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Abstract

Adaptive multi-route query processing (AMR) is a recently emerging paradigm for processing stream queries in
highly fluctuating environments. AMR dynamically routes batches of tuples to operators in the query network based
on routing criteria and up-to-date system statistics. In the context of AMR systems, indexing, a core technology for
efficient stream processing, has received little attention. Indexing in AMR systems is demanding as indices must
adapt to serve continuously evolving query paths while maintaining index content under high volumes of data. Our
proposed Adaptive Multi-Route Index (AMRI) employs a bitmap time-partitioned design that while being versatile
in serving a diverse ever changing workload of multiple query access patterns remains lightweight in terms of
maintenance and storage requirements. In addition, our AMRI index design and migration strategies seeks to met
the indexing needs of both older partially serviced and newer incoming search requests. We show that the effect
on the quality of the index configuration selected based on using AMRIs compressed statistics can be bounded to
a preset constant. Our experimental study using both synthetic and real data streams has demonstrated that our
AMRI strategy strikes a balance between supporting effective query processing in dynamic stream environments
while keeping the index maintenance and tuning costs to a minimum. Using a data set collected by environmental
sensors placed in the Intel Berkeley Research lab, our AMRI outperforms the state-of-the-art approach on average
by 68% in cumulative throughput.

1 Introduction

1.1 Index Tuning

As predicted by Abadi et. al. [1] the number of monitoring applications has soared. In addition, many mon-
itoring applications that were once simple (i.e., supported by a single simple query) have become complex (i.e.,
supported by multiple complex queries that share data). Consider the stock market. A few years ago, an analyst
looking to trade stock at the best price may have only considered the current price and volume of that stock. Today,
to stay ahead of rapid market shifts, the same analyst needs to combine current price and volume data with the
latest information on the company as well as that sector of the market. Such company and sector information is
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now available from multiple sources (i.e., news feeds, web sites, and blogs). In short, monitoring applications are
increasingly requiring complex data stream queries.

Modern data stream management systems (DSMS) that support these complex monitoring applications must
efficiently function over long periods of time in environments that are susceptible to frequent fluctuations in data
arrival rates [32]. Such fluctuations cause periodic variances in the selectivity and the performance of operators,
typically rendering the most carefully chosen query plan sub-optimal and possibly ineffective [6]. This has driven
research into DSMS that continuously adapt the best query path for sets of tuples, henceforth referred to as Adap-
tive Multi-Route query processing systems (AMR) [6, 7, 24, 20, 31]. AMR systems allow the order in which
operators are executed (i.e., the query path) to adapt to current system statistics. The prominent AMR system,
Eddy [6], utilizes a central routing operator that decides for sets of tuples which operator to visit next based upon
the system environment.

AMR systems selectively adapt query paths for incoming tuples based upon characteristics of the tuples (i.e., a
distinct order in which operators are visited may be chosen for different tuples). For that reason, join operators in
AMRs are required to process search requests generated from intermediate results where the incoming intermediate
results may have been routed along rather different query paths before they arrive at the join operator. Consider a
query composed of multiple join operators. In such a query, the query path taken by a tuple determines which tuples
are in the intermediate result. Values in the tuples that embody an intermediate result are used to generate a search
request for locating tuples in a given state that match the intermediate tuple. Consider two tuples t1 and t2 from
StreamA. t1 is first routed to join with tuples from StreamB and then to join with tuples from StreamC. While
t2 is first routed to the join with tuples from StreamC. To efficiently join with tuples from StreamC requires
the system to be able to locate tuples using search criteria that include the join attributes between StreamA and
StreamC (i.e., tuple t2) as well as the combined join attributes of StreamA and StreamB and their relation
to StreamC (i.e., tuple t1). Current monitoring systems cannot afford to create indices for every type of search
request (i.e., for all possible query paths) given the complexity of the number of queries and joins. Therefore when
fluctuations occur and the query paths change in a significant manner, it is important for AMRs to quickly and
accurately adjust the index configurations to best serve the new set of query path(s). However this challenging
indexing problem has been ignored in the literature until now. This is now the focus of our work.

1.2 Indexing in AMR Systems

Little work has been done on indexing in this dynamic adaptive multi-route context. The main work that we are
aware of in this area is [24]. Raman et. al. [24] proposed to create multiple access modules for each state where
a state stores tuples originating from a single stream (i.e., similar to tables in traditional databases). Each access
module employs a hash index on a subset of attributes to optimize a particular data access on such a state. We now
illustrate the inefficiencies of such a system.

Example: Consider a DSMS which tracks the current location of packages using a network of sensors. Each
sensor propagates 3 attributes: priority code (A1), package id (A2), and location Id (A3) to the central applica-
tion. The state storing the sensor data has 3 hash indices which support attribute combinations A1, A1&A2, and
A2&A3, respectively (Figure 1). To insert tuple t, first t is stored into the state. Then hash keys are created for
t.A1, t.A1&t.A3, and t.A2&t.A3, each is linked to t, and stored in the respective index.

Consider the search request sr1 looking for all packages with priority code A1 = 2012 and location id A3 =
’47’. Executing sr1 involves first determining the most suitable hash index for processing sr1. The most suitable
hash index is the hash index that supports the largest number of attributes in sr1 and contains no attributes not in
sr1. In this case, it is hash index A1. Then a lookup is performed via A1.

Now consider sr2 looking for all packages where location id A3 = ’47’. The only attribute referenced in sr2

is A3. Since no suitable hash index exists for sr2, a full scan of the state must be performed. To improve the
search time of sr2 requires the creation of a new hash index on A3 only. But this would henceforth add additional
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Figure 1. Indexing in AMR Systems
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memory and maintenance costs for each tuple stored in the state.
In short, to support such diversity of criteria requires a possible large number of hash indices. This not only

adds a high memory overhead due to multiple references required for each stored tuple, but worse yet considerable
maintenance costs to support the multiple hash indices under the heavy update loads experienced by DSMS. The
inefficiency of deploying multiple hash indices over a single state is confirmed by our experimental study on both
synthetic and real data sets (See Section 8).

1.3 AMR Index Requirements

Traditional off-line index tuning approaches that select the ”best” fixed index structure off-line [3, 9, 2, 12]
are not adequate for AMR systems where the search request workload is in constant flux. On-line index tuning
approaches continuously evaluate and adjust the index structure during execution via the index tuning life cycle
[4, 29, 8, 30]. The steps in the life cycle are: 1) to gauge changes in the search request workload (assessment),
2) to find the ”best” index structure (selection), and 3) to re-index states using their current ”best” index structure
(migration). Clearly, AMR systems require an online index tuning solution that distinctly addresses the particular
challenges of AMR systems.

