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Abstract
Discovering interesting patterns in datasets is a very

important data mining task. Subgroup patterns are lo-
cal findings identifying the subgroups of a population with
some unusual, unexpected, or deviating distribution of a
target attribute. However, this pattern discovery task poses
several compelling challenges. First, computational data
mining techniques can generally only discover and extract
pre-defined patterns. Second, since the extracted patterns
are typically multi-dimensional arbitrary-shaped regions,
it is very difficult to convey in an easily interpretable man-
ner. Finally, in order to assist analysts in exploring their
discoveries and understanding the relationships among
patterns, as well as connections between patterns and the
underlying data instances, an integrated visualization sys-
tem is greatly needed. In this paper, we present a novel sub-
group pattern extraction and visualization system, called
the Nugget Browser, that takes advantage of both data min-
ing methods and interactive visual exploration. The system
accepts analysts’ mining queries interactively, convertsthe
query results into an understandable form, builds visual
representations, and supports navigation and exploration
for further analyses.

1 Introduction
Subgroup discovery [3] is a method to discover inter-

esting subgroups of individuals, such as “the subgroup of
students who study in small public high schools are sig-
nificantly more likely to be accepted by the top 10 univer-
sities than students in the overall population”. Subgroups
are described by relations between independent (explain-
ing) variables and a dependent (target) variable, as well as
a certain interestingness measure. There are many appli-
cation areas of subgroup discovery. For example, the ex-
tracted subgroups can be used for exploration and descrip-
tion, as well as understanding the relations between a target
attribute and a set of independent attributes. Each subgroup
or a set of subgroups is a pattern, i.e., a sub-region in the
independent space. Detailed examination of such regions
can be useful to improve understanding of the process that
result in the pattern.

The subgroup discovery poses many challenges:

First, since the analysts may not know in advance what
kind of interesting features the data contains, they may
have to repeatedly re-submit queries and explore the results
in multiple passes. For example, when the user submits
a mining query, they need to specify the target attribute
range of interest, such as the top 10 universities mentioned
before. However, for different datasets and different appli-
cation scenarios, the number of the top universities may be
different, so they might have to try several times to find an
appropriate range. This makes the mining process tedious
and inefficient. Thus, we need an interactive mining pro-
cess that allows analysts to submit queries dynamically and
explore the results in an interactive manner.

Second, without visual support, users can only exam-
ine the mining results in text or tables. This makes it very
hard to understand the relationships among different sub-
groups and how they are distributed in the feature space.
Besides, when the user explores the mining results, the re-
sults are often in a descriptive or a abstracted form, such
as summaries of the sub-regions. However, the examina-
tion of the instances in the region is also very important for
understanding the data point distribution. Thus, without a
visualization of the mining results, Users cannot build con-
nections between the patterns and the instances.

Finally, adjacent subgroups should be aggregated and
clustered when they are of the same interesting type. For
example, given there are two subgroups of students, both
of which have significantly higher acceptance rates than
the population, and they are adjacent to each other in one
independent attribute, such as the groups with medium and
high income. Then the two subgroups should be aggre-
gated, and reported or treated as a whole subgroup. One
benefit is that this aggregate representation is more com-
pact, which provides the users a smaller report list for easy
examination. Another benefit is that the compact represen-
tation can be more efficiently stored in a file and loaded in
computer memory. However, the clustered mining results
generally tend to be multi-dimensional arbitrary-shaped re-
gions, which are difficult to understand, report and visual-



ize. Therefore, conveying the pattern in a compact, easily
understandable, and visualizable form is desirable.

