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Abstract

Complex event processing has become increasingly impor-
tant in modern applications, ranging from supply chain
management for RFID tracking to real-time intrusion detec-
tion. The goal is to extract patterns from such event streams
in order to make informed decisions in real-time. However,
networking latencies and even machine failure may cause
events to arrive out-of-order at the event stream process-
ing engine. In this work, we address the problem of pro-
cessing event pattern queries specified over event streams
that may contain out-of-order data. First, we analyze the
problems state-of-the-art event stream processing technol-
ogy would experience when faced with out-of-order data ar-
rival. We then propose a new solution of physical implemen-
tation strategies for the core stream algebra operators such
as sequence scan and pattern construction, including stack-
based data structures and associated purge algorithms. Op-
timizations for sequence scan and construction as well as
state purging to minimize CPU cost and memory consump-
tion are also introduced. Lastly, we conduct an experimen-
tal study demonstrating the effectiveness of our approach.

1 Introduction

Event stream processing has raised increased interest in the
database and distributed systems communities in the past
few years [1, 10, 2, 3, 9]. A wide range and ever grow-
ing numbers of applications nowadays, including network
monitoring, e-business, health-care, financial analysis, and
security supervision, rely on being able to process queries
over data streams that take the form of time ordered series
of events.

Let us consider a popular application for applying event
sequence tracking techniques, namely, shoplifting in book-
stores. RFID tags are attached to each book and RFID read-
ers are placed at different locations throughout the store,
such as book shelves, checkout counters and the store exit.
If a book shelf and a store exit sensed the same book but
none of the checkout counters sensed it in between the oc-
currence of the first two events, then we can conclude that
this book is being shoplifted.

Event queries, such as those needed above to detect
shoplifting, have been tackled in the literature. For in-
stance, SASE [10] proposes an expressive yet easy-to-
understand language to support pattern queries on such se-
quential streams. It also proposes customized algebra oper-
ators for the efficient processing of such sequence queries
with sliding windows. This technology, being specifically
designed for handling sequence queries over event streams,
is shown to be superior to generic stream processing solu-
tions [7].

For an event stream processing system if the order in
which the events are received by the system is the same as
their timestamp order, we say the data arrival of the system
satisfies the total order assumption. Most systems [10, 2],
both event-based and stream-based ones, assume a total or-
dering among event arrivals. By this assumption, the later
arrival of an event implies that it has a larger timestamp than
the other events which have already arrived earlier. For ex-
ample, the query evaluation approach of [10] relies on such
total ordering assumption for locating the expected event
sequences.

However, out-of-order events are not uncommon in prac-
tice. For example, in a distributed computing environment,
event sequences might arrive out-of-order at the processing
engine due to network traffic and possible node failure. We
will illustrate that the existing technology would fail in such
circumstances, either missing resulting matches or incor-
rectly producing incorrect matches. Clearly, for handling
out-of-order data arrival, a more sophisticated mechanism
is needed. This is the problem we tackle in the paper.

We propose the first solution for evaluating sequence
queries over event streams with out-of-order data arrival in
this work. The main contributions of this work include:

• We analyze the problems that state-of-the-art event
stream processing technology would experience when
faced with out-of-order data arrival.

• We propose new physical implementation strategies
for the core stream algebra operators such as sequence
scan, pattern construction and runtime purge. In partic-
ular, we introduce stack-based data structures as well
as the associated sequence retrieval, event pattern con-
struction and state purge mechanisms.



• Optimizations for sequence scan and state purging to
minimize CPU cost and memory consumption are in-
troduced.

• We conduct an experimental study that demonstrates
the effectiveness of our proposed approach over exist-
ing solutions.

In Section 2 we describe the event sequence query model
and the basic execution approach we assume. Problems
caused by the out-of-order data arrival are identified in Sec-
tion 3. In Section 4, we propose our solution of event stream
processing with out-of-order data arrival. An experimental
analysis is given in Section 5, while related work is dis-
cussed in Section 6. Section 7 concludes this work.