AMR systems have unique challenges. 1) Periodically the router sends search requests to suboptimal operators
to update system statistics [6]. These suboptimal access patterns have extremely low frequencies. Although
these suboptimal access patterns are not likely to influence the final index structure selected, they add additional
overhead to both index assessment and selection. To lower such overhead requires AMR systems to adjust the
quality and quantity of statistics collected. If too few statistics are kept the overhead may be reduced but at the
expense of not being able to locate the most optimal index configuration. Whereas if too detailed statistics are
kept, the optimal index may be located but it may require a higher overhead. 2) AMR systems must continuously
assess and adjust indices to best support the query paths used by search requests in the system. The abruptness
and frequency of changes in the query paths in AMR systems make this extremely challenging. Furthermore the
overhead of assessing indices clearly must not detract from producing rapid results. 3) The router continuously
evolves query paths used to process new search requests. As the query paths evolve, the system will contain older
partially serviced search requests processed along query paths different from the newly established ”best” query
paths for new search requests. To minimize the query response time requires efficient processing of both older
partially serviced and newly incoming search requests within the same system.

In short, AMR systems require an index design and on-line tuning solution that meets the conflicting demands
of being light weight with respect to both CPU and memory and yet efficiently supporting multiple possibly rather
diverse criteria for an ever adapting workload of search requests. Such a solution would enhance any AMR system
and thus complex monitoring applications making use of an AMR system by reducing processing time while
minimizing the overhead required.
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1.4 The Proposed Approach: AMRI

AMR systems require an index design that: 1) supports a large number of rather diverse criteria, 2) requires
minimal maintenance time, 3) is compact in size so to exist in main memory, 4) is able to efficiently process all
search requests regardless of their varying criteria and proximity to completion.

An AMR index tuning systems must : 1) efficiently and accurately identify key and abrupt changes in the query
paths while not detract from producing rapid results (assessment), 2) maintain the quality of the best index config-
uration selected within a preset threshold while using compact statistics (selection), and 3) efficiently determine
the best approach to re-indexing tuples already stored in a state to support efficient processing of both older par-
tially serviced and newly incoming search requests (migration). Our proposed Adaptive Multi-Route Index (AMRI)
solution incorporates a physical index design and customized index tuning methods that meet the above named
requirements of AMR systems.

Our earlier work on index tuning has been published in the proceedings of the SSPS [17]. In this earlier
work, we focussed on the design of two index assessment methods called Compact Self Reliant Index Assessment
CSRIA, and Compact Dependent Index Assessment CDIA that reduce the system resources required by index
assessment by eliminating statistics while maintaining the integrity of the index configuration. CSRIA utilizes
a heavy hitter method [21] to track and compact statistics. CDIA tracks statistics in a lattice, exploiting the
dependent relationships between access patterns, and employs a hierarchical heavy hitter method [10] to compact
the statistics.

In this paper, we extend our basic index solution to efficiently process all search requests regardless of their
varying criteria or proximity to completion as we now seek to support the diverse criteria of both older partially
serviced and new incoming search requests. We also now establish the bounds on the optimality (i.e., quality) of
the index configuration found during index selection using the set of statistics generated by our CSRIA and CDIA
index assessment methods (i.e., compact statistics). We further extend our index tuning strategies to incorporate
scheduling assessment methods (i.e., index selection scheduling) as well as efficient index migration methods. Our
new contributions include:
1) We enhance our index design to support all search requests regardless of their varying criteria or proximity to
completion by employing a bitmap time-partitioned structure.
2) We formulate and then prove that the effect of statistic compaction on the potential loss of quality of the selected
index configuration can be bounded by a preset constant.
3) We propose customized methods for scheduling index tuning. In particular, a Triggered Index Tuning method
to trigger index assessment based on observed routing changes. This allows the system to nimbly adapt to relevant
changes by scheduling assessment on states with observed significant routing shifts.
4) We propose a Partial Index Migration that migrates time slices of an index based on their estimated future use.
Through our study of index migration approaches we explore the question of whether utilizing a single or multiple
index configurations is best at improving the throughput of all search requests in the system regardless of their
proximity to completion.
5) We conduct experiments on evaluating the effectiveness of proposed scheduling assessment methods and index
migration methods using both real and synthetic data. We demonstrate that our AMRI solution always wins over
the current AMR indexing methods, including traditional hash indices [24] and bitmap indexing [13]. We also
explore the effect the selectivity of query operators has on the performance of our AMRI solution.

The paper is organized as follows. Section 2 defines terminology. Section 3 describes the physical index
design of AMRI, and Section 4 presents the proposed index assessment methods. Section 5 bounds the effect of
compacting statistics on the index configuration selected. Section 6 presents our index tuning scheduling methods,
while Section 7 presents our index migration methods. Sections 8, 9, and 10 cover experimental analysis, related
work, and conclusions, respectively.
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2 Preliminary

We consider SPJ (select-project-join) queries processed under a suffix window (Figure 2). A suffix window
indicates the length of the data history to be queried using standard sliding window semantics. The solution
is explained using a single SPJ query. However, our proposed logic equally applies to AMR systems running
multiple SPJ queries.

Figure 2. SPJ Query Template and Example
Select <agg-func-list>

From <stream-name>

Where <preds>

Window <window-length> : default-window-length

Select A.*, B.*, C.*

From StreamAA, StreamB B, StreamC C

Where A. A1 = B. A2 and A. A3 = C. A3 and B. A3 = C. A4

Window 10000

A state is instantiated for each stream in the FROM clause. In our example, a state is created for each of the
following streams: StreamA, StreamB, and StreamC. Each state is associated with a unary join STeM operator
[24] that supports insertion and deletion of tuples, and locating of tuples based on join predicates. Figure 3 depicts
the AMR of the query outlined in Figure 2.

Figure 3. AMR of Example
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A join predicate is expressed in the WHERE clause of a query composed of 1) an attribute stream reference, 2) a
join expression (=, <, >≥,≤), and 3) another attribute stream reference (e.g., A.A1 = B.A2). The join attribute
set JAS for a state is the set of all attributes specified in at least one join predicate in the query (i.e., for Stream
A JAS = {A1,A3}). Each STeM operator can search for tuples in its state based on any combination of attributes
in JAS. For example, the combinations of attributes in JAS for StreamA are A1, A3, and A1&A3 combined. An
access pattern (ap) is a combination of attributes of a JAS used to specify a search. An ap is denoted by a vector
whose size is equal to the number of attributes in JAS. Each vector position represents a single join attribute. A
join attribute used to search is represented by the capital letter naming the attribute, while a join attribute not used
is represented by the wild card symbol ∗.

Reconsider the state of Stream A where JAS = {A1,A3}. < A1, A3 > is an ap indicating that all join attributes
are used to search. While < A1, ∗ > is an ap only using join attribute A1, and < ∗, ∗ > is an ap using no join
attributes (i.e., a full scan).
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3 Adaptive Multi-Route Index

3.1 Physical Index Design

Instead of maintaining multiple distinct hash indices we propose to employ a versatile yet compact bit-address
index as the foundation of our solution [13]. We now explain how this meets the AMR requirements covered in
Section 1.4.

The foundation of our bit-address index is an index key map (also called the index configuration IC) that is
a blueprint to the memory location where tuples are stored. Given B bits, 2B bucket locations are used to store
tuples. The specific bucket where a tuple is stored is found by using the IC to map a tuple’s attribute values to
a bucket location. IC delineates for each join attribute the number of bits (possibly none) used in mapping. No
index links are ever created as the IC derived for each tuple is never stored. This significantly reduces the amount
of memory and CPU time required.

