Processing Recursive XQuery over XML Streams:
The Raindrop Approach

Mingzhu Wei, Ming Li, Elke A. Rundensteiner and Murali Mani
Department of Computer Science
Worcester Polytechnic Institute
Worcester, MA 01609, USA
{samanweminglegrundensmmani}@cs.wpi.edu

Abstract— XML stream applications bring the challenge of by simply keeping all the context information. Therefotey

efficiently processing queries on sequentially accessible token-can not guarantee the joins are triggered at the earliestipes
based data. For efficient processing of queries, we need to ensur moment, thus leading to extra storage.

that memory usage stays low. This in turn requires that we . . .
avoid holding data in the query buffer, by outputting it at One solution for processing XQuery is to model the query

the earliest possible time. In this paper, we propose a new S€mantics as a combination of automata and algebra [14], as
class of stream algebra operators for efficient recursive XQuer is also done in [7], [9]. Let us first examine how the pattern
stream processing. In particular we propose two strategies for retrieval is modeled as an automaton in Raindrop. Automata
implementing structural joins: (a) the just-in-time structural j oin are naturally suited for matching path expressions oveeriok

strategy efficiently processes joins as long as the input XML
substreams are non-recursive and (b) the recursive struchal sequences (a token can be a start tag, end tag or PCDATA

join strategy supports structural joins over recursive XML sub- item) since they were originally designed for matching tegu
streams, however at an added cost of tuple-level ID-comparissn expressions over alphabet sequences. Tokens that match the

Both structural join strategies are complemented by an automat- patterns are extracted from the stream and composed into
driven invocation mechanism that triggers the execution of the XML element nodes. i.e.. XML trees. These nodes are then

join at the first possible moment upon recognizing the end of dinto tuol d tt laebra-based
the targeted input stream subelement. Further, we design this Wr@PPEX INIO tuples and sent 1o an algebra-based querysproce

structural join operator itself to be context-aware. The operaor ~ SOr for further manipulation, such as filtering or restruictg.
is capable of at run-time switching from the efficient just-in- As mentioned before, one of the key differences between

time join strategy for elements that are recognized to be non- Raindrop and systems such as YFilter and Tukwila is that
recursive to the more powerful id-based structural join strategy in Raindrop, the joins are invoked at the earliest possible

for elements that are identified to be recursive. In addition, h S d : L
depending on whether the query is recursive, we will generate the moment, thus optimizing storage and computation. Let us

plan with cheaper operators whenever possible. We incorporate €xamine this feature of Raindrop with an example. Consider
the proposed techniques into the Raindrop stream engine. We the XQuery Q1 given below. This query finds for each person,
also report on experimental studies we conducted using ToXgene g|| its name descendants.
that show that our techniques brings significant performance o

improvement. for $a in stream("persons”)//person
return $a, $a//name

. MOTIVATION
XML has been widely accepted as the standard data rep b1 b2:

sentation for information exchange on the web. XML streal 1 <person> 1 <person>
systems in particular have attracted more interest recétitl 2 <3“53’;‘:k> 2 Z”ag‘aii
[71, [8], [11], [9], [13] because of its wide range of applians 4 </name> 4 </name>
such as sensor networking, online auctions, etc. XML dadt tt 5 <children> 5 <children>

in XML documents or XML streams frequently ten 6 </children> 6 <person>
appears In) u S S S qu y 7 <Iperson> 7 <name>
to be recursive. In the study of [2], 35 of 60 analyzed DTD 8 <person> 8 Amy
were recursive which shows that recursive XML schemas ¢ gj'ga“;‘;?y 10 Elgg‘;‘g‘:j
very common in real world applications. Furthermore, cgeeri 11 </name> 11 </children>
may also be recursive as descendant axis(//) is often usec 12 <Iperson> 12 </person>

path expressions.

Among the current XML stream processing systems, SOM@. 1. Example XML Document Fragments. Document D1 is non-seeyr
of them consider only XPath queries [8], [13], [5], whileand document D2 is recursive.
some others process XQuery over non-recursive data [11],
[4]. YFilter [7] and Tukwila [9] can process XQuery over Consider document D1 shown in Fig. 1. When we see
recursive data as well. However, in both YFilter and Tukwilghe end tag for the first person (token 7), we have seen the
XQuery over recursive XML data is handled in a naive wagntire content of this person element, along with all its @am

descendants. Now we can "join” and output the person and allOur contributions include:

the name elements collected so far; then the buffer forrgiori 1) We propose a new class of stream algebra operators
person and name elements can be purged. We call this the just- 5 efficient recursive XQuery stream processing. We

in-time structural join [14]. This just-in-time structurfin discuss the details in Section III.
can be used when we see the end token of the second Pers®) we propose a context-aware structural join which
element (token 12) as well. switches from the efficient just-in-time join strategy

The just-in-time structural join mentioned above performs {5 elements that are recognized to be non-recursive to

simple cartesian product on person and name elements col- e more powerful id-based structural join strategy for
lected. However this simple cartesian product will not work recursive elements at run-time.

when the data is recursive. For instance, consider documengy \we have two modes for each operator: the cheaper

D2. Here the second person element (tokens 6 - 10) is @ recyrsion-free mode and the more expensive recursive

descendant of the first person element (tokens 1 - 12), we mode. Our plan generation examines the query, and uses
call such XML data as recursive. Note that the second name e cheaper recursion-free mode operators whenever

element (tokens 7 - 9) combines with both the person elements possible.

