
Interactive Visual Exploration of Neighbor-Based Patterns
in Data Streams ∗

Di Yang, Zhenyu Guo, Zaixian Xie, Elke Rundensteiner, Matthew Ward
Worcester Polytechnic Institute

diyang|zyguo|xiezx|rundenst|matt@cs.wpi.edu

ABSTRACT
We will demonstrate our system, called V iStream, support-
ing interactive visual exploration of neighbor-based patterns
[7] in data streams. V istream does not only apply inno-
vative multi-query strategies to compute a broad range of
popular patterns, such as clusters and outliers, in a highly
efficient manner, but it also provides a rich set of visual
interfaces and interactions to enable real-time pattern ex-
ploration. In our demonstration, we will illustrate that with
ViStream, analysts can easily interact with the pattern min-
ing processes by navigating along the time horizons, abstrac-
tion levels and parameter spaces, and thus better understand
the phenomena of interest.

Categories and Subject Descriptors
H.0 [Information interfaces and presentation]: Gen-
eral

General Terms
Algorithm, Management, Human Factor.

Keywords
Streaming Data, Pattern mining, Visual Interaction.

1. INTRODUCTION
The discovery of complex patterns such as clusters, out-

liers, and associations from huge volumes of streaming data
has been recognized as critical for domains from moving ob-
ject monitoring to stock transaction analysis. For example,
huge numbers of pattern mining requests, such as the queries
asking for intensive-transaction areas (clusters), are submit-
ted against the transaction stream from NYSE by a large
population of financial analysts every day.

∗This work is supported under NSF grant CCF-0811510,
IIS-0812027, IIS-0119276 and IIS-00414380. We thank our
collaborators at MITRE Corporation, J.Casper and P. Lev-
eille, for providing us the GMTI data stream generator.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

In order to help analysts in finding and interpreting the
patterns hidden in data streams, two major challenges have
to be conquered. First, advanced computational methods
have to be designed to efficiently extract patterns from data
streams in real time. While previous work has studied the
problem of stream pattern mining for single queries [7, 1,
2], we have developed the first shared execution strategy for
handling multiple neighbor-based pattern mining requests
in streaming environments [8]. Second, a visual interactive
platform is essential to enable analysts to directly interact
with the pattern mining processes. Reporting large numbers
of detected patterns using a simple console or a file output
make it hard for analysts to understand the patterns and
even impossible to make real time decisions.

Second, since the pattern mining process itself is driven by
expert knowledge, highly dynamic streaming environments
make real-time feedback from analysts and quick adjustment
to the computation a necessity. When the characteristics of
the input stream significantly change, analysts need interac-
tive methods to exploratorily adjust the parameters settings
to keep the pattern extraction process optimally tuned.

Unfortunately, state-of-art pattern mining systems [1, 2],
although well equipped with computational components, have
paid little attention to applying visualization or interaction
techniques on detected patterns. On the other hand, tradi-
tional visualization systems [4, 5], which usually have sophis-
ticated visualization support yet limited computational ca-
pabilities, do not typically support interactive pattern min-
ing in high speed data streams.

Figure 1: System Architecture of V iStream

Over the past 13 years the XMDV team at WPI, composed
of visualization, HCI and database experts, supported by a
series of five NSF grants, has developed a freeware visual
tool suite XmdvTool (http : //davis.wpi.edu/xmdv/) to fa-
cilitate interactive data exploration. In our current project
effort, we now focus on extending this tool by supporting
interative neighbor-based pattern exploration in
streaming data. In particular, we make the following contri-
butions: Compute neighbor-based patterns from data streams
for multiple queries using highly efficient shared execution
strategies. Model and extract pattern evolution over time.
Organize and display detected patterns as well as their evo-
lution over time for multiple analysts. Allow analysts to
visually explore the detected patterns by navigating along
time axis, abstraction levels and different queries. Facilitate
multiple analysts to exploratorily adjust parameter settings
of queries at run time.

2. ARCHITECTURE OF VISTREAM
V istream is composed of three integrated components:

source engine, query engine and visual engine. At the com-
putational back end, the source engine wraps and integrates
data sources either from live streams or from archived data.
The query engine then efficiently compute the patterns for
multiple queries. The query engine has two major sub-
components: 1) A query planner which generates optimized
query plans by grouping similar queries and constructing an
integrated plan for each group. 2) A query executor which
executes the query plans, by using the shared query execu-
tion strategy we proposed in [1], called Chandi 1 . At the
visual front end, our visual engine supports visual stream
analytics. It visualizes the detected patterns using the visu-
alization pipelines proposed in the steaming version of Xmd-
vTool [6], and also provides various visual interactions for
analysts to explore the detected patterns.

3. THE BACK END: EFFICENT PATTERN
AND EVOLUTION EXTRACTION

V istream employs the shared pattern extraction strategy,
Chandi[8], as computational method of pattern extraction
for multiple queries with different parameter settings. The
neighbor-based pattern mining queries over streaming data,
such as density-based clusters [3] or distance-based outliers
[7] detection, have parameter settings for specifying pattern
definitions, such as minimum requirement for density, and
those for specifying query window characteristics, such as
window size win and slide size slide.

