
Processing Recursive XQuery over XML Streams:
The Raindrop Approach

Mingzhu Wei, Ming Li, Elke A. Rundensteiner and Murali Mani
Department of Computer Science
Worcester Polytechnic Institute
Worcester, MA 01609, USA

{samanwei|minglee|rundenst|mmani}@cs.wpi.edu

Abstract— XML stream applications bring the challenge of
efficiently processing queries on sequentially accessible token-
based data. For efficient processing of queries, we need to ensure
that memory usage stays low. This in turn requires that we
avoid holding data in the query buffer, by outputting it at
the earliest possible time. In this paper, we propose a new
class of stream algebra operators for efficient recursive XQuery
stream processing. In particular we propose two strategies for
implementing structural joins: (a) the just-in-time structural j oin
strategy efficiently processes joins as long as the input XML
substreams are non-recursive and (b) the recursive structural
join strategy supports structural joins over recursive XML sub-
streams, however at an added cost of tuple-level ID-comparisons.
Both structural join strategies are complemented by an automata-
driven invocation mechanism that triggers the execution of the
join at the first possible moment upon recognizing the end of
the targeted input stream subelement. Further, we design this
structural join operator itself to be context-aware. The operator
is capable of at run-time switching from the efficient just-in-
time join strategy for elements that are recognized to be non-
recursive to the more powerful id-based structural join strategy
for elements that are identified to be recursive. In addition,
depending on whether the query is recursive, we will generate the
plan with cheaper operators whenever possible. We incorporate
the proposed techniques into the Raindrop stream engine. We
also report on experimental studies we conducted using ToXgene
that show that our techniques brings significant performance
improvement.

I. M OTIVATION

XML has been widely accepted as the standard data repre-
sentation for information exchange on the web. XML stream
systems in particular have attracted more interest recently [4],
[7], [8], [11], [9], [13] because of its wide range of applications
such as sensor networking, online auctions, etc. XML data that
appears in XML documents or XML streams frequently tend
to be recursive. In the study of [2], 35 of 60 analyzed DTDs
were recursive which shows that recursive XML schemas are
very common in real world applications. Furthermore, queries
may also be recursive as descendant axis(//) is often used in
path expressions.

Among the current XML stream processing systems, some
of them consider only XPath queries [8], [13], [5], while
some others process XQuery over non-recursive data [11],
[4]. YFilter [7] and Tukwila [9] can process XQuery over
recursive data as well. However, in both YFilter and Tukwila,
XQuery over recursive XML data is handled in a naive way

by simply keeping all the context information. Therefore, they
can not guarantee the joins are triggered at the earliest possible
moment, thus leading to extra storage.

One solution for processing XQuery is to model the query
semantics as a combination of automata and algebra [14], as
is also done in [7], [9]. Let us first examine how the pattern
retrieval is modeled as an automaton in Raindrop. Automata
are naturally suited for matching path expressions over token
sequences (a token can be a start tag, end tag or PCDATA
item) since they were originally designed for matching regular
expressions over alphabet sequences. Tokens that match the
patterns are extracted from the stream and composed into
XML element nodes, i.e., XML trees. These nodes are then
wrapped into tuples and sent to an algebra-based query proces-
sor for further manipulation, such as filtering or restructuring.

As mentioned before, one of the key differences between
Raindrop and systems such as YFilter and Tukwila is that
in Raindrop, the joins are invoked at the earliest possible
moment, thus optimizing storage and computation. Let us
examine this feature of Raindrop with an example. Consider
the XQuery Q1 given below. This query finds for each person,
all its name descendants.

Q1:
for $a in stream(”persons”)//person

return $a, $a//name

D2:
1 <person>

2 <name>
3 Jack

4 </name>
5 <children>

6 <person>
7 <name>

8 Amy
9 </name>

10 </person>
11 </children>

12 </person>

D1:
1 <person>

2 <name>
3 Jack

4 </name>
5 <children>
6 </children>

7 </person>
8 <person>

9 <name>
10 Amy

11 </name>
12 </person>

Fig. 1. Example XML Document Fragments. Document D1 is non-recursive,
and document D2 is recursive.

Consider document D1 shown in Fig. 1. When we see
the end tag for the first person (token 7), we have seen the
entire content of this person element, along with all its name

descendants. Now we can ”join” and output the person and all
the name elements collected so far; then the buffer for storing
person and name elements can be purged. We call this the just-
in-time structural join [14]. This just-in-time structural join
can be used when we see the end token of the second person
element (token 12) as well.

The just-in-time structural join mentioned above performs
simple cartesian product on person and name elements col-
lected. However this simple cartesian product will not work
when the data is recursive. For instance, consider document
D2. Here the second person element (tokens 6 - 10) is a
descendant of the first person element (tokens 1 - 12), we
call such XML data as recursive. Note that the second name
element (tokens 7 - 9) combines with both the person elements.
Also the first person element and its descendant name elements
need to be output before the second person element and its
descendant name elements, based on the order restrictions
imposed by XQuery. After the end tag of the first person
element (token 12), we can join the two person elements with
the ”appropriate” name elements, and output the results. Now
the two person elements and the two name elements can be
purged.

