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Abstract. In this work, we address the efficient evaluation of XQuery
expressions over continuous XML data streams, which is essential for
a broad range of applications including monitoring systems and infor-
mation dissemination systems. While previous work has shown that au-
tomata theory is suited for on-the-fly pattern retrieval over XML data
streams, we find that automata-based approaches suffer from being not
as flexibly optimizable as algebraic query systems. In fact, they enforce a
rigid data-driven paradigm of execution. We thus now propose a unified
query model to augment automata-style processing with algebra-based
query optimization techniques. The proposed model has been success-
fully applied in the Raindrop stream processing system. Our experimen-
tal study confirms considerable performance gains with both established
optimization techniques and our novel query rewrite rules.

1 Introduction

XML has been widely accepted as the standard data representation for infor-
mation exchange on the Web. Two camps of thoughts have emerged on how to
deal with ubiquitous data. The “load-and-process” approach preloads the data
(e.g., a complete XML document) into a persistent storage and only thereafter
starts processing. The “on-the-fly” approach instead processes the data while it
is being received. In this work, we adopt the second approach and address the
efficient evaluation of XQuery expressions over continuous XML data streams.
Such capability is essential for a broad range of applications, including monitor-
ing systems (e.g., stock, news, sensor, and patient information) and information
dissemination systems.

While previous work [2,8,14,11] has shown that automata theory is suited
for XPath-like pattern retrieval over token-based XML data streams, we find
these automata-based approaches suffer from being not as flexibly optimizable
as, for example, traditional database systems that are based on query algebras |3,
6]. We thus now propose a unified model to augment automata-style processing
with algebra-based query optimization techniques. It is our goal to exploit the
respective strength inherent in these two paradigms and to bring them together
into one unified query model.



We shall focus on flexible integration of automata into query algebras. To the
best of our knowledge, we are the first to tackle this flexible integration problem.
Previous work applies automata techniques such as NFAs or DFAs in a rather
fixed fashion that impairs the potential of query optimization. For example, [11]
treats the whole automaton, which is used to scan all XPath-like patterns, as
one single query operator, that is, as a “black box” with multiplexed yet fixed
functionality. This has some disadvantages. First, it disallows or at least hinders
pulling out some of the pattern scans from the automaton. In fact, the trade-off
between moving query functionality into and out off the automata is one theme
of this paper. Second, because multiple pattern scans are encoded in one single
operator, the relationship between these scans is hidden from the topology of a
logical plan. Hence traditional query optimization techniques such as equivalent
rewriting [3, 6] are not directly applicable. In contrast, we attempt to open the
“black box” and create a logical “view” within our algebraic framework. The key
advantage of our approach is that it allows us to refine automata in the same
manner as refining an algebraic expression (i.e., with equivalent rewriting).

We have implemented a prototype system based on the proposed query model
to verify the applicability of established optimization techniques [3,6] in the
context of query plans with automata constructs. We have devised a set of query
rewriting rules that can flexibly move query functionality into and out off the
automata. All these optimization techniques allow us to reason about query logic
at the algebraic level and only thereafter play with the implementation details.
Our experimental study confirms considerable performance gains achievable from
these optimization techniques.

The rest of the paper is organized as follows. Section 2 summarizes related
work. Section 3 presents the overall approach. Sections 4, 5, and 6 describe
the three layers in our model, respectively. Section 7 presents the experimental
results and our analysis. Section 8 summarizes our conclusion and possible future
work.

2 Related Work

The emergence of new applications that deal with streaming XML data over the
Internet has changed the computing paradigm of information systems. For ex-
ample, dissemination-based applications [2] now require a system to handle user
queries on-the-fly. [2, 8] have adopted automata-based data-driven approaches to
deal with this new requirement. Following this data-driven paradigm, [11] em-
ploys a set of Finite Machines, [5] employs a Trie data structure, and [14] employs
Deterministic Finite Automata (DFA) to perform pattern retrieval over XML
streams. These recent works all target some subset of XPath [16] as the query
language. With the XQuery language [17] emerging as the de facto standard for
querying XML data, however, more and more XML applications adopt XQuery
to express user requests. This more complex language raises new challenges that
must be met by new techniques.



