML elements in the view. For exam- tion technique [14, 20], th&agger operators in the view
ple, the full XML path is stored for the element “PLAY” query and the correspondifdavi gat e operators in the
as “"RECORDLIST/PLAY”. TheOrder Codecolumn cap- user query can always be canceled out as long as no oper-
tures the order encoding XML path in tdefault XML view  ator “above” theNavi gat e uses the result generated by
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the Tagger . However, the order-determining operators (
e.g.,Posi ti on function) that appear in the user XAT de-
pend on the implicit order of th&agger result. In that
case, thélagger cannot be canceled since its result is re-
quired later. These non-cancelablggger s in turn block
further optimization such as the computation push-down.
The order explicitrule given below is utilized to eliminate
this dependency on thEagger result, and to create more
opportunities for future optimization.

Given an XAT T, let %U be the set of the order-

determining operators in the user XAT, whijoev be the
set of order-determining operators in the view XAT. Let
O denote the Order Dictionary df (Table 1). Two func-
tions are used for our order explicit rewrite rules. Funttio
TraceVariableBindingdvar, T)returns the full XPATHp for
a given variable bindingvar. For example TraceVari-
ableBinding@uPlay, T)="RECORDLIST/PLAY.” Another
function OrderCodegvar, O) returns the order code for
the given variable bindin§var from the Order Dictionary
O. The function first use¥raceVariableBindingdvar,T)to
trace the binding XPat for a given variablevar. p is
then used to look up the OrderCode in the Order Dictionary
O. The OrderCode of $var is finally returned. For exam-
ple, OrderCodefucoll, O)= “PLAY/ROW/POSITION".

Fig. 8 shows the optimization for the composed XAT in
Fig. 7 using the two order explicit rewrite rules below.

Rule 1: Partition Elimination Rewrite Rule.

Let GroupB¥co[1...n] (R, func)e JO“U, where func = PO?ZZ;’(R).
(OrderCodefcol;,0)=NULL, 1 <i < n)
= GroupByscoi[1...n] (R, func) = GroupBY¥coi(1...(i—1),(i+1)...n] (R, func).
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Figure 9. The XAT after Optimization

Rule 1 indicates that the partition on a colufil, rep-
resented byGroupBysg.,, in the order-determining XAT,
can be eliminated if the OrderCode 8ol is “NULL".
Namely, there is no order insideol.

For example, sinceTraceVariableBindinggecord,T)
“RECORDLIST” while OrderCodefrecord,O)
NULL, according to Rule 1GroupBys,ccord,$upPlay =
GroupBys,piay- That is, the order partition ofrecord
does not make any difference, since in our example it only
includes a single collection, namely the whole view.

Rule 2: Order Combination Rewrite Rule.

() Let POSEe! (R) € T (3$var € V,
OrderCode($col, O) = TraceVariableBinding($var, T'))
= (POS%°! (R) = POSHo! (RY).

o

$col Svar
(i) Let GroupBysg.oi (R, func)e Ty .

J$var € V, OrderCode($col,O) = TraceVariableBinding($var,T))
= (GroupBysg.. (R, func) =GroupBys,q(R,func)).

Rule 2 describes that the user order-determining XAT
can be combined with the view order-determining XAT by
replacing the user order colunfizol with the view order
column$uvar, as long as the OrderCode $fol and$var
are equal. As a result, the user order-determining operator
does not depend on the implicit order of the view result, but
on the explicit order-determining view XAT.

For instance, OrderCodefuPlay,O)="PLAY/ROW/
POSITION", T'raceV ariable Binding($play)=
“PLAY/ROW/POSITION". According to Rule 2, we thus
have GroupBysg, piqy (R, func)=GroupByg,.,(R, func).
That is the order o$uPlay in the user XAT is decided by
the order of$play in the view XAT. Similarly, we have

POSGUEwmPos(R) = POSGUY™Po%(R).



