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Abstract
Many applications, like materialized view maintenance and

stream query processing, construct views incrementally over data
sources. This results in computed pieces of objects that need to be
merged by fusing corresponding objects together. This problem is
challenging when dealing with XML data for many reasons includ-
ing the hierarchical and semi-structured nature of XML data. Also
XML query languages (e.g., XQuery) are capable of performing
complex operations and transformations such as arbitrary nest-
ing and result reconstruction. Moreover, since XML is an ordered
data model, XML order has to be taken into consideration when
constructing XML results incrementally. In this paper we study
the problem of how to fuse XML pieces (fragments) generated by
incrementally processing XML data into XML results. We con-
sider an expressive subset of XQuery language transformations
and propose an id-based solution for this problem that supports
XML order. We prove the correctness of our approach, in partic-
ular that using our mechanism we can correctly yet incrementally
merge XML result fragments. We have implemented our proposed
semantic identifiers solution. Our experimental results show that
it comes with a very small overhead to the query execution time.

1 Introduction
Object fusion is a core operation in information integra-

tion where mediators collect and integrate data objects from
different sources [14]. Such integration needs to support
the process of merging the corresponding objects resulting
from processing the source data objects into the result. In
some applications the data to be processed may not arrive
all at once. One example is materialized view maintenance
applications where source updates are propagated to mate-
rialized views in an immediate or even a deferred mode to
maintain them incrementally. Another example is stream
query processing where data arrives as streaming units at
different times. In such cases we may have an initial mate-
rialized view extent (a partial result) as well as newly com-
puted pieces of data that result over time from processing
source updates (or stream units). These newly computed
pieces of data need to be correctly merged (fused) with the
initial result. This merging issue is relatively easy when
considering relational views because of their flat nature and
known schema. While for XML data this problem is more

challenging due to many factors including the hierarchical
nature of the data, the possibility of no known schema for
the data, and the powerful capabilities of the XML query
languages. XQuery views for example can restructure the
XML view to take on a structure and hierarchical organiza-
tion that is completely different from that of the base data,
possibly turning children nodes into ancestors or generating
multiple copies of the same node. Order is another factor
that adds to the complexity of object fusion in XML views.
Unlike other data models, XML is an ordered data model.
Moreover, XQuery expressions return by default results that
have a well-defined order based on document order unless
otherwise defined. The result of an XQuery path expression
is always returned in document order and the order in the
result of a FLWOR expression can in addition be imposed
by the expression itself in many ways, including the use of
order byclauses, the nesting offor clauses, and the order
defined by thereturn clauses. See [7] for more details.

Motivating Example. We use a materialized view main-
tenance example to motivate the problem. Consider the two
XML document shown in Figure 1. The source document
“bib.xml” stores book information and the source document
“prices.xml” stores prices of books. Consider the simple
XQuery view in Figure 2(a) defined over those two sources
that creates a new XML document with a root node “re-
sult” and a totally new structure. The result of executing
this XQuery expression over the source documents is shown
in Figure 2(b)1. Now consider that the source document
“bib.xml” is updated by appending the new book element
shown in Figure 3(a) and (b) to the end of that XML docu-
ment (reflecting a desired document order). A view main-
tenance solution would need to propagate such an update
into one update that is applicable to the materialized view in
Figure 2(b). The propagated update, shown in Figure 3(c),
needs to be applied correctly to the materialized view to re-
fresh it. Correctly applying the update to the materialized
view means that the refreshed materialized view should be
equivalent to the materialized view we would obtain if we
were to recompute the query over the updated sources. This

1Highlighted nodes represent newly constructed nodes.

1



includes maintaining the correct view order.
The question that we raise now is how to merge (fuse)

the propagated update in Figure 3(c) with the original ma-
terialized view shown in Figure 2(b). This involves decid-
ing for each incrementally propagated node if it should be
merged with any existing node (or even nodes) in the view
extent into possibly one combined node, or if it should be
added as a new node, separate from existing ones, to the
view extent. It also involves deciding how the order of the
materialized XML view is maintained as a result of such an
update to the view extent.

<bib>
<book year = “1994”>

<title>TCP/IP Illustrated</title>
<author>

<last>Stevens</last><first>W.</first>
</author>

</book>
<book year = “2000”>

<title>Data on the Web</title>
<author>

<last>Abiteboul</last>
<first>Serge</first>

</author>
</book>

</bib>

<prices>
<entry>

<price>39.95</price>
<b-title>Data on the Web</b-title>

</entry>
<entry>

<price> 65.95</price>
<b-title>TCP/IP Illustrated</b-title>

</entry>
<entry>

<price> 69.99</price>
<b-title>Advanced Programming in

the Unix environment </b-title>
</entry>

</prices> prices.xmlbib.xml

Figure 1. Two input XML documents “bib.xml” and
“prices.xml”.

<result>{
FOR $y in
distinct-values(doc("bib.xml")//book/@year)
RETURN

<yGroup Y= “{$y}”>
<books>

FOR $b in doc ("bib.xml")//book,
$e in doc (“prices.xml")//entry

WHERE $y = $b/@year and
$b/title = $e/b-title

RETURN
<entry> {$b/title} {$e/price}</entry>

</books>
</yGroup>

</result>

(b)

result

yGroup yGroup

title
“TCP/IP…”

books

entry

price

“65.95”

title

“Data on..”

books

entry

price

“39.95”

Y=“1994”

(a)

Y=“2000”

Figure 2. (A) An XQuery expression defined over the
two XML documents in Figure 1 and (b) the resulting XML
view extent.

In previous view maintenance solutions, this problem
has been addressed in a variety of ways. Some solutions
[1, 2, 22] have materialized large auxiliary data beyond the
actual view contents. Other solutions [11, 14, 17] have used
Skolem functions (or variations of them). We will discuss
these solutions in more details in Section 2.