Focusing on these challenges, our main goal is to de-
sign a visual interface allowing users to interactively sub-
mit subgroup mining queries for discovering interesting
patterns. Generally, the main users of our system are ana-
lysts who want to perform subgroup mining tasks but have
difficulties in understanding the mining results. Without a
visual representation of the results, analysts are have diffi-
culties determining if the mining results are interesting,if
there are any patterns in the results, and how to refine their
queries. Another type of user for our system are analysts
who have difficulties specifying queries. Like other types
of mining queries and tasks, such as clustering and asso-
ciation rule mining, some parameters are needed to form
the query, such as how to define subgroups and what is
the target share range. Therefore, an exploratory process is
strongly needed that supports analysts in examining min-
ing results and refining queries. Specifically, our system
can accept mining queries dynamically, extract a set of
hyper-box shaped regions calledNuggetsfor easy under-
standability and visualization, and allow users to navigate
in multiple views for exploring the query results. While
navigating in the spaces, users can specify which level of
abstraction they prefer to view. Meanwhile, the linkages
between the entities in different levels and the correspond-
ing data points in the data space are highlighted.

The primary contributions of this paper include:

• A novel subgroup mining system: we design a vi-
sual subgroup mining system where users can con-
duct a closed loop analysis involving both subgroup
discovery and visual analysis into one process.

• An understandable knowledge representation: we
propose a strategy for representing the mining re-
sults in an understandable form. In addition to stor-
age benefits, this representation is easy for analysts
to understand, and can be directly displayed using
common multivariate visualization approaches.

• A 4-level structure model: we designed a layered
model that allows users to explore the data space
at different levels of abstraction: instances, cells,
nuggets, and clusters.

• Visual representation for the nugget space: for each
level, we design a view in which users are able to ex-
plore and select items to visualize. The connections
between the adjacent layers are shown based on the
user’s cursor position.

• We implemented the above techniques in an inte-
grated system calledNugget Browserin XmdvTool
[21], a freeware multivariate data visualization tool.

• Case studies suggest that our visualization tech-
niques are effective in discovering patterns in mul-
tivariate datasets.

2 Related work
Visual data mining techniques aim to combine informa-

tion visualization with data mining [22, 17, 13]. A power-
ful data mining strategy should involve users in the visual
analytics process. The users should be allowed to explore
the discoveries and specify what they are looking for. The
mining results should also be easily understandable. Re-
cently, numerous visual analytics based systems have been
presented to solve knowledge discovery tasks. Hao et al.
[9] presented the Intelligent Visual Analytics Query (IV-
Query) concept that combines visual interactions with au-
tomated analytical methods to support analysts in discover-
ing the special properties and relations of the identified pat-
terns. Yang et al. [23] presented the Nugget Management
System (NMS) that allows users to extract patterns via in-
teractive range queries and provided several mechanisms
for users to manage their discoveries, such as filtering out
similar nuggets and refining the discoveries. Guo et al. [8]
presented a model space visualization system that assists
users in discovering linear patterns in a dataset. The system
can reveal multiple coexisting linear trends and provides
users the flexibility to tune the discovered trends. uchs et
al. [7] proposed a system that integrates interactive visual
analysis and machine learning to support insight genera-
tion. Yu et al. [25] also proposed a closed loop between
visual analysis of discoveries and data mining processes.
They showed how this system can be effectively applied to
multimedia datasets and continuous time series data. This
paper follows these visual mining technique concepts al-
lowing the analysts to interactively submit mining queries
to discover interesting multi-dimensional patterns. In this
paper, we focus on a specific data mining method, i.e., sub-
group mining, to assist the users in discovering statistical
significance in multivariate datasets.

Subgroup pattern mining is a very popular and simple
form of knowledge extraction and representation [14]. In
[15], an advanced subgroup mining system called “Sub-
groupMiner” is proposed, which allows the analysts dis-
covering spatial subgroups of interest and visualize the
mining results in a Geographic Information System (GIS).
In [2], it is shown that the subgroup discovery methods
benefit from the utilization of user background knowledge.
In this paper, we not only allow the users to perform the
subgroup mining in an interactive manner, but also visual-
ize the mining results in different coordinated views, assist-
ing the users in examining the patterns and understanding
the multi-dimensional relationships among the patterns.