Since memory and CPU cost are both critical issues in
XML stream processing, our goal is to optimize the storage
and computation performance for handling XQuery, includ-
ing recursive queries over XML streams. In this paper, we
consider only recursive DTDs. If the schema is not recursive,
it would be much easier to process recursive queries as we
have studied in our previous work [14]. To process recursive
queries combined with recursive schema, we have to tackle
the following questions:

1. What should we do with the automata and algebra plan?
Since our automata can retrieve patterns with descendant axis,
it need not be changed. The intuitive idea is to change the
algebra operators to let them cope with the recursive data.

2. How can we process recursive queries while keeping both
the memory and computation cost as low as possible? Our goal
is to make Raindrop process recursive query on recursive data
as well as recursion-free data while keeping the cost minimal.
Our Approach

Our solution to deal with recursive XQuery includes the
following:

(a) For recursive queries, we keep the ID information and
level information to determine ancestor-descendant and parent-
child relationships.

(b) To process recursive XQuery, we have to use recursive
structural join which is essentially ID-based structural join,
this is more expensive both in memory and computation.
To save the memory and computation, we want to switch
to cheaper just-in-time structural join as soon as we know
that the XML data fragment is non-recursive. Thus we design
this structural join operator itself to be context-aware. This
operator is capable of at run-time switching from the efficient
just-in-time join strategy for elements that are recognized to
be non-recursive to the more powerful recursive structuraljoin
strategy for elements that are identified to be recursive.

Our contributions include:

1) We propose a new class of stream algebra operators
for efficient recursive XQuery stream processing. We
discuss the details in Section III.

2) We propose a context-aware structural join which
switches from the efficient just-in-time join strategy
for elements that are recognized to be non-recursive to
the more powerful id-based structural join strategy for
recursive elements at run-time.

3) We have two modes for each operator: the cheaper
recursion-free mode and the more expensive recursive
mode. Our plan generation examines the query, and uses
the cheaper recursion-free mode operators whenever
possible.

4) Our experiments illustrate that our invocation of the
structural join at the earliest possible moment, our
context-aware structural join and our clever plan gen-
eration bring significant performance benefits over other
approaches.

II. BACKGROUND

Raindrop uses automata-based model for pattern retrieval
on tokens and uses algebra plan, which consists of algebra
operators to do operations on sets of tuples. The query
processing in Raindrop can be decomposed into two phases. In
the first phase, tokens are processed by an extended automata
engine for pattern retrieval. When the tokens are scanned and
recognized, they are passed to algebra operators. In the second
phase, these algebra operators create objects from these tokens,
organize them into tuples, and perform further operations on
these tuples.

A. Retrieving Patterns Using Automata

Our automaton is based on a non-deterministic finite ma-
chine (NFA). It encodes the path expressions present in the
query. For instance, the automaton corresponding to Query
Q1 is shown in Fig. 2. Here states s2 and s4 are final states,
corresponding to the two path expressions in Q1.

<person> <name>

s0

λ

s0 s1
person

*

s2
λ

s3
name

*

s4

s1, s2

s0

s1, s2

s0

s1, s3,s4

s1, s2

s0

s1, s3,s4

s1, s2

s0

Jack </name>

(a) Automata corresponding to query Q1

(b) Stack as D1 is being processed

Fig. 2. (a) Automata (b) Stack

Our automata is augmented with a stack, which keeps track
of the context of the tokens. Given a stream of tokens (the
XML data), our automaton works as follows. Each final state
in the automaton marks the end of a path expression. Given
a current set of statesS at the stack top, if the next token is
a start tag, consider all the states to which any of the states
in S can transit to for this token. These will form the new set
of states, which are pushed on to the stack. If no state inS

can transit to any state for the next token, then an empty set
is pushed on to the stack. If the next token is an end tag, the
current stack top is popped. The stack is then restored to the
status before the matching start tag has been encountered. If
the next token is a PCDATA item, this token is skipped.

Let us examine how patterns in document D1 in Fig. 1 are
retrieved using the above automaton. Before the first token is
seen, we have{s0} in the stack. When we see the start tag of
person (token 1), we push{s1, s2}onto the stack. s2 is a final
state; therefore, we have identified a pattern specified in the
query Q1. In this case, the corresponding algebra operators
are invoked, as will be discussed in the next subsection.

Now, we see the start tag of name (token 2). We push
{s1, s3, s4} onto the stack. s4 is again a final state, and
the corresponding algebra operators will be invoked. The next
token (token 3) is a PCDATA item, in which case no action
is taken. Then we see the end tag of name (token 4), now we
pop the top of the stack. Any corresponding algebra operators
associated with s4 for the end tag of name will also be invoked.
This process continues, and we identify all the patterns.

B. Algebra plan

For any query, Raindrop generates an algebra plan that com-
poses the tokens into tuples, and performs further operations
on these tuples [14]. The algebra operators that are relevant
to this paper are: Navigate, ExtractUnnest, ExtractNest and
StructuralJoin operators. The description of each operator is
shown in Fig.4. These algebra operators are invoked by the
final states in the automaton. The algebra plan for query Q1
is shown in Fig. 3.