[13] applies the concept of an extended transducer to handle XQuery. In
short, an XQuery expression is mapped into an XSM (XML Stream Machine).
The XSM is consequently translated into a C program and compiled into binary
code. The incoming data is then streamed through this system at run time. Note
that the data-driven nature of execution is retained. We speculate that this rigid-
mapping approach has scalability and optimization problems. For example, it is
not clear how such a model can be flexibly extended to support multiple queries.
It is also unstudied what query optimization techniques can be applied to this
rigid automata-based model.

On the other hand, the traditional database literature [7,3,6,9] has advo-
cated algebraic systems as the suitable foundation for query optimization and
evaluation. While a number of recent papers have proposed algebras for XML
query evaluation [4,19,18,12, 11], none address flexible integration of automata
theory into query algebras. [4,19, 18] focus on querying XML views over rela-
tional databases. [12] queries native XML data. Neither can process streaming
data. [11] applies automata theory but integrates the automata in a rather fixed
fashion, as discussed in Section 1.

3 The Raindrop Approach

Our approach faces an intricate trade-off. On the one hand, we want to exploit
automata theory to process streaming XML data on-the-fly. On the other hand,
we need to overcome the limitations imposed by the automata model and instead
exploit query algebra for optimization.

While a number of recent papers [2,8, 11, 14, 13] have shown that automata
theory is suitable for XML stream processing, we now analyze the limitations
of automata in terms of query optimization. Automata such as NFA, DFA, and
transducer models enforce data-driven execution, which implies an underling
token-based data model. In the XML context, a token is typically represented
as a piece of XML data, such as an open tag, a close tag, or a piece of character
data (PCDATA). This token-based data model is different from the one adopted
in the XQuery language, which instead is a sequence of node-labeled trees [17] or
a collection of tree fragments [12]. This mismatch is two-fold. First, tokens are
sequential and discrete, while trees are connected and have an internal structure.
Second, tokens and trees have different granularities in terms of abstraction.

From the query optimization point of view, mixing these heterogeneous mod-
els complicates the optimization. First, the design of operators is more complex
because the operators now must process more complex mixed-typed objects.
Second, the search for optimal plans may be more expensive because this new
mixed data model introduces a new dimension to the search space. Third, dif-
ferent operators may require data types in different data models, which impairs
the uniformity of the query model.

Considering the need for both data models and the limitations of arbitrarily
mixing them, we now propose a three-layer hierarchical model to resolve this
dilemma. The top layer represents the semantics of query plans and thus is
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called logical layer (see Section 4. It serves specifically as the basis for plan
optimization, i.e., to find efficient query plans. We adopt the tuple model in
this layer to simplify the design of operators and particularly to leverage various
established query optimization techniques developed specifically for the tuple
model [3,6]. Note that while the token model is hidden from this layer, the
automata flavor of the system is still embodied in, for example, the Extract
operators in Figure 4. Hence, we can refine the automata in the same manner
as we refine algebraic query plans, thus overcoming the limitations imposed by
automata techniques.

The physical layer refines the logical query plan by specific algorithms to
implement the functionalities of logical operators (see Section 5. In particular,
the physical layer describes how automata techniques are used to implement
the automata operators such as Extract and Structural Join. The token-based
data model, which is hidden from the logical layer, is made explicit inside each
automata operator. Note that this is a hierarchical design where the logical layer
describes the overall query plan and the functionality of each operator, while the
physical plan describes the internal implementation of each individual operator.
Although the token model is made explicit in the physical layer, it is restricted
to being exposed only inside each individual operator. It does not impair the
homogeneity of the data model at the logical layer.

The runtime layer describes the overall execution strategy for a query plan. It
specifies the control and coordination for each physical operator. In particular, we



devise a two-level control mechanism that integrates the data-driven execution
strategy common for automata with more flexible execution strategies such as the
the traditional iterator-based evaluation strategy or the more recently proposed
scheduler-driven strategies. We employ the concept of mega operator to bridge
these two execution levels, as explained in Sectionruntime.

