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Abstract challenging due to many factors including the hierarchical
Many applications, like materialized view maintenance and nature of the data, the possibility of no known schema for
stream query processing, construct views incrementaly data the data, and the powerful capabilities of the XML query
sources. This results in computed pieces of objects that toelse languages. XQuery views for example can restructure the
merged by fusing corresponding objects together. Thislprolis XML view to take on a structure and hierarchical organiza-
challenging when dealing with XML data for many reasonsidel  tjon that is completely different from that of the base data,
ing the hierarchical and semi-structured nature of XML dai#so possibly turning children nodes into ancestors or genegati
XML query Ianguages g, XQuery_) are capable of perfogmin multiple copies of the same node. Order is another factor
complex operations and transformations such as arbitraggtn that adds to the complexity of object fusion in XML views.

ing and result reconstruction. Moreover, since XML is anevedl . ;
data model, XML order has to be taken into consideration when Unlike other data models, XML is an ordered data model.

constructing XML results incrementally. In this paper wedst ~ MOreover, XQuery expressions return by default results tha
the prob|em of how to fuse XML pieces (fragments) gener@ted b haVe a-We”'d.eﬁned Order based on document Order un|§SS
incrementally processing XML data into XML results. We con- Otherwise defined. The result of an XQuery path expression
sider an expressive subset of XQuery language transfoomati IS always returned in document order and the order in the
and propose an id-based solution for this problem that sugpo  result of a FLWOR expression can in addition be imposed
XML order. We prove the correctness of our approach, in parti by the expression itself in many ways, including the use of
ular that using our mechanism we can correctly yetincremiént  order byclauses, the nesting gfor clauses, and the order
merge XM: res_;J_It fragrlne_nts. \(/DVe have |mplem<|anted|ourﬁ1rdpose defined by theeturn clauses. See [7] for more details.
semantic identifiers solution. Our experimental resulisvelthat Motivating Example. We use a materialized view main-
it comes with a very small overhead to the query executioe.tim . .
tenance example to motivate the problem. Consider the two
1 Introduction XML document shown in Figure 1. The source document
. L Lo _ “bib.xml" stores book information and the source document
Object fusion is a core operation in information integra- . N . . .
prices.xml” stores prices of books. Consider the simple

tion where mediators collect and integrate data objects fro oS )
: : . XQuery view in Figure 2(a) defined over those two sources
different sources [14]. Such integration needs to support ; p
that creates a new XML document with a root node “re-

the process of merging the corresponding objects resulting

. . . sult” and a totally new structure. The result of executing
from processing the source data objects into the result. In . ; :
some applications the data to be processed may not arrivéhIS ?(Query expression ovgrthe source documents is shown
in Figure 2(b}. Now consider that the source document

all at once. One example is materialized view mamtenance‘,biblxml,, is updated by appending the new book element

gpphcauqns Where source .updates are propagated to mates_hown in Figure 3(a) and (b) to the end of that XML docu-
rialized views in an immediate or even a deferred mode to

S ) ! ment (reflecting a desired document order). A view main-
maintain them incrementally. Another example is stream .
{enance solution would need to propagate such an update

guery processing where data arrives as streaming units a . : o T
different times. In such cases we may have an initial mate-'nto one update that is applicable to the materialized view i
‘ Figure 2(b). The propagated update, shown in Figure 3(c),

rialized view extent (a partial result) as well as newly com- . o ;
. . . _needs to be applied correctly to the materialized view to re-
puted pieces of data that result over time from processing

source updates (or stream units). These newly computeJr.eSh it. Correctly applying the update to the materialized

pieces of data need to be correctly merged (fused) with theV|ew means that the refreshed materialized view should be

initial result. This merging issue is relatively easy when
considering relational views because of their flat natuck an
known schema. While for XML data this problem is more IHighlighted nodes represent newly constructed nodes.

equivalent to the materialized view we would obtain if we
were to recompute the query over the updated sources. This




includes maintaining the correct view order.

The question that we raise now is how to merge (fuse)
the propagated update in Figure 3(c) with the original ma-
terialized view shown in Figure 2(b). This involves decid-
ing for each incrementally propagated node if it should be
merged with any existing node (or even nodes) in the view
extent into possibly one combined node, or if it should be
added as a new node, separate from existing ones, to the
view extent. It also involves deciding how the order of the

<bib>
. ez
—« » ="1994"
<bqok year = “1994”"> Vear=1994
<title>Advanced programming @
in the Unix environment</title>
<author><last>Stevens</last><first> @
W.</first></author>
</book> @ @
</bib> s> CisD | .
“Stevens” "W ‘Advanced 69.99"
(a) (b) (c)

materialized XML view is maintained as a result of such an

update to the view extent.

<bib>
<book year = “1994">
<title>TCP/IP lllustrated</title>
<author>
<last>Stevens</last><first>W.</first>
</author>
</book>
<book year = “2000">
<title>Data on the Web</title>
<author>
<last>Abiteboul</last>
<first>Serge</first>
</author>
</book>
</bib>

bib.xml

<prices>
<entry>
<price>39.95</price>
<b-title>Data on the Web</b-title>
<lentry>
<entry>
<price> 65.95</price>
<b-title>TCP/IP lllustrated</b-title>
</entry>
<entry>
<price> 69.99</price>
<b-title>Advanced Programming in
the Unix environment </b-title>
</entry>

</prices> prices.xml

Figure 1. Two input XML documents “bib.xmlI” and

“prices.xml”.

<result>{
FOR $y in

RETURN
<yGroup Y= “{$y}">
<books>
FOR $b in doc ("bib.xml")//book,
$e in doc (“prices.xml")//entry
WHERE $y = $b/@year and
S$btitle = $e/b-title

RETURN

</books>
</yGroup>
</result>

distinct-values(doc("bib.xml")//book/@year)

<entry> {$bltitle} {$e/price}</entry> |'TCPIP.." «s595> “Dataon.” 39.95°

(a)

Figure 2. (A) An XQuery expression defined over the
two XML documents in Figure 1 and (b) the resulting XML

view extent.