Since usually the extracted features in multivariate
datasets are high-dimensional, a major problem is the diffi-



culty in effectively visualizing such high-dimensional pat-
terns and their relationships. There are several techniques
that map high-dimensional patterns to a lower dimensional
space. A linear mapping method takes the first two princi-
pal components obtained from Principal Component Anal-
ysis (PCA) [12] and maps the dataset to a 2 dimensional
space. Multidimensional Scaling (MDS) [5] and Kohonens
Self Organizing Maps (SOM) [16] are non-linear variants,
requiring the minimization of a cost function of the dis-
tances. Somorjai et al. [18] proposed a relative distance
plane method. 2N−3 of theN(N−1)/2 interpattern dis-
tances are preserved in terms of two reference points. Rad-
viz [10] is a radial visualization with dimensions assigned
to points called dimensional anchors (DAs) placed on the
circumference of a circle. We apply the layout strategies
in our system for different views to reveal the relationships
between multiple patterns and query results.

3 Visual Subgroup Mining and a Proposed
4-Level Layered Model

As mentioned in Sec. 1, a subgroup discovery problem
can be defined in three main features: subgroup descrip-
tion, a target attribute, and a interestingness measure func-
tion.

A subgroup in a multivariate dataset is described as a
sub-region in the independent attribute space, i.e., range
selections on domains of independent attributes. For exam-
ple, “male Ph.D. student in computer science department
whose age is large (larger than 25)” is a subgroup with
constraints in the 4 independent attribute space, i.e.,gen-
der, degree program, departmentandage. The sub-groups
can be initialized by partitioning the independent attribute
space. Given a multivariate dataset, pre-processing parti-
tions the data space into small cells by binning each inde-
pendent attribute into several adjacent subranges, such as
low, median and high ranges. Each cell is a description of
one subgroup element.

For the target attribute, based on the application and the
cardinality, it can be continuous or discrete. The quality
functions are different for these two target attribute types.

As a standard quality function, we uses the classical bi-
nomial test to verify if the target share is significantly dif-
ferent in a subgroup. The z-score is calculated as:

p− p0
√

p0(1− p0)

√
n

√

N
N−n

This z-score quality function compares the target group
share in the sub-group (p) with the share in its complemen-
tary subset.n andN are subgroup size and total popula-
tion size. p0 is the level of target share in the total pop-
ulation and(p− p0) means the difference of that target
shares. For continuous target attributes and the deviating

mean patterns, the quality function is similar, using mean
and variance instead of sharep andp0(1− p0).

Users can submit queries on the target attribute to spec-
ify target range or a significant level to measure the inter-
estingness of each group. The subgroups with high qual-
ity measures are query results, i.e., discovered patterns.
Users can visually explore the extracted patterns and fur-
thermore, can adjust the previous query and perform a new
loop of query processing.

Intuitively, we use color to represent the mining result
in the cell level. The cells (subgroups) are colored gray
if their quality measure don’t satisfy the significance level
(usually 0.05). If the z-score is larger than zero and the
p-value is less than 0.05, the cells are colored red. This
means that the target attribute share or the average target
attribute value are significantly larger than the population.
Similarly, for the cells whose z-score is less than zero and
the p-value is less than 0.05, the cells are colored blue. This
means that the target attribute share or the average target
attribute value are significantly lower than the population.
We say two subgroups areof the same typeif they both sat-
isfy the same query, i.e., both of them are significant and
their z-scores are both larger than the positive critical value
(1.96) or smaller than negative critical value (-1.96). we
use different colors to represent different subgroup types.

A direct way to report the mining results is to return all
the colored cells. Notice that the number of cells is expo-
nential in the number of independent attributes. The query
result can be very large, which makes it hard for the user
to explore and understand. Specifically, a large set of un-
related cells may not be desired, because: 1. Users may
only care about large homogeneous regions (subgroups of
the same type) rather than a set of unrelated cells. 2. Users
may want to know how many connected regions there are
and what the sizes are. 3. The result should be in a compact
manner for ease of understanding.

Towards these goals, we computationally extract two
higher level of abstractions of the mining result, i.e., the
nugget level and the cluster level.