Reconsider the example from Section 1.2. Now we insert tuple t, a package record, into the bit-address index
BI solution in Figure 4 where the IC has 10 bits (5 bits for attribute A1, 2 bits for A2, and 3 bits for A3). First
the bucket id for t is generated by mapping the values for t.A1, t.A2, and t.A3, which are 00111, 11, and 010
respectively. Then these values are combined into form the bucket id. 0011111010 represents bucket 250. Thus t
is stored in bucket 250. t does not store the IC generated. Thus, no memory or CPU time is required to support
index links. This is in contrast to the hash index approach [24] (Section 1.2) which utilizes both memory and CPU
time to create hash keys for each hash index to every tuple associated with the state. Thus, BI satisfies the low
memory and CPU requirement.

Also, adapting BI requires on average less CPU time than the hash index approach due to the number of hash
indices supported. To adapt tuples in the state from index BI1 to BI2 requires the relocation of each stored tuple
to the buckets defined by BI2, and deletion of the memory associated with BI1. While the hash index approach
may need to create and delete multiple hash keys for each stored tuple.

Figure 4. State using a Bit Address Index

2012 125-89 47

2012 * 47

…

search request

hash(A1) = hash(2012) = 7 = 00111

hash(A2) = hash(*) = 00 ~ 11

hash(A3) = hash(‘47’) = 2 = 010

bucket_addr1 = 0011100010 = 226

bucket_addr2 = 0011101010 = 234

bucket_addr3 = 0011110010 = 242

bucket_addr4 = 0011111010 = 250

insert tuple
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Partition
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Bucket 250

attributes A1          A2         A3
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Next, we compare the performance of searching for tuples using BI in Figure 4 versus using the hash index
approach in Figure 1. Consider search request sr1 looking for all packages with priority code = 2012 and location
id = ’47’ (Figure 4). First the bucket ids that must be searched are found by mapping the attributes specified
in sr1 (i.e., 00111 and 010) and the attributes not specified in sr1 (i.e., attributes represented by the wild card
symbol ∗ or in the case of sr1, t.A2 whose bit values cover 00 to 11). Then the bits are combined into bit strings
(i.e., 0011100010, 0011101010, 0011110010, and 0011111010). Finally a scan is performed across all identified
bucket(s) (i.e., buckets 226, 234, 242, and 250). If the search is narrow and precise (i.e., the access pattern of the
search request specifies all join attributes) then only one bucket will need to be searched. If the search is wide
(i.e., the access pattern contains wild card symbols) then several buckets will need to be searched. On average we
expect a good index configuration to be able to limit the number of buckets required to be scanned for the majority
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of search requests. Clearly, a single BI can serve multiple access patterns and require less memory and CPU for
maintenance than multiple hash keys. Thus BI satisfies the diverse access pattern requirement (Section 1.4).

The configuration of the index key map (i.e., the assignment of which attribute data values map to which bits for
bucket addresses) influences the number of buckets that must be evaluated during the search. The optimal index
key map is configured so that there exists a relatively even distribution of stored tuples among the buckets. This
requires the analysis of the distributions of the data content of each attribute used to index stored tuples. Index key
map selection is a generic hashing issue not specific to AMR systems.

Inequality Predicates: To handle inequality predicates requires the minor adjustment of locating each tuple
whose attribute is not equal to the search request. For such an inequality query (which is less common than
equality queries in the streaming context), either state can be scanned if the number of equal values is small. Or,
alternatively, the equality bits from the attributes in the search request can be computed. Then all other buckets
besides those indicated by the hash must be searched. To simplify the presentation, equality predicates are used in
the rest of our discussion.

3.2 Multiple Index Configurations

The query paths used to process new search requests in AMR systems are constantly evolving. As the query
paths evolve, the system will still contain some older partially serviced search requests already in process. These
older partially serviced search requests may favor a different query path than newly incoming search requests. To
minimize query response time, states must efficiently process all search requests.

Traditional on-line index tuning approaches support a single common index structure for all search requests
regardless of their proximity to completion. In such systems, when a new index structure is chosen all stored
tuples in a state are migrated into the new index structure. In AMR systems, a single index configuration may not
cover a significant portion of the join predicates of both newly incoming and partially serviced search requests as
they may be routed along different query paths. Hence to support such diversity of search requests, we propose
to allow states to maintain multiple index configurations where each index configuration represents a time span of
tuples such that distinct index configurations can exists for older and newer search requests.

Every search request sent to a join operator regardless of its age joins with tuples stored in the state that are
within the query window of the search request. Stored tuples could be time-partitioned according to the search
requests that they support. Then each partition of stored tuples could be indexed to support efficient processing of
the search requests that they provide results for (e.g., indexed to efficiently support the query paths of older search
requests).

Partition Design: To meet these requirements, we associate a variable with each index configuration that
represents the query window into which all tuple(s) that are stored under it fall. Hence the tuples stored in the
state are broken into time slices which we refer to as partitions P. A partition is a portion of the query window of
constant length |P |.

Each partition is assigned a partition number. The current partition number is equal to b λd
|P | c where λd is equal

to the number of incoming tuples from a given stream received thus far. A query window QW is composed of
a number of partitions denoted by PW , where PW = dQW

|P | e . Each index configuration is stored in a hash table
where the partition number is the key. To reduce the amount of memory required, consecutive partitions that use
the same index configuration are stored in the same BI .

4 Index Assessment

The index assessment component maintains compact statistics used during index selection to locate the optimal
index configuration for each state, i.e., the index configuration with the lowest index configuration dependent costs
CD.

7



4.1 Index Configuration Dependent Costs CD

The quality of an index configuration IC depends upon the estimated total unit processing cost for IC [18]
which corresponds to the combined maintenance and search costs [13]. The maintenance costs are the sum of the
costs to insert and delete tuples in a state and to compute bucket ids (Cinsert +Cdelete +Chash,I). The search costs
are the sum of the costs to compute bucket ids and search for tuples stored in the state (Chash,Sr +Csearch). Cinsert

and Cdelete are independent of which IC is evaluated. Henceforth when comparing different index configurations
we only need to consider the index configuration dependent costs CD (Equation 1) [13]. See notations in Table 1
[13].

Table 1. Notations.
Notation Meaning
ap a search access pattern
λd # of incoming tuples from a stream received

within a time unit
λr # of search requests received

within a time unit
Ch average cost for computing a hash function
Cc average cost for conducting a value comparison
NA # of indexed attributes
NA,ap # of indexed attributes specified in ap
Wap window length (in # of time units) of ap
Bap # of bits assigned to all attr. specified in ap
Fap frequency of ap
A the set of all search access patterns that arrived

within a time unit

CD = Chash,I + Chash,Sr + Csearch (1)

CD = (λdNACh + λr

∑

ap∈A

(NA,apCh +
λdWapFap

2Bap
Cc))

4.2 Access Pattern Statistics

Assessing possible index configurations requires the collection of statistics on the frequency of each access
pattern (fap).