4 The Logical Layer

4.1 The Data Model

Because [17] has defined the XQuery data model for query evaluation, we now
first explain why we in addition need yet another data model. According to [17], a
data model defines the logical view of (1) the source data and (2) the intermediate
data of query expressions (i.e., the inputs and outputs of query operators). In
the XQuery data model, source data is defined as node-labeled trees augmented
with node identity, while intermediate data is defined as a sequence of zero or
more items, each either a node or an atomic value.

We cannot directly adopt the XQuery data model to query streaming XML
data. First, streaming XML data can be more naturally viewed as a sequence of
discrete tokens, where a token can be an open tag, a close tag, or a PCDATA.
In fact, the node-labeled tree view of an XML data stream is incomplete until
after the stream is wholly received and parsed.

Second, the XQuery Data Model is not suitable for pipelining the execution.
To make it clear, we shall draw a comparison with the relational data model
[7], which is based on sets of tuples. A relational algebraic query plan usually
ignores whether it will be executed in a pipelining fashion or in an iterative
fashion. In other words, the execution strategy is left out off the logical query
model. This design is feasible, however, only because the relational data model
has a natural atomic execution unit, i.e., a tuple. A query plan executor can
choose whatever execution strategy without breaking this atomic unit. In the
XML realm, however, such an atomic unit is not directly available because of its
arbitrarily nested structure. In fact, many approaches such as the one suggested
by the XQuery data model consider the complete XML document as a unit, and
thus exclude the possibility of pipelined execution. Going to another extreme,
[13] considers each XML data token as an atomic unit. As discussed in previous
sections, this purely token-based approach is rigid and at times too low-level.

Based on the above observations, we now define our logical data model. We
shall adopt <tag> to denote XML tags, [...] for a list (or a sequence), (...)
for a tuple, with each field in the tuple bound to an attribute name (i.e., the
named perspective in [1]). We shall use o for tuple concatenation and w for tuple
projection.

1) We define the source XML streams to be sequences of tokens, where a
token can be an open tag, a close tag, or a piece of character data (PCDATA).
Formally, we define 7, the domain of tokens, as:

T={<z>zellu{</z>ze}u{dldecD}



where £ is the domain of XML element names and D is the domain of character
data (strings).

2) We define intermediate data of query expressions (i.e., the inputs and
outputs of query operators) to be a sequence of zero or more tuples, with each
field in a tuple being a sequence of zero or more items. Each item is either an
XML node or an atomic value. Formally, we define P, the domain of tuples as:

F=A{[|v1,..,v5) | v; € AU X ,n is the size of a field}
P ={{f1,.s fu)|fi € F,nis the arity of a tuple}

where F is the domain of fields, A is the domain of atomic values, and X is the
domain of XML nodes.

4.2 The Logical Operators

Following the data model defined above, every logical operator accepts a se-
quence of tuples as input and produces a sequence of tuples as output. We dis-
tinguish between two classes of operators. The pattern retrieval operators, such
as Navigate, Extract, and Structural Join, are designed to locate XML elements
specified by XPath expressions. The filtering and construction operators, such as
Select, Join, and Tagger, are designed to filter data and construct nested data
fragments. Considering the limitation of space, here we only show details of the
pattern retrieval operators. For the filtering and construction operators, readers
are referred to [19]. For illustrative purposes, we shall follow a simple running
example as shown in Figures 3 and 4.
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Fig. 3. Example document and query Fig. 4. Two equivalent query plans

NavigateUnnest ®cp, poin( T ) =[to (f) |t — T, f «— follow(mey(t), path) ]

The follow operation denotes the “descendant” relation in [16] and returns
a sequence of descendent elements of the first argument. The NavigateUnnest
operator finds all descendants of the entry point ep in tuple t that conform



to the XPath expression path. An output tuple is constructed for each such
descendant by inserting the descendant as a field into the input tuple. For ex-

ample, let tuple list T = [ (article) ], where “article” is the first article el-
ement in Figure 3, and let $a denote the attribute name of “article”, then
DPsa,/ jarticle/rate( T ) = [ { article,r1 ), ( article,ry ) ], where “r1” and “r2”

are the two “rate” descendants of “article”.