In this paper we study the problem of object fusion for
XML views that are constructed incrementally. We consider
views defined using the XML query language, XQuery [19],
over XML data sources. These views are capable of per-
forming a large class of complex operations and transfor-
mations including navigation, grouping, aggregation, nest-
ing, unnesting, and element construction. We propose a

<book year = “1994”>
<title>Advanced programming

in the Unix environment</title>
<author><last>Stevens</last><first>

W.</first></author>

</book>

(a) (b)

book

b-title

“Advanced...”

bib

<bib>

……….

</bib>

(c)

result

yGroup

title

“Advanced...”

books

entry

price

“69.99”

Y=“1994”+
Year=“1994”

author

last first
“Stevens” “W.”

Figure 3. (a) A new “book” element to be inserted into the
source document “bib.xml” shown in Figure 1, (b) the cor-
responding XML tree, and (c) the expected result of propa-
gating the update through the view in Figure 2(a).

mechanism for generating semantically meaningful identi-
fiers for processed XML nodes. These semantic identifiers
are reproducible for corresponding objects2, hence enable
identifier-based fusion. They also encode lineage and order
information for view nodes in a compact way.

Our solution works at the algebraic query representation
level. In the first phase it takes the query algebra tree as
input and automatically defines rules of how lineage and
order specifications can be computed for processed nodes.
We call such lineage and order specification theContext
Schema. This phase takes place during the query plan gen-
eration and optimization phase. In the second phase, se-
mantic identifiers are generated for processed nodes based
on theContext Schemapreviously defined in the first phase.
This step takes place during query execution time. We sum-
marize the contributions of this paper as follows: (I) we
propose a mechanism for generating “semantically mean-
ingful” node identifiers for XML views. Such identifiers
can be used to incrementally fuse XML fragments to con-
struct results. To the best of our knowledge our solution
is the first solution that provides all the following advan-
tages: (i) it supports an expressive class of XQuery views
(ii) it is fully automated, it does not, for example require the
definition of Skolem functions on the query syntax level by
the end user (iii) the semantic identifiers that we generate
compactly encode lineage information for XML nodes in
the result, hence enabling tracing back to the source nodes,
(iv) The semantic identifiers that we generate also encode
order information of nodes, hence enabling order-aware in-
cremental result construction. (II) We define a mechanism
for the id-based fusion for XML fragments using theDeep
Union operation. (III) We prove the correctness of our ap-
proach. In particular we prove that the result of merging the
incrementally processed data is equivalent to the result we

2This means that the semantic id generated for a newly processed node
(resulting for example from a source update) is guaranteed to be equivalent
to the id of an existing node in the result if there exists sucha node that
semantically corresponds to the newly processed node.
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would obtain if we were to execute the query over the en-
tire source. (IV) We have implemented and integrated our
proposed solution within the Rainbow XML query engine
[20] and have tested its performance. The results of our
experiments show that our solution comes with very small
overhead to the query execution time.

The rest of this paper is organized as follows. In Section
2 we discuss related work. Section 3 gives the necessary
background. Section 4 describes how we encode derivation
and order specifications through theContext Schema. Sec-
tion 5 discusses how we generate the semantic identifiers
from the Context Schema. Section 6 shows how we use
the semantic identifiers for fusing processed XML nodes.
Section 7 gives the results of our experimental evaluation.
Lastly, Section 8 provides conclusions.

2 Related Work
A core operation to materialized view maintenance is the

apply phase, namely the application of propagated updates
to materialized views. This involves determining how to
correctly merge (fuse) propagated updates with the materi-
alized views. This problem is more challenging in the con-
text of object-oriented and semi-structural data models than
in the context of the flat relational data model. Many view
maintenance solutions (e.g., [1], [2], and [22]) require ma-
terializing and maintaining large auxiliary data in order to
be able to perform this task. For example, for maintain-
ing the simple graph structured views (Select-Where views)
used in [22] each view object needs to be annotated with
identifiers of all the source objects from which the object is
derived from. Unlike the approaches above we do not re-
quire the use of auxiliary data to relate view extent objects
to their sources. Some view maintenance solutions (e.g.,
[4] and [11]) have avoided such need to materialize aux-
iliary data through the use of mechanisms for generating
reproducible identifiers for the view objects. For example,
the work proposed in [11] for maintaining semi-structured
views annotates edges in processed trees with special keys
that can be used in the fusion process. The proposed key
system may generate keys with a deeply nested structure. It
also comes with some limitations to the view maintenance
solution itself including limitations on updating source val-
ues used in constructing the keys. Other solutions (e.g., [4]
and [14]) have used Skolem functions to generate identi-
fiers that can be used for fusing propagated updates with
materialized views. Skolem functions were first used in the
context of object-oriented systems [12] to produce object
identifiers and were used later in many integration and me-
diation systems [14, 15]. The use of Skolem functions typi-
cally requires specifying these functions at the query syntax
level by indicating what input is to be used by them to gen-
erate the identifiers. Papakonstantinou et al. [14] have pro-
posed a technique for generating semantic object identifiers
based on a special use of Skolem functions to fuse semi-

structured data specified using the MSL mediator specifica-
tion language. This work [14] supports only simple views
and requires semantic identifiers to be defined as part of the
mediator specification process. To the best of our knowl-
edge no Skolem function solution supports incremental fu-
sion of the class of XML views that we consider including
order-aware views. For example, no Skolem function so-
lution supports the unique identification and order seman-
tics of views that allow multiple copies of the same source
node (or constructed nodes bound to the same source nodes)
to appear as siblings in the result. This is important for
incremental view maintenance since certain updates to the
source node might, for example, insert (or delete) only one
of the node copies and not the others. This would also affect
the local order among the node siblings in the view extent.
Unlike the approaches that use Skolem functions or similar
mechanisms to generate identifiers, our solution does not re-
quire manual specification of what input values they should
take to generate ids, when writing the query.