Also the first person element and its descendant name elemerju) Our experiments illustrate that our invocation of the

need to be output before the second person element a_nd_ itS" structural join at the earliest possible moment, our

_descendant name elements, based on the ordgr restrictions gontext-aware structural join and our clever plan gen-

imposed by XQuery. After the end tag of the first person gration bring significant performance benefits over other

element (token 12), we can join the two person elements with approaches.

the "appropriate” name elements, and output the resultez No

the two person elements and the two name elements can be Il. BACKGROUND

purged. _ _
Since memory and CPU cost are both critical issues in Raindrop uses automata-based model for pattern retrieval

XML stream processing, our goal is to optimize the storag¥ tokens and uses algebra plan, which consists of algebra

and computation performance for handling XQuery, includPerators to do operations on sets of tuples. The query

ing recursive queries over XML streams. In this paper, wrocessing in Raindrop can be decomposed into two phases. In

consider only recursive DTDs. If the schema is not recursivié® first phase, tokens are processed by an extended automata

it would be much easier to process recursive queries as wgglne_for pattern retrieval. When the tokens are scanned and

have studied in our previous work [14]. To process recursiV8c0gnized, they are passed to algebra operators. In tbacsec

queries combined with recursive schema, we have to tackiBase, these algebra operators create objects from thestsfo

the following questions: organize them into tuples, and perform further operatiams o
1. What should we do with the automata and algebra plaitese tuples.

Since our automata can retrieve patterns with descendant ax o)

it need not be changed. The intuitive idea is to change the Retrieving Patterns Using Automata

algebra operators to let them cope with the recursive data. Qur automaton is based on a non-deterministic finite ma-

2. How can we process recursive queries while keeping bathine (NFA). It encodes the path expressions present in the
the memory and computation cost as low as possible? Our ggakry. For instance, the automaton corresponding to Query
is to make Raindrop process recursive query on recursia d@fl is shown in Fig. 2. Here states s2 and s4 are final states,

as well as recursion-free data while keeping the cost mihimgorresponding to the two path expressions in Q1.
Our Approach

Our solution to deal with recursive XQuery includes th
following: x *

(a) For recursive queries, we keep the ID information ar @ A @'\ person N A @’\ name@
level information to determine ancestor-descendant arehpa ~
child relationships. (a) Automata corresponding to query Q1

(b) To process recursive XQuery, we have to use recursi
structural join which is essentially ID-based structurmainj
this is more expensive both in memory and computatio s1, 53,54 s1, 53,54
To save the memory and computation, we want to swit o1, 52 o152 o1 52 o1, 52
to cheaper just-in-time structural join as soon as we knc

that the XML data fragment is non-recursive. Thus we desi % % % % %
this structural join operator itself to be context-awardisT <person> <name> Jack </name>
operator is capable of at run-time switching from the effitie (b) Stack as D1 is being processed

just-in-time join strategy for elements that are recoguize
be non-recursive to the more powerful recursive strucfoial

. oo . Fig. 2. (a) Automata (b) Stack
strategy for elements that are identified to be recursive.

Our automata is augmented with a stack, which keeps traskseen byopl. It combines the person tuple froop4 and the
of the context of the tokens. Given a stream of tokens (tlset of names grouped into one tuple fram3, and outputs
XML data), our automaton works as follows. Each final statihis result.

in the automaton marks the end of a path expression. Given

a current set of stateS at the stack top, if the next token is

a start tag, consider all the states to which any of the states
in S can transit to for this token. These will form the new set
of states, which are pushed on to the stack. If no staté in
can transit to any state for the next token, then an empty se
is pushed on to the stack. If the next token is an end tag, the
current stack top is popped. The stack is then restored to the
status before the matching start tag has been encountéred.
the next token is a PCDATA item, this token is skipped.

Let us examine how patterns in document D1 in Fig. 1 are
retrieved using the above automaton. Before the first token i
seen, we havé¢sO} in the stack. When we see the start tag of
person (token 1), we pusfsl, sZonto the stack. s2 is a final
state; therefore, we have identified a pattern specified én th
query Q1. In this case, the corresponding algebra operator:
are invoked, as will be discussed in the next subsection.

Now, we see the start tag of name (token 2). We push
{s1, s3, s4 onto the stack. s4 is again a final state, and
the corresponding algebra operators will be invoked. The ne
token (token 3) is a PCDATA item, in which case no actio
is taken. Then we see the end tag of name (token 4), now
pop the top of the stack. Any corresponding algebra opesatt
associated with s4 for the end tag of name will also be invoke
This process continues, and we identify all the patterns.