To share computation among queries with arbitrary pa-
rameter settings, We first characterize the conditions un-
der which the patterns identified by different queries can
be incrementally stored in a single compact structure. For
example, the density-based clustering queries [3] specified
on a dataset are defined by two parameter settings, namely
a range threshold θrange and a count threshold θcnt. The
range threshold θrange defines the concept of “neighborship”
between tuples in the dataset, indicating that any pair of tu-
ples which has a distance smaller or equal to this threshold
between them are considered as “neighbors” of each other.
On the other hand, the count threshold θcnt defines the
minimum number of neighbors that the tuples are required

1Name of a god with multiple hands in hindu theology.

to have to qualify as “core objects”, which compose the
“skeleton” of each cluster. By analyzing the characteris-
tics of the cluster sets identified by density-based cluster-
ing queries with different parameter settings, we made the
following observation. Given two queries Qi and Qj , if
Qi.θ

range
≥ Qj .θ

range and Qi.θ
cnt

≤ Qj .θ
cnt, then Qi is

more “relaxed” than Qj . This indicates that the clusters
identified by Qi will be the “expansion” or “merge” of the
clusters identified by Qj or completely the “new clusters”
(not identified by Qj before) [8].

Generally, if any two data points are identified to be in the
same cluster by a query Qj , they are guaranteed to be iden-
tified to be in the same cluster by a more“relaxed”query Qi.
Given this “growth property”, Chandi organizes the cluster
structures identified by a group of queries with arbitrary pat-
tern parameter settings into a single tree-based structure. It
thus realizes incremental cluster structure storage and main-
tenance for all queries. This is a significant improvement to
the independent cluster maintenance strategy for multiple
queries, because both the CPU and memory utilization of
such strategy increase dramatically as the number of queries
increases, and thus it does not scale for large number of
queries.

Second, Chandi proposes a meta-query strategy which uti-
lizes a single query to answer multiple queries with differ-
ent window-specific parameters. In particular, by leveraging
the potential overlaps among sliding windows, Chandi com-
poses a single meta-query whose meta-information (progres-
sive clusters) maintained is sufficient to answer a group of
queries with arbitrary window-specific parameter settings,
namely the arbitrary window size win and slide size slide.

By elegantly combining these two techniques above, Chandi

achieves significant savings of computational and memory
resources due to shared execution among large numbers of
queries (in the order of hundreds or even thousands).

Beyond extraction of patterns, our query engine also ex-
tracts the evolution of patterns over time using our evolu-
tion extraction technique proposed in [9]. In particular, it
incrementally tracks the changes of the detected patterns
across windows. By doing so, it builds a temporal context
for detected patterns and thus help analysts to understand
the interrelationship between patterns detected in different
time periods. This evolution tracking process is complimen-
tary with our pattern mining process, indicating that the
determination of these changes described by our proposed
evolution semantics requires very modest additional compu-
tational costs.

4. THE FRONT END: VISUAL DISPLAY AND
INTERACTION

At the front end, ViStream provides one visual engine for
each analyst to interact with the detected patterns as well
as the pattern mining process.

Visualization of and Interaction in Pattern Space.

For a single pattern mining query, V iStream organizes the
detected patterns and their evolution information into a
multi-dimensional pattern space. In particular, our current
system supports a two dimensional pattern space, with the
dimensions representing the changes over time and across
abstraction levels respectively.

Along the dimension of abstraction levels, we support
views of detected patterns at the tuple and the pattern level.

Figure 2: A screen shot of our visualized pattern space.

At the pattern level, each pattern in a window is abstracted
as a single object. Taking density-based clusters as example
(Figure 2), each cluster is depicted using a colored circle.
Two important characteristics of a cluster, namely its size
(population) and its position, are conveyed by its radius and
relative position in the view respectively. In the tuple level
view, specific information about pattern members (tuples)
is displayed.

Along the time dimension, our pattern space provides a
sequence of views representing the clusters identified in dif-
ferent portions of the data stream. More specifically, each
view in the pattern space is a snapshot of the patterns iden-
tified in a single window. Those views are organized in the
order of their recentness, and more importantly, “connected”
based on the evolution relationships among each other [9].
First, we correlate the same patterns in different windows
by mapping them to the same color. Second, we propose to
customize the “river metaphor” technique initially designed
to visualize frequency changes to express the evolution of
patterns. In particular, the derivation of each cluster from
the one window to the next is presented by “rivers” (links)
between them. More specifically, for a given pattern Pi in
window Wn+1, if it is considered to be (partially) derived
from a pattern Pj in the last window Wn, our system draws
a “river” between Pj and Pi (as shown in Figure 2). In
addition, the volume of each (width of each link) repre-
sents the number of pattern members that the pattern in
the later window inherits from the previous window. Such
“river metaphor” lineages visualization [9] helps analysts to
easily understand the evolution of patterns over time.

V iStream also provides a rich set of interactions for mon-
itoring patterns and their evolution. First, analysts can nav-

igate along both dimensions of the pattern space to observe
the patterns and evolution in any past, present or near fu-
ture window 1. Second, analysts can choose to focus on
any pattern of interest by zooming into, and then retriev-
ing information about individual pattern members. Third,
analysts can visually adjust the parameter settings of any
query.