In the context of their data integration work, Ives et al.
[10] have proposed a solution for combining and restructur-
ing XML views over streaming XML data by adding special
extra attributes to the intermediate tuples. Their solution
does not support the case of 1:n parent-child relationships
in the returned output in which an element can occur more
than once in different combinations of input bindings. This
restricts the solution from handling query expressions with
correlated nested sub-queries, which are very common in
XQuery. Fegaras et al. [9] have proposed a mechanism
for assembling streamed XML fragments to construct the
XML result on the client side. Their solution is based on
a special annotation called the fillers-holes annotation. The
work in [9] requires fillers and holes to be defined before
streaming the XML fragments. Once an XML fragment is
streamed only fillers to previously defined holes into it can
be processed. New inserts to other locations in the XML
fragments afterwards are not allowed.

Our work relates to the problem of handling order in
XML query processing since the generated identifiers also
encode order information. In [7] we have studied this prob-
lem of XML order. We now extend and optimize our so-
lution proposed there in support of handling integrated se-
mantic identifiers.

3 Background
XQuery. We consider an expressive subset of the

XQuery language [19]. This subset includes XPath expres-
sions, nested FLWOR expressions, element constructors3.

Source Node Identifiers.By node we mean an XML el-
ement, attribute, or text. We use Fast Lexico-graphical keys
(FlexKeys) encoding [6] for encoding source node iden-
tifiers and order in XML trees. TheFlexKey encoding

3The grammar of this subset is described in [8].
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is similar to theDewey encoding [18], it encodes hierar-
chy and order information for each source node. Yet, the
FlexKey uses variable length byte strings instead of num-
bers. Figure 4(a) shows theFlexKey encoding of nodes
in the “bib.xml” XML document in Figure 1, Figure 4(b)
shows theFlexKey encoding for the source update shown
in Figure 3(b), and Figure 4(c) shows theFlexKey encod-
ing of nodes in the “prices.xml” XML document in Figure
1.

bib

book book

title
title

b

b.b b.f

b.b.b
b.f.b

“TCP/IP..”

“Data…”author

b.b.f

last

b.b.f.b

“Stevens” “Serge”
first

b.b.f.f

“W.” “Abiteboul”

author
b.f.f

first

b.f.f.f

last

b.f.b.f

(a)

Year=“1994”
Year=“2000”

prices

entry entry

price price

e

e.b
e.f

e.b.b e.f.b

“Data…”
b-title

e.b.f

b-title
“39.95” “65.95” “TCP/IP..”

entry

price

e.l

e.l.b

b-title
“69.99” “Advanced..”

e.f.f e.l.f

bib

book

title

b

b.l

b.l.b

“Advanced …”

Year=“1994”

author
b.l.f

last

b.l.f.b

first

b.l.f.f

“Stevens” “W.”

(b)

(c)

Figure 4. The Lexicographical key encoding for (a) the
XML document “bib.xml” in Figure 1, (b) the newly in-
serted “book” element to that document (as shown in Figure
3), and (c) the XML document “prices.xml” in Figure 1.

The XML Algebra XAT. We use the XML algebra
calledXAT [21]4 implemented in the Rainbow engine [20]5.
Figure 5 shows an algebraic representation for the XQuery
in Figure 2(a) using the XAT algebra.

Data Model. The data model for the XAT algebra is a
tabular model called XAT table. Typically, an XAT operator
takes as input one or more XAT tables and produces an XAT
table as output. An XAT table is an order-sensitive table
of tuples. The column names in an XAT table represent
either a variable binding from the user-specified XQuery or
an internally generated variable name.

XAT Operators. An XAT operator is denoted as
opout

in (s), whereop is the operator type symbol,in repre-
sents the input parameters,out the newly produced output
column that is to be appended to the output table generated
by the operator ands the input XAT table(s). Some XAT op-
erators and their XAT tables are shown in Figure 56. The re-
lational complete subset of the XAT algebra includesSelect
σc(R), Cartesian Product×(R, P ), Theta Join1c (R, P ),

Left Outer Join
◦
1Lc(R, P ), Distinct δcol(R), Group By

γcol[1..n](R, func) Order Byτcol[1..n](R), Union∪(R, P ),
Intersection

⋂
(R, P ), Difference−(R, P ), and the column

4This algebra is similar to NAL [13] and SAL [3] algebras.
5Translating XQuery expressions to XAT algebra can be found in [8].
6We discuss the details of algebra tree execution later in this paper.

renaming operatorNameρcol1,col2(R), whereR andP de-
note XAT tables. Those operators are equivalent to their
relational counterparts7 with added responsibility of main-
taining order.

SS ””bib.xmlbib.xml””
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Figure 5. An algebra tree for the XQuery in Figure2(a).
Annotations appearing in subscript font to the left (or be-
low) column names represent theContext Schema. Shaded
column names represent theOrder Schema. Both schemas
are presented in Section 4.

We now describe some of the XAT XML-specific op-
erators.SourceScol′

xmlDoc is a leaf node in an algebra tree
that takes the XML documentxmlDoc and outputs an
XAT table with a single columncol′ and a single tuple
tout1 = (c1,1), wherec1,1 is the XAT table cell that con-
tains a reference to the entire XML document.Navigate
Unnestφcol′

col,path(R) unnests the element-subelement rela-
tionship through a navigation followed by an unnest.Navi-
gate CollectionΦcol′

col,path(R) is similar toNavigate Unnest,
except it only performs the navigation functionality without
unnesting. It extracts a collection from each node in column
col. Combine Ccol(R) groups the content of all cells in

columncol into one sequence.XML Union
x
∪

col

col1,col2(R)
is used to union multiple sequences into one sequence. For
each tupletini from R, it creates one output tupletouti,
wheretouti[col] is a sequence containing the members of

7The operatorGroup Byhere is more powerful than its relational coun-
terpart as it may take any arbitrary sub-query or function. This allows the
Group Byto perform nesting operations as well as grouping operations.
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the settini[col1] ∪ tini[col2]. Tagger T col
p (R) creates a

new columncol in which it constructs new XML nodes by
applying the tagging patternp to each input tuple.