B. Algebra plan

For any query, Raindrop generates an algebra plan that cc
poses the tokens into tuples, and performs further opesatic
on these tuples [14]. The algebra operators that are relev
to this paper are: Navigate, ExtractUnnest, ExtractNest a
StructuralJoin operators. The description of each opeliato
shown in Fig.4. These algebra operators are invoked by t
final states in the automaton. The algebra plan for query (
is shown in Fig. 3.

Navigate,qin—scor 1S invoked when an element that
matchespath is identified by the automaton. This operato
keeps track of the start and end of this element. It al
notifies these events to its downstream Extract operatars. |
instance,opl keeps track of the start and end tag of person
elements, and notifies the Extract operatgr{ about these
events. ExtractUnnests.,;, when it is notified about the
start tag from its upstream Navigate operator, starts ctitig
the tokens till it is notified about the end tag from its
upstream Navigate operator. For instange} will form one
tuple for each person elemerxtract Nestg.; is similar to

StructuralJoin ¢, ‘ op5

op3 | ExtractNest $b

‘ ExtractUnnest ¢, ‘op4

op2 ‘ Navigate $al Iname

->$b ‘

‘ Navigate /lperson > $a opl

Stream data

Fig. 3. Algebra plan corresponding to query Q1

Algebra Operator

Description

Nawgatepath—>$(:ol

Matching path, label the start and end
of XML element $Col

ExtractUnnest ¢,

Compose the tokens into tuples

ExtractNest g,

Collect the tokens and creates one tuple
for the whole collection

Structural Joing,

Merge the output of the branch
operators by performing simple
cartesian product

Fig. 4. Algebra operators in Raindrop

C. Plan Execution

Let us examine how Raindrop combines the automata and
ExtractUnnestg.;, except that it groups all throl into one the algebra plan to execute a query and obtain the results.
tuple. For instancegp3 forms one tuple consisting of all the Consider again, query Q1 executed on document D1. When

descendant name elements of a perstnuctural Joing..; is the start tag of person (token 1) is seen, we pish s2 onto
invoked when an end tag étol token is encountered by thethe stack; s2 is a final state, therefore it invokes the opevat
"corresponding” Navigate operator. It combines (by perfor associated with it -vpl. The operatobpl in turn informsop4

ing cartesian product) the tuples from its branch operatoemdop4 starts collecting the tokens into a tuple. When the start

For instancepp5 is invoked whenever the end tag of persotag of name (token 2) is seen, the st&tes, s3, s4 are pushed

Query recursive| Query not recur- extracted byop4, and two name elements extracted dpB.

Sive We have to check the ancestor-descendant (or parent-child)
Data Can't process | Generate correct relationships between these person and name elements. This

recursive output requires additional information to be associated with the

Data not| Generate Generate correct elements.

recursive | correct output | output Note that the problems mentioned above happen when the
TABLE | query and the data are both recursive. In the next section, we

THE TECHNIQUES INSECTION Il CANNOT PROCESS RECURSIVE QUERIEs Will examine how Raindrop executes recursive queries over

ON RECURSIVE DATA recursive data.

I1l. RECURSIVEEMODE OPERATORS

In this section, we will adapt the Raindrop operators so

onto the stack. s4 is a final state; it invokes operagar which that they can process recursive queries over recursiveagata
in turn invokesop3. op3 now starts collecting tokens. well. We will first examine how we will associate additional
When the end tag of name (token 4) is seen, we fsh information with each element. We will then investigate how
s3, s4 from the stacks4 is a final state, it invokesp2, op2 each of the four algebra operators mentioned in Sectiorell ar
informs op3 to stop collecting tokens. When the end tag dghodified to handle recursive data.
person (token 7) is seen, we pdpl, s from the stack.
s2 is a final state, it invokespl, which informsop4 to stop
collecting tokens. After thigpl invokesop5, which performs ~ Each element is associated with a triple (startlD, endID,
the join over the branch operators. In this case, there is df¥el). Here, the startlD of an element is given by the token|
tuple fromop3 and one tuple fronvp4 which are combined, ©f the corresponding start tag, and its endID is given by the
and then output. Also the output buffers op3 and op4 tokenlID of the corresponding end tag. For instance, thélBtar
are cleared. The same process is continued for the sec@hdhe first name element in D2 is 2, and the endID of this
person element also. Note two features (a) the invocation @§¢ment is 4. The level of an element is the length of the path
the structural join is done at the earliest possible timeas thfrom the root to this element. For instance the level of the
ensuring buffers are cleaned up early (b) this structurial joﬁrst name element is 1. This numbering scheme is similar to

works [10].