Navigatepath→$col is invoked when an element that
matchespath is identified by the automaton. This operator
keeps track of the start and end of this element. It also
notifies these events to its downstream Extract operators. For
instance,op1 keeps track of the start and end tag of person
elements, and notifies the Extract operator,op4 about these
events. ExtractUnnest$col, when it is notified about the
start tag from its upstream Navigate operator, starts collecting
the tokens till it is notified about the end tag from its
upstream Navigate operator. For instance,op4 will form one
tuple for each person element.ExtractNest$col is similar to
ExtractUnnest$col, except that it groups all the$col into one
tuple. For instance,op3 forms one tuple consisting of all the
descendant name elements of a person.StructuralJoin$col is
invoked when an end tag of$col token is encountered by the
”corresponding” Navigate operator. It combines (by perform-
ing cartesian product) the tuples from its branch operators.
For instance,op5 is invoked whenever the end tag of person

is seen byop1. It combines the person tuple fromop4 and the
set of names grouped into one tuple fromop3, and outputs
this result.

StructuralJoin $a

ExtractNest $b

ExtractUnnest $a

Navigate //person -> $a

Navigate $a/ /name -> $b

Stream data

op4

op3

op2

op1

op5

Fig. 3. Algebra plan corresponding to query Q1

Description

ExtractUnnest $Col

Matching path, label the start and end
of XML element $Col

Compose the tokens into tuples

Collect the tokens and creates one tuple
for the whole collection

Navigatepath->$Col

ExtractNest $col

Merge the output of the branch
operators by performing simple
cartesian product

Structural Join$Col

Algebra Operator

Fig. 4. Algebra operators in Raindrop

C. Plan Execution

Let us examine how Raindrop combines the automata and
the algebra plan to execute a query and obtain the results.
Consider again, query Q1 executed on document D1. When
the start tag of person (token 1) is seen, we push{s1, s2} onto
the stack; s2 is a final state, therefore it invokes the operators
associated with it –op1. The operatorop1 in turn informsop4
andop4 starts collecting the tokens into a tuple. When the start
tag of name (token 2) is seen, the states{s1, s3, s4} are pushed

Query recursive Query not recur-
sive

Data
recursive

Can’t process Generate correct
output

Data not
recursive

Generate
correct output

Generate correct
output

TABLE I

THE TECHNIQUES INSECTION II CANNOT PROCESS RECURSIVE QUERIES

ON RECURSIVE DATA

onto the stack. s4 is a final state; it invokes operatorop2, which
in turn invokesop3. op3 now starts collecting tokens.

When the end tag of name (token 4) is seen, we pop{s1,
s3, s4} from the stack.s4 is a final state, it invokesop2, op2
informs op3 to stop collecting tokens. When the end tag of
person (token 7) is seen, we pop{s1, s2} from the stack.
s2 is a final state, it invokesop1, which informsop4 to stop
collecting tokens. After thisop1 invokesop5, which performs
the join over the branch operators. In this case, there is one
tuple fromop3 and one tuple fromop4 which are combined,
and then output. Also the output buffers ofop3 and op4
are cleared. The same process is continued for the second
person element also. Note two features (a) the invocation of
the structural join is done at the earliest possible time, thus
ensuring buffers are cleaned up early (b) this structural join
does a simple cartesian product, without any comparisons.

D. Issues for Recursive XML Data

The techniques mentioned in this section cannot be used
for recursive XML data. Table I shows the cases that can be
handled using the above techniques.

The techniques in this Section cannot process recursive
queries on recursive data due to various reasons. For non-
recursive data, the navigate operator invokes the structural join
whenever the corresponding end tag is encountered. This does
not work for recursive XML data, such as document D2. When
we see the end tag of the second person (token 10), we have
not seen the first person entirely. But the first person needs to
be output before the second person according to the XQuery
semantics. This means the Navigate operator will invoke the
structural join only when the end tags for all the persons have
been seen (that is, token 12 is seen).

Also for non-recursive data, the ExtractNest operator per-
forms the grouping. This was possible because for D1 because
any name element will join with at most one person element.
This need not be true for recursive data; for instance, the
second name element (tokens 7 - 9) joins with both the
person elements. Therefore one solution, as what we will
pursue in Raindrop, is that the ExtractNest does not peform
the grouping; in stead the grouping is performed by the
downstream structural join.

The structural join for non-recursive data did simple carte-
sian product of all its input branch operators. However, for
recursive data such as D2, we have two person elements

extracted byop4, and two name elements extracted byop3.
We have to check the ancestor-descendant (or parent-child)
relationships between these person and name elements. This
requires additional information to be associated with the
elements.

Note that the problems mentioned above happen when the
query and the data are both recursive. In the next section, we
will examine how Raindrop executes recursive queries over
recursive data.

III. R ECURSIVE-MODE OPERATORS

In this section, we will adapt the Raindrop operators so
that they can process recursive queries over recursive dataas
well. We will first examine how we will associate additional
information with each element. We will then investigate how
each of the four algebra operators mentioned in Section II are
modified to handle recursive data.