Other XAT XML-specific operators include:XML

Unique υcol′

col (R), XML Intersection
x
∩

col

col1,col2(R), XML

Difference
x
−

col

col1,col2(R), andExposeǫcol(R). See [8] for
details on those operators.

4 The Context Schema: Encoding Node Lin-
eage and Order Information

In this section we show how we encode lineage and or-
der specification for processed XML nodes, referred to as
theContextof the nodes. We will use this encoding later to
generate semantic identifiers for nodes in the XML result.
We require that aContextspecification is defined for each
node and collection of nodes processed by the query. While
at first sight this may seem expensive to maintain, it is not.
We only define theContextspecificationsschematically, at
the schema level of the query execution model (the column
names of intermediate XAT tables in our case). We call
such schema-level method of defining theContexttheCon-
text Schema. TheContext Schema, defined for each column
in the intermediate XAT tables, is generated during query
translation and optimization time. During query execution
time, we might need to obtain theContextitself for a given
node when we generate or manipulate semantic identifiers.
But such actual access of nodes is only limited to a few
query operations, as we will show later in Section 5.

Definition 4.1 We define theContext cxt of a node (or a col-
lection of nodes) as a tuple (lngCxt, ordCxt), wherelngCxt

the Lineage Context of the node is composed of a sequence of lin-
eage values (lngV al1, lngV al2,.., lngV alv), and ordCxt the
Order Context of the node is either (I) a sequence of order values
(odrV al1, odrV al2,.., odrV aly) or (II) a null value. A lineage
valuelngV ali, 1 ≥ i ≥ v, can be (1) a source node identifier, (2)
a source data value, or (3) a special constant “*” . An order value
odrV alj , 1 ≥ j ≥ y, can be (1) a source node identifier or (2) a
newly generated order key by the query.

TheLineage Context(lngCxt) of a processed node (or a
collection) can be (1) driven directly from a specific source
node, (2) driven from a certain data value from the domain
of values of the source XML document, (3) not related to a
specific source node or value (this case applies only to col-
lections of nodes), (4) a composition of one or more of (1),
(2), and (3). For (1) we use the relevant source node identi-
fier to describe the lineage. For (2) we use the value that the
node is bound to, to describe the lineage. For (3) we use a
special constant “*” to describe the lineage, indicating that
the collection itself is not bound to any specific source node.
This last case occurs if at a point of the query execution the
entire result is composed of one big collection of nodes (this
occurs when using aCombine operator), hence the lineage

for the entire collection depends on all (“*”) the lineage of
the nodes it is composed of. To understand theOrder Con-
text(ordCxt) for processed XML node (or a collection) we
need to consider three possible scenarios for order among
nodes during certain point of query execution. (I) The or-
der among the processed nodes, or even between processed
collections of nodes, follows document order8. For this case
theOrder ContextordCxt assigned to a processed node is a
sequence of order values, where an order value is an identi-
fier of a source node that reflects the document order of the
processed node9. (II) The order is imposed by the query and
is different than the document order (e.g., as a result of some
order byclauses). In this case theOrder ContextordCxt

assigned to a processed node is a sequence of order values.
(III) There is no order among processed nodes (or processed
collections). In this case theOrder Contextassigned to a
processed node isnull, signifying that there is no order de-
fined. This case happens when the order is destroyed as a
result of certain query operation (e.g.,Distinct).

We will now discuss how theLineage Contextand the
Order Contextare encoded using theContext Schema. We
first define theOrder Schema(ShortlyOS) to represent the
order between tuples in an XAT table. AnOrder Schemais
a sequence of column names from an XAT table where the
order between tuples of the table can be determined solely
by comparing theFlexKeys in those columns.

Definition 4.2 TheOrder SchemaOSR of an XAT tableR in
an algebra tree is a sequence of column names, where the order
among tuples in that table can be found by comparing the values
projected from these columns.

For example, in the output XAT table of operator#6 in
Figure 5, theOrder Schemais column$b (we use shaded
column name to represent that). The order among any two
tuplest1 and t2 in that XAT table can be derived by lex-
icographically comparingt1[$b] to t2[$b]. In general, the
order among cells in each column is reflected by theCon-
text Schemaof the column, as we will see next. Yet, the
order among tuples in the XAT table as whole, may be of
importance in some cases. In particular when the query in-
volves join operations. Hence, theOrder Schemais only
maintained for queries with joins. See [8] for rules to com-
pute theOrder Schema.

Definition 4.3 TheContext Schema(CxtSma) for a columncol
in the XAT table (corresponding to an implicit or an explicitquery
variable binding) is a rule that defines how the Context (lineage
and order specifications) of nodes (or collections of nodes)in that
column can be extracted.
CxtSma ::= (Order)? + Lineage
Order ::= "()" | "("+OrdCols+")"
OrdCols ::= colName + ("," + OrdCols) *

8Note that this does not only apply to source nodes but may alsoapply
to constructed nodes constructed over source nodes.

9If the Lineage Contextitself reflects the order, we define theOrder
Contextas an empty sequence of order values.
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Lineage ::= "[]" | ("[" + LngCols + "]")
LngCols ::= (colName | colsUnion) +

(","+ (colName| colsUnion)) *
colsUnion ::= (colName + "{" + ColID+ "}") +

(colName + "{" + ColID + "}")
ColID :: FlexKey

The Context Schema(CxtSma) for a columncol is a
composition of an optional order prefix phrase (Order) and
a lineage phrase (Lineage). The order phrase can be an
empty list ”()” indicating that the order information of nodes
in col can be derived from the lineage phrase. In that case
there is no need to have an extra encoding for order. If the
lineage phrase does not reflect the correct order, the order
phrase will contain a list of column names (colName) that
determine how the order of nodes incol can be derived. The
absence of the order prefix phrase (equals tonull) indicates
that no order is defined for the column. In other words the
Order Contextfor any node in that column isnull. In gen-
eral, the order encoding in theContext Schemaof a column
enables us to derive the order among cells in that column.