2 Preliminary

2.1 Events, Event Stream and Sequence Query

Events. An event is defined to be an instantaneous occur-
rence of interest at a point in time. It can be a primitive event
or a composite event [2]. Throughout this report, we use
capitalized letters to represent event types and lower-case
letters to represent event instances. A schema is associated
with each event type. It includes the event type ID, a set
of application-specific attributes and the timestamp which
records the time when the event is generated.
Event stream. In most event processing scenarios, it is as-
sumed that the input to the query system is a potentially
infinite event stream that contains all events that might be
of interest [10, 2, 1]. Therefore, the event stream is hetero-
geneous populated with event instances of different event
types, thereby having different schemas. For example, in
the RFID-based retail management scenario explained in
[10], all the RFID readings are merged into a single stream
and sorted by their timestamps. Hence the stream will
contain the SHELF-READING events, the COUNTER-
READING events and the EXIT-READING events.
Event Sequence Query. Event sequence queries are
queries on the sequential event stream. [10] defines a
language that can specify how individual event is filtered
and how multiple events are correlated via time-based and
value-based constraints. In this work, we utilize the SASE
query language to express sequence queries with sliding
windows. The following is an example using the SASE
language for our previous case study, which finds out if
any book is being taken out of a book store without going
through the store’s check-out counter:

EVENT SEQ(SHELF s, !(CHECKOUT c), EXIT e)
WHERE s.id = c.id AND c.id = e.id
WITHIN 1 hour

2.2 Overview of Query Algebra

We assume here that the input event query has been trans-
lated into an algebraic query plan as proposed by [10].
We focus on a query plan based on the following opera-
tors: sequence scan (SS), sequence construction (SC), win-
dow (WD), selection (SL), and transformation (TF). The SS

operator employs an NFA to detect matches to the event
pattern specified in the query. The SC operator constructs
the expected event sequences based on events retrieved by
SS. SS and SC together form the SSC component in SASE.
The SL operator filters event sequences by applying all the
predicates specified in the query. The WD operator checks
whether events in the input event sequence occur within a
sliding window. The TF operator converts each input event
sequence into a composite event.
Example 1. Figure 1 shows an example query plan for
the sequence query Q depicted in the same figure using the
SASE algegra.

SS: (A, B, D)

TF: sequence to composite event

Input Event Stream

SC: (A, B, D)

SSC

WD: D.ts – A.ts < 10 secs

PSSC: W = 10 secs

( ts:timestamp )

Q:
EVENT SEQ (A, B, D)
WITHIN     10  seconds

Figure 1. Event Query Plan

2.2.1 Sequence Scan and Construction (SSC)
SSC as the bottom-most operator constructs a nondetermin-
istic finite automaton. Let N denote the number of events
in the query that are not involved in the negation query pat-
terns. Then the number of states in the NFA equal to N+1
(including the starting state). A data structure named Ac-
tive Instance Stack (AIS) is proposed by [10] for the execu-
tion of SSC. That is, instead of using a single stack for the
NFA (Figure 2(a)), AIS associates a stack with each state
of the NFA storing the events that triggered the NFA transi-
tion to this state. The events stored in each stack are called
the active instances of this stack. In addition, for each ac-
tive instance e in a stack, an extra field is created to record
the most recent instance in the stack of the previous state
(RIP). Figure 2(c) shows a partial input event stream. The
events marked with an underscore are the ones being ex-
tracted during the sequence scan. All the retrieved events
of type A, B and D are kept by AIS. Figure 2(b) shows the
content of the three AIS stacks after the current of stream S
depicted in Figure 2(c) has been received. In each stack, the
active instances are listed from top to bottom in the order
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Figure 2. Query Evaluation of SASE

of their arrival. Take the active instance b11 in stack S2 in
Figure 2(b). The most recent instance in stack S1 (holding
event instances of type A) before b11 is a7. The RIP field of
b11 is thus set to a7, as shown in the parenthesis preceding
b11 in Figure 2(b).

The sequence construction is initiated for each active in-
stance of the accepting state, in our case, d10 and then d15.
With AIS, the construction is simply done by a depth first
search in the DAG that is rooted at this instance and con-
tains all the RIP edges reachable from the root. Each root-
to-leaf path in the DAG corresponds to one matched event
sequence to be returned by this SSC operator. For example,
the three event sequences created for the active instance d15
are “a3 b6 d15”, “a3 b11 d15” and “a7 b11 d15”. Thus, af-
ter receiving the events in the input stream S depicted in
Figure 2(c), the SSC operator should output four event se-
quences and then two of them will be removed by the WD
operator. Totally there are two result sequences being pro-
duced, as shown in Figure 2(d).