(b)

Figure 3. (a) Anew “book” element to be inserted into the
source document “bib.xml” shown in Figure 1, (b) the cor-
responding XML tree, and (c) the expected result of propa-
gating the update through the view in Figure 2(a).

mechanism for generating semantically meaningful identi-
fiers for processed XML nodes. These semantic identifiers
are reproducible for corresponding objéctsence enable
identifier-based fusion. They also encode lineage and order
information for view nodes in a compact way.

Our solution works at the algebraic query representation
level. In the first phase it takes the query algebra tree as
input and automatically defines rules of how lineage and
order specifications can be computed for processed nodes.
We call such lineage and order specification @entext
SchemaThis phase takes place during the query plan gen-
eration and optimization phase. In the second phase, se-
mantic identifiers are generated for processed nodes based
on theContext Schemareviously defined in the first phase.
This step takes place during query execution time. We sum-
marize the contributions of this paper as follows: (I) we
propose a mechanism for generating “semantically mean-
ingful” node identifiers for XML views. Such identifiers
can be used to incrementally fuse XML fragments to con-
struct results. To the best of our knowledge our solution
is the first solution that provides all the following advan-
tages: (i) it supports an expressive class of XQuery views
(ii) it is fully automated, it does not, for example requinet
definition of Skolem functions on the query syntax level by
the end user (iii) the semantic identifiers that we generate

In previous view maintenance solutions, this problem compactly encode lineage information for XML nodes in
has been addressed in a variety of ways. Some solutiondhe result, hence enabling tracing back to the source nodes,
[1, 2, 22] have materialized large auxiliary data beyond the (iv) The semantic identifiers that we generate also encode
actual view contents. Other solutions [11, 14, 17] have usedorder information of nodes, hence enabling order-aware in-
Skolem functions (or variations of them). We will discuss cremental result construction. (Il) We define a mechanism
these solutions in more details in Section 2.

In this paper we study the problem of object fusion for Union operation. (1) We prove the correctness of our ap-
XML views that are constructed incrementally. We consider Proach. In particular we prove that the result of merging the
views defined using the XML query language, XQuery [19], incrementally processed data is equivalent to the result we

over XML data sources. These views are capable of per
forming a large class of complex operations and transfor-

for the id-based fusion for XML fragments using tbeep

2This means that the semantic id generated for a newly predesxie
(resulting for example from a source update) is guaranieee equivalent

mations inC!Uding navigation, grOUping-_ aggregationtNes o the id of an existing node in the result if there exists saatode that
ing, unnesting, and element construction. We propose asemantically corresponds to the newly processed node.



would obtain if we were to execute the query over the en- structured data specified using the MSL mediator specifica-
tire source. (IV) We have implemented and integrated our tion language. This work [14] supports only simple views
proposed solution within the Rainbow XML query engine and requires semantic identifiers to be defined as part of the
[20] and have tested its performance. The results of ourmediator specification process. To the best of our knowl-
experiments show that our solution comes with very small edge no Skolem function solution supports incremental fu-
overhead to the query execution time. sion of the class of XML views that we consider including
The rest of this paper is organized as follows. In Section order-aware views. For example, no Skolem function so-
2 we discuss related work. Section 3 gives the necessanjution supports the unique identification and order seman-
background. Section 4 describes how we encode derivatiortics of views that allow multiple copies of the same source
and order specifications through tBentext SchemaSec- node (or constructed nodes bound to the same source nodes)
tion 5 discusses how we generate the semantic identifierdo appear as siblings in the result. This is important for
from the Context Schema Section 6 shows how we use incremental view maintenance since certain updates to the
the semantic identifiers for fusing processed XML nodes. source node might, for example, insert (or delete) only one
Section 7 gives the results of our experimental evaluation. of the node copies and not the others. This would also affect
Lastly, Section 8 provides conclusions. the local order among the node siblings in the view extent.
Unlike the approaches that use Skolem functions or similar
2 Related Work . _ ) ) mechanisms to generate identifiers, our solution does notre
A core operation to materialized view maintenance is the

L guire manual specification of what input values they should
apply phase, namely the application of propagated update%ke to generate ids, when writing the query.

to materialized views. This involves determi.ning how to_ In the context of their data integration work, Ives et al.
correctly merge (fuse) propagated updates with the materl-[lo] have proposed a solution for combining and restructur-

alized vigws. This problem is more challenging in the con- ing XML views over streaming XML data by adding special
_teﬁ]of ObJ?Ctj[orﬁﬂteg atnd IS ?_ml—sltrc;Jc:uraI c(ijatla r’\n/lodeie_th extra attributes to the intermediate tuples. Their sofutio
nt (?[con exto | t'e atrela lolna 5 ata r;ozze - Many VIeW: 4565 not support the case of 1:n parent-child relationships
mgw:_e_nancedso utions (e.gl., 11, [2], _?n [d ) r_eqm;e;ma in the returned output in which an element can occur more
tbenatl)zllngt:] an frna|nttr;1]|_nn:g ErgE auxi |ary| at? In or¢ tr_t than once in different combinations of input bindings. This
pe aple to periorm this task.  For exampie, for maintain- o qyicts the solution from handling query expressiong wit
ng th? simple graph_ structL_Jred views (Select-Where V|evv_s) correlated nested sub-queries, which are very common in
used in [22] each view object needs to be annotated Wltthuery_ Fegaras et al. [9] have proposed a mechanism

|(;3Ier_1t|f|de:cs of aIIUthle_ksotjhrce objectsr:‘rom th'Ch the dObJe(f[t 'S for assembling streamed XML fragments to construct the
erived from. Uniike the approaches above We o NOLTe-w,, reqit on the client side. Their solution is based on

quire the use of auxiliary data to relate view extent objects a special annotation called the fillers-holes annotatidie T