D. Issues for Recursive XML Data Given two elements, and their corresponding triples, we can
The techniques mentioned in this section cannot be usgetermine ancestor-descendant and parent-child resijos
for recursive XML data. Table | shows the cases that can Ber instance, consider the first person element in D2 whose
handled using the above techniques. triple is (1, 12, 0), and the first name element in D2 whose
The techniques in this Section cannot process recursiviple is (2, 4, 1). We can determine that the first name elémen
queries on recursive data due to various reasons. For nana descendant (also a child) of this person element.
recursive data, the navigate operator invokes the stralgtin))
whenever the corresponding end tag is encountered. This dBe Features of Recursive Navigate operators
not work for recursive XML data, such as document D2. When The recursive Navigate operator functions differentlyniro
we see the end tag of the second person (token 10), we hthve non-recursive Navigate in several ways. First, thersaael
not seen the first person entirely. But the first person needsNavigate operator keeps track of the triple for each corre-
be output before the second person according to the XQueponding element. These triples are kept in the order they
semantics. This means the Navigate operator will invoke tlarive, which is the startlD of the corresponding elements.
structural join only when the end tags for all the personshaffor instance, consider document D2, angl in Fig. 3.
been seen (that is, token 12 is seen). Corresponding to the two person elememis] will keep the
Also for non-recursive data, the ExtractNest operator pdollowing two triples: < (1,12,0), (6, 10,2) >.
forms the grouping. This was possible because for D1 becaus&econdly, the non-recursive Navigate operator will call
any name element will join with at most one person elemerits structural join operator, whenever the end tag of the
This need not be true for recursive data; for instance, terresponding element is seen. But the recursive Navigate
second name element (tokens 7 - 9) joins with both thoperator will call its structural join operator only when the
person elements. Therefore one solution, as what we wiliples in this Navigate operator are complete, which means
pursue in Raindrop, is that the ExtractNest does not pefotirat we have seen the entire data for every one of these
the grouping; in stead the grouping is performed by thelements. For instance, when we see the end tag of the second
downstream structural join. person (token 10)ppl will have the following two triples:
The structural join for non-recursive data did simple carte< (1, _,0), (6, 10, 2) >; note that the first person element is not
sian product of all its input branch operators. However, faomplete. Thereforep5 is not invoked. When the end tag of
recursive data such as D2, we have two person elemettis first person (token 12) is seem,l will have the following

A. Associating IDs with elements

two triples:< (1, 12,0), (6, 10,2) >. Both the person elementsE. Features of Recursive StructuralJoin operators
are complete, and thereforg@5 will be invoked now.

Thirdly, the recursive Navigate operator needs to pass the
triple information to the structural join in the order in whi
they are kept. Let us examine why the Navigate needs t

OAs compared to the non-recursive StructuralJoin operator
pass this triple information by looking at an example quegy Q P P '

the recursive StructuralJoin operator has to perform amfdit
> operations, including (a) ID-based comparison among its
f%, $a in stream("persons”)/fperson pranch operators, and (b) groupin_g wher_1 its upstrgam cme_rat
return $a//Mothername, $a//name is an ExtractNest operator. In this section, we will examine

The algebraic plan for Q2 is similar to that shown in Fig. 310W the structural join is invoked, and its features.
except thabp4 is now replaced by a Navigate and ExtractNest
operators that extract the Mothernames for each person. Now) Invoking Mechanism of Recursive Structural Jokor
the structural join when it receives the Mothernames amn-recursive dataStructuraljoingye,son (0p5) in Fig. 3 is
names for multiple person elements, it needs to know ti@soked whenever the end tag &person is encountered.
person triples for determining which Mothernames and namgach invoking mechanism brings problems when processing
join with which persons. recursive data.

C. Features of Recursive ExtractUnnest operators For example, when we process the data shown in document

The non-recursive ExtractUnnest operator blindly extach2 in Figurel, the end tag of the second person (token 10)
the tokens when invoked by the upstream Navigate operatar.encountered first which invokesp5. This structural join
forms tuples from these tokens, and passes these tupjederates the output tuple composed of the second person
to its downstream Structural Join Operator. The reCUfSi%ment (tokens 6- 10) and the second name element (tokens
ExtractUnnest operator, in addition to extracting the tske 7 - 9). Then this person element and name element will be
into tuples, also adds the (startID, endID, level) inforimmat cleaned because they have been outputdy When the end
for every element to its corresponding tuple. For instancgg of the first person element (token 12) is encountesgd,

consider query Q3 below. is invoked again. This time, the first person element (tokens
1 - 12) cannot join with the second name element because
Q3 i this name element has been deleted from the buffer. This
for $a in stream("persons”)//person, $b in $a//name h f . dat b | t
return $a, $b appens for recursive data, because one name element can

be descendant of multiple ancestor person elements. We do

The plan for Q3 will look similar to the plan in Fig. 3, exceplnOt want to delete the data which we will use later.
that op4 is replaced byFEaxtractUnnestg,. Now consider
the two tuplesp correspznding to the tvio name elements inA second problem of this invoking mechanism is that the
document D2 formed byp4. With the tuple for the first name Output does not confor_m to the_stream order be_cause the
element,opd will add (2, 4, 1), and with the tuple for the:second person element is output first. To.aeress this, seppo
secondname @emeny i add (,9.3) Ths momaton 1254 10 Do et oue e desconcnt
will be used byop5 while performing the structural join. opb only after the end of the outermost person element. Then
D. Features of Recursive ExtractNest operators we can guarantee that (a) we will not lose any data that will

The non-recursive ExtractNest operator groups all the ige needed later, and (b) the data is output in the correct.orde
kens it has collected into one tuple. However, for recursive
data D2, this is not feasible as the ExtractNest operapdr
stores the information only regarding the name elements. B
the first name element (tokens 2 - 4) does not join with th-l(g1 _ X) X
second person element (6 - 10), and the second name ele igate operator. In Raindrop, _the _Nawgate operator_ will
(tokens 7 - 9) joins with both the person elements. Therefofd€Cck whether the endID of all its triples have been filled.
instead ofop3 performing the grouping, Raindrop will moveo,nIY then it will invoke the structural join. For.mstanaml
the grouping operation to the downstream structural joi, will invoke op5 only after seeing token 12. This ensures that
in this case. the end of the outermost person element has been reached.