The frequency of access pattern ap in a workload D, denoted as fap, is fap =
Aap

|A| where Aap is the number of
search access patterns in D for ap and |A| is the total number of search access patterns utilized in D.

To collect statistics on the frequency of each access pattern the system tracks the total count of search requests
received for each possible access pattern. The number of possible access patterns is equal to the number of
combinations of join attributes for a given state. If there are Nja join attributes then the number of possible access

patterns is
Nja∑
k=1

(Nja
k

) . Thus the number of possible access patterns is exponential in the number of join attributes.
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4.3 Self Reliant Index Assessment SRIA

4.3.1 Basic SRIA

We first sketch the basic index assessment algorithm, called Self Reliant Index Assessment. SRIA captures the
total count of each access pattern received for a given state in a hash table referred to as the SRIA table. Access
pattern statistics collected in the SRIA table are independent of each other (i.e., self reliant).

To allow quick direct referencing to every access pattern ap in the SRIA table, each ap is mapped to a unique
binary representation B(ap). A 1 indicates that a particular join attribute is used to search, while a 0 indicates that
a join attribute is not used to search. Consider a state with 3 join attributes {A, B, C}. If ap1 is searching using
only attribute A (i.e., ap1 = < A, ∗, ∗ >) then B(ap1) = 100 which represents index number 4. If ap1 is searching
using attributes B and C (i.e., ap1 = < ∗, B,C >) then B(ap1) = 011 which represents index number 3. Finally if
ap1 is searching using all attributes (A, B, and C) (i.e., ap1 = < A, B, C >) then B(ap1) = 111 which represents
index number 7.

Each incoming access pattern ap is processed using the B(ap) function. If the access pattern exists in SRIA
then Aap is incremented by 1. Otherwise the new access pattern ap is created in SRIA with Aap set to 1.

4.3.2 Compact SRIA: Access Pattern Reduction

The large number of possible access patterns (Section 4.2) can cause potential memory limitations. We now
explore a frequency access pattern reduction method extension to SRIA referred to as Compact SRIA or CSRIA.
CSRIA is modeled after the heavy hitter algorithm proposed by Manku and Motwani [21]. Informally, during
assessment CSRIA periodically removes any access pattern statistic whose frequency falls below a preset error rate
or ε. Upon completion of assessment, CSRIA returns all access pattern statistics whose frequencies are above a
preset threshold θ.

Given a state St, SRIA access patterns for St, threshold θ, maximum error in the fap collected δ, and error rate
ε, the CSRIA algorithm outputs the set of frequency access patterns Q such that: ∀ap ∈ Q : (fap + δ) ≥ (θ − ε)
and ∀ap ∈ (Aap −Q) : (fap + δ) < (θ − ε)

CSRIA works by evaluating incoming access patterns in segments. Each segment contains d 1
ε
e search requests.

Segments are associated with an id that represents the current required number of search requests for an access
pattern to meet the preset error rate threshold. The current segment id or sid is equal to bε ∗λrcwhere λr is equal to
the number of search requests received during assessment thus far. To ensure that access patterns are not deleted
too early, the current maximum error in frequency δ is stored with each fap statistic. The maximum error in
frequency δ represents the minimum number of requests that should have occurred in order for fap to be above the
preset error rate threshold.

CSRIA is composed of three phases, insertion (creating statistics), compression (removing statistics), and final
results (finding all statistics that meet the threshold). Insertion and compression occur during the assessment
phase, namely, assessment collects compact statistics for a predefined period of time. During assessment, creating
statistics from the access patterns of incoming search requests (insertion) proceeds as follows: First, the binary
representation B(ap) is computed. Second, if the access pattern already exists in SRIA then the frequency Aap is
increased by 1. Otherwise a new access pattern is created in SRIA with Aap equal to 1 and the maximum error
in frequency collected δ equal to sid − 1. Also during assessment, compression is executed whenever a segment
worth of search requests has been received. Compression removes any access pattern from the SRIA table whose
frequency is below the preset error threshold, i.e., Aap + δ ≤ sid. At the end of assessment, the final result is
produced by locating any access pattern whose fap + δ is greater than the preset threshold in accordance with the
preset error rate, i.e., fap + δ ≥ θ − ε.

Some benefits to this approach are: 1) It guarantees to find any access pattern whose frequency is greater than
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the preset threshold θ. 2) The memory required is limited to at most 1
ε
log(ε

Nja−1∑
m=0

(Nja−1
m

)
) access patterns where Nja

is the number of join attributes [16].

Table 2. Compact SRIA Estimation Example
ap fap ap fap

<A, *, *> 4% <A, B, *> 4%
<*, B, *> 10% <A, *, C> 16%
<*, *, C> 10% <*, B, C> 10%

<A, B, C> 46%

Discussion: CSRIA, while efficient, fails to utilize the relationship between access patterns. This decreases
the opportunity to find the optimal index configuration. Consider a state with 3 join attributes, SRIA Table 2,
and a 4 bit index configuration. If θ is 5% and ε is .1%, then CSRIA will delete access patterns < A, ∗, ∗ > and
< A, B, ∗ > even though both access patterns would benefit from an index configuration containing < A, ∗, ∗ >.
Furthermore the combined frequency of < A, ∗, ∗ > and < A,B, ∗ > is 8% which is greater than θ. The index
configuration found during selection is the configuration with 1 bit assigned to the B attribute and 3 bits assigned
to the C attribute. Whereas the optimal index configuration is the configuration with 1 bit assigned to A and B
attributes each and 2 bits assigned to the C attribute.

4.4 Dependent Index Assessment DIA

4.4.1 Basic DIA

We now explore how the dependent access pattern relationships affect assessment. We first outline how a search
request is executed based on the index configuration of a state. Then we describe how the dependent access pattern
relationships can be used in a sophisticated index assessment approach referred to as Dependent Index Assessment
or DIA.

A search request with access pattern api will be more efficiently executed if an index exists such that the
combination of join attributes supported by the index is a subset of the join attributes in api as compared to an
index that includes join attributes not in api. Consider a state with JAS = {A, B, C, D} and a search request
with ap =< A, B, ∗, ∗ >:

In the worst case, IC consists of no attributes in ap (e.g., IC consists of attributes C and D). As IC and
ap have no common attributes, no buckets can be eliminated via matching a search request attribute to a specific
bucket. Thus a full scan is required (i.e, a comparison of all tuples stored in the state).

In a slightly better case, IC consists of some attributes in ap as well as some attributes not in ap (e.g., IC
consists of attributes A, B, and C). Each attribute in the IC that is not in ap creates the search wild card condition
described in Section 3.1. If n is the number of bits assigned to the attributes not in ap then 2n buckets will need to
be compared.

In a much better case, the attributes in the IC are a subset of the attributes in ap (e.g., IC consists of attribute
A). In this case, one single bucket worth of tuples must be searched. The bucket searched will contain all tuples
relevant to ap as no wild card condition exists but not every tuple is guaranteed to satisfy ap. Overall, the number
of tuples to be compared against is likely smaller than the cases above.