The lineage phrase is a list of XAT table column names
from which the lineage of nodes incol can be derived.
The list can be empty ”[]” indicating that the lineage of
the column is related to itself. A non-empty list may con-
tain regular column names (colName) and/or annotated
column names (colsUnion). An annotated column name
(colsUnion) is a column name annotated with an identifier
(ColID), namely aFlexKey identifier that is assigned by
theXML Unionoperator and is unique for each unioned col-
umn. It is used to distinguish each column used as input to
the union operation. This is used later when we generate the
semantic identifiers, to ensure the uniqueness of nodes orig-
inating from different input columns when unioned.ColID

also helps in maintaining the order among nodes originating
from different unioned columns.

Computing the Context Schema.TheContext Schema
is first created for theSource operator since it is the leaf
operator in any XAT algebra tree. Other operators may
createContext Schemas for newly created columns or ma-
nipulate theContext Schemafor existing columns. Table
1 shows rules for generating and manipulating theCon-
text Schema. Table 1 uses the following conventions: (1)
col.ord to refers to theOrder Contextof a columncol, (2)
col.lng to refers to theLineage Contextof a columncol, (3)
p.col to refers to the column in a tagger patternp, (4)R[coli]
to refers to the column with index i in the XAT tableR, (5)
R[coli].cxtSma to refers to theContext Schemafor a col-
umncoli in the XAT tableR, and (6)R.OS to refers to the
Order Schemaof the XAT tableR.

We now discuss theXML Unionas an example of com-
puting theContext Schema10. The XML Union operator
x
∪

col

col1,col2(R) creates new collections in columncol from

10See [8] for discussion on all operators.

the contents of columnscol1 andcol2. TheLineage Con-
textof the new columncol is derived from theLineage Con-
text of both columnscol1 and col2. Hence theLineage
Context for col will be [col1.lng{fk1}, col2.lng{fk2}]
wherefk1 and fk2 are identifyingFlexKeys to distin-
guish between the two columns11. For example if an
XML Unionoperator is used for creating a collection from
two columnscol1 and col2 the Context Schemamight be
[col1.lng{a},col2.lng{b}]. Herea and b reflect the order
in which the columns are unioned. If theOrder Contextof
each of the source columns (col1 andcol2) is equivalent to
its Lineage Context, then the order context ofcol is assigned
to itsLineage Context. Otherwise, theOrder Contextof col

is set to union of theOrder Contexts of the source columns.
Example. Figure 5 shows how theContext Schemais de-

fined for columns in the intermediate XAT tables based on
the rules shown in Table 1. TheContext Schemais shown
in a subscript font to the right of column names (or below
them). The output XAT table of operator# 3, for exam-
ple, has one column ($y) representing the distinct values of
years. Based on the rules in Table 1 it is assigned aLineage
phrase that references itself[] and a nullOrder phrase (in-
dicating that there is no order semantics for that column).
The output XAT table of operator# 6 has two columns
($b and$col1). Column ($b) contains the node identifier
of extracted books. TheLineagephrase assigned to that
column is derived from itself[], as this column is obtained
through aNavigate Unnestoperation. TheOrder phrase of
that column is set to(), signifying that it is equal to the
Lineagephrase ($b). Hence, if we wish to derive the order
between nodes in column$b we compare theFlexKeys in
that column lexicographically. Column$col1 gets aContext
Schema()[$b] (based on the second case in rule category III
in Table 1). TheLOJ operator (# 7) does not affect theLin-
eagephrase. It only changes theOrder phrase. It uses the
Order Schemaof the input tables (highlighted columns) and
the input column’sOrder phrase to determine the newOr-
der phrase. Based on the rules in Table 1, theOrder phrase
of column$y is set to($b). TheOrder phrase of column
$b is not affected because the left input table has noOrder
Schema. TheJoin operator (# 10) also sets only theOrder
Schemaof its output columns$y, $b, and$e as shown in
Figure 5. Note that for the operators on top of the operator
# 10, theOrder Schemais no longer needed to compute
theContext Schemarules, since there is no otherJoin op-
erations. Hence, theOrder Schemais not defined for those
other operators.

As a result of theNavigate Collectionoperators# 11
and# 12, columns$col2 and$col3 are created and each
of them is assigned aContext Schemathat is derived from
that of the column it was extracted from. TheXML Union

11This identifying extension is used later when we generate the semantic
identifiers to ensure uniqueness of the identifiers and to reflect order.
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Cat. Operatorop Affected column Assigned Context Schema Node Level operation
I Scol

xmlDoc col ()[col] or shortly()[] None

II Φcol′

col,path(R) col′ if(col.ord == empty), ()[col.lng] None
elseif(col.ord == null), [col.lng]
else, (col.ord)[col.lng]

III φcol′

col,path(R) col′ if((col.ord == empty)||(col.ord == null)), ()[] None
else if (path navigate to text node),(col.ord)[col.lng]
else, (col.ord + col′)[]

IV Ccol(R) col [∗] for each tuplet in R apply
assignOverRidOrd(t, col)

V T col
p (R) col if(p.col.ord == empty), ()[col] for each tuplet in R apply

elseif(p.col.ord == null), [col] composeNodeIds(t, col, p)
else, (p.col.ord)[col]