In the cluster level, we aggregate neighbor cells of the
same type to form a cluster i.e., a connected region (Fig.
1 (a)). The clustering results can be used to answer ques-
tions, such as how many connected regions there are and
what the sizes (number of instances or cells) are. There
are two benefits for the result in the cluster level besides to
ease exploration. The first one is that the number of clus-
ters can reveal the distribution of the mining result, such as
a single continuous large cluster or a set of discontinuous
small clusters scattered in the space. This can assist the
users to better understand how the independent attributes
influence the target share.



Figure 1: The proposed 4-level layered model. User can
explore the data space in different levels in the nugget
space.

Second, since the subgroups of the same type are gen-
erally treated as a whole set, the same treatment can be
applied to all individuals in one cluster rather than each
single cell. Since users might be only concerned with the
large clusters, we can further filter out the small clusters,
based on a user-specified threshold. This idea of clustering
cells is similar to grid-based clustering and more benefits
are discussed in[20, 1]. The difference is that we cluster
the cells of the same type in terms of their interestingness
based on the significance level for a target attribute, while
most of the grid-based clustering techniques only consider
the densities of each cell.

Although there are some benefits to representing the
result as clusters, the largest problem is that the clus-
ters are generally arbitrarily-shaped sub-regions in multi-
dimensional space. This makes it very difficult for the
users to understand the shape of a cluster and visually rep-
resent a cluster. To deal with these problems, we propose
another level between the cell level and the cluster level,
i.e., the nugget level. Specifically, we aggregate neighbor
cells to form larger block-structured hyper-boxes for com-
pact representation and easier perception. This aggregation
of a set of adjacent cells is called anugget. A nugget can
be unambiguously specified and compactly stored by two
cells, i.e., a starting cell and an ending cell, which are two
corners of the corresponding hyper-box. A nugget has two
important properties:irreducibility andmaximality.

irreducibility: any sub-region of a nugget, also in the
cell form, is still of the user’s interest and meets the inter-
estingness measure function requirement.

maximality: a nugget cannot be extended in any direc-
tion in any dimension to collect more cells to form a larger
one.

The concepts of irreducibility and maximality were pro-
posed by [4]. We extend this idea to a multi-dimensional
space to generate a set of largest hyper-rectangular regions

that satisfy the query.
The proposed 4-level layered model is shown Fig. 1.

As shown in Fig. 1 (a), assume that the whole feature
space is two dimensional (the gray plane) and the target di-
mension values (binary) are represented as the point color.
In this example, assume the blue and red points are from
two classes, e.g., USA cars and Japanese cars. Assume the
user’s query is requesting to find the subgroups where the
target share (origin is USA) of the cars are significantly
higher or lower than the population. To answer this, we
first color the cells based on z-score: color the cell blue
(red) if the percentage of cars from USA is significantly
higher (lower) than the whole of the population. The parti-
tioning and coloring results are shown in Fig. 1 (c). A gray
cell means no significance is detected or are empty cells.

4 Nugget Extraction
In this section, we describe our proposed nugget repre-

sentation and extraction method. Assume there areD di-
mensions in the feature space. As the discretization men-
tioned before, each dimension is partitioned into several
bins. Assume there areBk bins for dimensionk. The
cut points for dimensionk areCk,1 (min) < Ck,2 < · · · <
Ck,Bk+1 (max). HereCk, j means the value of thejth cut
point in dimensionk, assuming the first cut point is the
minimum in this dimension.

For any cellx, we assign an index (entry) based on its
value position in each dimension: [Ix,1, Ix,2, · · · , Ix,D] (1
≤ Ix,k ≤ Bk, for 1 ≤ k ≤ D). For example, if the first di-
mension value lies between the minimum and the second
cut point, i.e.,C1,1 ≤ v < C1,2, the index value of the first
dimension of this instance is 1.

Definitions and the nugget extraction algorithm are in-
troduced below:

Sort all cells: we define a cellca asahead ofanother
cell cb if for a dimensionk, Ica,k < Icb,k, and for the previ-
ous indices, they are all the same, i.e.,Ica,t = Icb,t for 1≤ t
< k. We sort all the cells according to this order. We call
the sorted listCellList. Some positions could be missing if
the cell with that index is empty.