In the optimal case, the attributes in the IC exactly match the attributes in ap (e.g., IC consists of attributes A
and B). Since all attributes in IC are specified in ap, a single bucket will be searched. Further, all tuples in the
bucket will correspond to matches. In other words, the number of tuples required to be compared is the smallest
number of tuples that ap would be required to search for using this IC.
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Definition 1 An index based upon access pattern ap1 provides a search benefit to a search request utilizing access
pattern ap2, denoted as ap1 ≺ ap2, if ∀ a ∈ ap1 → a ∈ ap2 where a is an attribute.

The search benefit relationship organizes the access patterns into a lattice (Figure 5). Each node in the lattice
corresponds to an ap. The lattice is formed by starting with a single node representing the ap that contains no
join attributes (top node). At each level in the lattice, nodes are formed by taking each node in the prior level
and adding one join attribute not already in it. This process continues until the final level where all possible join
attributes are included in a single node (bottom node). Nodes from one level are linked to nodes that they provide
a search benefit to in the level directly below as represented by lines in Figure 5.

Figure 5. State with 4 join attributes
<*, *, *,*>

<*, B, *, *><A, *, *, *> <*, *, C, *> <*, *, *, D>

<*, B, C, *><A, B, *, *> <*, *, C, D><*, B,*, D><A, *, C, *> <A, *, *, D>

<*, B, C, D><A, B, C, *> <A, B, *, D> <A, *, C, D>

<A, B,C,D>

Level  5

Level  4

Level  3

Level  2

Level  1

Dependent Index Assessment DIA stores the assessment values in a lattice to retain the dependent search benefit
relationships between access patterns. Rather than starting with a complete lattice, DIA builds a lattice in a top-
down manner at runtime. Each node N in the partial lattice L consists of the access pattern it represents, namely
N.ap, and the count of N.ap requests, or N.Aap.

For each search request, if a node exists in the lattice that matches the access pattern then the corresponding
count N.Aap is incremented by 1. Otherwise, a new node is created for the access pattern. To enable quick direct
referencing to the access patterns, each node in the DIA lattice is mapped to a unique binary representation in the
same fashion as outlined above for SRIA. As such, physically each DIA node is stored in a SRIA table.

4.4.2 Compact DIA: Access Pattern Compression

The large number of possible access patterns in DIA (Section 4.2) can cause memory limitations. We now explore
an access pattern reduction method extension to DIA modeled after a hierarchical heavy hitter algorithm proposed
by Cormode et al. [10] namely Compact DIA, or CDIA. In our context, the search benefit relationship is utilized to
combine access pattern statistics rather than deleting them. During assessment, CDIA periodically combines the
statistics of any access pattern ap whose frequency falls below a preset error rate ε with the statistics of any access
pattern that provides search benefits to ap. At the end of assessment, CDIA returns all access pattern statistics
whose frequencies are above a preset threshold θ.

Given a state St, DIA access patterns, threshold θ, error rate ε, the set of all possible access patterns of St

referred to as PAP , the CDIA algorithm outputs the set of frequency access patterns Q such that: ∀ap ∈ Q :
f∗ap − ε ≤ fap ≤ f∗ap where (f∗ap =

∑
fk : (k ∈ PAP ) and (ap ≺ k)) and ∀ ap 6∈ Q:

∑
fk ≤ θ where

(∀k ∈ PAP (k 6∈ Q) and (ap ≺ k)).
The CDIA approach provides three methods insertion (creating statistics), compression (combining statistics),

and final results (finding all statistics that meet the threshold). The insert method is composed of multiple steps.
First, the binary representation of the access pattern B(ap) is computed. Then, if a node exists in the lattice
representing ap the count of this access pattern Aap is increased by 1. Otherwise, a new node is created for access
pattern ap with Aap equal to 1 and maximum error in the frequency δ set to the minimum error rate thus far, or
sid − 1. After collecting a segment full of search requests, compression evaluates the leaf nodes of the lattice. A
leaf node is any node in the lattice that does not provide a search benefit to any other node (i.e., no node below it
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has a count > 0). Compression proceeds as follows. For each leaf node in the lattice, if the total count of the given
access pattern Aap plus the maximum error in the frequency δ is less than the current segment id and a parent of
the leaf node exists, then the access pattern count of the leaf node is added to the access pattern count of the parent.
Otherwise a new parent node is created with Aap equal to the access pattern count of the leaf node and maximum
error in the frequency δ equal to sid − 1. Finally, the leaf node is deleted.

During the final results computation step, any access pattern whose frequency is greater than θ is identified and
returned as described below. For each node N in the lattice starting from the nodes in the lowest level of the lattice,
first the frequency of the access pattern N.fap is computed. If N.fap is less than θ, then a parent of the leaf node
is identified, and the access pattern count of the leaf node is added to the parent. Otherwise, the node is added to
the result set Q.

CDIA Combination Methods: Several strategies can be utilized to combine the frequency of a child node Nc

with that of a parent node Np that provides search benefits to it [11]. One method, random combination, randomly
picks a parent node. Another method, highest count combination, adds the child’s frequency to the parent with
the highest frequency thus far. The intuition is that the parent node with the largest frequency during assessment
has a greater chance of being larger than the preset threshold θ when the final results are found (i.e., at the end of
assessment).

There are several benefits to the CDIA approach: 1) It guarantees to find any access pattern whose frequency

is greater than θ. 2) It only stores h
ε
log(ε

Nja−1∑
m=0

(Nja−1
m

)
) access patterns where h is equal to the number of levels in

the lattice [10]. 3) It reduces the number of access patterns stored while retaining the statistics of removed access
patterns.

Figure 6. CDIA Example

Level  4

Level  3

Level  2

Level  1

<*, *, *>

<*, B, *><A, *, *> <*, *, C>

<*, B, C><A, B, *> <A, *, C>

<A, B, C>

After Compression

<*, *, *>

<*, B, *><A, *, *> <*, *, C>

<*, B, C><A, B, *> <A, *, C>

<A, B, C>

Before Compression

fap= 46% fap= 46%

fap= 16% fap= 16%fap = 0% fap = 0%fap = 0%

fap = 10%fap= 10%fap= 10% fap = 10% fap = 8%fap = 4%

fap = 4%

Reconsider the example in Section 4.3.2 with a state containing 3 join attributes, a 4 bit index configuration,
and DIA outlined in Figure 6. If θ is 5% and ε is .1%, the CDIA approach using the random combination method
combines the frequency of < A,B, ∗ > into < A, ∗, ∗ >. In this case, index selection will find the true optimal
index configuration.