VI γcol[1..n](R, Ccol) All columns if (grouping by id),(col1.ord, .., coln.ord)[col1.lng, .., coln.lng] The Combine operator uses the function
else if (grouping by value),[col1.lng, .., coln.lng] assignOverRidOrd

VII
x
∪

col

col1,col2(R) col if((col1.ord == empty)&&(col2.ord == empty)), for each tuplet in R apply
()[col1.lng{fk1}, col2.lng{fk2}] assignColIdPrfx(t, col1, col2)

else, (col1.ord, col2.ord)[col1.lng{fk1}, col2.lng{fk2}]
(wherefk1 andfk2 are Flexkeys reflecting order)

VIII υcol′

col1(R) col′ if(col1.ord == empty), ()[col1.lng] None
x
∩

col′

col1,col2(R) elseif(col1.ord == null), [col1.lng]
x

−
col′

col1,col2(R) else, (col1.ord)[col1.lng]
ρcol1,col′ (R)

IX δcol(R) All columns [col.lng] None
X ×(R, P ) R[col1..colm] for(i = 1; i <= m; i + +) None

1c (R, P ) R[coli].CxtSma = (R[coli].ord + P.OS)[R[coli].lng]
◦

1Lc(R, P ) P [col1..coln] for(i = 1; i <= n; i + +)
P [coli].CxtSma = (R.OS + P [coli].ord)[P [coli].lng]

XI σc(R) None N/A None
XII τcol[1..n](R) R[col1..colm] for(i = 1; i <= m; i + +) None

R[coli].CxtSma = (col[1..n])[R[coli].lng]

Table 1. Rules for computing theContext Schemafor different XAT operators.

operator (operator# 13) creates new collections in col-
umn$col4 from the contents of columns$col2 and$col3.
Hence, theLineagephrase of column$col4 becomes a com-
position of theLineagephrases of columns$col2 and$col3
which is [$b{a}, $e{b}] after assigning the special column
source identifiersa and b. The Order phrase of the new
column $col4 is derived from theOrder phrases of both
input columns. Hence, it becomes($b, $e, $b), or simply
($b, $e), since removing the redundant$b will not affect the
order semantics. And since thisOrder phrase is equivilant
to theLineagephrase, we simply set theOrder phrase to
(). The Taggeroperator (operator# 14) constructs new
nodes in column$col5 assigning a “self”Lineagephrase to
it [] and anOrder phrase equal to()12. TheGroup Byop-
erator (operator# 15) changes theLineagephrases of all
the output columns to be equivalent to theLineagephrase
of the grouping column$y. It also sets theOrder phrase
of the output columns tonull since theGroup Bydestroys
the order among tuples (created groups)13. The remaining
operators in the algebra tree are easy to follow.

12Note that only columns$y and$col5 remain in the output at this point.
Other columns are pruned out through an optimization process that dis-
cards columns that are not used by later operators or that arenot referenced
by theContext Schemaof any column.

13Since this is a value-basedGroup By. An id-basedGroup By(repre-
senting a nesting operation) would define certain order among the create
groups, as shown in Table 1.

5 Generating Semantic Identifiers from the
Context Schema

We now describe how we utilize theContext Schemato
generate the semantic ids for processed XML nodes.

Definition 5.1 TheSemantic Identifier(SemID) is an identifier
assigned to a node in the XML result. Such identifier is locally
unique (among sibling nodes) and carries lineage information that
references the source from which the node is derived. It alsoen-
codes local order of the nodes among sibling nodes.SemID is a
composition of an optional order id prefix term (OrdPrefix) and
a body part that can be a base node id (BaseNodeID) or a con-
structed node id (ConstNodeID). The body part carries lineage
information and determines the node type (source node or con-
structed node).
SemID ::= (OrdPrefix)? + (BaseNodeID | ConstNodeID)
OrdPrefix ::= "˜" | OverRideOrd
OverRideOrd ::= "(" + FlexKey + ")"
BaseNodeID ::= FlexKey
ConstNodeID ::= LngCxt + "c"
LngCxt ::= (FlexKey | " * " |StringLiteral) +

(".." + LngCxt) *

In many cases, the lineage information encoded in the se-
mantic id body can reflect the node order as well. If this is
not the case then a special order prefix (OrdPrefix) is added
to the semantic id body. The prefix order id can be either a
FlexKey representing a new order that overrides the order
implied by the lineage information encoded in the seman-
tic id body or a special constant “∼” indicating that there

7



is no order defined locally for the node. The body of the
semantic id depends on the type of the node. A node in the
view extent can be of two types: (I) a base node originating
from a source document that is exposed without any mod-
ifications14, or (II) a newly constructed node. The body of
the semantic idSemIDfor a base node that is exposed in the
view is simply the same as its id (aFlexKey). The body
of SemIDfor a constructed node is composed of aLineage
Contextvalue (LngCxt) and a constant suffix (c) indicating
that the id reflects a constructed node. TheLineage Context,
as we discussed earlier can be a reference to aFlexKey, a
reference to string value from the domain of values of the
source XML document, a constant “*”, or a composition of
one or more of them separated by a delimiter “..”. ThisLin-
eage Contextcan be derived from theLineagephrase of the
Context schemaduring query execution.

The last column in Table 1 shows the node-level oper-
ations required for actually generating and maintaining se-
mantic ids. As shown in Table 1, we require node-level ac-
cess for only four algebra operations. Namely, theCombine,
the Tagger, the XML Union, and theGroup Byoperators.
We define two functionsgetLngCxt() andgetOrdCxt()
that when invoked for a node (or collection) return theLin-
eage Contextand theOrder Contextof that node (or collec-
tion), respectively.