Of the same type: two cells areof the same typeif they
both satisfy the same query. This means they have the same
color.

Previous cell: ca is the previous cellof cell cb in di-
mensionk if Ica,k = Icb,k - 1, and for the other indexes, they
are the same, i.e.,Ica,k = Icb,k for 1 ≤ j ≤ D and j 6= k.
So usually one cell hasD previous cellsin terms of all the
dimensions.

Between two cells: cell cx is between ca andcb if for
each dimension, the index ofcx is larger than or equal to
ca, and smaller than or equal tocb, i.e.,Ica,k ≤ Icx,k ≤ Icb,k,
for 1 ≤ k ≤ D. If cell cx is betweenca andcb, it means
cx is covered by the hyper-box takingca andcb as two cor-



ners. Note that here ‘between’ does not mean the location
in CellList.

Reachable: cell cb is reachablefrom ca if a) ca andcb

are of the same type, and b) all the cellsbetweenthese two
cells are of the same type asca andcb. If cb is reachable
by ca, then that means the hyper-box, takingca andcb as
corners, is colored uniformly.

Algorithm Description: To find all the nuggets, for each
cell cx, we fill a list of cells, calledreachList. If cell cy is
in the reachListof cx, that meanscy is reachable fromcx.
We fill this list from an empty list for each cell in the order
in CellList. This is because when filling thereachListfor
cell cx, we have finished the lists of theD (maybe fewer)
previous cellsof cx. Due to the property ofirreducibility,
we only examine the cells in the list ofprevious cellsfor
filling the list for the current cell. After getting the unionof
all the reachLists of all thepreviouscells, we check each
cell in the unioned list and delete unreachable cells. For
this purging process, again only the previous cells’reach-
List require access. To fulfillmaximality, those surviving
cells, which can reach the current cell, have to be removed
from thereachlistsof the previous cells. The area between
cell cx andcy (a cell in thereachlistsof cx) is a nugget.

5 Nugget Browser System
In this section, we introduce the system components,

views, and the interactions. The overall mining and explor-
ing procedure is as follows. Users start from a data space
view and submit mining queries in this view interactively,
such as changing the subgroup definition (the cutting point
positions) and target share range. The mining results will
be shown in real-time in both the data space view (Section
5.1) and the nugget space view (Section 5.2). Users can
explore the visually represented mining results in differ-
ent coordinated views, and then adjust their queries until
an interesting pattern is found. Therefore, a closed loop
is formed to guide users in fining interesting subgroups by
refining their queries.
5.1 Data Space

We employ Parallel Coordinates (PC), a common visu-
alization method for multivariate datasets [11], to visualize
the data points and nuggets. In parallel coordinates, each
data point is drawn as a poly-line and each nugget is drawn
as a colored translucent band (Fig. 6), whose boundaries
indicate the values of the lower range (starting cell) and
upper range (ending cell) for each dimension. The color
blue and red indicate the sign of the z-score and darker
color means higher significance is discovered for the sub-
group. We provide interactions in the nugget navigation
space view so that users can select which data points to
view in the cell, nugget and cluster level. The last dimen-
sion (axis) is the target attribute that guides the user in sub-
mitting queries and changing the target share ranges. The

query ranges are shown during adjustment (vertical colored
bars on the last axis). To assist users filtering out uninter-
esting nuggets, a brush interaction is provided. Users can
submit a certain query range in the independent attribute
space and all the nuggets that don’t fully in the query range
will be hidden in the nugget view. An example of a query
is to select all the subgroups within a certain age range.

5.2 Nugget Space
In the nugget space view, three coordinated views, i.e.,

cluster view, nugget view, and cell view are shown in dif-
ferent 2D planes (Fig. 7). The linkages show the connec-
tions between adjacent views [6].

Cluster View. In the cluster view (Fig. 7 left), we em-
ploy a small “thumbnail” of a parallel coordinate view to
represent each cluster. The size of each thumbnail is pro-
portional to the number of instances each cluster contains,
so that large clusters attract the user’s attention. When the
user moves the cursor onto a cluster, the parallel coordinate
icon is enlarged and the connections are shown from this
cluster to all the nuggets in the nugget view that comprise
this cluster. Meanwhile, the corresponding instances are
shown in the data space view.