The recursive ExtractNest in Raindrop is therefore similar
to ExtractUnnest, that is it extracts tokens into tuplegjsad 2) Algorithm for Recursive Structural Join:Consider
the (startlD, endID, level) information for every element t StructuralJoing.,; let its branch operators be
its corresponding tuple, and passes this information to tfie= {bop;,bopa,...,bop,}. The algorithm for the recursive
downstream structural join operator, which will performe thstructural join is given below.
grouping, as will be mentioned below.

Now the question we face is how can we know that
ne end of the outermost person element has been reached?
e structural join operator is invoked by the correspogdin

01 for each triplet in Navigatepqih—gcor the structural join from the Navigate operator. If there ligyo
o f‘i’frbif_higﬂg;iﬁfff[rﬁf?ﬂ$ l one triple buffered in the Navigate operator, it impliest ttee
04 for each element in the output buffer obop; current element is not recursive. In this case, structwial
% M 1staril ﬁt;tﬁggﬁ“ d will execute the just-in-time structural join which has i |
07 else if branch operator contains // comparison and thus is faster. If there are more than onle trip
08 for each element in the output buffer obop; ; H ;
09 i totartld < e.startld andtendld o o.endld stored in the_ Nawga'Fe operator, we have to _perform recersiv
10 adde to output listo;; structural join. We incorporate this execution approach as
11 else if branch operator does not contains // iAi ; _
2 for each element in the output buffer ofop; a new typ_e. of structural join, which we pa¢bntext aware
13 if t.startld < e.startId andt.endId > e.endld structural join Context-aware structural join is capable of at
1 azg‘ietie:&é o level 41 run-time switching from the efficient just-in-time join ategy
15 if bop; is ExtractNestgeor for elements that are recognized to be non-recursive to the
16 groupo; o form one tuple; . more powerful id-based structural join strategy for eletaen
17

perform cartesian produ®;, = {01 X 02 X ... X op }; X . i i

II' O is the result for the current triple. that are identified to be recursive. The execution process of
18 add the tuples iD; to the output; context-aware structural join is shown in Fig. 5.

The structural join is invoked by its corresponding Navigat
operator. This Navigate operator has one or more complete

triples at this point. The structural join iterates ovessthet of Automata l
triples (line 01 — 18). For each triple it goes through all the Invoking
elements in every one of its branch operators (line 02 — 1t Navigate

If the branch operatobop; extracts the same element as th
navigate, simply find the element corresponding to thiderip
by performing ID comparison, and add it to the output dist Y

. . Data is not Data i
for operatorbop; (line 03 — 06). Otherwise, we check whethe recu:'zive . recurs;ie
bop; contains // in its corresponding path expression. If Check
contains //, it means we need to determine ancestor-deseen: ec
relationship betweenand every elementin the output buffer ¥ ¥
of bop; by performing ID comparison. The descendants wi Call Just-in- Cal
be added to the output list; (line 08 — 10). If bop; does time Recursive

. . . Structural Structural
not contain //, it means we need to determine parent-ch Join Join
relationship betweenand every elementin the output buffer

of bop;. The children oft will be added to the output liss; l |
(line 12 — 14).

After the above ID comparisong; contains the set of
elements corresponding to the current triple, for this bihan
operator. Now for the ExtractNest operators among the lbrar
operators, we need to group all the elements;ito form one
tuple (line 15 — 16). Now, we have obtained the set of elemer
corresponding to the current triple. We can simply perfdnm t
cartesian product of thesg’'s and this generates the output fol v
the current triplet. We continue to iterate over the remaining
triples. After we have iterated over all the triples, thepuit
buffers of all the branch operators are purged. Observe that
the output tuples generated by the structural join are in the
correct order; also the data is cleaned at the earliestgessi
time.

A 4

Output tuples

A 4

Purge tuples

Fig. 5. Execution Process of Context-aware Structural Join

From the figure, see that when an appropriate end tag is
recognized by the automaton, it informs the Navigate operat
This Navigate operator in turn invokes the context-awangcst
tural join operator, if all the triples in the Navigate opteraare

As discussed before, recursive structural join needs to pélled. The context-aware structural join first checks wieeth
form ID comparison and thus is more expensive than the jusitis data fragment is recursive or not, by checking whether
in-time structural join which only performs cartesian pmotd there are multiple triples in the Navigate operator. This is
To reduce the cost of the overall plan, we want to use tlsdown as the Context Check step in Fig. 5. If the data is not
cheap structural join whenever possible. recursive, then the just-in-time structural join strategyalled;

We can determine whether the current data fragment atherwise, the recursive structural join strategy is chllehese
recursive or not by checking the number of triples passed results are then output, and the joined tuples are purged.