o their sources. Som_e view maintenance squ_tlo_ns (e'g'WOrk in [9] requires fillers and holes to be defined before
.[‘.1] and [11]) have avoided such need _to materialize aux- streaming the XML fragments. Once an XML fragment is
lhary data through the use of mechanisms for generating g med only fillers to previously defined holes into it can

reproducible identifiers for the view objects. For example, be processed. New inserts to other locations in the XML
the work proposed in [11] for maintaining semi-structured fragments afterwards are not allowed

views annotates edges in processed trees with special keys Our work relates to the problem of handling order in

thatt can be used mtthke fu3|0_:1hprc()jcessl,. Thi %ro?osi:d keIi(ML guery processing since the generated identifiers also
system may generate keys with a deeply nested SrUcture. i, ,qe order information. In [7] we have studied this prob-

also comes with some limitations to the view maintenance |, ot 1t order. We now extend and optimize our so-
solution itself including limitations on updating sourca-v lution proposed there in support of handling integrated se-
ues used in constructing the keys. Other solutions (e.y., [4 mantic identifiers

and [14]) have used Skolem functions to generate identi- '

fiers that can be used for fusing propagated updates with3 Background

materialized views. Skolem functions were first used in the XQuery. We consider an expressive subset of the

context of object-oriented systems [12] to produce object XQuery language [19]. This subset includes XPath expres-

identifiers and were used later in many integration and me-gjons nested FLWOR expressions, element constrdctors
diation systems [14, 15]. The use of Skolem functions typi- Source Node Identifiers By node we mean an XML el-

cally requires specifying these functions at the queryaynt et attribute, or text. We use Fast Lexico-graphicaskey
level by indicating what input is to be used by them to gen- (FlexK eys) encoding [6] for encoding source node iden-

erate the identifiers. Papakonstantinou et al. [14] have pro yicars and order in XML trees Thé&lexK ey encoding
posed a technique for generating semantic object idestifier '

based on a special use of Skolem functions to fuse semi- 3The grammar of this subset is described in [8].




is similar to theDewey encoding [18], it encodes hierar-
chy and order information for each source node. Yet, the
FlexKey uses variable length byte strings instead of num-
bers. Figure 4(a) shows thélex K ey encoding of nodes
in the “bib.xml” XML document in Figure 1, Figure 4(b)

renaming operatdlamep.,i1,coi2(R), WhereR and P de-
note XAT tables. Those operators are equivalent to their
relational counterpartsvith added responsibility of main-

taining order.

shows thef'lex K ey encoding for the source update shown $colel] '71% A
. . - s CO.
in Figure 3(b), and Figure 4(c) shows théex K ey encod- e <result>Scol7</result> -
. . : - 18
ing of nodes in the “prices.xml” XML document in Figure seortT Combine g, -<-1gg4c,-zoooc,
1 ~1994¢ 17 A
. Scol
~2000° <yGroup Y={Sy}>$col6</yGroup> o
16"[‘ $ool6 $y11 | $col6[]
¢ 00 1994 | ~1994°
1391;‘[‘] {sbc:IS [ty; <books>$col5</books> 2000 | =2000°
.b..e.f¢ 15 X
2000 | {bf.eb°} GroupBy;,(Combineg,5)
B
Sy | $b | Se $col4 1.‘1, 4 $col5 <sg.¥e) ()S ;Z!f;]
S5 | 0| ot oo ) <entry>Scold<fentry> 19[;4 b.b.ef
3 A .D..e.
1994 [bb [ef [{@bfb, | 13., Scol4 2000 | bf.e.b
(b)e.f.f} S$col2, $col3
2000 | b.f eb {(a)b.f.b,
Bless | 12 Seon] 2L, [l [ s, [ S [ o
5 = S $e, price 0 0 8] [$b] [Se]
(Sb;:)” (soseNl | (o8el] 1 A$c012 1994 | bb |ef [{bbb} | {eff
1994 b.b of (I)$b.titlc 2000 | b.f e.b {b.f.b} | {e.b.f}
A
2000 b.f e.b 10 .
e Join g, e se/pitte $e ()11
3 h ., ($b)),[] [08] e.b
30.05" " vgs05  “TopNP. “69.99" ‘Advanced. 1994 | bb 9¢ Se of
(c) 2000 | bf 7LOJ$y= Seoll §52.entry o
Syl $b | $col1
. . . ) 3Distinct S0, o Scoll | gy | “0istl
Figure 4. The Lexicographical key encoding for (a) the ;zz‘; o s @yearti© bb | 1994
b.f | 2000

XML document “bib.xml!” in Figure 1, (b) the newly in-
serted “book” element to that document (as shown in Figure
3), and (c) the XML document “prices.xml” in Figure 1.

The XML Algebra XAT. We use the XML algebra
calledXAT[21]* implemented in the Rainbow engine [20]
Figure 5 shows an algebraic representation for the XQuery
in Figure 2(a) using the XAT algebra.

Data Model. The data model for the XAT algebra is a
tabular model called XAT table. Typically, an XAT operator
takes as input one or more XAT tables and produces an XAT
table as output. An XAT table is an order-sensitive table
of tuples. The column names in an XAT table represent
either a variable binding from the user-specified XQuery or
an internally generated variable name.

XAT Operators. An XAT operator is denoted as
op?“(s), whereop is the operator type symbalp repre-
sents the input parameters,t the newly produced output
column that is to be appended to the output table generate
by the operator andthe input XAT table(s). Some XAT op-
erators and their XAT tables are shown in Figute Bhe re-
lational complete subset of the XAT algebra inclu@etect
o.(R), Cartesian Product (R, P), Theta JoinX. (R, P),
Left Outer JoinDoﬂLc(R,P), Distinct d..;(R), Group By
Yeol[1..n] (R, func) Order Byt q1..,,)(R), UnionU(R, P),
Intersection\(R, P), Difference— (R, P), and the column

4This algebra is similar to NAL [13] and SAL [3] algebras.
STranslating XQuery expressions to XAT algebra can be fonr{8]i
SWe discuss the details of algebra tree execution later snghper.

gate Collection®

$ sb
%Ssl.book/@year’lext() Y 50§51 .book
A A

1 $S1 4
'S S

b.xml” “bib.xml”

8
$S1 $S2
‘ (S"prices.xml" ‘

Figure 5. An algebra tree for the XQuery in Figure2(a).
Annotations appearing in subscript font to the left (or be-
low) column names represent tB®ntext SchemaShaded
column names represent teder SchemaBoth schemas
are presented in Section 4.