Since the clusters consist of the data points in a high-
dimensional space, to preserve the high-dimensional dis-
tances among the clusters we employ an MDS layout [5]
to reveal latent patterns. The question is how to measure
the similarity of two clusters. A commonly used and rela-
tively accurate method for measuring the distance between
two groups of instances is to average all the Euclidean dis-
tances of each instance pair from different groups. The
problem is that for large clusters, the computational cost is
high. We therefore calculate the distance in a upper level
of the proposed 4-level model, i.e., using the average Eu-
clidean distances between all cell pairs. As a result, the
cost reduces as it depends on the number of cells, which
is much smaller. The cell distance is calculated as the Eu-
clidean distance between two cell centroids.

Nugget View. As mentioned before, each nugget is a
hyper-rectangular shape. A single star glyph with a band,
as proposed in [24], can thus be used to represent a nugget
(Fig. 7 middle). The star glyph lines show the center of the
nugget, and the band fades from the center to the bound-
aries. Similar to the cluster view, connections between the
nugget view and the cell view are displayed according to
the user’s cursor position. The corresponding data points
are also highlighted.

We again use an MDS layout for the nugget view, but
the distance metrics are calculated differently from the
cluster view. This is because any two nuggets could over-
lap in space, thus an instance could be covered by multi-
ple nuggets. To reveal the distance between two nuggets,
we designed two different distance measurements: one for



overlapping nuggets and one for non-overlapping nuggets.
When the two nuggets have common cells, the distance

metric indicates how much they overlap:

Dis(NuggetA,NuggetB) =
|A|+ |B|−2|A∩B|

|A|+ |B|

Here |A| means the number of cells that clusterA in-
cludes. When the two cells have a very small overlapping
area, i.e., almost non-overlap, the distance is near 1. When
the two cells almost fully overlap on each other, the dis-
tance is near 0.

When the two nuggets do not have any common cells,
we use the Manhattan distance as the measurement. For
each dimension, the distance is measured by using a grid
as a single unit, calledgrid distance. For example, the
grid distance for dimensionk is 0 if on that dimension the
two nuggets’ boundaries meet without any gaps, or the two
nuggets have overlapping bins (note that the two nuggets
do not overlap in space, but may overlap in certain dimen-
sions). The grid distance of dimensionk is 1 if there is a
one-bin gap between the two nuggets on that dimension.
The distance in any dimension is the cell distance+1 indi-
cating how many steps they are away from each other:

Dis(NuggetA,NuggetB) =
D

∑
k=1

(GridDistancek(A,B)+1)

Note that the minimal distance is 1 for two non-
overlapping nuggets, which is also the maximal distance
for two overlapping nuggets. Hence in the MDS layout
view, the nuggets in a cluster will tend to stay together to
help reveal patterns.

Cell View. In the cell view (7 right), each cell is repre-
sented as a square. The cell colors are consistent with the
colors in other views. The cell is highlighted when the user
is hovering the cursor on it. Meanwhile, all the data points
in this cell are shown in the data space view. The curves in-
dicating connections between the cell level and the nugget
level are also shown for the cells the cursor points to. In-
stead of a single curve, multiple ones are shown as a cell
could be included in multiple nuggets.

6 Case Studies
In this section, we discuss a case study showing the ef-

fectiveness of our system. The dataset was obtained from
the UCI Machine Learning Repository called “Mammo-
graphic Mass Dataset” [19]. Mammography is the most
effective method for breast cancer screening. The dataset
size is 961 (830 after removing instances with missing val-
ues). 5 independent attributes, such as theageof the patient
and thedensityof the mass, are extracted and the target at-
tribute isSeverity(benign or malignant).