A. Associating IDs with elements

Each element is associated with a triple (startID, endID,
level). Here, the startID of an element is given by the tokenID
of the corresponding start tag, and its endID is given by the
tokenID of the corresponding end tag. For instance, the startID
of the first name element in D2 is 2, and the endID of this
element is 4. The level of an element is the length of the path
from the root to this element. For instance the level of the
first name element is 1. This numbering scheme is similar to
the DFS traversal numbering, as is also used in several other
works [10].

Given two elements, and their corresponding triples, we can
determine ancestor-descendant and parent-child relationships.
For instance, consider the first person element in D2 whose
triple is (1, 12, 0), and the first name element in D2 whose
triple is (2, 4, 1). We can determine that the first name element
is a descendant (also a child) of this person element.

B. Features of Recursive Navigate operators

The recursive Navigate operator functions differently from
the non-recursive Navigate in several ways. First, the recursive
Navigate operator keeps track of the triple for each corre-
sponding element. These triples are kept in the order they
arrive, which is the startID of the corresponding elements.
For instance, consider document D2, andop1 in Fig. 3.
Corresponding to the two person elements,op1 will keep the
following two triples:< (1, 12, 0), (6, 10, 2) >.

Secondly, the non-recursive Navigate operator will call
its structural join operator, whenever the end tag of the
corresponding element is seen. But the recursive Navigate
operator will call its structural join operator only when all the
triples in this Navigate operator are complete, which means
that we have seen the entire data for every one of these
elements. For instance, when we see the end tag of the second
person (token 10),op1 will have the following two triples:
< (1, , 0), (6, 10, 2) >; note that the first person element is not
complete. Thereforeop5 is not invoked. When the end tag of
the first person (token 12) is seen,op1 will have the following

two triples:< (1, 12, 0), (6, 10, 2) >. Both the person elements
are complete, and thereforeop5 will be invoked now.

Thirdly, the recursive Navigate operator needs to pass the
triple information to the structural join in the order in which
they are kept. Let us examine why the Navigate needs to
pass this triple information by looking at an example query Q2.

Q2:
for $a in stream(”persons”)//person

return $a//Mothername, $a//name

The algebraic plan for Q2 is similar to that shown in Fig. 3,
except thatop4 is now replaced by a Navigate and ExtractNest
operators that extract the Mothernames for each person. Now
the structural join when it receives the Mothernames and
names for multiple person elements, it needs to know the
person triples for determining which Mothernames and names
join with which persons.

C. Features of Recursive ExtractUnnest operators

The non-recursive ExtractUnnest operator blindly extracts
the tokens when invoked by the upstream Navigate operator,
forms tuples from these tokens, and passes these tuples
to its downstream Structural Join operator. The recursive
ExtractUnnest operator, in addition to extracting the tokens
into tuples, also adds the (startID, endID, level) information
for every element to its corresponding tuple. For instance,
consider query Q3 below.

Q3:
for $a in stream(”persons”)//person, $b in $a//name

return $a, $b

The plan for Q3 will look similar to the plan in Fig. 3, except
that op4 is replaced byExtractUnnest$b. Now consider
the two tuples corresponding to the two name elements in
document D2 formed byop4. With the tuple for the first name
element,op4 will add (2, 4, 1), and with the tuple for the
second name element,op4 will add (7, 9, 3). This information
will be used byop5 while performing the structural join.

D. Features of Recursive ExtractNest operators

The non-recursive ExtractNest operator groups all the to-
kens it has collected into one tuple. However, for recursive
data D2, this is not feasible as the ExtractNest operatorop3
stores the information only regarding the name elements. But
the first name element (tokens 2 - 4) does not join with the
second person element (6 - 10), and the second name element
(tokens 7 - 9) joins with both the person elements. Therefore
instead ofop3 performing the grouping, Raindrop will move
the grouping operation to the downstream structural join,op5
in this case.

The recursive ExtractNest in Raindrop is therefore similar
to ExtractUnnest, that is it extracts tokens into tuples, adds
the (startID, endID, level) information for every element to
its corresponding tuple, and passes this information to the
downstream structural join operator, which will perform the
grouping, as will be mentioned below.

E. Features of Recursive StructuralJoin operators

As compared to the non-recursive StructuralJoin operator,
the recursive StructuralJoin operator has to perform additional
operations, including (a) ID-based comparison among its
branch operators, and (b) grouping when its upstream operator
is an ExtractNest operator. In this section, we will examine
how the structural join is invoked, and its features.

1) Invoking Mechanism of Recursive Structural Join:For
non-recursive data,Structuraljoin$person (op5) in Fig. 3 is
invoked whenever the end tag of$person is encountered.
Such invoking mechanism brings problems when processing
recursive data.