NavigateCollection ¢eppain( T ) = [to (f) |t — T,f = [ f | f «
follow(mey(t), path) | |

This operator again finds all descendants of the entry point ep in tuple t
that conform to the XPath expression path. One collection, constructed from all
descendent elements, is then concatenated to the input tuple as a field. Following
the above example7 ¢$a,//article/rate( T ) = [ < article, [ 1,72 ] > ]

ExtractUnnest Y, poin( ) = [ (n) | n «— follow(str, path)]

This operator identifies from the input data stream str (i.e., the root element)
all XML elements that conform to the given XPath expression path. A new tuple
is generated for each matched element. For example, let the stream name of the
document in Figure 3 be “articles.xml”, w“articles.xml”,//article/?“e't;iew/?“ate( ) =
[ (r1),{ra), ..., {(rn) |, where r1,rq,...r,, are “rate” elements conforming to “//ar-
ticle/review /rate”.

An ExtractUnnest operator does not take in any input tuples. Instead, as will
be further explained in the physical layer, the operator’s internal mechanism,
namely its associated automaton, is responsible for analyzing the input stream
and extracting the desired data. This association with the automaton does not
affect the semantics of the operator; it is simply an implementation issue. Hence
optimization techniques such as query rewriting are not restricted by the data
model and the execution strategy that are imposed by automata theory.

ExtractCollection sy patn( ) =[ (n) | n= [n' | n' — follow(str, path)] ]

This operator identifies from the input data stream str all XML elements
that conform to the XPath expression path. A collection, composed of all such
elements, is then used as the only field for the output tuple. For example,
g}“articles.a;ml”,//a'rticle/review/rate( ) = [ < [ 71,72, marn] > ] Similar to an Ez-
tractUnnest operator, an EztractCollection operator does not take in any input
tuples, but instead generates the output using its internal mechanism.

Structural Join X X Y = [ty 0ty |ty — X;t, < Y;precede(t,, path) =
precede(ty, path)]

The precede operation denotes the “ancester” relation in [16]. The Struc-
tural Join operator concatenates input tuples based on their structural rela-
tionship such as common ancestor. For example, [ { [ 71,72,73] ) | >/ articie

[([nine] )] =[([r,r2],n1 ), (r3,m2 ) ]



Although a Structural Join operator can be implemented like a traditional
join, i.e., by value comparisons, it can be more efficiently implemented using
an associated automaton. Again this association does not affect the operator’s
formal semantics. Hence we can take advantage of automata theory without
being restricted by its implied limitations in terms of optimization.

4.3 The Potential Query Rewriting

Now we discuss the optimization opportunity provided by the proposed algebra.
Due to the space limitation here we only discuss rewrites on pattern retrieval op-
erators. Readers are are referred to [19] for other rules. The two plans in Figure 4
are equivalent. Plan 4(a) uses an Extract operator to grab “article” elements and
two Navigate operators to identify proper descendants of the “article”. This is a
top-down dissection process in which higher level XML nodes are first grabbed
and then lower level XML nodes are identified by navigating into the higher lever
node. In contrast, two Extract operators in plan 4(b) first grab lower level nodes
and a Structural Join operator then joins the lower level nodes by matching their
common parent. This can be viewed as a bottom-up construction process.

Formally, Plan 4(a) can be transfromed into Plan 4(b) using the following
rules:

¢$a,p1 (¢$a,p2 (wsthps)) = wsthpl Pdpy "/}sthm
Ucond(¢$a,p) = ¢$a,p(0007td)

Where the attribute name $a denotes the output of ¥4 p, , the XPath expression
p3 is the common prefix of p; and po, str is an XML data stream, o denotes a
Select operator, and the condition cond is independent of the attribute $a.