We now describe some of the XAT XML-specific op-
erators. Source S¢%, - 'is a leaf node in an algebra tree
that takes the XML documentml!Doc and outputs an
XAT table with a single columreol’ and a single tuple
tout; = (c1,1), wherec ; is the XAT table cell that con-
tains a reference to the entire XML documemavigate
Unnest ¢gg§:path(R) unnests the element-subelement rela-
tionship through a navigation followed by an unneévi-
ggf:path(R) is similar toNavigate Unnest
except it only performs the navigation functionality witho
unnesting. It extracts a collection from each node in column

col. Combine C.,;(R) groups the content of all cells in

columncol into one sequenceXML Union 62217@2(1%)

is used to union multiple sequences into one sequence. For
each tupletin; from R, it creates one output tupteut;,
wheretout;[col] is a sequence containing the members of

"The operatoGroup Byhere is more powerful than its relational coun-
terpart as it may take any arbitrary sub-query or functiohisallows the
Group Byto perform nesting operations as well as grouping operstion



the settin,[coll] U tin;[col2]. Tagger T<°'(R) creates a
new columncol in which it constructs new XML nodes by
applying the tagging pattemmto each input tuple.

Other XAT XML-specific operators include: XML

, . z col
Unique v29) (R), XML Intersection M., .o (R), XML

col

x col
Difference — ;1 .,12(R), andExposee..;(R). See [8] for
details on those operators.

4 The Context Schema: Encoding Node Lin-
eage and Order Information

for the entire collection depends on all (“*”) the lineage of
the nodes it is composed of. To understand@néer Con-
text(ordCzt) for processed XML node (or a collection) we
need to consider three possible scenarios for order among
nodes during certain point of query execution. (I) The or-
der among the processed nodes, or even between processed
collections of nodes, follows document orélgfor this case
theOrder ContexbrdCxt assigned to a processed node is a
sequence of order values, where an order value is an identi-
fier of a source node that reflects the document order of the
processed node(Il) The order is imposed by the query and

In this section we show how we encode lineage and or- js different than the document order (e.g., as a result oesom
der specification for processed XML nodes, referred to asorder byclauses). In this case th@rder ContextordCat
the Contextof the nodes. We will use this encoding later to  assigned to a processed node is a sequence of order values.
generate semantic identifiers for nodes in the XML result. (111) There is no order among processed nodes (or processed
We require that &ontextspecification is defined for each  collections). In this case th@rder Contextassigned to a
node and collection of nodes processed by the query. Whileprocessed node isull, signifying that there is no order de-
at first sight this may seem expensive to maintain, it is not. fined. This case happens when the order is destroyed as a
We only define the&Contextspecificationschematicallyat result of certain query operation (e.@jstinct).
the schema level of the query execution model (the column  we will now discuss how théineage Contexand the
names of intermediate XAT tables in our case). We call Order Contextare encoded using tH@ontext Schemawe
such schema-level method of defining hentextheCon-  first define theDrder Schem&ShortlyO.S) to represent the
text SchemaThe Context Schemalefined for each column  order between tuples in an XAT table. Arder Schemis
in the intermediate XAT tables, is generated during query a sequence of column names from an XAT table where the
translation and optimization time. During query execution order between tuples of the table can be determined solely
time, we might need to obtain tl@ontextitself for a given by comparing theFlez K eys in those columns.

node when we generate or manipulate semantic identifiers. )

But such actual access of nodes is only limited to a few Definition 4.2 The Order SchemaO Sy of an XAT tableR in

query operations, as we will show later in Section 5. an algebra treg is a sequence of column names, where the order
among tuples in that table can be found by comparing the galue

Definition 4.1 We define the€ontextczt of a node (or a col-  Projected from these columns.

lection of nodes) as a tuplérigCxt, ordCxt), wherelngCuxt

the Lineage Context of the node is composed of a sequence of i
eage valuesifigVali, IngVals,.., IngVal,), and ordCxt the
Order Context of the node is either (I) a sequence of ordenesl
(odrValy, odrVals,.., odrValy) or (I) a null value. A lineage
valuelngVal;, 1 > i > v, can be (1) a source node identifier, (2)
a source data value, or (3) a special constant “*” . An orderve
odrVal;, 1 > j > y, can be (1) a source node identifier or (2) a
newly generated order key by the query.

For example, in the output XAT table of operat$6 in
Figure 5, theOrder Schemas column$b (we use shaded
column name to represent that). The order among any two
tuplest; andts in that XAT table can be derived by lex-
icographically comparing, [$b] to ¢2[$b]. In general, the
order among cells in each column is reflected by Gum-
text Schemaf the column, as we will see next. Yet, the
order among tuples in the XAT table as whole, may be of
importance in some cases. In particular when the query in-
volves join operations. Hence, ti@rder Schemas only
maintained for queries with joins. See [8] for rules to com-
pute theOrder Schema

ThelLineage ContexingC'xt) of a processed node (or a
collection) can be (1) driven directly from a specific source
node, (2) driven from a certain data value from the domain
of values of the source XML document, (3) notrelatedtoa =
specific source node or value (this case applies only to col-!ﬁ?ﬁ'g;t('g_? éb%e-zggr(r:gsn;g)r?disn%hteomaﬁciﬁﬁlrig% Lorraé}] Cg)lgwgi{
lections of nodes), (4) a composition of one or more (?f (1)’_ variable binding) is a rule that defines how the Context dige
(2), and (3). For (1) we use the relevant source node identi-and order specifications) of nodes (or collections of nodtefat
fier to describe the lineage. For (2) we use the value that thecolumn can be extracted.
node is bound to, to describe the lineage. For (3) we use &xtSma  := (Orden? + Lineage

. - . . L . Order "0" | "("+OrdCols+")"
special constant “*” to describe the lineage, indicatingtth  orgcols colName + (" + OrdCols) .
the collection itself is not bound to any specific source node
This last case occurs if at a point of the query execution the

) . . . . to constructed nodes constructed over source nodes.
entire resultis cpmposed of one big collection of no_des(thl 9If the Lineage Contexitself reflects the order, we define ti@der
occurs when using @ombine operator), hence the lineage Contextas an empty sequence of order values.