We now discuss, briefly, the logic of the functions in Ta-
ble 115 (1) The functiongenerateNodeId is used by the
Tagger operator to generate semantic id for the newly con-
structed nodes. This includes setting the order prefix, if nec-
essary. (2) The functionassignColIdPrfx is used by the
XML Unionoperator to assign the order prefix part of the se-
mantic id for nodes originating from different columns. (3)
The functionassignOverRidOrd is used by theCombine

operator to set the order prefix part of the semantic id for
combined nodes. (4) The functionassignOverRidOrd is
also used by theGroup Byto set the order prefix part of the
semantic id for nodes in the created groups16.

Example. In the algebra tree in Figure 5 we note that
before theXML Union(operator# 13) query processing is
performed normally without the need to perform any addi-
tional id-specific operations. TheXML Union (operator#
13) assigns source column prefix order ids (a andb) to the
nodes in the new column$col4. TheTagger(operator# 14)
constructs new nodes “entry” from the collections in$col4
using theContext Schemaof $col4. TheLineagephrase of
column$col4 consists of columns$b and$e. Hence, we
derive the body of the semantic id from corresponding pro-
jected nodes in those columns. Since theOrder phrase also
refers to the same columns “()”, we conclude that the se-

14Such node is an exact copy of the source node including its subtree.
15The algorithms can be found in [8].
16Although that the value-basedGroup Bydoes not define order between

created groups, there might be order among nodes in each group.

mantic id body can represent the order. For example, for
the first tuple in the XAT table we generate the semantic id
b.b..e.f c for the newly constructed node in column$col517.
This new node becomes a parent to the collection contain-
ing the two nodes(a)b.f.b and(b)e.f.f .

The Group By(operator# 15) groups the constructed
nodes in column$col5 by the year (column$y). TheOr-
der phrase of the grouped column ($col5) indicates that the
ids in that column already reflect the order. Hence we do
not assign any prefix node ids. TheTagger(operator# 16)
constructs new nodes “books” for the collections in column
$col5. The created nodes are assigned semantic ids that are
derived from the “year” values in column$y. And since
theorder phrase of column$col5 is null, theTaggeroper-
ator assigns a prefix order constant “∼” to each new node,
indicating that no-order is defined for those nodes. For ex-
ample, the first constructed node is given a semantic node
id ∼ 1994c and is becoming the parent for the collection
with one “entry” node with idb.b..e.f c. TheTagger(oper-
ator# 17) constructs new nodes “yGroup”. with semantic
ids∼ 1994c (on top of the “books” node with id∼ 1994c)
and∼ 2000c (on top of the “books” node with id∼ 2000c).
Next theCombine(operator# 18) creates a collection out
of those nodes. The input column ($col7) for theCombine
operator has anull Order Context. Hence, nodes in the cre-
ated collection keep their no-order prefix (∼). Finally the
Tagger(operator# 19) constructs a root node for the re-
sult on top of the collection in column$col7. The semantic
id assigned to this root node is∼ ∗c as derived from the
Context Schemaof column$col7.

The final result of executing the query is shown in Figure
6(a). Note that the generated semantic ids serve as local
unique ids for nodes and at the same time encode the nodes
local order (semantic ids that start with∼ reflects no-order
semantics).

6 XML Fusion Using Semantic Identifiers
We first define a mechanism for merging XML frag-

ments processed incrementally with the existing XML re-
sult. For this we use theDeep Unionoperator. TheDeep
Union operator was introduced in the context of the semi-
structured data model in [5]. We here adapt theDeep Union
operation to the general XML tree model.

Definition 6.1 TheDeep Union(
F

) of two XML trees18 t1 =
(r1 : ch1) and t2 = (r2 : ch2) unions their root nodesr1 and
r2 by node identifier and recursively performs deep union on their
respective lists of child nodesch1 andch2. The resulting XML tree
includes all nodes in the two XML trees with only one occurrence
of any matching nodes (by node ids) from the two trees.

17The semantic id itself reflects the desired order (document order of
the source “book” node as major order and document order of the source
“entry” node as minor order.

18Each XML tree is annotated with semantic node identifiers.

8



r1

G

r2 =



r1 ∪ r2 if r1.id 6= r2.id

r : (ch1

F

ch2) if r1.id = r2.id

wherer = r1 = r2.

Our solution enables views to be distributive over the
Deep Unionoperator. This means that we can process in-
sert source updates incrementally without recomputing the
view. For example, if the a viewV (S1, S2) = S1 ⊲⊳ S2
is distributive over theDeep Unionoperator, we should be
able to maintain the view as follows:V (S1

⊔
△S1, S2)

= (S1 ⊲⊳ S2)
⊔

(△S1 ⊲⊳ S2) where△S1 is an update
to S1. This means that we can propagate the update by
simply processing△S1 ⊲⊳ S2 and merging the result with
the existing view extent (S1 ⊲⊳ S2). Applying this to our
running example, and since the example involves a self-
join we treat each access to the same source as a separate
source. Hence, for the viewv(S1, S1, S2) shown in Fig-
ure 2(a), whereS1 =“bib.xml” and S2= “prices.xml”, and
as a result of the update△S1 (shown in Figure 3(a)), we
wish to show thatV (S1

⊔
△ S1, S1

⊔
△ S1, S2) =

V (S1, S1, S2)
⊔

V (△S1, S1, S2)
⊔

V (S1,△S1, S2)
⊔

V (△S1,△S1, S2). This is also equal toV (S1, S1, S2)
⊔

V (△S1, S1, S2)
⊔

V (S1′,△S1, S2) by merging the third
and the fourth terms and given thatS1′ = (S1

⊔
△S1).

This is possible because when processing the source up-
dates, our solution reproduces old node identifiers and gen-
erate new ones, as appropriate, in a way that enables fusing
the processed updates with the result. We establish the cor-
rectness of our solution using the following theorem.