2.2.2 Purge at SSC (PSSC)

State purge on SSC is conducted based on window con-
straints for removing outdated events from AIS. In this pa-
per we conceptualize this as the PSSC function of the SSC
operator. Event instances in AIS which fall out of the slid-
ing window will no longer be able to contribute to the query
result. PSSC dynamically prunes the event instances at AIS
by removing such outdated events. For example, when d15
is retrieved, a3 can be removed from stack S1 because the
distance between a3 and d15 is already larger than the al-
lowed window range (15 − 3 > 10). Similarly, once f17 is
received, b6 can be safely pruned from S2 at AIS because it
has been slided out of the window (17 − 6 > 10).
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(a) Out-of-Order Event Arrival Example 1
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Figure 3. Out-of-Order Data Arrival Examples

3 PROBLEMS CAUSED BY OUT-OF-
ORDER DATA ARRIVAL

3.1 Out-of-Order Event Stream

Operators in SASE queries work on an event’s timestamp, a
special purpose attribute showing its generation time. SASE
approach assumes a total ordering of all event arrivals, i.e.,
the order in which the events are received by the query sys-
tem equal to their timestamp order. The query evaluation
approach of SASE relies on this total order assumption for
identifying event sequences. However, as mentioned in the
introduction, if the input stream were to contain any out-of-
order events, such a handling approach becomes insufficient
for sequence query evaluation.
Out-of-Order Event. For a newly arrived event em, sup-
posed the events that we received before em are e1, e2, e3,
..., em−1, if there exists any ei satisfying em.timestamp <
ei.timestamp (1 ≤ i ≤ m − 1), em is an out-of-order
event.

In the example stream S shown in Figure 3(a), the events
are listed under their received order. We can see that event
c9 received after event f17 is an out-of-order event. The in-
put event stream no longer satisfies the total order assump-
tion. The out-of-order event c9 should have arrived at the
position indicated by a dot above the axis.

3.2 Problem for Sequence Scan and Construction

3.2.1 Incomplete Event Retrieval
The current execution logic of NFA in SSC relies on the to-
tal ordering assumption. If this assumption no longer holds,
some events which should have been kept might be dis-
carded by the sequence scan. We refer to this as incomplete
event retrieval.
Example 2. Consider the example event stream in Figure
3(b). Two out-of-order events, a0 and d2, came after f17.
The dots in the figure indicate the positions at which these



two out-of-order events should have arrived under the event
timestamp order. We can see that “a0 b1 d2” is an event se-
quence which should be constructed by the SSC. However,
during the event retrieval of SSC by using NFA, when b1 ar-
rives, automaton state s2 hasn’t been activated yet. Hence,
b1 will simply be discarded. At the moment when the a0
and d2 are received, the event b1 is gone. Thus the sequence
“a0 b1 d2” is missed.

From the above example we observe that such incom-
plete event retrieval potentially causes some qualified event
sequence being missed.

3.2.2 Event Misplacement

The retrieved events during the sequence scan will be placed
in AIS for event sequence construction. Based on the total
order assumption, newly arriving events are placed on top
of the corresponding stack in AIS. For example, when a7 is
retrieved, it will be put on top of stack S1. Under the to-
tal order assumption, this simple “append” approach works
correctly. However, with out-of-order event inputs, located
events might be placed into the wrong spot in AIS during
sequence scan. We refer to this as event misplacement.
Example 3. Still consider the example event stream in Fig-
ure 3(c). Assume the out-of-order event, b8 and d2 arrive
after f17. The dots above the axis show the position where
b8 should have arrived under the event timestamp order. If
evaluating correctly, one candidate event sequence, “a7 b8
d10”, should be produced after receiving b8. However, by
simply appending b8 to stack S2, b8 will be placed under
b11, with the RIP field set to a7 (Figure 4(a)). The event se-
quence “a7 b8 d10” thus would never be constructed. Sim-
ilarly, by simply appending d2 to stack S3, d2’s RIP will
be pointing to the newly appended b8 (Figure 4(b)). Thus
incorrect seqences such as “a3 b6 d2” and “a3 b11 d2” will
be produced in the sequence construction.