8Note that this does not only apply to source nodes but mayagipty



Lineage == "' | (" + LngCols + ") the contents of column®l1 andcol2. TheLineage Con-
LngCols = (colName | colsUnion) + ; ; ; _
_ "+ (colName| colsUnion) . textof the new colummol is derived from the_lneag_e Con
colsUnion = (colName + "{" + CollD+ "}") + text of both columnscoll and col2. Hence thelineage
Coll . Flex(EZ;Name + {0+ CollD + 1) Context for col will be [coli.lng{fki}, cols.lng{fka}]

where fk; and fky are identifying FlexKeys to distin-

The Context ScheméCztSma) for a columncol is a  9Uish between the two columits For example if an
composition of an optional order prefix phrag-¢er) and XML Unionoperator is used for creating a collection from
a lineage phraselfncage). The order phrase can be an two columnscol; and col, the Context Schemanight be
empty list"()” indicating that the order informationof nesl  [c0l1.lng{a} col>.lng{b}]. Herea andb reflect the order
in col can be derived from the lineage phrase. In that casel" Which the columns are unioned. |f ti@@rder Contexbf
there is no need to have an extra encoding for order. If the®ach of the source columns(1 andcol2) is equivalent to
lineage phrase does not reflect the correct order, the ordeftS Lineéage Contexthen the order context @bl is assigned
phrase will contain a list of column names{Name) that [0 itsLineage ContextOtherwise, th©rder Contexbf col

determine how the order of nodesisl can be derived. The IS Setto union of th©rder Contexs of the source columns.

absence of the order prefix phrase (equalsutt) indicates ~ Example. Figure 5 shows how th€ontext Schemia de-
that no order is defined for the column. In other words the fined for columns in the intermediate XAT tables based on
Order Contexfor any node in that column isull. In gen- the rules shown in Table 1. ThHeontext Schemis shown

eral, the order encoding in tf@ontext Schemaf a column in a subscript font to the right of column names (or below
enables us to derive the order among cells in that column. them). The output XAT table of operatgf 3, for exam-
The lineage phrase is a list of XAT table column names PI€, has one columr$f) representing the distinct values of
from which the lineage of nodes iml can be derived. ~ Years. Based onthe rules in Table 1 it is assignemeage
The list can be empty *[]” indicating that the lineage of p_hra;e that referen_ces itsglfand a nuIIQrderphrase (in-
the column is related to itself. A non-empty list may con- dicating that there is no order semantics for that column).
tain regular column namesd Name) and/or annotated 1€ output XAT table of operato# 6 has two columns
column namesdplsUnion). An annotated column name (36 and $col1). Column @b) contains the nqde identifier
(colsUnion) is a column name annotated with an identifier Of €xtracted books. Theineagephrase assigned to that
(ColID), namely aF'lex K ey identifier that is assigned by column is der.|ved from itself, as this column is obtained
the XML Unionoperator and is unigue for each unioned col- through aNavigate Unnesbperation. Thérder phrase of
umn. Itis used to distinguish each column used as input tothat column is set ta), signifying that it is equal to the
the union operation. This is used later when we generate the-in€agephrase §b). Hence, if we wish to derive the order
semantic identifiers, to ensure the uniqueness of nodes origP€tween nodes in colunib we compare thélezKeys in

inating from different input columns when unione@ol D that column lexicographically. Colun’ﬁa:olll gets aContext
also helps in maintaining the order among nodes originating Schema) [$0] (based on the second case in rule category Il
from different unioned columns. in Table 1). The.OJ operator ¢ 7) does not affect thiein-

Computing the Context Schema.The Context Schema eagephrase. It only_ changes ti(érder phrase. It uses the
is first created for the&Source operator since it is the leaf ~Order Schemaf the input tables (highlighted columns) and
operator in any XAT algebra tree. Other operators may the input column'Order phrase to determine the ner-
createContext Schensafor newly created columns or ma- derphrase. Based on the rules in Table 1, @reer phrase

nipulate theContext Scheméor existing columns. Table ©Of columndy is set to(3b). The Order phrase of column
1 shows rules for generating and manipulating @@n- $0 is not affected because the left input table hasnder

text Schema Table 1 uses the following conventions: (1) SchemaTheJoin operator ¢ 10) also sets only therder

col.ord to refers to theDrder Contexiof a columncol, (2) Schemaf its output columnsy, $b, and$e as shown in
col.Ing to refers to the.ineage Contexdf a columncol, (3) Figure 5. Note that for the operators on top of the operator

p.col to refers to the column in a tagger patterig4) R[col;] # 10, theOrder Schemas no longer needed to compute
to refers to the column with index i in the XAT table, (5)  theContext Schemaules, since there is no othdbin op-
R|col;].cxtSma to refers to theContext Schemtor a col- erations. Hence, th@rder Schemas not defined for those
umncol; in the XAT tableR, and (6)R.OS to refers to the ~ Other operators.