For example, when we process the data shown in document
D2 in Figure1, the end tag of the second person (token 10)
is encountered first which invokesop5. This structural join
generates the output tuple composed of the second person
element (tokens 6- 10) and the second name element (tokens
7 - 9). Then this person element and name element will be
cleaned because they have been output byop5. When the end
tag of the first person element (token 12) is encountered,op5
is invoked again. This time, the first person element (tokens
1 - 12) cannot join with the second name element because
this name element has been deleted from the buffer. This
happens for recursive data, because one name element can
be descendant of multiple ancestor person elements. We do
not want to delete the data which we will use later.

A second problem of this invoking mechanism is that the
output does not conform to the stream order because the
second person element is output first. To address this, suppose
we have two person elements, one of which is a descendant of
the other element, then we need to keep the data and invoke
op5 only after the end of the outermost person element. Then
we can guarantee that (a) we will not lose any data that will
be needed later, and (b) the data is output in the correct order.

Now the question we face is how can we know that
the end of the outermost person element has been reached?
The structural join operator is invoked by the corresponding
Navigate operator. In Raindrop, the Navigate operator will
check whether the endID of all its triples have been filled.
Only then it will invoke the structural join. For instance,op1
will invoke op5 only after seeing token 12. This ensures that
the end of the outermost person element has been reached.

2) Algorithm for Recursive Structural Join:Consider
StructuralJoin$col; let its branch operators be
B = {bop1, bop2, . . . , bopn}. The algorithm for the recursive
structural join is given below.

01 for each triplet in Navigatepath→$col

02 for each branch operatorbopi

03 if bopi is ExtractUnnest$col

04 for each elemente in the output buffer ofbopi

05 if t.startId = e.startId

06 adde to output listoi;
07 else if branch operator contains //
08 for each elemente in the output buffer ofbopi

09 if t.startId < e.startId andt.endId > e.endId

10 adde to output listoi;
11 else if branch operator does not contains //
12 for each elemente in the output buffer ofbopi

13 if t.startId < e.startId andt.endId > e.endId

ande.level = t.level + 1

14 adde to output listoi;
15 if bopi is ExtractNest$col1

16 groupoi to form one tuple;
17 perform cartesian productOt = {o1 × o2 × . . . × on};

// Ot is the result for the current triple.
18 add the tuples inOt to the output;

The structural join is invoked by its corresponding Navigate
operator. This Navigate operator has one or more complete
triples at this point. The structural join iterates over this set of
triples (line 01 – 18). For each triplet, it goes through all the
elements in every one of its branch operators (line 02 – 16).
If the branch operatorbopi extracts the same element as the
navigate, simply find the element corresponding to this triple t

by performing ID comparison, and add it to the output listoi

for operatorbopi (line 03 – 06). Otherwise, we check whether
bopi contains // in its corresponding path expression. If it
contains //, it means we need to determine ancestor-descendant
relationship betweent and every elemente in the output buffer
of bopi by performing ID comparison. The descendants will
be added to the output listoi (line 08 – 10). If bopi does
not contain //, it means we need to determine parent-child
relationship betweent and every elemente in the output buffer
of bopi. The children oft will be added to the output listoi

(line 12 – 14).
After the above ID comparison,oi contains the set of

elements corresponding to the current triple, for this branch
operator. Now for the ExtractNest operators among the branch
operators, we need to group all the elements inoi to form one
tuple (line 15 – 16). Now, we have obtained the set of elements
corresponding to the current triple. We can simply perform the
cartesian product of theseoi’s and this generates the output for
the current triplet. We continue to iterate over the remaining
triples. After we have iterated over all the triples, the output
buffers of all the branch operators are purged. Observe that
the output tuples generated by the structural join are in the
correct order; also the data is cleaned at the earliest possible
time.

IV. FURTHER OPTIMIZATION

A. Context-aware Structural Join operators

As discussed before, recursive structural join needs to per-
form ID comparison and thus is more expensive than the just-
in-time structural join which only performs cartesian product.
To reduce the cost of the overall plan, we want to use the
cheap structural join whenever possible.

We can determine whether the current data fragment is
recursive or not by checking the number of triples passed to

the structural join from the Navigate operator. If there is only
one triple buffered in the Navigate operator, it implies that the
current element is not recursive. In this case, structural join
will execute the just-in-time structural join which has no ID
comparison and thus is faster. If there are more than one triple
stored in the Navigate operator, we have to perform recursive
structural join. We incorporate this execution approach as
a new type of structural join, which we callcontext-aware
structural join. Context-aware structural join is capable of at
run-time switching from the efficient just-in-time join strategy
for elements that are recognized to be non-recursive to the
more powerful id-based structural join strategy for elements
that are identified to be recursive. The execution process of
context-aware structural join is shown in Fig. 5.

Context

Check

Automata
Invoking

Call
Recursive
Structural
Join

Call Just-in-
time
Structural
Join

Output tuples

Purge tuples

Navigate

Data is
recursive

Data is not
recursive

Fig. 5. Execution Process of Context-aware Structural Join

From the figure, see that when an appropriate end tag is
recognized by the automaton, it informs the Navigate operator.
This Navigate operator in turn invokes the context-aware struc-
tural join operator, if all the triples in the Navigate operator are
filled. The context-aware structural join first checks whether
this data fragment is recursive or not, by checking whether
there are multiple triples in the Navigate operator. This is
shown as the Context Check step in Fig. 5. If the data is not
recursive, then the just-in-time structural join strategyis called;
otherwise, the recursive structural join strategy is called. These
results are then output, and the joined tuples are purged.