From the above example we observe that such event mis-
placement potentially causes the SSC operator to miss event
sequences and to produce incorrect event sequences.

[] a3

[] a7

[a3] b6

[a7] b11

[b6] d10

[b11] d15

S1
S2 S3

[a7] b8

(a) Incorrect AIS Update when
Out-of-Order Event b8 Arrives

[] a3

[] a7

[a3] b6

[a7] b11

[b6] d10

[b11] d15

S1
S2 S3

[b8] d2[a7] b8

(b) Incorrect AIS Update when
Out-of-Order Event d2 Arrives

Figure 4. Event Misplacement in AIS

3.3 Problem for Purge at SSC

A basic mechanism for window constraint-based AIS
checking is to compare the difference between the checked
event and the latest event received by the system. Ac-
cording to the sliding window semantics, any matching
event sequence “e1 e2 ... em” for event pattern SEQ(E1,

E2, ..., Em) must satisfy the time-based constraint that
(em.timestamp − e1.timestamp) < W. For any event in-
stance ei kept in AIS, it can be purged from the stack once
an event ek with (ek.timestamp− ei.timestamp) > W is
received by the query engine. However, with out-of-order
data arrivals, the above window constraint-based AIS purge
is no longer “safe”.
Example 4. In Figure 3(c), the out-of-order event b8 comes
after f17. The out-of-order b8 should be put together with
a3 and d10 to form a candidate event sequence output (“a3
b8 d10”) during the sequence construction. However by the
above AIS purging, a3 would have already been removed.

Suppose the problem from Section 3.2.1 and 3.2.2 are
solved. Retrieving an out-of-order event might then trigger
the construction of a new candidate event sequence, such as
“a3 b6 d8” in Example 4. We refer to such event sequences
which consist of some out-of-order event, like the sequence
“a3 b6 d8”, as out-of-order event sequence. Out-of-order
data arrival triggers the construction of out-of-order event
sequences. We can see from the above example that PSSC
purges some events from AIS which might be needed for
forming such out-of-order event sequences in the future. We
refer to this as unauthorized AIS purge. It prevents some
out-of-order event sequences from being constructed by the
SSC operator. For example, “a3 b6 d8” can never be con-
structed due to the AIS purging on a3 or b6. Intuitively we
can see that once out-of-order data arrival is possible, any
data purge at AIS becomes “unsafe”, as expressed by the
claim below.
Clame 1: Any data purge of active instance stack (AIS) is
unauthorized unless the total order on the data arrival holds
for the input stream.
Proof. For any event instance kept by ei in AIS,
suppose that it is purged at some moment during the
evaluation, and let’s assume the event received right
before ei is purged is ek. There can be out-of-order
events e1, e2, e3, ..., ei, ei+1, ei+2, ..., em received
after ek, with e1.timestamp < e2.timestamp <
... < ei−1.timetamp < ei.timestamp <
ei+1.timestamp < ... < em.timestamp and
(em.timestamp − e1.timestamp) < W . Thus, ei

can be used to form a future potential out-of-order event
sequence “e1 e2 ... ei ... em”. Hence the purge on ei is an
unauthorized AIS purge.

3.4 Summary

Above we have discussed the SSC operator and its state
purge function causing the missing sequences and produc-
ing incorrect sequences, as shown in Figure 5 from (1) to
(2), corresponding to the SSC operator and the PSSC func-
tion described in Section 3.2 and 3.3. In Figure 5, the
query plan of the following event sequence query is given
as “EVENT SEQ (E1, E2, ..., Em) WITHIN W”. We can
see that the problems are all related to the in-memory data
structures (AIS) at SSC. Assuming that precise query result
is required, evaluation approach in Section 2 is no longer
sufficient once out-of-order data arrival is possible.
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Figure 5. Problem Observation

4 SOLUTION

In this section, we propose a solution framework to handle
out-of-order data arrival in sequence query evaluation.

4.1 Assumption on Un-Ordered SSC Output

Construction of the out-of-order event sequence actually is
delayed by its out-of-order event components. Suppose a0
and d2 in Example 2 both were to arrive in order. Then
the sequence “a0 b1 d2” would have been constructed be-
fore “a3 b6 d10”. Assuming the execution of SSC produces
output event sequences whenever new sequences are being
formed, with out-of-order data arrival, the output order of
the SSC can no longer be guaranteed.