Order Schemaf the XAT tableR. As a result of theNavigate Collectioroperators# 11

We now discuss th¥ML Unionas an example of com- and# 12, columnsScol2 and$col3 are created and each

puting theContext Schem& The XML Union operator ~ ©f them is assigned @ontext Schemthat is derived from

z col . . that of the column it was extracted from. TK&L Union
Ueor1,cor2 (1) Creates new collections in colummnl from

11This identifying extension is used later when we generaegmantic
10see [8] for discussion on all operators. identifiers to ensure uniqueness of the identifiers and teatedirder.




else, (p.col.ord)[col]

Cat. | Operatorop Affected column | Assigned Context Schema Node Level operation
| SEol e col ()[col] or shortly ()[] None
Il <I>§géfpath(R) col’ if(col.ord == empty), ()[col.lng] None
elseif(col.ord == null), [col.lng]
else, (col.ord)[col.lng]
1] (bggfjpam(R) col’ if ((col.ord == empty)||(col.ord == null)), ()[] None
else i f (path navigate to text nodecol.ord)[col.lng]
else, (col.ord + col’)]
vV Ceot(R) col [*] for each tuplet in R apply
assignOver RidOrd(t, col)
\ T;Ol (R) col if (p.col.ord == empty), ()[col] for each tuplet in R apply

elseif(p.col.ord == null), [col]

composeNodelds(t, col, p)

Vi Yeol[1..n] (R; Ceot) All columns

if (grouping by id),(col1 .ord, .., col,, .ord)[col1.lng, .., col, .lng]
else if (grouping by value)jcol:.lng, .., col, .lng|

The Combine operator uses the functign
assignOver RidOrd

x col

\ll Ueot1,cot2(R) col if((coli.ord == empty)&&(colz.ord == empty)), for each tuplet in R apply
Olcoly.ing{fk1}, cola.ing{fk2}] assignColldPr fx(t, coly, cola)
else, (coly.ord, cols.ord)[coli.lng{ fk1}, cola.lng{ fka}]
(wherefk, and f ko are Flexkeys reflecting order)
Vil vﬁg%(R) col’ if(coli.ord == empty), ()[coly.lng] None
z col’
Neott,cor2(R) elseif(coly.ord == null), [col;.lng]
z col’
—col1,cot2 () else, (coly.ord)[coly.lng]
Peott,cot’ (R)
IX 001 (R) All columns [col.lng] None
X x (R, P) R[coly..coly,) for(i=1;i <=m;i+ +) None
X, (R, P) R[col;].CxtSma = (R|[col;].ord + P.OS)[R[col;].lng]
I>O<ILC(R7 P) Plcoly..coly] for(i=1;i <=n;i+ +)
P[col;].CztSma = (R.OS + P[col;].ord)[P|col;].lng]
Xl o.(R) None N/A None
Xl Teol[1..n](R) R[coly..col,) for(i=1;i <=m;i+ +) None

R[col;].CxtSma = (col[1..n])[R[col;].lng|

Table 1. Rules for computing th€ontext Schemtor different XAT operators.

operator (operato## 13) creates new collections in col-
umn $col4 from the contents of columr&ol2 and $col3.
Hence, the.ineagephrase of columficol4 becomes a com-
position of theLineagephrases of columrcol2 and$col3
which is [$b{a}, $e{b}] after assigning the special column
source identifiersr andb. The Order phrase of the new
column$col4 is derived from theOrder phrases of both
input columns. Hence, it becomésh, $e, $b), or simply
($b, $¢), since removing the redundafitwill not affect the
order semantics. And since thBrder phrase is equivilant
to theLineagephrase, we simply set th@rder phrase to
(). The Taggeroperator (operato# 14) constructs new
nodes in columi$col5 assigning a “selfLineagephrase to
it [] and anOrder phrase equal t¢)*2. The Group Byop-
erator (operato#t 15) changes theineagephrases of all
the output columns to be equivalent to theeagephrase
of the grouping columi$y. It also sets thérder phrase
of the output columns teull since theGroup Bydestroys
the order among tuples (created grodps)rhe remaining
operators in the algebra tree are easy to follow.

2Note that only column$y and$col5 remain in the output at this point.
Other columns are pruned out through an optimization psotest dis-
cards columns that are not used by later operators or thabareferenced
by theContext Schemaf any column.

13Since this is a value-basd@roup By An id-basedGroup By(repre-
senting a nesting operation) would define certain order antloa create
groups, as shown in Table 1.

5 Generating Semantic Identifiers from the

Context Schema
We now describe how we utilize tH@ontext Schemt
generate the semantic ids for processed XML nodes.

Definition 5.1 TheSemantic Identifie(SemID) is an identifier
assigned to a node in the XML result. Such identifier is Igcall
unique (among sibling nodes) and carries lineage infororathat
references the source from which the node is derived. It afso
codes local order of the nodes among sibling nodgsmIDis a
composition of an optional order id prefix terr@(dPrefiy and

a body part that can be a base node BageNodell) or a con-
structed node id@onstNodelD). The body part carries lineage
information and determines the node type (source node or con
structed node).

SemID 1= (OrdPrefix)? + (BaseNodelD | ConstNodelD)
OrdPrefix = "™ | OverRideOrd

OverRideOrd ::= "(" + Flexkey + ")"

BaseNodelD := FlexKey

ConstNodelD ::= LngCxt + "c"

LngCxt = (FlexKey | " *" |StringLiteral) +

(".." + LngCxt) *

In many cases, the lineage information encoded in the se-
mantic id body can reflect the node order as well. If this is
not the case then a special order prefix (OrdPrefix) is added
to the semantic id body. The prefix order id can be either a
Flex K ey representing a new order that overrides the order
implied by the lineage information encoded in the seman-
tic id body or a special constant” indicating that there



is no order defined locally for the node. The body of the mantic id body can represent the order. For example, for
semantic id depends on the type of the node. A node in thethe first tuple in the XAT table we generate the semantic id
view extent can be of two types: (I) a base node originating b.b..e. f¢ for the newly constructed node in colurienl5*’.

from a source document that is exposed without any mod-This new node becomes a parent to the collection contain-
ificationg#, or (Il) a newly constructed node. The body of ing the two nodega)b. f.b and(b)e. f.f.