5 Bounds on Statistics Reductions

Index selection finds the best IC for each state by comparing the IC dependent costs CD (Equation 1) of each
possible configuration in the state and returning the IC with the lowest combined cost CD. To achieve this the
”optimal” division of available bits among the states that minimizes the combined cost CD must be considered.
The bit division problem given the constraint of minimizing combined dependent costs CD across all states has
been shown to be equivalent to the multiple-choice knapsack problem (MCKP) [23]. MCKP has been proven to
be NP-hard. Therefore we consider instead the problem of locating the optimal IC for each state where each state
is allocated a set number of bits. Henceforth index selection refers to the problem of finding the best IC for a state
among all possible ICs given the allocation of B bits (Equation 1), i.e., returning the IC with the lowest cost CD.
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5.1 Cost Calculation Reductions

To find the best IC, the index configuration dependent cost CD of every possible combination of JAS attributes
and B bits must be evaluated. Given N join attributes and B bits, each index configuration with ≤ Min(N,B)
attributes is explored. For each IC with bits assigned to k of the N join attributes there are

(
B − 1
k − 1

)
possi-

ble combinations of distributing B bits among the k attributes. Hence the complexity of the search space is
∑Min(N,B)

k=1

(
N
k

) (
B − 1
k − 1

)
. As the size of both N and B increases, the search space grows exponentially.

Prior to index selection we use the EPrune algorithm [13] to remove attributes for which the indexing overhead
exceeds the cost reduction gained. EPrune guarantees to find the optimal IC [13]. It quickly finds the optimal IC
when the number of join attribute statistics N is small. Complementary to this, our CSRIA and CDIA methods
assist in minimizing the search space by reducing the number of frequency access pattern statistics. This increases
the number of possible attributes eliminated by EPrune.

As indicated in Section 4.2, the number of cost calculations performed is driven by the number of access pattern
statistics. Given a large number of access pattern statistics, the number of cost calculations performed to evaluate
CD for each possible IC can also be large and thus costly. Eliminating a single access pattern statistic per the
CSRIA and CDIA methods reduces the number of cost calculations performed by ∑Min(N,B)

k=1

(
N
k

) (
B − 1
k − 1

)
,

resulting in significant savings.

5.2 Statistic Reductions

CSRIA and CDIA reduce the number of frequency access patterns statistics collected with the goal of reducing
the amount of memory required for index assessment as well as the amount of CPU cycles required for index
selection. However, such reductions clearly could influence the quality of the identified IC. We now show the
important result that the affect of removing a frequency access pattern on CD is bounded in proportion to the
preset threshold θ and error rate ε. An access pattern statistic Fap can have one of the following affects on a given
IC’s dependent cost CD (Equation 1):

If each attribute in the access pattern ap is in the IC and visa versa, then all possible bits are used to search
(i.e., no wild cards). The portion of CD that the frequency of ap Fap contributes to is λr

λdWapFap

2B Cc or the smallest
contribution that Fap can have on a CD.

If no attributes in ap are in IC then a complete scan and comparison of all tuples stored in the state is required.
The portion of CD that Fap contributes to is λrλdWapFapCc or the largest contribution that Fap can have on a CD.

In the worst case removing an access pattern statistic Fap from CSRIA removes the largest contribution that
a particular Fap can have, namely λrλdWapFapCc , from each possible CD calculation. Thus any access pattern
whose frequency is ≤ (θ− ε) is guaranteed to not reduce any index configuration dependent costs CD by more than
λrλdWapθCc .

In the worst case removing an access pattern statistic Fap from CDIA changes the contribution that Fap has
on a CD from the smallest contribution possible λr

λdWapFap

2B Cc to the largest contribution possible λrλdWapFapCc .
The potential difference in CD is λrλdWapCc(

Fap

2B − Fap) . Thus any access pattern statistics Fap where the value
of (

Fap

2B − Fap) is ≤ (θ − ε) is guaranteed not to increase any index configuration dependent costs CD by more than
λrλdWapθCc .

6 Scheduling The Tuning Process

We now introduce four scheduling methods for determining when to initiate index tuning.
Continuous Index Tuning: Continuous Index Tuning collects statistics continuously on each state for a predeter-
mined period of time. Upon completion of the preset evaluation window, index selection is executed and assess-
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ment is restarted. In this case when the access patterns of the search requests are not changing, this method adds
significant overhead for assessment even though no new index configuration is required.
Periodic Index Tuning: Adapted from index tuning in traditional database systems [15], during periodic time
intervals statistics are collected and used to search for the best index configuration. The downfall of this method is
when the access patterns of search requests are rapidly changing, this method will not identify changes in a given
state that may arise while the state is not being assessed.
Triggered Index Tuning: Triggered Index Tuning is based upon observed changes in routing. It initiates index
assessment on states with observed significant shifts in routing. In this method, over the period of a single state
index assessment the number of search requests sent to each state is tracked and compared. The state with the
most significant change is triggered for index assessment. A significant change in the number of search requests is
measured by computing the degree of difference between the current number of search requests for a given state
St to the prior number of search requests for St. This method tends to more rapidly identify significant changes
in the number of search requests for a given state than the periodic index tuning method. The only drawback of
this strategy may be that states that never have significant changes in the number of search requests may never be
assessed.
Hybrid Index Tuning: This leads us to propose the hybrid of employing both periodic and triggered methods. An
ordered list of the states to be assessed is kept. When a state has been assessed due to triggered index tuning, the
state is moved to the bottom of the assessment list. The hybrid is the method of choice since it allows the system
to catch significant changes in individual states as they occur while ensuring that each state is still periodically
assessed.

7 Index Migration

Once a new ”best” index configuration has been discovered for a state, index migration considers whether or
not to re-index a state from the current index configuration(s) to this new index configuration. We now present
three index migration methods, namely All, Nothing, and Partial.

7.1 All or Nothing

Hence the all index migration re-indexes all the tuples currently stored in the state to the new ”best” index
configuration, and removes the old index configuration(s). The result of this approach is that states support a
single common index configuration at any given time.

In contrast the nothing index migration does not re-index any of tuples currently stored in the state (i.e., all the
tuples currently stored in the state are kept in their current index configurations). As a result, states must support
multiple distinct index configurations at the same time. However any newly arriving tuple will only be indexed
using the new ”best” index configuration.

Analysis: Is a single index configuration better than multiple distinct index configurations? To answer this
question we must explore the overhead of index migration. Both approaches carry no migration decision overhead
as no evaluation is performed. To support multiple distinct index configurations requires no additional migration
cost as no migration is required. While to support a single index configuration requires all tuples stored in the
state to be migrated to the new index configuration. The cost to migrate a single tuple is the sum of the costs
to compute bucket id of the new index configuration (i.e., new memory location), and to insert the tuple into the
new memory location (Cinsert + Chash,I) (Section 4). The cost to remove a single stored tuple from an index
configuration is the sum of the costs to compute the memory location of the tuple using the index configuration,
and to delete the tuple (Chash,R + Cdelete). Thus the total cost of migration using a single index configuration is

∑
t∈state

(Cinsert + Chash,I) + (Chash,R + Cdelete) .
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In order for the cost of migration to be worthwhile there must be a benefit in migrating to the new IC. Given
the index configuration of a state IC, the benefit of migrating to the new ”best” index configuration BIC denoted
as Bm(IC,BIC) is the difference between the search costs using IC, and migration and search cost using BIC
(Equation 2). If Bm(IC, BIC) is greater than 0 then there is a benefit in migrating IC to BIC.