5 The Physical Layer

5.1 Applying Automata

We resort to NFA to implement the automata operators such as Extract and
Structural Join. Each automata operator is associated with an NFA. Each NFA
is constructed to recognize one given XPath expression. All related NFAs, i.e.,
whose XPath expressions are based on the same input stream, are merged into
one single NFA for sharing computation. Such NFA construction and merging is
a well-studied topic in the literature [8]. We differ from previous work, however,
in the operations undertaking by the sequence of accepting events.

Figure 5 shows a partial plan with its associated NFA (after merging). State
3 together with all its preceding states is constructed to recognize the expression
“//article/name”. For each “name” element, State 3 will be activated twice, one
for the open tag “<name>" and the other for the close tag “</name>”. The
associated operator (i.e., the one connected to State 3 as shown in Figure 5) is
invoked by the close tag. This seemingly simple scheme is actually very powerful
when multiple operators are invoked in a specific order, as will be shown below.
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Fig. 5. Physical operators and their associated automaton

5.2 Implementing Physical Operators

Extract An Extract operator has two steps: first assembling input tokens that
conform to a given XPath expression into XML elements and second encap-
sulating the elements into tuples. Although each Extract operator may look
for elements conforming to different XPaths, these elements may often overlap.
Take the document in Figure 3 for example. There may be an Extract operator
looking for “//article” and another for “//article/review/rate”, i.e., the former
element contains the latter. It is naive to store them separately. Hence we adopt
a centralized approach to perform the first step.

An XML element can be viewed as a token connected to other tokens. Hence
the assembly process is a matter of connecting proper tokens. Take the plan in
Figure 5 for example. Suppose the open tag “<article>" comes from the stream,
and we are now at state 2. It is easy to conclude that whatever next open tag
is encountered, it must be a child of “article”. In general, a context node is
maintained during runtime and is set to the document root at the initialization.
Every incoming open tag is connected to the contexrt node and becomes the new
context node; every incoming close tag resets the context node to the previous
context node by referring to a context stack.

The second step, i.e., encapsulating proper elements into tuples, is performed
by the Extract operators. Recall that automata operators are invoked by close
tags. Take Figure 5 as example. The Extract operator at the left hand side
is associated with state 3, which will invoke the operator when a “</name>"
arrives. Note that all descendent tokens of a particular “name” element, e.g.,
its Text, must come between “<name>” and the corresponding “</name>"
tags. Hence before invoking the Extract operator, we would have assembled a
complete “name” element by the first step. This element will be passed to the
operator and will be put into a tuple.

Structural Join [12] points out that “an efficient implementation of structural
join is critical in determining the overall performance of an XML query pro-
cessing system”. While naive structural join algorithms would take a high-order



polynomial time, we now propose the JIT (Just-In-Time) Structural Join algo-
rithm. This join algorithm exploits the sequentiality of stream tokens and takes
linear time.

The algorithm is simple. When a Structural Join operator is invoked by its
associated NFA, it makes a cross product out of all its inputs. The cross product
is guaranteed to be the correct output. The trick is the timing of invocation. Take
the document in Figure 3 and the plan in Figure 5 as example. The Structural
Join is first invoked on the first “</article>". At this time, the output of the left
Extract is (n1), and the output of the right Extract is ([ r1, 72 ]), where nq, rq,
and 79 are defined in Section 4.2. It is obvious that nq, r1, and ry are descendants
of the first “article” element. Hence the cross product (nq, [ 71,72 ]) is the correct
output. Similarly, every consequent invocation of the Structural Join must have
descendants of the current “article” element as input, because descendants of the
previous “article” element would have been consumed by the previous invocation
of the Structural Join and descendants of future “article” elements have not yet
come. Because no value comparison is involved, the complexity of the JIT join is
equal to the complexity of output tuple construction, hence linear in the output
size.

Other Operators Other operators such as Join, Select, and Navigate are rather
generic and can be found in other XQuery engines [19,18]. We skip further
description here.