If ordered output is needed from the SSC operator, addi-
tional semantic information such as K-Slack factor or punc-
tuation is needed to “unblocked” the on-hold candidate se-
quences from being output by the SSC operator. Since the
input event stream to the query engine is unordered, it is
reasonable to produce unordered output events to down-
streams. Thus in this work, we permit unordered sequence
output at the SSC operator.

4.2 Solution for SSC

SSC operator consists of three major procedures: (1) event
retrieval, (2) AIS construction and (3) event sequence pro-
duction, with the first two affected by out-of-order data ar-
rival as our previous discussion in Section 3.2. The follow-
ing is our proposed mechanism for event retrieval and AIS
construction.
Event Retrieval Mechanism. To avoid incomplete re-
trieval, all states of the NFA need to be set active before
the retrieval over the event stream. Let’s look at Example 2.
With all the automaton states activated at the beginning, b1
can be retrieved by the automaton even though no A events
have appeared before it.

AIS Construction Mechanism. For avoiding event mis-
placement, we have to insert the retrieved events into the
right position of AIS. In the case of total order, any new
received event can be simply appended to the end of the se-
quence. We refer to this as the “append semantics”. When
events can arrive out of order, the “sort semantics” need to
be applied: for each event instance that triggers a transi-
tion in NFA, instead of simply appending it to the stack,
we search for a proper insertion place in the corresponding
stack to guarantee that the event instances in the same stack
are in chronological order from bottom to top. Also, the
context pointer (RIP) of the inserted event ei needs to be
correctly set. Besides that, if ei is not the rightmost event
type in the sequence query, RIP of the event instances in the
right-adjacent stack might need to be updated as well. If the
timestamp of ei is in between of an event ek in the right-
adjacent stack and the event pointed by ek’s RIP field, ek’s
RIP field will need to be reset to ei.

Example 5. Similarly to Example 3, let’s again consider
the event stream in Figure 3(c) with out-of-order event b8
arriving after event f17. Once b8 is received, it is inserted
between b6 and b11 in stack S2. Event b8 is not of a final
state event type in the sequence query. Thus we need to
check the D instances in stack S3 to see whether any of
their RIP field needs to be reset. Since b8 becomes the most
recent event in stack S2 whose timestamp is smaller than
the timestamp of d10, the RIP field of d10 should be reset
from the original b6 to b8.

Once a new event ei is retrieved, it might trigger the
construction of event sequences in SSC. By the total or-
der assumption, only events from the rightmost event pat-
tern in the sequence query (D events in Example 1) trig-
ger the event sequence construction in SSC. However, with
out-of-order data arrival, any located event might trigger se-
quence construction in SSC. If the event retrieval and AIS
construction are correctly handled as above, the SSC opera-
tor needs to produce out-of-order event sequences whenever
some new opportunity arises. For instance, two out-of-order
event sequences - “a3 b8 d10” and “a3 b8 d15” - should be
constructed by SSC after b8 is inserted into the stack S2 in
Example 5. Generally, the proposed process for the SSC op-
erator which handles out-of-order data arrival is shown by
the below Algorithm 1.

Algorithm 1 Out-of-Order Handling Incorporated SSC
Input:
(1) Sequence Query “EV ENT SEQ(E 1, E2, ..., Em) WITHIN W ”;
(2) AIS constructed from previously input events;
(3) Newly received event ei (under event type Ei)
Output:
(1) Updated AIS;
(2) Sequence output of SSC

if event type Ei is among E1, E2, ..., Em then
insert ei into stack Si (using “sort semantics”)
set ei’s RIP
check RIPs of the instances in Si+1 and reset the ones being affected by ei

produce event sequences containing ei if any
end if



Optimization. Lines 2 and 3 in Algorithm 1 add a newly
located event into AIS by applying the “sort semantics”
and then sets its RIP field. Line 4 checks the RIP field of
the event instance in the right-adjacent stack and resets the
ones being affected by the newly located event. However, if
the received event is “in-time”, we will continue to follow
the previous “append semantics”: that is we simply put the
event at the end of the corresponding stack and set its RIP as
the most recent event in the left-adjacent stack. Line 4 is no
longer necessary for such in-time events. Besides that, se-
quence construction at Line 5 of Algorithm 1 would only be
triggered when the received event tyep is at the rightmost in
the query sequence (events of type D in the above example).