Bm(IC, BIC) = Cs(IC)−
(Cs(BIC) + Cm(IC, BIC)) (2)

Cs(IC) = Chash,R + Cprobe

Cm(IC, BIC) =
∑

t∈state

((Chash,I + Cinsert) +

(Chash,R + Cdelete))

Thus in order for All index migration to have a lower overall processing cost than Nothing index migration, the
cost to search generated from older partially serviced search requests using the new ”best” index configuration plus
the cost of migration must be less than the cost to search generated from older partially serviced search requests
using their current index configuration (i.e., (Cs(BIC) + Cm(IC,BIC)) < Cs(IC)) . If this is not the case, it is
more cost effective to search for older search requests using their current index configuration and utilize the new
”best” index for only newly incoming search requests.

7.2 Partial Migration

If multiple index configurations are supported as explained above, then the question arises, is there a benefit
to migrate only some of them selectively. Partial index migration supports multiple index configurations, and
selectively migrates individual index configurations based upon the estimated future workload of partially serviced
search requests. We estimate the future workload of each partition by tracking for each partition the number
of active partially serviced search requests within its query window (Section 3.2). For each time-sliced index
configuration in the state, the benefit of migration Bm(IC,CIC) using the estimated number of future older
partially serviced search requests served by the given partition is evaluated (i.e., when evaluating Cs(IC) and
Cs(BIC) the estimated number of search requests received within a time unit λr is replaced by the number of
active partially serviced search requests within the partition’s query window). Only tuples stored in partitions
where there is a benefit in migrating are migrated.

Partial index migration adds the following additional costs to processing: 1) the cost to evaluate each partition
every time a new index configuration is selected, and 2) the cost for the router to track the estimated future
workload of older partially serviced search requests. Thus in order for Partial index migration to have a lower
overall processing cost than Nothing index migration, cost to search generated from older partially serviced search
requests using the new ”best” index configuration plus the cost of migration and the cost to evaluate the migration
needs of each partition must be less than the cost to search generated from older partially serviced search requests
using the current index configuration(s).

8 Experimental Results

Experimental Setup: All experiments are implemented in the CAPE stream system [28] using Linux machines
with AMD 2.6GHz Dual Core CPUs and 4GB memory. They compare throughput defined as the cumulative output
tuples produced over a fixed period of time. Our experimental study explores: 1) Which of our proposed alternative
tuning methods is the most effective at improving the throughput in AMR systems?, 2) Is AMRI more effective
than state-of-art approaches at improving throughput?, and 3) How does varying the number of possible query
paths affect the throughput of an AMR system using our proposed index solution versus the state-of-art approach?
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Figure 7. Evaluating Alternative Tuning Methods

Every experiment uses a 4 way join query across 4 data streams. Every stream is joined to each of the 3 other
streams via a unique join attribute. Thus each state contains 3 join attributes. Each state is required to efficiently
support search requests containing all possible combinations of the 3 join attributes (7 possible access patterns).
Our results illustrate that even for systems with a small number of possible access patterns, there already is a
significant benefit in removing access pattern statistics. Clearly, as the number of possible access patterns in a
state increases so does the probability of access pattern statistics being eliminated.

Synthetic Data Sets: To test the effectiveness of our methods under conditions where adaptive indices are
required we created synthetic data in which the selectivities of joining a stream to any of the other streams vary
periodically. This may cause the router to use new query paths which in turn may initiate index selection.

Real Data Sets: We use real data collected from 54 sensors deployed in the Intel Berkeley Research lab
between February 28th and April 5th, 2004 (http://berkeley.intel-research.net/labdata/). The sensors were divided
into 4 streams based upon their location. The query locates sensor data from the 4 streams where the temperature,
humidity and relative location (horizontal distance from a fixed point) is the same. This query would be useful to
an engineer monitoring a building’s environment.

The IC on each state uses 64 bits and is initiated by running index selection using statistics gathered by exe-
cuting the stream for 15 minutes (as quasi training data). For the state-of-the-art approach, the starting indices are
those found to support the most frequent search request access patterns by running the quasi training data approach
above. Unless specified assume all experiments use the synthetic data set and query.

8.1 Evaluating Alternative Tuning Methods

Index Assessment: We now compare the index assessments methods SRIA, CSRIA, DIA, and CDIA using
random and highest count compression. Each method is run using the maximum error δ = .05, threshold θ = .1,
and hybrid index selection where the periodic and triggered evaluation windows are set to 60, 000, and 100, 000
search requests respectively. Both CDIA versions (random and highest count compression) outperform DIA,
SRIA, and CSRIA (Figure 7 a). In fact CDIA using highest count compression outperforms both DIA and SRIA
by 19%, and CSRIA by 30%. This demonstrates the utility of combining access pattern statistics (i.e., CDIA)
prior to index selection. Note that the results of DIA and SRIA are equal. This is not surprising as they share the
same code base, use the same SRIA table, and do not reduce any nodes.

Index Tuning Scheduling: Next, we compare index tuning scheduling methods Periodic, Triggered, Hybrid,
and Continuous (Section 5). Each test uses the CDIA with highest count compression set up outlined above (i.e.,
the most effective method shown above). Hybrid outperforms Periodic, Triggered, and Continuous Index Tuning
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Figure 8. AMRI vs State-of-Art Experiments

by 65%, 29%, and 18% respectively (Figure 7 b). This shows the utility of combining traditional periodic index
tuning with knowledge gained by the router (i.e., Hybrid approach). Triggered ran out of memory after 20 minutes.
In triggered index tuning scheduling, states with no significant changes are never assessed. Thereby such states
have suboptimal index configurations which increases the time to process search requests and in turn delays the
processing of incoming search requests.

Index Migration: Next, we study the impact of runtime index migration methods (Section 7). Each method is
run using the Hybrid index selection set up outlined above (i.e., the most effective method shown above). Nothing
index migration (i.e., utilizing multiple time-partitioned non migrating index configurations) outperforms both All
and Partial index migration by 19% (Figure 7 c). The overhead of migrating the current index configuration to a
single new common index configuration (i.e., All Index Migration) is greater than the actual search execution time
saved. In contrast to traditional systems that support a single common index design for the entire set of stored
tuples, we conclude that states in AMR systems are best served by multiple time-partitioned non migrating index
configurations. If this were not the case, All index migration (i.e., utilizing a single common index configuration)
would have outperformed Nothing index migration. We also conclude that the overhead to migrate selective index
configurations (i.e., Partial index migration) is greater than the actual search execution time saved.

8.2 AMRI vs State-of-Art

Synthetic Data: Next, we evaluate the state-of-art AMR indexing (i.e., multiple hash indices) [24]. This
experiment varies the number hash indices on each state from the minimum to maximum number of possible
indices, 1 to 7 respectively. Static non-adapting hash indices (i.e., no index tuning) produced poor results. Thus
adaptive hash indices using the nothing index migration set up outlined above and conventional index selection
(i.e., indices created support the most frequent search request access patterns) are used.