the semantic iGemlDfor a base node that is exposedinthe  The Group By(operator# 15) groups the constructed
view is simply the same as its id @exzKey). The body nodes in columrcol’5 by the year (columi$y). The Or-

of SemlIDfor a constructed node is composed dfineage derphrase of the grouped colum$cpl5) indicates that the
Contextvalue (LngCzt) and a constant suffix) indicating ids in that column already reflect the order. Hence we do
that the id reflects a constructed node. Theeage Context  not assign any prefix node ids. Thagger(operator# 16)

as we discussed earlier can be a referenceAtea K ey, a constructs new nodes “books” for the collections in column
reference to string value from the domain of values of the $col5. The created nodes are assigned semantic ids that are
source XML document, a constant “*”, or a composition of derived from the “year” values in colum$y. And since

one or more of them separated by a delimiter “..”. This- the order phrase of columicol5 is null, the Taggeroper-
eage Contextan be derived from thkeineagephrase of the  ator assigns a prefix order constant™to each new node,
Context schemduring query execution. indicating that no-order is defined for those nodes. For ex-

The last column in Table 1 shows the node-level oper- ample, the first constructed node is given a semantic node
ations required for actually generating and maintaining se id ~ 1994¢ and is becoming the parent for the collection
mantic ids. As shown in Table 1, we require node-level ac- with one “entry” node with ich.b..e. f¢. TheTagger(oper-
cess for only four algebra operations. Namely,@oenbine ator # 17) constructs new nodes “yGroup”. with semantic
the Tagger the XML Union, and theGroup Byoperators.  ids ~ 1994° (on top of the “books” node with id- 1994°)

We define two functiongetLngCzt() and getOrdCxt() and~ 2000° (on top of the “books” node with ie- 2000°).

that when invoked for a node (or collection) return tlie- Next theCombine(operator# 18) creates a collection out
eage Contexand theOrder Contexbf that node (or collec-  of those nodes. The input colum$e6(7) for the Combine
tion), respectively. operator has aul! Order ContextHence, nodes in the cre-

We now discuss, briefly, the logic of the functions in Ta- ated collection keep their no-order prefix)( Finally the
ble 115 (1) The functiongenerate Nodeld is used by the  Tagger(operator# 19) constructs a root node for the re-
Tagger operator to generate semantic id for the newly con- sult on top of the collection in colunfrol7. The semantic
structed nodes. This includes setting the order prefix,dfne id assigned to this root node is +“ as derived from the
essary. (2) The functioassignColIdPr fz is used by the ~ Context Schemaf column$col7.
XML Unionoperator to assign the order prefix partof the se-  The final result of executing the query is shown in Figure
mantic id for nodes originating from different columns. (3) 6(a). Note that the generated semantic ids serve as local
The functionzssignOver RidOrd is used by th&€ ombine unique ids for nodes and at the same time encode the nodes
operator to set the order prefix part of the semantic id for local order (semantic ids that start withreflects no-order
combined nodes. (4) The functi@assignOver RidOrd is semantics).
also used by th&roup Byto set the order prefix part of the ) . ) .
semantic id for nodes in the created grotips 6 XML Fusion Using Semantic Identifiers
Example. In the algebra tree in Figure 5 we note that ~ We first define a mechanism for merging XML frag-
before theXML Union (operator# 13) query processingis ments processed incrementally with the existing XML re-
performed normally without the need to perform any addi- sult. For this we use thBeep Unionoperator. TheDeep
tional id-specific operations. THEML Union (operator# Union operator was introduced in the context of the semi-
13) assigns source column prefix order idsagdb) to the ~ structured data modelin [5]. We here adaptiieep Union
nodes in the new colunBrol4. TheTagger(operatork 14) ~ operation to the general XML tree model.
constructs new nodes “entry” from the collections$itwi4
using theContext Schemaf $col4. TheLineagephrase of
column$col4 consists of columngb and $e. Hence, we

Definition 6.1 TheDeep Union(| |) of two XML trees'® ¢, =
(r1 : chi) andta = (r2 : chg) unions their root nodes; and

derive the body of th icid f di ro by node identifier and recursively performs deep union oir the
erive the body of the semantic id from corresponding pro- respective lists of child node#, andchz. The resulting XML tree

jected nodes in those column“s.”Since@Teler phrase also  jycjudes all nodes in the two XML trees with only one occureen
refers to the same columns “()", we conclude that the se- of any matching nodes (by node ids) from the two trees.

14such node is an exact copy of the source node including itsesib 1"The semantic id itself reflects the desired order (documenteroof
15The algorithms can be found in [8]. the source “book” node as major order and document orderec$dhirce
16Although that the value-base&roup Bydoes not define order between  “entry” node as minor order.

created groups, there might be order among nodes in each.grou 18Each XML tree is annotated with semantic node identifiers.



updates in 6(b) and (c)) with the original view extent (in
1 Urs if 71.id # 12.id Figure 6(a)) using thé®eep Unionoperator results in the

1 |_|7’2 = { r: (chy| | cho) if r1.4d = ro.id refreshed view extent shown in Figure 6(d). Note that as
a result of that, only the XML fragment with root node
b.l..e.l¢ is added to the view extent. Other nodes that appear
in the propagated updates are fused with the corresponding
nodes from the original view extent as due to equivalentids.
Also note that the order is maintained in the refreshed view
extent, as the order encoded in the node identifiere.l¢
indicates that it should come second when compared with

; the other sibling node with id.b..c. f¢. In general, the fi-
= (51 52) LJ (AS1 ba 52) where AS1 is an update nal result we get in Figure 6(d) is equivalent to the result
to S1. This means that we can propagate the upda_te bywe would get if we process the view query over the entire
smply_proces_sm@Sl >3 52 and merging the r_esult with source document after applying the source update to it.
the existing view extentq1 > 52). Applying this to our
running example, and since the example involves a self-
join we treat each access to the same source as a separate
source. Hence, for the view(S1, S1, S2) shown in Fig-
ure 2(a), wheres1 =“pbib.xml” and S2= “prices.xml”, and
as a result of the updatd S1 (shown in Figure 3(a)), we
wish to show thatl’(S1 | | A S1, S1 || A S1, 52) =
V(51,51,52) | | V(AS1,51,52) | | V(S1,A51,52) | | ' ' b) N Gntry
V(AS1,AS1,S52). Thisis also equal t& (S1, .51, .52) | | -f(a)_b,, ()b pF—gb)e.tf (a)b.ib
V(AS1,S1,52) || V(S1', AS1, $2) by merging the third e Gre> - e @D [le) @res)
and the fourth terms and given tht’ = (S1 | | AS1). (a) . (d) (c)

This is possible because when processing the source up- —
dates, our solution reproduces old node identifiers and gen- ~—
erate new ones, as appropriate, in a way that enables fusing
the processed updates with the result. We establish the cor-
rectness of our solution using the following theorem.