ated by merging thosi t i on function with all its order-
Step 2: SQL-Oriented XAT optimization. After the related nodes. This includes its cont&toupBy node,
order explicit step above, the order-determining user XAT the Or der By operator generating the ordered tuples used
no longer depends on the intermediate view result. Tradi-by the Posi ti on function, and the context node of this
tional SQL-oriented rewrite rules such Bavigate-Tagger Order By. In Fig. 10, theOr der St ep operator (Node
Cancel-Outand Computation Push-dowfi4, 20, 21] can  29) merges Nodes 11, 12, 22 and 23 from Fig. 9. It parti-
now be used to optimize the XAT and prepare the XAT tions on the columi$pPos, orders on the columfisPos
for order-sensitive SQL-generation. The optimized XAT is and outputs the explicit ordering in colun$uNumPos.
shown in Fig. 9. In the next section, we will discuss how tleder St ep
operator is mapped to the SQL order template.
OrderBy Pull-up. One rule specific for the order-sensitive
SQL translation is calle®rder Pull-up The SQL-standard .
(SQL-99) implies order overwrite between nested SQL 5 Order-based SQL Translation
statements. That is, the sorting of the inner query result is
not kept by the outer SQL statement. Theder By oper- Generating Order-sensitive SQL. SQL generation is
ation should thus appear in the translated nested SQL statedone in an incremental bottom-up tree traversal process. As
ments as late as possible to avoid expensive re-orderingsan operator is visited, an appropriate SQL statement frag-
For this purpose we designed tBederBy Pull-uprule to ment is created. The order-determining operator is trans-

pull theOr der By operator high up the XAT tree. lated into SQL order clauses by applying the SQL order
An Or der By operatorr;,, can be pulled above an oper- template introduced below. For the algorithm of generat-

atorop?“t as long asp is insensitive to the order af,,’s ing SQL, please refer to [17].

result. Typically, thePosi t i on function is the only oper- To translate the order-determining operators into SQL

ator sensitive to the order. Thus as long asRbsi ti on fragments, an order-based template (Fig. 13) has been de-

function is not sensitive to the result©f der By, it can be signed. Although the grammar adheres to Oracle’s “or-

pushed through the XAT as far up as possible. dered” query lingua, the templates can be easily adapted

To do this, we record the ordered information of each in- for other DBMS specific SQL versions.
termediate XAT Table according to the semantics of each  One feature specific in SQL-99 is the analytical function
operator. If the pulling up does not destroy the correct or- row_number(). It creates integer values in the same fash-
dered information in the result XML, we call such OrderBy ion as the XATPosi t i on function. Theovermethod tells
pulling upsafe Pullup can then be performed without loss the analytical function what values to work with. TRAR-
of ordered semantics. More details about OrderBy pulling TITIONBYphrase creates groups or partitions as context on
up in XAT tree can be found in [18]. which theORDERB¢tlauses is ordering. Not all queries re-

For example, compare the composed XAT in Fig. 7, quire the partitioning clauses, indicated by the '?’ at the e
and the optimized XAT in Fig. 9 thPosi t i on function of the partition rule. More specifically, the partition ctms
(Node 23) is affected by the order of the colurdsPos appear only ifPCS requires a& oupBy context operator.
within the partition over the colum8pPos. It is not $pos_func_binding is the binding from the algebra tree. In
affected by the order of the colun$pPos. TheOr der By our example, thepposfunchindingis $sPos. This bind-
operator (Node 4) in Figure 7 can be pulled all the way ingis then constrained by tWHEREclause. For example,
up to the position shown in Fig. 9, since all the operators $uNumPos = 2.

between the two positions are insensitive to the result of
TEMPLATE: ORDERBY:

ordering on the columBpPos. However, theOr der By SELECT rownumber() over order by< TONUMBER> | <ELEMENT>
L PARTITION>>?< ORDERBY>) $posfuncbinding  ELEMENT: el
operator (Node 11) with its contex& oupBy (Node 12) From CTABLES ) Spostinesindng TONUMBER: 10.number ELEMENT )
PARTITION: partition by < ELEMENT > TABLE: table name TEMPLATE

cannot be pushed through Node 22.
Figure 13. Grammar of Order Template

OrderStep Rewrite. To make SQL translation straight-

forward, the XAT operators which map to the SQL order-  The order template is filled when ti@ der St ep op-
template are merged into one special operator, namederator is encountered. L&.S<o!