Theorem 6.1 Given a viewV = (S1, S2, ..., Sn) defined over
input XML data sourcesS1, S2, ..., Sn by an XAT algebraic ex-
pressionT . Let △Si be an update to one ofT ’s data sources
Si, 1 ≤ i ≤ n. Let V rec = V (S1, .., Si

F

△Si, .., Sn) be the
view extent after recomputation. LetV ′ = V (S1, .., Si, .., Sn)

F

V (S1, ..,△Si, .., Sn) be the view after propagating and applying
the update using theDeep Unionoperator. We find thatV rec =
V ′. 2

We prove Theorem 6.1 by first proving the distributiv-
ity of XAT operators. We then prove the distributivity ofV

composed of any number of algebraic operators by induc-
tion on the height ofT . The proof can be found in [8].

Example. First we assign appropriateFlexkeys to the
new nodes inserted into the source document as shown
in Figure 4(b). Next we process the incremental parts of
the propagation formula above. Namely,V (△S1, S1, S2)
and V (S1′,△S1, S2). Lastly we fuse the results of
propagating the updates with the original view extent
(V (S1, S1, S2)). Figure 6(a) shows the original view ex-
tent (V (S1, S1, S2)). Figures 6(b) and (c) show the re-
sults of executingV (△S1, S1, S2) andV (S1′,△S1, S2)
respectively19. Merging the incremental results (propagated

19Due to space limitations we do not show the detailed execution of
each of these two plans. Generating semantic ids during those executions

updates in 6(b) and (c)) with the original view extent (in
Figure 6(a)) using theDeep Unionoperator results in the
refreshed view extent shown in Figure 6(d). Note that as
a result of that, only the XML fragment with root node
b.l..e.lc is added to the view extent. Other nodes that appear
in the propagated updates are fused with the corresponding
nodes from the original view extent as due to equivalent ids.
Also note that the order is maintained in the refreshed view
extent, as the order encoded in the node identifierb.l..e.lc

indicates that it should come second when compared with
the other sibling node with idb.b..e.f c. In general, the fi-
nal result we get in Figure 6(d) is equivalent to the result
we would get if we process the view query over the entire
source document after applying the source update to it.
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(d)
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books
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“65.95”
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books

entry
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“39.95”
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~1994 c ~2000c
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(a)b.b.b (b)e.f.f (a)b.f.b (b)e.b.f

Y=“1994”
Y=“2000”

title
“Advanced...”

entry
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“69.99”

b.l..e.lc

(a)b.l.b (b)e.l.f

b.b..e.fc

(a)b.b.b (b)e.f.f

~1994 c

~1994c
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books
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b.l..e.lc

(a)b.l.b (b)e.l.f

~1994 c
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(c)
“Advanced...” “69.99”“TCP/IP…” “65.95”

Y=“1994”

Figure 6. (a) The original view extentV (S1, S1, S2),
(b) the incremental computationV (△S1, S1, S2), (c) the
incremental computationV (S1′,△S1, S2), and (d) the re-
freshed materialized view computed as (a)

F

(b)
F

(c).

Implications of Our Solution. Our semantic id solution
enables two important features. (1) Distributive XML query
processing even for queries involving operations like group
by, nesting, distinct, and sorting, typically known to be non-
distributive. This provides a base for enabling applications
like efficient XML incremental view maintenance20 and ef-
ficient XML stream processing. (2) Efficient support for
XML order, where the need to perform intermediate sorting
is removed and new query optimization opportunities might
open.

follows the same logic used in the initial execution shown inFigure 5. The
detailed execution of those incremental queries can be found in [8].

20We wish to point out that in this paper we do not propose a full XML
view maintenance solution. Our solution can be a key component in an
XML view maintenance solution. Such VM solution should address other
issues like handling other updates types in addition to insert updates.

9



7 Experimental Evaluation for the Cost of
Generating Semantic Identifiers

We have implemented our semantic id solution in Java
within the Rainbow system framework [20]. We have per-
formed preliminary evaluation using the XMark benchmark
data [16]. Figure 7(a) and (b) show the results obtained
when using a query that exploits our semantic id system
intensively. In that query, most of the returned nodes are
constructed ones. Hence, a lot of node construction and
new semantic id generation is required. The query also in-
volves a mixture of order decisions, where some nodes are
returned in document order and some are returned in an or-
der imposed by the query. Figure 7(a) shows the cost of
generating semantic ids relative to the total query execution
time on different input XML document sizes. The figure
shows that this cost is negligible compared to the total cost
of query execution. Figure 7(b) shows the breakdown of the
cost of our approach and compare it to the cost of execution
(using 500MB input document size). The cost of our solu-
tion is mainly composed of three elements. (1) The cost of
computing theOrder andContext Schemas. This cost de-
pends in the number of operators in the query plan and does
not depend on the size of data. (2) The cost of generating
semantic ids for constructed nodes. This cost depends on
the size of processed data and on the amount of node con-
struction the query performs. (3) The cost of assigning the
order prefix for the semantic ids. Figure 7(b) shows that
the cost of generating new semantic ids on node construc-
tions is higher than the other two cost element. The cost of
generating theOrder andContext Schemas is very small.
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Figure 7. (a) The overhead of generating semantic identi-
fiers to query execution time and (b) the break down of the
cost of generating semantic identifiers.

8 Conclusions
We have proposed a solution to the problem of incre-

mentally constructing XML views. Our solution utilizes se-
mantic identifiers to perform id-based fusion of XML frag-
ments. Our solution is performed in three phases. First,
we define how lineage and order information of processed
XML data is encoded using theContext Schema. Second,
we use theContext Schemato generate reproducible seman-
tic ids for nodes in the XML result and for incrementally

processed nodes. Third, the id-based fusion is performed
for the processed XML fragments through a special opera-
tion calledDeep Union. Our solution supports an expres-
sive class of XML transformations and does not require any
manual specification of how identifiers are to be generated
or materialization of large auxiliary data. The solution can
be easily integrated with the XML query processing frame-
work and comes with a very small processing overhead to
the query execution time, as shown by our experiments.
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