There are two main goals for analyzing the dataset. The
first one is to understand how the independent attributes in-
fluence the target. This can help the doctors find the impor-
tant attributes impacting the diagnosis results. The second
goal is to discover the subgroups that the benign (malig-
nant) rate is significantly higher or lower than the popula-
tion. For a future diagnosis, if a patient is discovered in
those groups, more attention should be paid or some con-
clusion about the diagnosis result could be drawn.

Figure 2: This is the data space view (parallel coordinate).
The red poly-lines are brushed benign instances. The pink
region is the brushed area.

Figure 3: Similar to Fig. 2: the red poly-lines are brushed
malignant instances.

To show the difficulty of finding how the independent
attributes influence the target attribute using common mul-
tivariate data visualization techniques and interactions, we
first display the dataset using Parallel Coordinates in Xmd-
vTool. As shown in Fig. 2 and 3, the highlighted instances
are selected using the brush technique (range query) on the
target attribute. Fig. 2 shows the query result on all the be-
nign instances (red color poly-lines) and Fig. 3 shows the
query result on all the malignant instances. The pink area
shows the bounding box of all the instances in the query.
It can be observed that for each query, the instances cover
almost the whole attribute ranges and all different values
in different dimensions. This shows the common visual-
ization technique, even with interactive range queries, can



hardly reveal the relationship between the independent at-
tributes and the target attribute.

We then show the insufficiency of the traditional sub-
group mining technique without visualization in providing
a compact and easily understandable mining results. We
performed the mining as follows. The target share value
is benign in the target attribute. This query examines the
subgroups with significantly higher benign rate and sig-
nificantly lower benign rate. Note that significantly lower
benign rate does not necessarily mean significantly higher
malignant rate, which can be examined by specifying an-
other mining query that takes share value as malignant in
the target attribute.

Figure 4: The mining results are represented in a table be-
fore aggregating neighbor subgroups. Each row is one sub-
group and each subgroup is described using stars.

The independent attribute space is portioned by binning
each attribute. Specifically, for the attribute whose cardi-
nality is smaller than 7, the bin number is the same as the
cardinality, such asdensity. For numerical attribute (age),
the bin number is set to 7. We chose 7 because for lower
values, the patterns are very similar, but less clear. While
higher number of bins results in a lower number of in-
stances in each group, which reduces the reliability of sig-
nificance due to the small sample size. After the binning,
the whole dataset is partitioned into a set of subgroups.
Each subgroup consists of a group of individuals whose
attribute values are similar or the same in all dimensions.
Each subgroup is examined using the p-value and z-score
of the statistical test as the interestingness measure.

Parts of the mining results are shown in Fig. 4 as a table.
The star means the description of each subgroup in each di-
mension. 18 subgroups have the benign rate significantly
larger than the population. It is clear that without the vi-
sualization, analysts cannot understand how the subgroups
are distributed in the space and the relationships between
the subgroups. Also, for some subgroups, such as number
12, 13, and 14, they are adjacent to each other and can be
reported as a single group for a compact representation.

From the previous discussions, we can observe several
difficulties: 1. it is hard to understand how the independent
attributes influence the target using common visualization
techniques, and 2. it is hard to understand the distribu-
tion of the subgroups, and 3. the mining results are not re-
ported as a compact knowledge representation form. Next
we will show how to use the Nugget Browser system to
better solve the subgroup mining problem. Fig. 5 shows
the higher level, i.e., the nugget level representation of the
mining result in a table form. 8 nuggets are reported in a
more compact manner, compared to the result of traditional
subgroup mining, i.e., a list of subgroups. Fig. 6 shows all
the nuggets (translucent bands) extracted in the data space
view. Color blue means a significantly higher benign rate
and color red means a significantly lower benign rate.

It is very clear that subgroups with high benign rates
can be differentiated from the low benign rate subgroups
in most of the dimensions, which indicates that the inde-
pendent attributes have a strong impact on the target. How-
ever, this influence can hardly be discovered in traditional
multivariate data visualization techniques, even with range
queries. Specifically, the high benign rate subgroups have
lower values for attributesBI-RADS, Age, ShapeandMar-
gin, compared to the low benign rate subgroups. Most of
the subgroups with significance discovered haveDensity
value 3 (means low). More details of how the independent
attributes influence the target will be discussed later.