B. Optimizing Generated Plan based on Query

We studied above how the context-aware structural join
chooses an efficient join strategy based on the data fragments
at run-time. Now, we will examine how based on the query,
we can generate more efficient plans.

For every operator, we have two modes: arecursive mode,
and arecursion-free mode. A recursive mode Navigate opera-
tor keeps track of the (startID, endID, level) triple for each
element, whereas a recursion-free mode Navigate operator
does not keep any triple information. A recursive mode
Extract operator adds the (startID, endID, level) triple toevery
element it extracts; however, a recursion-free mode Extract
operator only collects the tokens into tuples without the triple
information. A recursive mode structural join is the context-
aware structural join that performs ID comparison as needed;
whereas a recursion-free mode structural join uses the just-
in-time structural join with no ID comparison. The recursive
mode operators obviously require more memory, and perform
more computation than the corresponding recursion-free mode
operators. Therefore, we would like to use the recursion-free
mode operators whenever possible.

Such plans are generated as follows. During plan generation,
we check whether a structural join corresponds to a path
expression with //. If so, this structural join, as well as all its
descendant operators in the plan are instantiated as recursive
mode operators. Consider query Q1, the plan generated for
this is shown in Fig. 3, where every operator is a recursive
mode operator. However, suppose the query is modified
to be recursion-free as shown in Q4 below. Now, the plan
generated is similar to Fig. 3, however, every operator will
be a recursion-free mode operator.

Q4:
for $a in stream(”persons”)/person

return $a, $a/name

C. Plans with Multiple Structural Joins

For a given XQuery, we might come up with a plan with
multiple structural joins, where a structural join operator
might have other structural join operators as its descendants.
If the data is recursive, then the upstream structural join
operator needs to pass the ID information to its downstream
structural join operator. Let us consider this with an example
query Q5 as shown below.

Q5:
for $a in stream(”s”)//a

return{
for $b in $a//b

return{
for $c in $b//c

return{ $c//d, $c//e},
$b//f },

$a//g}

The plan for query Q5 is shown in Fig. 6. For plans with
multiple structural joins, the upstream structural join operator
StructuralJoin$col appends the (startID, endID, level) triple
information of the corresponding$col to each output tuple.

StructuralJoin $a

ExtractNest $g

StructuralJoin $b

StructuralJoin $c

Navigate$a//g ->$g

ExtractNest $f

op1

ExtractNest $d ExtractNest $e

Navigate$//a ->$a

Navigate$a//b ->$b

Navigate$b//c ->$c

Navigate$c//d ->$d Navigate$c//e ->$e
Navigate$b//f ->$f

op2

op3

Fig. 6. Plan for Q5 with Multiple Structural Join Operators

For instance, considerop3 in Fig. 6. It is a context-aware
structural join, which produces one tuple corresponding to
each $c, with the grouped $c//d and $c//e tuples. To this tuple,
it also appends the (startID, endID, level) corresponding to this
$c, and passes this toop2. Similarly, op2 appends the triple
corresponding to $b to each of its output tuples.

1) Optimizing Plan Generation with Multiple Structural
Joins: During plan generation, determining whether an op-
erator is a recursive mode operator or a recursion-free mode
operator when we have multiple structural joins is done as
follows. We traverse the query plan operators in a top-down
manner. When we encounter a structural join operator that
corresponds to a path expression with //, we instantiate this
structural join operator and all its descendants as recursive
mode operators. Other operators are instantiated as recursion-
free mode operators.

V. RELATED WORK

[12], [3] evaluate XQuery expressions over XML streams
using a two-phase approach which separates the task of pattern
retrieval from the actual task of query evaluation, such as
filtering, joining or restructuring. Recursion could be handled
in such an approach in the second phase, i.e., using the well-
studied algebraic query evaluation methods typically applied
to (static, i.e., non-stream) XML data. However, such a two-
phase solution does not fit well with the requirements of
stream processing applications which require continuous query
evaluation and immediate data purging to preserve memory.

[5] proposes to apply an encoding scheme in order to
handle recursion. However, only XPath expressions have been
considered in their work. In XQuery, careful synchronization
between the pattern retrieval and query execution would need
to be designed in order to achieve acceptable performance for
recursion handling.

[11] uses a transducer model for evaluating XQuery over
streaming XML. They do not consider recursive schemas.
Transducers are simply FSA, augmented with buffers where
you can store data or output data to. However, FSA without
stack are not sufficient for handling recursion.

YFilter [15] follows the algebraic paradigm, introducing
node-label trees for on-the-fly XQuery evaluation. Their main
focus is on the evaluation of multiple queries. However, the
approach of YFilter is not optimal for handling streaming
XML input. This is because the proposed whole-path loading
approach causes storage redundancy and extra join cost. Also,
the evaluation strategy for the join operator cannot guarantee
that the structural join will always be executed at the first
possible moment – which is a desirable property to aid us in
purging the buffer immediately and avoiding output delay.