[pcoly,...,pcoly],[ocolq,...,ocol,]"

Order Step. AnOrder Step OSel, i 0P~ The corresponding SQL order fragmentisw number()
erator takes two input parametergeol[1...m] is the set  over (PARTITION BY pcoli,...,pcol, ORDER by

of partition columns, whiléocol[1...n] is the set of order  ocoly, ..., ocol,)) col”.  For example, the Node 29
columns. The output parameter is a coluenif numbering  (Or der St ep) in Figure 10 is translated into the clauses
the ordered output by some explicit ordering number. “row _number() over (PARTITION BY pPos ORDER hy

In OrderStep rewriteOr der St ep operators are cre- sPos) uNumPos”
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Note that our SQL generation algorithm does not rely repeated, during the SQL translation. For example, in the
on any specific loading or order-encoding. Unlike existing subqueryQ?2 in Figure 12, a sorting osPos is performed
work in [15], it is not hard-coded but rather a general solu- for the partition clause, while in th€5, repeated sorting
tion. In fact, there is only a rather small difference whem th onsPos is performed again. For some cases, such repeated
SQL statements are generated for the edge loading. For theorting will degrade the performance.
interested readers, in [17], the XQuery-to-SQL transtatio There are multiple choices for pushing computation to
procedure over an edge loaded relational database will bethe relational engines considering order. None of them can
described. The similarity of the generated SQL statementsalways outperform others. There are some tradeoffs be-
confirms the generic nature of our solution. tween them like the selectivity of the selection operator,
network traffic cost, sorting cost and others. Based on these
statistics, a better push down strategy can be chosen. We

Ar‘]bOL:; Push-down StLategles. For thef rela_tlonalhengmes perform a comparison of these SQL translation strategies
that do not support theow_number() function, the SQL - <5 in the experimental session.

generation can be stopped before the OrderStep, causing the
other operators to be conducted in the middle-ware. Since
the middle-ware operations can keep the ordered semanbiscussion: Further Optimization of SQL. To highlight
tics of the input XAT Tables, the re-sorting can be avoided. the order related aspects of our approach, we choose to gen-
Thus even if the query engine supports the SQL-99, noterate a single nested SQL statement. We note, however, that
pushing the OrderStep into the relational engine may bethe SilkRout€g[8] cost-based optimization for SQL transla-
preferred. Since the middle-ware is limited in memory tion could be fairly easily embedded into our XSOT frame-
and other resources, we limit the computing power of the work and thus optimizing the generated SQL statement.
middle-ware to the extent that such computation can be The SQL statements generated by our translation al-
achieved by a single pass over the SQL query results. Basedjorithm can be further optimized if some order encoding
on this criterion, the two push down strategies are achiev-knowledge is assumed. For example, if the global order en-
able by the middle-ware. coding is used, then the SQL statement in Fig. 12 can be
Without considering order, in general we try to push as optimized by ordering only on the coluniis Pos, instead
much as possible computation into the relational engine toof ordering on bott$pPos and$sPos. The reason is that
alleviate the workload and complexity of the middle-ware. the global order encoding &fs Pos includes the order in-
At the same time, better performance is expected by pushformation of the$p Pos.
ing more into the relational engine. It is a quite different ~ Assumingthe SQL translation componentis aware of the
scenario when the order is considered. The SQL engineunderlying relational schema and its constraints, the gen-
is not defined for order except the explicit sorting clause. erated SQL can be further optimized. For example, the
We have to perform multiple sortings, which may even be schema-specific SQL optimization [10] could be plugged



into our XSOT framework. ing construction operator§égger andConbi ne). Total
time refers to the time from the execution start until the re-
6 Experimental Study sult output, including SQL execution and construction. The
comparison of the SQL execution time and the total time
for all queries under the edge loading is shown in Figures
17 and 18. The SQL execution take#) of the total exe-
cution in our example cases.