IV. FURTHER OPTIMIZATION
A. Context-aware Structural Join operators

B. Optimizing Generated Plan based on Query opt | Structuralloin $a

We studied above how the context-aware structural jo
chooses an efficient join strategy based on the data fragme
at run-time. Now, we will examine how based on the quer opa Strucwraldonsc |
we can generate more efficient plans.
For every operator, we have two modeseaursive mode [ExacNesisa | [Exracivestse |
and arecursion-free modeA recursive mode Navigate opera- it->st | [Navigatesaiig >$g |

|\In'
. Navi $c//d ->$d N $clle ->$:
tor keeps track of the (startiD, endID, level) triple for bac Lo \ | }ga& e
element, whereas a recursion-free mode Navigate opere
does not keep any triple information. A recursive mod

op2

N

‘ ExtractNest $f ‘ ExtractNest $g ‘

Extract operator adds the (startlD, endID, level) tripleetery [Navigatesain >sb |
element it extracts; however, a recursion-free mode Eixtre
operator only collects the tokens into tuples without thyler
information. A recursive mode structural join is the coitex
aware structural join that performs ID comparison as needed
whereas a recursion-free mode structural join uses the just
in-time structural join with no ID comparison. The recuesiv
mode operators obviously require more memory, and perfoffor instance, considesp3 in Fig. 6. It is a context-aware
more computation than the corresponding recursion-fregemgstructural join, which produces one tuple corresponding to
operators. Therefore, we would like to use the recursies-freach $c, with the grouped $c//d and $c//e tuples. To thigtupl
mode operators whenever possible. it also appends the (startID, endID, level) correspondinipis
Such plans are generated as follows. During plan generati@a, and passes this 2. Similarly, op2 appends the triple
we check whether a structural join corresponds to a pathrresponding to $b to each of its output tuples.
expression with //. If so, this structural join, as well abit 1) Optimizing Plan Generation with Multiple Structural
descendant operators in the plan are instantiated as reeurdoins: During plan generation, determining whether an op-
mode operators. Consider query Q1, the plan generated éoator is a recursive mode operator or a recursion-free mode
this is shown in Fig. 3, where every operator is a recursivgerator when we have multiple structural joins is done as
mode operator. However, suppose the query is maodifitallows. We traverse the query plan operators in a top-down
to be recursion-free as shown in Q4 below. Now, the plananner. When we encounter a structural join operator that
generated is similar to Fig. 3, however, every operator witlorresponds to a path expression with //, we instantiate thi

NaV|ga1e$//a ->$a

Fig. 6. Plan for Q5 with Multiple Structural Join Operators

be a recursion-free mode operator. structural join operator and all its descendants as re@ursi
mode operators. Other operators are instantiated as i@gurs
Q4: free mode operators.
for $a in stream("persons”)/person
return $a, $a/name V. RELATED WORK
C. Plans with Multiple Structural Joins [12], [3] evaluate XQuery expressions over XML streams

For a given XQuery, we might come up with & plan witf2 52 S RS SR SR eI e e e
multiple structural joins, where a structural join operatg Lltering. ioining or restructurin Rgcur;on could be Hed
might have other structural join operators as its descesdan 9,] 9 9:

in such an approach in the second phase, i.e., using the well-
If the data is recursive, then the upstream structural join W) died algebraic query evaluation metheds typically iaghl
operator needs to pass the ID information to its downstree% 9 query ypically pp

structural join operator. Let us consider this with an exiamp 0 (static, "e." non-stream) .XML date_l. However, .SUCh a two-
query Q5 as shown below. phase solution does not fit well with the requirements of

stream processing applications which require continuciesyq
evaluation and immediate data purging to preserve memory.

5: R R
f?)r $a in stream("s")//a [5] proposes to apply an encoding scheme in order to
return{ handle recursion. However, only XPath expressions have bee
for $b in $a//b K
return { considered in their work. In XQuery, careful synchroniaati
fogefﬁr:]“{fsgé’; 4 sclle} between the pattern retrieval and query execution would nee
$hiff }, ' ’ to be designed in order to achieve acceptable performamce fo
$allg } recursion handling.

[11] uses a transducer model for evaluating XQuery over

The plan for query Q5 is shown in Fig. 6. For plans witlstreaming XML. They do not consider recursive schemas.

multiple structural joins, the upstream structural joirecor Transducers are simply FSA, augmented with buffers where

Structural Joing.,; appends the (startlD, endID, level) tripleyou can store data or output data to. However, FSA without
information of the correspondin§col to each output tuple. stack are not sufficient for handling recursion.