To avoid such overhead caused by treating every event
as a “potential” out-of-order event, the SSC operator can
maintain an “AIS-CLOCK” value, which equals to the the
largest timestamp of events at AIS. Algorithm 2 shows
the optimized approach. Once a newly retrieved event is
with a timestamp larger than the current AIS-CLOCK, AIS-
CLOCK will be updated to this value. Such an event can
be handled simply by the “append semantics” and corre-
sponding steps for in-order events (Lines 3 to 7 in Al-
gorithm 2). Whenever a newly retrieved event is with a
timestamp smaller than the AIS-CLOCK, we instead ap-
ply “sort semantics” and conduct the corresponding out-of-
order-specific steps (Lines 9 to 13 in Algorithm 2).

Algorithm 2 Out-of-Order Handling Incorporated SSC
with AIS-CLOCK

Input / Output:
Same as Algorithm 1
if event type Ei is among E1, E2, ..., Em then

if ei.timestamp ¡ AIS-CLOCK then
buffer ei

insert ei into stack Si (using “sort semantics”)
set ei’s RIP
check the RIP field of the instances in stack Si+1

& reset the ones being affected
produce event sequences containing ei if any

else
buffer ei

insert ei into stack Si (using “append semantics”)
set ei’s RIP
if Ei = Em then

produce event sequences containing ei if any
end if

end if
end if

4.3 Solution for PSSC

When out-of-order data arrival is possible, based on Claim
1, no event instance in AIS can be purged safely by the
PSSC. To avoid errors, no data purge can ever be applied
on AIS. That is not a realistic solution due to its unbounded
memory requirement.

Thus, for “unblocking” the PSSC, we need additional
semantic knowledge on the stream source to enable the
safe data purge on AIS. K-Slack is a well-known ap-
proach [6, 5, 3] for processing unordered data streams. In
real applications, the K-Slack assumption holds in many sit-

uations when predictions about network delay can be con-
sidered. Besides that, it is very suitable for producing ap-
proximate answers if that is acceptable. Thus, we now pro-
pose our solution for data purging at SSC using the K-Slack
semantics.

Here K-Slack is based on time units. It means that the
out-of-ordering in event arrivals is within a range of K time
units. That is, an event can be delayed for at most K time
units. For example, in Figure 3(a), the out-of-order event c9
is received after f16. Thus it is delayed for 7 (16 − 9 = 7)
time units. If we set the K value as 5, the out-of-order data
arrival case in Figure 3(a) would never arise.

Window purge using K-Slack compares the distance be-
tween the checked event and the latest event received at
the system. A CLOCK value which equals to the largest
time-stamp seen so far for the received events is maintained.
Each time the CLOCK value is updated, PSSC will be no-
tified. According to the sliding window semantics, for any
event instance ei kept in AIS, it can be purged from the
stack if (ei.timestamp + W ) < CLOCK. Thus, under
the out-of-order assumption, the above condition will be
(ei.timestamp+W +K) < CLOCK. This is because after
waiting for K time units, no out-of-order event with time-
stamp less than (ei+W) can arrive. Thus ei can no longer
contribute to forming a new candidate sequence.

SSC passes the updated CLOCK values up to the PSSC
whenever a new event with a larger timestamp is seen. Thus,
before Line 1 in Algorithm 2, we trigger PSSC by adding the
following:

IF ei.timestamp > CLOCK
CLOCK = ei.timestamp
pass a CLOCK triggering to PSSC

Algorithm 3 depicts the basic approach for AIS purging in-
corporated into the out-of-order event handling by applying
the K-Slack constraint. Each time the CLOCK is updated,
PSSC gets triggered. Event instances in AIS will be purged
when the previously introduced purge condition is satisfied.