Figure 5: The mining results are represented in a table af-
ter aggregating neighbour subgroups. This representation
is more compact.

Although the nugget representation, shown in Fig. 5, is
more compact than the cell representation, without the vi-
sual representation, users still have difficulties understand-
ing the distribution of the nuggets and build connections
between the pattern and the instances. To better under-
stand the mining results and further explore them, analysts
can open the nugget space view (Fig. 7). Based on the dis-
tribution in the nugget view and the cluster view, the high
benign rate cluster and the low benign rate cluster are sepa-
rated from each other in the attribute space, indicating that
the target is influenced by the independent attributes. We



can also discover that a large red cluster and a large blue
cluster are extracted. It is shown that the higher benign
rate regions and low benign rate regions are continuous in
the independent attribute space. More discoveries found
during the exploration in the nugget space are as follows:

Figure 6: The data space view shows all the nuggets as the
translucent bands. The rightmost dimension is the target
attribute. The blue vertical region on the target dimension
indicates the target range of the subgroup mining query.

1. For the low benign rate subgroups, there are two out-
liers outside the main cluster. By hovering the cursor and
selecting on the two outliers, we can discover what causes
the two outliers to differ from the main cluster: theShape
values of the main cluster (red) are 3 and 4, while the two
outliers haveShapevalue 1. When showing these two out-
lier subgroup instances in the data space view, we can ob-
serve that no instances are benign and the group sizes are
small. Thus, the doctors can consider that they are not typi-
cal and ignore these two outlier subgroups during analysis.

2. The shape value 4 is more important for the low be-
nign rate. This can be discovered when displaying all the
instances in the red cluster: the shape values are either 3
(means lobular) or 4 (means irregular), while for the value
4 , higher significance is found, which can be recognized
by a darker color.

3. For lower age patients, higher benign rate tend to be
discovered. This can be verified by the distribution of the
interesting subgroups: no higher benign rate groups are in
age bin 6 and 7; no lower benign rage groups are in age bin
1 and 2.

4. Attribute BI-RADShas a negative effect for higher
benign rate, i.e., lowerBI-RADSvalues tend to have higher
benign rate. This can be discovered according to the distri-
bution of subgroups with significance on this attribute. For
the higher benign rate subgroups most of them haveBI-
RADSvalue 4. For low benign rate subgroup: most of them
haveBI-RADSvalue 5. The analysts can understand this
trend better if the know the meaning of this attribute: each
instance has an associated BI-RADS assessment. The low-

est value means definitely benign and highest value means
highly suggestive of malignancy.

Figure 7: The nugget space view shows the mining result
in 3 level of abstractions. The connecting curves indicate
the connection between adjacent levels.

Conclusions
In this paper, we describe a novel visual subgroup min-

ing system, calledNugget Browser, to support users in dis-
covering patterns in multivariate datasets. We proposed a
4-level layered model that allows users to explore the min-
ing result in different levels of abstraction. The nugget
level mining results are represented as regular hyper-box
shaped regions, which can be easily understood, visual-
ized, and compactly stored. The layout strategies help
users understand the relationships among extracted pat-
terns. Interactions are supported in multiple related nugget
space views to help users navigate and explore. The case
studies show how our system can be used to reveal patterns
and solve real life application problems.

In the future, we plan to extend our system to support
more types of mining queries and pattern extraction meth-
ods. Furthermore, more complex mechanisms for manag-
ing the user’s discoveries will be supported, such as adjust-
ing nugget boundaries with domain knowledge and remov-
ing highly overlapping nuggets without reducing much ac-
curacy. In addition, building an evidence pool that allows
users to create a structured pattern graph with extracted
nuggets is also one of our future goals. To better evalu-
ate this system, we plan to conduct a formal user study to
confirm how easy it is to learn this system, what types of
users can benefit from using this system, what types of vi-
sual representations of the nugget space are better, pseudo-
3D or purely 2D, and what interesting patterns analysts can
have difficulty finding without a visual exploration.
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