Theorem 6.1 Given a viewV= (51, Sz, ..., S») defined over

input XML data source$, Sz, ..., S, by an XAT algebraic ex- “TCPAP." 595"  "Advanced...” "69-99{d) ‘Data..” 3995
pressionT. Let AS; be an update to one df’s data sources

Si, 1 <4 < n. Let yree = ‘/(517 ,SLUAS”,Sn) be the

wherer = r1 = ro.

Our solution enables views to be distributive over the
Deep Unionoperator. This means that we can process in-
sert source updates incrementally without recomputing the
view. For example, if the a view (51, .52) = S1 > 52
is distributive over thddeep Unionoperator, we should be
able to maintain the view as followst’ (S1| |AS1,52)

view extent after recomputation. L&t = V (S, .., Si, .., Sn) || Figure 6. (a) The original view extenV’ (51, S1, 52),
V(Sh,.., AS;, .., S») be the view after propagating and applying (b) the incremental computatioi(AS1, 51, 52), (C) the
the update using thBeep Unionoperator. We find that/ "¢ = incremental computatiol (S1°, AS1, 52), and (d) the re-
V. O freshed materialized view computed as|(&)b) |_|(c).

_ We prove Theorem 6.1 by first proving the distributiv- | yjications of Our Solution. Our semantic id solution
ity of XAT operators. We then prove the distributivity 8 o apjes two important features. (1) Distributive XML query
composed of any number of algebraic operators by induc-p4cessing even for queries involving operations like grou
tion on the height of". The proof can be found in [8]. by, nesting, distinct, and sorting, typically known to beno
Example. First we assign appropriat€lczkeys to the  gisyrinutive. This provides a base for enabling applicagio
new nodes inserted into the source document as Showmie efficient XML incremental view maintenant®and ef-
in Figure 4(b.). Next we process the incremental parts of fiant XML stream processing. (2) Efficient support for
the propagation formula above. NameljtAS1, 51, 52) XML order, where the need to perform intermediate sorting

and V(S51,AS1,52).  Lastly we fuse the results of s emoved and new query optimization opportunities might
propagating the updates with the original view extent open.

(V(S1,51,52)). Figure 6(a) shows the original view ex-
tent (V(S1, S1,52)). Figures 6(b) and (c) show the re-  fojiows the same logic used in the initial execution showFigure 5. The
sults of executing’(AS1, 51,.52) andV(S1’, AS1, 52) detailed execution of those incremental queries can bedfguf8].

respectively®. Merging the incremental results (propagated ~ “°We wish to point out that in this paper we do not propose a filLX
view maintenance solution. Our solution can be a key comioimean
19Due to space limitations we do not show the detailed executio XML view maintenance solution. Such VM solution should asdr other

each of these two plans. Generating semantic ids durin@ thescutions issues like handling other updates types in addition toringelates.




7 Experimental Evaluation for the Cost of processed nodes. Third, the id-based fusion is performed
Generating Semantic Identifiers for the processed XML fragments through a special opera-
We have implemented our semantic id solution in Java tion calledDeep Union Our solution supports an expres-
within the Rainbow system framework [20]. We have per- sive class of XML transformations and does not require any
formed preliminary evaluation using the XMark benchmark manual specification of how identifiers are to be generated
data [16]. Figure 7(a) and (b) show the results obtained or materialization of large auxiliary data. The solutiomca
when using a query that exploits our semantic id system be easily integrated with the XML query processing frame-
intensively. In that query, most of the returned nodes arework and comes with a very small processing overhead to

constructed ones. Hence, a lot of node construction andthe query execution time, as shown by our experiments.

new semantic id generation is required. The query also in-
volves a mixture of order decisions, where some nodes ar
returned in document order and some are returned in an or-
der imposed by the query. Figure 7(a) shows the cost of
generating semantic ids relative to the total query exeauti
time on different input XML document sizes. The figure
shows that this cost is negligible compared to the total cost
of query execution. Figure 7(b) shows the breakdown of the
cost of our approach and compare it to the cost of execution
(using 500MB input document size). The cost of our solu- [4]
tion is mainly composed of three elements. (1) The cost of
computing theOrder and Context Schensa This cost de- 5
pends in the number of operators in the query plan and does
not depend on the size of data. (2) The cost of generating
semantic ids for constructed nodes. This cost depends onl®
the size of processed data and on the amount of node con-7;
struction the query performs. (3) The cost of assigning the
order prefix for the semantic ids. Figure 7(b) shows that [8]
the cost of generating new semantic ids on node construc-
tions is higher than the other two cost element. The cost of (g
generating th®©rder andContext Schengas very small.
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Figure 7. (a) The overhead of generating semantic identi-
fiers to query execution time and (b) the break down of the
cost of generating semantic identifiers.
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8 Conclusions

We have proposed a solution to the problem of incre-
mentally constructing XML views. Our solution utilizes se- [20]
mantic identifiers to perform id-based fusion of XML frag- 211
ments. Our solution is performed in three phases. First,
we define how lineage and order information of processed
XML data is encoded using th@ontext SchemaSecond,
we use th&ontext Schem@a generate reproducible seman-
tic ids for nodes in the XML result and for incrementally

[19]

[22]
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