Algorithm 3 Out-of-Order Handling Incorporated SSC Op-
erator State Purge

Input:
(1) Current AIS;
(2) CLOCK triggering from SSC
Output:
updated AIS
On receiving a CLOCK triggering for event instance e in AIS
if e.timestamp + W + K < CLOCK then

purge e

end if

Example 6. Let’s consider purge when evaluating sequence
query SEQ(A, B, D) on the data in Figure 2(c). Event in-
stance a3, b6 and d10 are kept in AIS after d10 is received.
Event d10’s RIP points to event instance b6 and b6’s RIP
points to a3. Suppose event f21 (which is not shown in the
figure) is received after f16 and the window size W equals
to 7. Assume K value equal to 2 for the K-Slack constraint.



As more data is received, the CLOCK value increases and
the order of those three event instances being purged from
AIS is a3 (due to 13 > 3 + 7 + 2, when c13 is met), b6
(when f16 is met) and then d10 (when f21 is met).

Holding the outdated event sequences in the AIS struc-
ture increases the workload of the SSC operator for event
sequence construction. Take Example 6 for instance. For
data arrival under the total order assumption, when b15 is
received, both a3 and b6 can be purged from AIS (due to
3 + 7 < 15 and 6 + 7 < 15). So, there are only three
instances in AIS at this moment: a7 in stack S1, b11 in
S2 and d15 in S3. Thus, by receiving d15, SSC operator
produces one new event sequence output (“a7 b11 d15”).
In the out-of-order scenario, SSC might produce more se-
quence output than in the in-order case. In Example 6, as-
sume the K value of K-Slack constraint is 10. When d15
is met, event instances a3, b6 and d10 are still kept in AIS.
Thus, by receiving d15, the SSC operator produces three
event sequences: “a3 b6 d15”, “a3 b11 d15” and “a6 b11
d15”. The first two sequences actually should not be pro-
duced. This is because a3, b6 are both “outdated” event in-
stances. They are held in AIS just for out-of-order event se-
quence construction once possible out-of-order events com-
ing in the future. Thus, coupling the in-order event d15 with
the outdated events a3 and b6 is not necessary. An event se-
quence produced by such construction can never be a result
sequence because they would be removed later by window-
based filtering (functionality of the WD operator). Thus, it
also brings burden to the window-based filtering computa-
tion. Many of the outdated event instances may be kept in
the AIS stacks if the K value is large. Thus the above over-
head on sequence construction and AIS filtering should be
considered. Below we propose an optimization technique
for decreasing such cost.
Optimization. We divide each stack in AIS into two parts:
outdated event instances and up-to-date event instances. A
divider is set for each stack: instances on or above it are out-
dated instances and instances below it are up-to-date ones.
For a stack without outdated events, the divider is set to
NULL. Besides applying the K-Slack-based purge in Algo-
rithm 3, the basic data purge introduced in Section 2.2.2 is
also applied. The divider for each stack will be set using
such basic purge. While an in-order event triggers sequence
construction in SSC (Line 12 and Line 13 in Algorithm 2),
only the events under the divider in each stack will be con-
sidered.

Again let’s look at Example 6 with a K value equal to 10
and window W equal to 7. When d15 is met, the divider
of stack S1 is set to a3 and the divider of stack S2 is set to
b5. Thus, only one new sequence (“a7 b11 d15”) will be
constructed when the in-order event d15 is received. Con-
struction of event sequences “a3 b11 d15” and “a6 b11 d15”
is avoided by applying the AIS partition.

5 EXPERIMENTAL EVALUATION

We have implemented our proposed techniques in a pro-
totype system using Java 1.4. We also implemented an

event sequence generator for simulating sequences under
different properties. Experiments are run on two Pentium4
3.0Ghz machines each with 512M RAM. The percentage
of the out-of-order events and the K-Slack factor are set in
the generator. In our experiments, one machine generates
and sends the event stream to the second machine, i.e., the
query engine. Below we study our experimental result of
our proposed techniques.

5.1 Sequence Scan and Construction

Figure 6 shows the CPU gain when applying the AIS-
CLOCK technique introduced in Section 4.2. A sequence
query of length 6 (i.e., SEQ (A, B, C, D, E, F)) is run on
five different data sets, with the size ranging from 20000 to
100000. The percentage of out-of-order events is 90% in
all datasets. Y axis shows the accumulated cost on runtime
AIS construction (inserting events and resetting RIP) dur-
ing the query evaluation. We observe that applying AIS-
CLOCK can reduce the overall cost of AIS construction
even though the percentage of in-order data is very small.
For a decreased percentage of out-of-order data, the per-
formance gain in CPU cost increases. Take the dataset
with 80000 events as example. The gain of applying AIS-
CLOCK jumps from 8% to 43% if the out-of-order percent-
age is decreased from 90% to 30%.