6 The Runtime Layer

A general assumption in stream systems is that data arrival is unpredictable
[15]. This characteristic makes the demand-driven execution strategies [10] not
directly applicable in the stream context. One solution is to let the incoming
data “drive” the execution, which leads to a purely data-driven (or event-driven)
execution strategy. This approach is adopted by for example [13]. The disadvan-
tage is its rigidity: every incoming data token will trigger a fixed sequence of
operations immediately. This rigidity excludes the possibility of deferring cer-
tain operations and then batching their processing, which may be more efficient
because the cost of context switching between operators can be reduced.

Another solution [15] uses a global scheduler who calls the run methods of
query operators based on a variety of scheduling strategies. The disadvantage
is its over generality. In principle the scheduler-driven strategy subsumes the
data-driven strategy, i.e., the general strategy can simulate the rigid one. It is
easy to conceive, however, that this simulation may be less efficient than directly
applying the data-driven strategy because of the cost in making such scheduling
decisions.

In this paper, we adopt a hierarchical approach to integrate both the data-
driven and the scheduler-driven strategies by employing a mega operator. We
organize a physical operator plan into two levels as shown in Figure 6. The top
level plan is composed of all non-automata operators, while the bottom level is
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composed of automata operators. A mega operator encapsulates a set of automata
operators at the bottom level and represents this subplan as one operator at the
top level, as shown in Figure 7. Each bottom level plan is controlled by an NFA,
while the top level plan is flexibly governed by the global scheduler. When a
mega operator is invoked by the global scheduler, it takes the outputs from the
bottom level plan and transfers them to the top level plan.

7 Experimental Evaluation

Our evaluation studies the trade-offs between moving query functionality into
and out off the automata. This is to be compared with previous work [8,11]
which offers no such flexibility and instead assumes (or even advocates) maximal
pattern retrieval push-down.

We have implemented our prototype system with Java 1.4. All experiments
are conducted on a Pentium-IIT 800Mhz processor with 384 MB memory running
Windows 2000. The JVM is initialized with 256 MB heap space. Garbage col-
lection is explicitly invoked to avoid interference. Every experiment is repeated
at least 10 times.

The test data is synthetically generated similar to the document in Figure
3. The data size is 9.0 MB. The user queries are similar to the one in Figure 3,
with slight modifications on the RETURN clause to include more path bindings.
Accordingly, the query plans are similar to those in Figure 4. We call plan (a)
“bottom-most navigation only” (BMNO), and plan (b) “all navigation” (AN). We
make another plan using equivalent rewrite rules to push the selection into the
automata, which is called “all navigation and selection” (ANS).

Our first experiment compares the three push-down strategies. Figures 8
and 9 illustrate their performances in different settings, i.e., different workloads
and selectivities. BMNO wins in Figure 8 (i.e., the output rate is higher and
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the finishing time is shorter) while AN and ANS win in Figure 9. Clearly both
workload and selectivity affect the result. This justifies our effort to allow for
flexible query rewriting even in this new automata context.
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Our second experiment analyzes the three strategies in terms of different
workloads, in particular, different numbers of path expressions in a query. Figures
10 and 11 illustrate the same interesting pattern as the first experiment. But
this time we see that with low selectivity (Figure 10), BMNO outperforms AN
and ANS. In fact, higher workloads further enlarge the gap between them. In
contrast, with high selectivity (Figure 11), AN and ANS outperform BMNO. The
gap also increases with a higher workload. Intuitively, this is because automata
are efficient in pattern retrieval, especially when the retrieval of several patterns
is encoded into one automaton. Hence in Figure 11 the more aggressive push-
down strategies (AN and ANS) outperform the less aggressive one (BMNO).
However, evaluating all bindings together in the automaton disallows for early
selection, a well-established optimization technique in the database literature.



For example, in the query plan shown in Figure 4 (b), the Selection is evaluated
before the top-most Navigation. Hence we can reduce the cost of Navigation to
all “articles” elements without a “rate-5” review. When selectivity is low, such
optimization can save a lot of work, as illustrated in Figure 10.
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We now look more closely at the relationship of selectivity and performance.
With low workloads, Figure 12 shows that the performance difference is small.
But with higher workloads, this difference is enlarged, as in Figure 13. We can see
clearly that with a selectivity less than 40%, BMNO outperforms the other two.
The smaller the selectivity, the larger the difference. With a selectivity greater
than 40%, both AN and ANS outperform BMNO. Their difference also increases
when the selectivity becomes larger. This is the trade-off we expect and which
our unified framework is empowered to exploit.