YFilter [15] follows the algebraic paradigm, introducingthe memory usage by counting the number of tokens we need
node-label trees for on-the-fly XQuery evaluation. Theiinmato hold in the buffer before we invoke structural join. Once
focus is on the evaluation of multiple queries. However, thatructural join is performed, the joined tuples are purgedf
approach of YFilter is not optimal for handling streaminghe buffer. Fig. 7 shows the average number of tokens stored
XML input. This is because the proposed whole-path loading the buffer (defined by the expression below) for five cases:
approach causes storage redundancy and extra join coet. Akero-token delay (i.e., when structural join is invoked fa t
the evaluation strategy for the join operator cannot guaean earliest possible time); one-token delay (i.e., strudtima is
that the structural join will always be executed at the firstvoked one token later than the earliest possible timed: tw
possible moment — which is a desirable property to aid us oken delay; three-token delay; and four-token delay. Nuae
purging the buffer immediately and avoiding output delay. four-token delay causes about 50% more tokens to be stored

The goal of [4] is to minimize the buffer size. Again,than the zero-token delay.
recursion handling is not considered in their work. Theou® The definition of the average number of tokens stored in
is on an orthogonal issue; they study when a token can the buffer is given by:
output at the earliest. The Raindrop can incorporate their SNy
techniques to generate fast output as well. Average number of tokens buffered ==

Another algorithm similar to our recursive structural join) . n
strategy is the tree-merge join algorithm in [1]. However, Here.b; is the number of tokens stored in the buffer after

they do not consider the streaming scenario; therefore & S€€ token; n is the total number of tokens we process.

performance benefits of invoking the structural join at the
earliest possible time is not their focus. Another alganith
mentioned in [1] is the stack-tree join algorithm. Here,ythe | -
use two lists: an ancestor list and a descendent list, and tt o
use a stack to keep the ancestor-descendent relationshipgan
the elements in the ancestor list. So whenever an elemen
the top of the stack matches a descendent candidate, they
conclude that all the elements in the stack can also mat
that descendent candidate. But these generated tuplesotar
be output immediately because they do not conform to tl 2
document order. To solve this problem, this algorithm us:)
two extra lists for every node in the stack: one is the sel
list which is the list of result elements from the join of this
node with appropriate descendent elements. The second list Fig. 7. The memory usage for different number token delay
the inherit-list, is a list of join results for this node oirnted
from the join results of its descendants among the ancastor |
elements. The disadvantages of the stack-tree join afgorig
that since the inherit-list will be appended to self-listaxlever
an element in the stack is popped, a large storage spac
needed.

Memory usage for different token delay

Avg. Number of Tokens Bufferec

o 1 3 4

2
Number of Token Delay

Fig. 7 shows only the buffer saving when structural join
is invoked at the earliest possible time, i.e., zero-tokelayl
@%ually computation is also saved as fewer ID comparisons
need to be performed when there is zero-token delay.

VI. EXPERIMENT RESULTS B. Efficiency of Context-Aware Structural Join

We use ToXgene[6], an XML data generator, to generate The experiments reported in this section illustrate théoper
XML documents. All the experiments are run on a 2.8GHmance benefits of using the context-aware structural jdfrera
Pentium processor with 512MB memory. We perform threan always using recursive structural join. Context-avar
sets of experiments. The first one shows that when joins afguctural join uses just-in-time structural join strateghen it
invoked at the earliest possible time, we require less mgmdinds that this data fragment is not recursive; otherwisedsu
for query processing. The second set of experiments shawsursive structural join strategy. For this set of experits,
that context-aware structural join is more efficient thamegls we generate data sets, each of which has a size of about 30
using recursive structural join. The final set of experirsenMB, with varying percentage of recursive data from 20% to
shows the benefit of our plan generation method, where W80%. A data set with say 20% recursive data is generated as
use recursion-free mode operators whenever possible. follows. We generate the recursive data portion of about 6 MB

)) and the non-recursive data portion of about 24 MB separately
A. Advantages of Early Invocation of Structural Join using ToXgene; then we compose these two data portions into

In this set of experiments, we study the memory usage whene XML file.
we invoke structural join at different times. We use query, Q1 The query we use is query Q3. Q3 tries to find for every
where the earliest time the structural join can be invoked jperson element, its name descendants, and for each such name
when we see the end tag for an outermost person. We measureturns the person element, and this name element.

O Context-aware SJoin . . ion-
, : _ Recursion-free Mode .vs. Recursion-free
Time(ms) @ Recursive SJoin . mode
7000 Recursive Mode —e— Recursive mode
6000 — — 1
| 7000
5000 = T — —
6000 »
4000 1 — 1 |
5000
3000 - >
£ 4000 4
2000 - @
E 3000
1000 - =
2000
0
20% 40% 60% 80% 100% 1000
Percentage of Recursive Data 0
2 4 6 8 10 12 14
Fig. 8. Performance difference between context-aware tshaicjoin and Number of Output tuples(K)

recursive structural join with varying amount of recursiwatal

Fig. 9. Time comparison between recursion-free mode and reeursode
i i operators
When 100% of the data is recursive, the context-aware

structural join will always use the recursive structurainjo

strategy, and hence has no extra benefit. Note that there is =~ = o o
a small overhead, caused by the fact that the context-awg just-in-time structural join strategy efficiently pesses

structural join has to check every time whether the data Jins when the XML substreams are non-recursive and (b)
recursive or not. However when the percentage of recursiit recursive structural join strategy supports strutaias

data is less than 100%, there is always benefit in using conte¥ith I_D-comparisons when the XML substreams are recursive.
aware structural join, as shown in Fig. 8. In this paper, we have proposed a context-aware structural

join. This context-aware structural join uses the recarsiv
C. Advantage of Using Recursion-Free Mode Operators structural join strategy when the data is recursive. When the