The goal of [4] is to minimize the buffer size. Again,
recursion handling is not considered in their work. Their focus
is on an orthogonal issue; they study when a token can be
output at the earliest. The Raindrop can incorporate their
techniques to generate fast output as well.

Another algorithm similar to our recursive structural join
strategy is the tree-merge join algorithm in [1]. However,
they do not consider the streaming scenario; therefore the
performance benefits of invoking the structural join at the
earliest possible time is not their focus. Another algorithm
mentioned in [1] is the stack-tree join algorithm. Here, they
use two lists: an ancestor list and a descendent list, and they
use a stack to keep the ancestor-descendent relationship among
the elements in the ancestor list. So whenever an element at
the top of the stack matches a descendent candidate, they can
conclude that all the elements in the stack can also match
that descendent candidate. But these generated tuples can not
be output immediately because they do not conform to the
document order. To solve this problem, this algorithm uses
two extra lists for every node in the stack: one is the self-
list which is the list of result elements from the join of this
node with appropriate descendent elements. The second list,
the inherit-list, is a list of join results for this node obtained
from the join results of its descendants among the ancestor list
elements. The disadvantages of the stack-tree join algorithm is
that since the inherit-list will be appended to self-list whenever
an element in the stack is popped, a large storage space is
needed.

VI. EXPERIMENT RESULTS

We use ToXgene[6], an XML data generator, to generate
XML documents. All the experiments are run on a 2.8GHz
Pentium processor with 512MB memory. We perform three
sets of experiments. The first one shows that when joins are
invoked at the earliest possible time, we require less memory
for query processing. The second set of experiments shows
that context-aware structural join is more efficient than always
using recursive structural join. The final set of experiments
shows the benefit of our plan generation method, where we
use recursion-free mode operators whenever possible.

A. Advantages of Early Invocation of Structural Join

In this set of experiments, we study the memory usage when
we invoke structural join at different times. We use query Q1,
where the earliest time the structural join can be invoked is
when we see the end tag for an outermost person. We measure

the memory usage by counting the number of tokens we need
to hold in the buffer before we invoke structural join. Once
structural join is performed, the joined tuples are purged from
the buffer. Fig. 7 shows the average number of tokens stored
in the buffer (defined by the expression below) for five cases:
zero-token delay (i.e., when structural join is invoked at the
earliest possible time); one-token delay (i.e., structural join is
invoked one token later than the earliest possible time); two-
token delay; three-token delay; and four-token delay. Notethat
four-token delay causes about 50% more tokens to be stored
than the zero-token delay.

The definition of the average number of tokens stored in
the buffer is given by:

Average number of tokens buffered=
Σn

i=1bi

n

Here, bi is the number of tokens stored in the buffer after
we see tokeni; n is the total number of tokens we process.

Memory usage for different token delay

0

2

4

6

8

10

12

0 1 2 3 4

Number of Token Delay

A
vg

. N
um

be
r o

f T
ok

en
s

B
uf

fe
re

d

Fig. 7. The memory usage for different number token delay

Fig. 7 shows only the buffer saving when structural join
is invoked at the earliest possible time, i.e., zero-token delay.
Actually computation is also saved as fewer ID comparisons
need to be performed when there is zero-token delay.

B. Efficiency of Context-Aware Structural Join

The experiments reported in this section illustrate the perfor-
mance benefits of using the context-aware structural join rather
than always using recursive structural join. Context-aware
structural join uses just-in-time structural join strategy when it
finds that this data fragment is not recursive; otherwise it uses
recursive structural join strategy. For this set of experiments,
we generate data sets, each of which has a size of about 30
MB, with varying percentage of recursive data from 20% to
100%. A data set with say 20% recursive data is generated as
follows. We generate the recursive data portion of about 6 MB
and the non-recursive data portion of about 24 MB separately
using ToXgene; then we compose these two data portions into
one XML file.

The query we use is query Q3. Q3 tries to find for every
person element, its name descendants, and for each such name,
it returns the person element, and this name element.

0

1000

2000

3000

4000

5000

6000

7000

20% 40% 60% 80% 100%
Percentage of Recursive Data

Time(ms)
Context-aware SJoin

Recursive SJoin

Fig. 8. Performance difference between context-aware structural join and
recursive structural join with varying amount of recursive data

When 100% of the data is recursive, the context-aware
structural join will always use the recursive structural join
strategy, and hence has no extra benefit. Note that there is
a small overhead, caused by the fact that the context-aware
structural join has to check every time whether the data is
recursive or not. However when the percentage of recursive
data is less than 100%, there is always benefit in using context-
aware structural join, as shown in Fig. 8.

C. Advantage of Using Recursion-Free Mode Operators

In this section, we study the benefits of our clever plan
generation, where we analyze the query, and try to use as
many recursion-free mode operators as possible. Recursion-
free mode operators are more efficient than recursive mode
operators even if they operate on the same data. The query
we use for this set of experiments is Q6 given below.