8 Conclusion

We have presented a unified model for efficient evaluation of XQuery expres-
sions over streaming XML data. The key feature of this model is its power in
flexibly integrating automata theory into an algebraic query framework. Unlike
any of the previous work, this power facilitates various established query opti-
mization techniques to be applied in the automata context. It also allows for
novel optimization techniques such as rewrite rules that can flexibly change the
functionality implemented by the automata-based operators. Our experimental
study confirms that these optimization techniques indeed result in a variety of
interesting performance trade-offs that can be exploited for efficient query pro-
cessing. However, this paper serves only as the first step towards a full-fledged
framework for XML stream systems. It is a solid foundation for making various
optimization techniques possible in the XML stream context.



References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley,
1995.

M. Altinel and M. J. Franklin. Efficient filtering of XML documents for selective
dissemination of information. In The VLDB Journal, pages 53—64, 2000.

M. Astrahan et al. System R: a relational approach to database management.
ACM Trans. on Database Systems, pages 97137, 1976.

M. J. Carey, D. Florescu, Z. G. Ives, Y. Lu, J. Shanmugasundaram, E. J. Shekita,
and S. N. Subramanian. XPERANTO: Publishing object-relational data as XML.
In WebDB, pages 105-110, 2000.

. C. Y. Chan, P. Felber, M. N. Garofalakis, and R. Rastogi. Efficient filtering of

XML documents with XPath expressions. In Proc. ICDE, pages 235—-244, 2002.
S. Chaudhuri. An overview of query optimization in relational systems. In Proc.
Seventeenth Annual ACM Symposium on Principles of Database Systems, pages
34-43, June 1998.

E. Codd. A relational model of data for large shared data banks. Communications
of the ACM, 13(6):377-387, 1970.

Y. Diao, P. Fischer, M. J. Franklin, and R. To. YFilter: Efficient and scalable
filtering of XML documents. In Proc. of ICDE, pages 341-344, 2002.

. L. Fegaras, D. Levine, S. Bose, and V. Chaluvadi. Query processing of streamed

XML data. In CIKM, pages 126-133, 2002.

G. Graefe. Query evaluation techniques for large databases. ACM Computing
Surveys, pages 73—170, June 1993.

Z. G.Ives, A. Y. Halevy, and D. S. Weld. An XML query engine for network-bound
data. VLDB Journal, 11(4), 2002.

H. Jagadish, S. Al-Khalifa, L. Lakshmanan, A. Nierman, S. Paparizos, J. Patel,
D. Srivastava, and Y. Wu. TIMBER: A native XML database. VLDB Journal,
11(4):274-291, 2002.

B. Ludascher, P. Mukhopadhyay, and Y. Papakonstantinou. A Transducer-Based
XML Query Processor. In Proc. VLDB, pages 215-226, 2002.

G. Miklau, T. J. Green, M. Onizuka, and D. Suciu. Processing xml streams with
deterministic automata. In ICDT, pages 173—-189, 2003.

R. Motwani et al. Query processing, approximation, and resource management in
a data stream management system. In Proc. CIDR, pages 245-256, 2003.

W3C. XML path language (xpath) version 1.0. http://www.w3.org/TR/xpath,
November 2002.

W3C. XQuery 1.0: An XML query language. http://www.w3.org/TR/xquery/,
November 2002.

X. Zhang, K. Dimitrova, L. Wang, M. EI-Sayed, B. Murphy, B. Pielech,
M. Mulchandani, L. Ding, and E. A. Rundensteiner. Rainbow II: Multi-XQuery
optimization using materialized xml views. In SIGMOD Demonstration, page 671,
June 2003.

X. Zhang, B. Pielech, and E. A. Rundensteier. Honey, I shrunk the XQuery! —
an XML algebra optimization approach. In Proceedings of the fourth international
workshop on Web information and data management, pages 15-22, Nov 2002.