In this section, we study the benefits of our clever plafiata is not recursive, it switches to the cheaper justrreti
generation, where we analyze the query, and try to use steuctural join strategy. Further, our structural join riwaked
many recursion-free mode operators as possible. Recursighthe earliest possible time, leading to less memory usage.
free mode operators are more efficient than recursive modleaddition, during our plan generation phase, we analyze
operators even if they operate on the same data. The quél§ query and use the cheaper recursion-free mode operators

we use for th|s set of experiments is Q6 given be|0w_ Whenever possible. Our experiments i||u5tl’ate the pemﬁ
gain achievable by each of the above techniques.
06: As part of our future work, we are currently investigating
for $Zbir;nsgzmgzersons")/root/person, how to incorporate schema into our analysis. For instance,
return $a, $b based on schema, we can generate plans with only operators

for paths that exist and generate more recursion-free mode

When we analyze the query and see that the path expresgigarators. Also the schema can be used for outputting tokens
corresponding to $a has no //, we would generate a plan Whefgy inyoking structural join earlier. In addition, we only

all operators would be recursion-free mode; for instance, Wonsider forward axes in this paper. We can extend our work
would have a just-in-time structural join on $a. If we had nqt, incorporate backward axes in the future.

performed this query analysis, we would have used recursive
mode operators; for instance, we would have a context-
aware structural join on $a. Fig. 9 shows the execution time
difference between using recursion-free mode operatois, alll S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, Drivastava,
recursive mode operators for Q6 funning on non-recursite da 214 Y, W SUueLe s A piie for effent o auepetern
from 6 MB (that outputs 2K tuples) to 42 MB (that outputs (ICDE), page 141, Feb 2002.

14K tuples). Observe that using recursion-free mode opeyat [2] B.Choi. What are Real DTDs like. lfProceedings of WebDBpages

0 ; ; 43-48, 2002.
saves about 20% of the total execution time. [3] N. Bruno, L. Gravano, N. Koudas, and D. Srivastava. Nati@n-
vs. index-based xml multi-query processing. IBEE International

VII. CONCLUSION Conference on Data Engineering (ICDH)ages 139-150, 2003.
We propose a new class of stream algebra operators fg C. Koch‘, S Scherzinger, N. Scheweikardt and B.‘Stegmﬁieleuery:
fficient ive X t . | ticul An Optimizing XQuery Processor for Streaming XML Data. In
emnicient recursive Query stream processing. In particua International Conference on Very Large Data Bases (VLpRpes 228—
propose two strategies for implementing structural joif@s: 239, 2004.

REFERENCES

[5] Y. Chen, G. A. Mihaila, S. B. Davidson, and S. PadmanabExPedite:
A System for Encoded XML Processing. International Conference
on Information and Knowledge Management (CIKMymber 108-117,
2004.

D. Barbosa, A. Mendelzon, and J. Keenleyside et al. ToXgea

Template-Based Data Generator for XML. Proceedings of WebDQB

pages 49-54, 2002.

Y. Diao and M. Franklin. Query Processing for High-VolunxML

Message Brokering. Iinternational Conference on Very Large Data

Bases (VLDB)pages 261-272, 2003.

A. Gupta and D. Suciu. Stream Processing of XPath Queniits

Predicates. IACM SIGMOND pages 419-430, 2003.

[9] Z. Ives, A. Halevy, and D. Weld. An XML Query Engine for Netrk-
Bound Data.VLDB Journa) 11 (4): 380—402, 2002.

[10] Q. Liand B. Moon. Indexing and Querying XML Data for RéguPath
Expressions. Ininternational Conference on Very Large Data Bases
(VLDB), 2001.

[11] B. Ludascher, P. Mukhopadhyay, and Y. Papakonstantino A
Transducer-Based XML Query Processor. Ifternational Conference
on Very Large Data Bases (VLDB)ages 227-238, 2002.

[12] A. Marian and J. Siraon. Projecting xml documents. International
Conference on Very Large Data Bases (VLDBages 213—-224, 2003.

[13] F. Peng and S. Chawathe. XPath Queries on Streaming Da&aCM
SIGMOD, pages 431-442, 2003.

[14] H. Su, E. A. Rundensteiner, and M. Mani. Automaton Meekgehra:
A Hybrid Paradigm for XML Stream Processind3ata and Knowledge
Engineering (DKE) Journal2006.

[15] Y. Diao, P. Fischer, M. J. Franklin, R. To. YFilter: Effent and scalable
filtering of XML documents. INEEE International Conference on Data
Engineering (ICDE) pages 341-344, 2002.

[6

[7

8