5.2 Purge at SSC

We now study the performance of applying AIS partition
during the SSC purge. A sequence query of length 6 is run
and the window size is set as 20. Performance gain on mem-
ory is shown in Figure 7 and in CPU cost is shown in Figure
8. Through partitioning AIS, construction of outdated event
sequences will be avoided for the in-order portion of the
input stream. We observe that either a larger percentage of
“in-order” events or a larger value slack factor result in more
memory and CPU gain by applying AIS partition. Studying
quantitively, the ratio of intermediate buffer size of SSC is
directly proportional to the value of ((K+W )/W )S , where
K is the value of the slack factor, W is the window size and
S is the length of the query sequence. Due to the space lim-
itation, further discussion is skipped in the paper.

5.3 Overhead of Out-of-Order Handling

We now test the overhead of our out-of-order event stream
processing techniques. We utilize the same setting in Sec-
tion 5.1 but the out-of-order data percentage is set as 0%. In
other words, all the input events are “in-order”. Thus, eval-
uation based on the total order assumption can be applied
in this scenario. The simple approach based on total order
assumption and the out-of-order incorporated approach are
compared in Figure 9. The performance difference (execu-
tion time denotated on the Y axis) is then the overhead of
applying the out-of-order handling. Proposed techniques of
AIS-CLOCK and AIS partition are both applied in the out-
of-order incorporated approach. The overhead ranges from
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5.1% to 24.6% in the five given datasets. The overhead in-
creases while increasing the dataset size due to the cost on
extra timestamp checking and AIS maintenance.

6 RELATED WORK

Most stream query processing research over the past few
years has assumed complete ordering of input data [6, 4,
8]. They tend to work with homogeneous streams (time-
stamped relations), meaning, each stream contains only tu-
ples of the same type. Thus the semantics of general stream
processing which employs SQL-like queries composed of
join, select, project, aggregation, is not that sensitive to the
ordering of the data. Ordering is core for the sequence pat-
tern matching queries we are targeting here.

However, there has also been some initial work of inves-
tigating the out-of-order problem for generic (homogenous-
input) stream systems. One model, which we adopt for our
work, introduces the notion of K-Slack [6]. Such solution
is trivial in regular stream system as in fact the processing
such as join proceeds as normal (with a K-delayed purging),
and any tuple that arrives after K is simply discarded [5]. A
native approach [3] on handling out-of-order event stream is
using K-Slack as a priori bound on the out-of-orderedness
of the input streams. It buffers incoming events in the input
queue until ordering can be guaranteed. Compared with our
proposed approach where each operator is order sensitive,
such process requires additional space and introduces more
latency before allowing events being evaluated.

A second solution proposed to handle out-of-order data
arrival is applying punctuations, namely, assertions inserted
directly in the data stream confirming that for instance a cer-
tain value or time stamp will no longer appear in the future
input streams [4, 8]. Such techniques, while interesting, re-
quire for some service to first be creating and appropriately
inserting such assertions - hence here we do not consider
this further. Instead this remains our future work.

Lastly, we base our solution on the SASE [10] archi-
tecture which has been designed specifically for process-
ing sequence queries over event streams. SASE proposes
query language and algebra to support queries on sequen-
tial streams, which we adopt as the foundation of our work.
However, [10] doesn’t support out-of-order data arrival.

7 CONCLUSION AND FUTURE WORK

In this work, we address the problem of processing se-
quence queries over event streams with out-of-order data
arrival: (1) we analyze the problems that state-of-the-art
event stream processing technology would experience when
faced with out-of-order data arrival; (2) we propose new im-
plementation and optimization strategies for the core stream
algebra operators such as sequence scan and construction as
well as the associated state purging methods; (3) we conduct
an experimental study that demonstrates the effectiveness
of our proposed approach over existing solutions. Explor-
ing alternative approaches for SSC state purge and handling
negative patterns in the query over out-of-order event se-
quence are our future steps.
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