Q6:
for $a in stream(”persons”)/root/person,

$b in $a/name
return $a, $b

When we analyze the query and see that the path expression
corresponding to $a has no //, we would generate a plan where
all operators would be recursion-free mode; for instance, we
would have a just-in-time structural join on $a. If we had not
performed this query analysis, we would have used recursive
mode operators; for instance, we would have a context-
aware structural join on $a. Fig. 9 shows the execution time
difference between using recursion-free mode operators, and
recursive mode operators for Q6 running on non-recursive data
from 6 MB (that outputs 2K tuples) to 42 MB (that outputs
14K tuples). Observe that using recursion-free mode operators
saves about 20% of the total execution time.

VII. C ONCLUSION

We propose a new class of stream algebra operators for
efficient recursive XQuery stream processing. In particular we
propose two strategies for implementing structural joins:(a)

Recursion-free Mode .vs.
 Recursive Mode

0

1000

2000

3000

4000

5000

6000

7000

2 4 6 8 10 12 14
Number of Output tuples(K)

T
im

e(
m

s)

Recursion-free
mode
Recursive mode

Fig. 9. Time comparison between recursion-free mode and recursive mode
operators

the just-in-time structural join strategy efficiently processes
joins when the XML substreams are non-recursive and (b)
the recursive structural join strategy supports structural joins
with ID-comparisons when the XML substreams are recursive.
In this paper, we have proposed a context-aware structural
join. This context-aware structural join uses the recursive
structural join strategy when the data is recursive. When the
data is not recursive, it switches to the cheaper just-in-time
structural join strategy. Further, our structural join is invoked
at the earliest possible time, leading to less memory usage.
In addition, during our plan generation phase, we analyze
the query and use the cheaper recursion-free mode operators
whenever possible. Our experiments illustrate the performance
gain achievable by each of the above techniques.

As part of our future work, we are currently investigating
how to incorporate schema into our analysis. For instance,
based on schema, we can generate plans with only operators
for paths that exist and generate more recursion-free mode
operators. Also the schema can be used for outputting tokens
and invoking structural join earlier. In addition, we only
consider forward axes in this paper. We can extend our work
to incorporate backward axes in the future.

REFERENCES

[1] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, D. Srivastava,
and Y. Wu. Structural joins: A primitive for efficient xml querypattern
matching. In IEEE International Conference on Data Engineering
(ICDE), page 141, Feb 2002.

[2] B.Choi. What are Real DTDs like. InProceedings of WebDB, pages
43–48, 2002.

[3] N. Bruno, L. Gravano, N. Koudas, and D. Srivastava. Navigation-
vs. index-based xml multi-query processing. InIEEE International
Conference on Data Engineering (ICDE), pages 139–150, 2003.

[4] C. Koch, S. Scherzinger, N. Scheweikardt and B. Stegmaier. FluxQuery:
An Optimizing XQuery Processor for Streaming XML Data. In
International Conference on Very Large Data Bases (VLDB), pages 228–
239, 2004.

[5] Y. Chen, G. A. Mihaila, S. B. Davidson, and S. Padmanabhan.EXPedite:
A System for Encoded XML Processing. InInternational Conference
on Information and Knowledge Management (CIKM), number 108-117,
2004.

[6] D. Barbosa, A. Mendelzon, and J. Keenleyside et al. ToXgene: a
Template-Based Data Generator for XML. InProceedings of WebDB,
pages 49–54, 2002.

[7] Y. Diao and M. Franklin. Query Processing for High-VolumeXML
Message Brokering. InInternational Conference on Very Large Data
Bases (VLDB), pages 261–272, 2003.

[8] A. Gupta and D. Suciu. Stream Processing of XPath Querieswith
Predicates. InACM SIGMOD, pages 419–430, 2003.

[9] Z. Ives, A. Halevy, and D. Weld. An XML Query Engine for Network-
Bound Data.VLDB Journal, 11 (4): 380–402, 2002.

[10] Q. Li and B. Moon. Indexing and Querying XML Data for Regular Path
Expressions. InInternational Conference on Very Large Data Bases
(VLDB), 2001.

[11] B. Ludascher, P. Mukhopadhyay, and Y. Papakonstantinou. A
Transducer-Based XML Query Processor. InInternational Conference
on Very Large Data Bases (VLDB), pages 227–238, 2002.

[12] A. Marian and J. Siḿeon. Projecting xml documents. InInternational
Conference on Very Large Data Bases (VLDB), pages 213–224, 2003.

[13] F. Peng and S. Chawathe. XPath Queries on Streaming Data.In ACM
SIGMOD, pages 431–442, 2003.

[14] H. Su, E. A. Rundensteiner, and M. Mani. Automaton Meets Algebra:
A Hybrid Paradigm for XML Stream Processings.Data and Knowledge
Engineering (DKE) Journal, 2006.

[15] Y. Diao, P. Fischer, M. J. Franklin, R. To. YFilter: Efficient and scalable
filtering of XML documents. InIEEE International Conference on Data
Engineering (ICDE), pages 341–344, 2002.