No trial ran for more than 12.5 minutes (Figure 8 a). In each case, the system ran out of memory due to the
large amount of CPU time and memory overhead required to maintain the indices (See Section 3.2). For systems
with only a few indices a backlog of active search requests occurs from the processing delay caused by the large
number of complete scans performed. AMRI emerges as the clear winner that is AMRI produces 93% more results
than even the best hash index configuration (Figure 8 b).

We now compare our AMRI index tuning to the ”state-of-the art” static bitmap index. Both start with the same
optimal index configuration. The non-adapting bitmap index could not keep up with the search requests and ran
out of memory after 15.5 minutes. AMRI produces 75% more results than the non-adapting bitmap index (Figure
8 b).
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Figure 9. Skew on the Number of Query Paths Experiments

Real Data: Next, we compare AMRI to the state-of-art AMR indexing as in [24] using the Intel Berkeley
Research lab data set and query outlined above. AMRI implements CDIA using highest count compression index
assessment where the maximum error δ = .1, threshold θ = .15, hybrid index tuning scheduling, and nothing
index migration. The same amount of memory is available to both the AMRI and hash indices systems.

We again observed very poor results using non adapting hash indices. Thus adaptive hash indices are imple-
mented using the manner outlined above. AMRI again produces more results than the best hash index solution
(68% more) (Figure 8 c). Next we compare AMRI to a non-adapting bitmap index. Both start with the same
index configuration. In this case study, AMRI produces 15% more results than the non-adapting bitmap index.
Compared to the synthetic data, the real data query has a lower selectivity rate. Thus fewer search requests are
routed through the system. Hence there are fewer opportunities for any system to gain a substantial lead.

8.3 Skewing the Number of Possible Query Paths

We now compare AMRI to adaptive hash indices as defined above in systems with varied number of possible
query paths. Each experiment uses CDIA using highest count compression index assessment where the maximum
error δ = .1, threshold θ = .15, hybrid index tuning scheduling, and nothing index migration. The periodic
and triggered evaluation windows are set to 40, 000, and 80, 000 search requests respectively. Synthetic data was
formed such that the selectivities of joining one stream to the other streams limits the number of possible query
paths favored by the router.

In the Constant experiment (Figure 9 a), only 1 non adapting query path for each stream is selected by the
router (i.e., 1 query path is optimal for the duration of the query). AMRI’s overhead was not low enough to keep
up with the 3 static hash indices solution. But AMRI’s overhead was low enough to keep up with both the 1 and 5
static hash indices solutions. But such a stable a non fluctuating scenario would clearly not be considered a good
candidate for an AMR system as the purpose of AMR is to adapt the query plan to fluctuations.

In the Single Adapting experiment (Figure 9 b) we considered the case where the router selects a single path for
each stream and the single path adapts over time. In this case, our AMRI solution produces 35% more results than
the highest output produced by the conventional adapting hash indexed based approach. This supports our claim
that AMRI improves the throughput of queries in fluctuating environments.

Next we vary the number of possible query paths on each stream. Overall AMRI produces more results than
the highest output produced by the state-of-art AMR adapting indexing approach. How well AMRI performed is
related to the degree of the fluctuations in the number of possible query paths used by the router (Figure 9 c, d, &
e). A system with few fluctuations where 3 streams have 2 possible query paths and 1 stream has 6 possible query
paths AMRI produced 24% more results (Figure 9 e). A system with average fluctuations where 2 streams have
2 possible query paths and 2 streams have 6 possible query paths AMRI produced 43% more results (Figure 9 d).
A system with many fluctuations where 1 stream has 2 possible query paths and 3 streams have 6 possible query
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paths AMRI produced 73% more results (Figure 9 c). Clearly, AMRI adapts to systems with higher fluctuations
better than the state-of-art approach.

9 Related Work

The first AMR system, Eddy, used a router to route individual tuples through operators [6]. Enhancements in
routing policies were proposed in [7, 31]. Multi-query AMR system issues were covered by [20]. [24] improved
optimization capabilities by extending routing flexibility through the development of the STeM operator, a unary
join operator, and access modules, an index over data from a single stream stored in a state. As shown in our
experiments the overhead of access modules makes such hash indices ineffective for AMR systems.

Index Tuning in static databases aims to find a set of indexes that maximally benefit a given query workload by
either selecting the most optimal index configuration off-line [3, 9, 2, 12] or online during execution [4, 29, 8].
Online index tuning continuously evaluates and adjusts the index configuration to the current workload. Our
solution borrows from the online index tuning work. Online tuning in static databases requires the system indices
to adapt to observed changes in the workload [4, 29, 8]. We explore novel index tuning approaches that reduce
the system resources required while maintaining the integrity of the index selected in accordance with a preset
threshold and error rate.

Bit-address indexing, initially designed to index partial match queries on a file database [5], has been applied
on applications ranging from compactly storing very large multidimensional arrays [25] to reducing processing
costs of multidimensional queries [26, 27]. [13] studied index selection heuristics using a single bit-address index
where the search request workload is known prior to execution. We tackle the on-line index tuning problem for
AMR systems.

Assessment methods for the bit-address index design have not been studied while they are core to our effort.
Such methods utilize stream sampling algorithms. We put forth in our work that heavy hitter algorithms, a type
of stream sampling algorithm, meet the requirements of AMR systems (Section 5) as they analyze and report all
items that appear above a preset threshold [22, 19, 21].

[22] introduced the first deterministic algorithm for approximating frequency counts, called the heavy hitter
method. [21] added the error rate ε approximation guarantee. Our CSRIA method is modeled after the heavy hitter
algorithm proposed in [21]. Hierarchical heavy hitter, applying the heavy hitter methodology to hierarchical multi-
dimensional data, was studied in [10, 14] to solve network traffic problems. Our CDIA method is modeled after
this hierarchical heavy hitter work. CDIA implements two compression methods, namely, random combination
and highest count combination which are variations of compression methods presented by [11]. We customize
the compression methods to handle the search benefit relationships between indices in AMR systems. To our
knowledge, ours is the first application of heavy hitter and hierarchical heavy hitter algorithms to address the
problem of index tuning in AMR systems.

10 Conclusions

We developed the Adaptive Multi-Route Index for AMR systems or AMRI, in short. AMRI employs multiple
time-partitioned bitmap indices to serve a workload composed of diverse query access patterns with partially
overlapping life spans. We propose AMRI tuning methods, in particular, four index assessment methods (SRIA,
CSRIA, DIA, and CDIA), four index tuning scheduling methods (Periodic, Triggered, Hybrid, and Continuous),
and three index migration methods (All, Nothing, and Partial). Bounds on the optimality (i.e., quality) of the index
configuration found during index selection are also established in this work.

Our experimental study demonstrates the overall effectiveness of AMRI at improving throughput in dynamic
stream environments while keeping the index tuning costs to a minimum. In particular, using synthetic data AMRI
produced on average 93% more results than the state-of-art approach and in our case study with real data on
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average 68% more results over the same period of time. We clearly demonstrated that compared to All index
migration (i.e., a state utilizing a single index configuration), Nothing index migration (i.e., a state utilizing a
multiple time spliced index configurations) significantly improved the throughput of AMR systems.
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