The experiments were run on a UNIX machine with
two PII1450M CPU processors and 512 Megs of RAM The
XML data generated complies with the schema of Fig. 2(a)
and includes 10000 PLAYs/file. The underlying relational
database was loaded with the Inline and the Edge shredding Related Work
and two different order encodings (global and local). The

test queries are shown in Figure 14. Order as a key issue specific to the XML data model has
On Pushing the OrderStep into SQL.Different selec-  not yet been addressed by any of those research projects [2,
tivities of the Select operator (Node 24.in Figure 11) will 4 7, 8, 12] nor by any of the commercial systems [1, 5, 13].
affect the network cost between the middle-ware and the [15] is one of the earliest works assessing the issue of
database server. Different SQLs then will have different grder in the XML-to-SQL context. Threerder encoding
performance. In this experiment, we vary the condition of methodsre utilized to encode XML order. Algorithms of
the Select operator to achieve various selectivities oSene translating ordered XPath expressions into SQL, one spe-
lect operator. The result is shown in Fig. 15. cific to each encoding and loading method, are proposed re-
In Fig. 15, deep pushing refers to the pushing of the gpectively. The performance of the ordered-encoding meth-
OrderStep into the relational engine, and shallow pushinggds on a workload of ordered XML queries is also pre-
refers to not pushing the OrderStep into the relational en-gented. However, each proposed algorithmeipendenon
gine. When the selectivity of the Select operator is low, andspecificto the loading and encoding strategy used to
these two pushing strategies perform similarly. When the pyiid the relational database to begin with. That is, (1) the
selectivity is high (over 10%), the shallow pushing outper- knowledge of loading and encoding is required by the trans-
forms the deep pushing, since the cost of the repeated sortiation algorithm, and (2) different loading and encoding
ing in the deep pushing will be significant. This is an in- strategies require different translation algorithms. didia
teresting observation, indicating that pushing as much astjon, not only the translation strategies proposed butthlso
possible computation into relational engine may not always performance studies described concentrate on the correct-
be preferable, when order processing is considered. ness of XPATH translation and evaluation. The complexity

On the Loading and Encoding Strategies. Various  of handling order-sensitive XQuery statements, nested or
loading strategies, such agine andedge are used invar-  not nested, is not addressed.

ious scenarios to create various relational database-struc  compared with their work, our XSOT approachirisle-

tures. Edge is usually used when the schema is not availyyendengs it does not require any knowledge of the utilized
able, while Inline is used in the schema-aware case. Evengading strategy nor order encoding method. In other words,
if the same order encoding strategy is used, the.trar.lslateqhe gap between different loading and encoding strategjies i
SQLs over these two databases differ as shown in Fig. 16.natyrally covered by theiew queryembedding this knowl-
The SQL queries over the edge loaded database is typicallyeqge and therder code comparison functidor each spe-
more expensive than those over the inline loaded databaseific order encoding. It is alsgenericsince the algebraic
The edge loaded relational database requires self-Jo@rs ov representation is used to represent the input XQuery. One
one huge table, which is rather time consuming. single uniform translation algorithm serves for all congsin
Different example queries depict preference for different tions of existing encoding and loading strategies, even for

order encoding strategies as shown by Fig. 16. Q1 and Q4ne possibly new ones to be introduced in the future.
perform better in the inline loaded database using local en-

coding rather than using global encoding. The reasonis they .

both require the several SONGs from each PLAY, whichim- 8 Conclusions

plicitly favors a local order. Two other queries (Q2 and Q5)

require several SONGs from all PLAYs, which is easy for  In this paper, we propose an algebraic approach

the globally ordered inline database. While Q3 and Q6 re-for order-sensitive XQuery processing over relational

turn all the SONGs belonging to particular PLAYs, which databases. Based on an XML algebra tree (XAT) to repre-

do not differ between different encodings. sent order-sensitive XQuery expressions, a series of -order
SQL Execution and XML Construction. The output related optimization steps for XQuery to SQL translation

of the SQL operator (Node 32) is amderedtuple stream.  are proposed. Our approach now serves as a general solu-

This ordered tuple stream serves as input for the remain-tion for order-sensitive XQuery to SQL translation, which
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is irrespective of the data loading and order encodingestrat [11]
gies used in building the underlying relational database.
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