Multiple Query Visual Exploration. V iStream
provides two visualization mechanisms for applications in
which an analyst needs to monitor the pattern detection pro-
cess of multiple queries simultaneously through a single in-
terface, namely “juxtaposed” and “integrated visualization”
[6]. We aim to empower the analysts to compare and con-
trast patterns detected by queries with different parameter
settings.

In the juxtaposed visualization, the patterns detected by
different queries are visualized separately as shown in Fig-
ure 3.a for three density-based clustering queries. The key
advantage of this technique is that it minimizes the interfer-
ence between the visualization of different queries.

The integrated visualization visualizes the patterns de-
tected by similar queries in an integrated fashion, and thus
more explicitly shows their commonalities and differences in
a single display. In particular, taking density-based clusters
as example, V iStream exploits the hierarchical relationships
among cluster structures identified by similar queries, called
“growth property” [8], to incrementally visualize them in a
single display. For a group of similar yet differently param-
eterized queries QG, V iStream adopts a hierarchical color
coding to incrementally display the cluster members iden-

1Techniques regarding pattern prediction in near future win-
dows can be found in [9].

tified by different subsets of QG, as shown in Figure 3.b.
In this example, tuples in the lightest color are identified
as cluster member by only a single query Q1, while darker
ones are those identified by more and more queries, such as
both Q1 and Q2, etc. This is because other queries, such
as Q2, is more “relaxed” than Q1 and will thus identify a
superset of tuples as cluster members in the same dataset.
This integrated visualization highlights how cluster struc-
tures change (“grow”) as the parameter settings change (get
more “relaxed”).

V iStream supports interactions for monitoring mining re-
sults from multiple queries. Interactions for multiple query
visual exploration include: First, analysts can re-arrange
the layout of the pattern display to decide which queries to
show and in which sequence. Second, analysts can manually
group the queries with similar parameter settings for the
purpose of shared computation or integrated visualization.
Third, analysts can terminate existing queries, launch new
queries and adjust parameter settings for active queries.

Figure 3: Jaxtaposed vs. Integrated Visualization.

5. VISTREAM DEMONSTRATION
In our demonstration, we will illustrate not only the effi-

cient computational methods, but also the visualization and
interaction mechanisms supported by V iStream. We will
let the audience first hand experience its impact on the ex-
ploration of neighbor-based patterns in data streams. The
demonstration will be based on two data streams, namely,
the STT data recording stock transactions from NYSE and
the GMTI data recording information about moving objects

from MITRE. Demonstrations include, but are not limited
to:

• 1) Visualization of proposed pattern space showing the
detected patterns, including intensive transaction ar-
eas in NYSE stock trades and congestions formed by
moving objects in the GMTI stream, at different ab-
straction levels and their evolution over time (Section
4). The audience will be able to not only observe these
complex patterns in each window, but also track how
they evolve (appear, split, merge and terminate).

• 2) Illustration of the strengths of juxtaposed and in-
tegrated visualizations for displaying various pattern
types. (Section 4). The audience will be able to com-
pare and contrast the patterns suggested or of their
own interest using either technique.

• 3) Interactions on the pattern space including pattern
space re-arrangement and adjustment to parameter
settings (Section 4). The audience will be able to in-
teract with the pattern mining process by re-arranging
the layout of juxtaposed and integrated visualization,
adjusting the query parameter settings, and so on.

• 4) Demonstration of the efficiency of our algorithms for
extracting neighbor-based patterns and their evolution
by contrasting them against alternative methods in [7]
and [8] (Section 3). The audience will be able to expe-
rience the performance differences between alternative
algorithms using a monitoring console.

6. REFERENCES
[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A

framework for clustering evolving data streams. In
VLDB, pages 81–92, 2003.

[2] A. Bifet and R. Gavaldà. Mining adaptively frequent
closed unlabeled rooted trees in data streams. In KDD,
pages 34–42, 2008.

[3] M. Ester, H. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in large
spatial databases with noise. In KDD, pages 226–231,
1996.

[4] M. C. Hao, U. Dayal, D. A. Keim, and T. Schreck.
Multi-resolution techniques for visual exploration of
large time-series data. EuroVis, pages 27–34, 2007.

[5] H. Hochheiser and B. Shneiderman. Dynamic query
tools for time series data sets: Timebox widgets for
interactive exploration. InfoVis, 3(1):1–18, 2004.

[6] Z. Xie, M. O. Ward, and E. A. Rundensteiner.
Exploring multivariate data streams using windowing
and sampling strategies. Interacting with temporal data

workshop, CHI, 2009.

[7] D. Yang, E. A. Rundensteiner, and M. O. Ward.
Neighbor-based pattern detection for windows over
streaming data. In EDBT, pages 529–540, 2009.

[8] D. Yang, E. A. Rundensteiner, and M. O. Ward. A
shared execution strategy for multiple pattern mining
requests over streaming data. PVLDB, 2(1):874–885,
2009.

[9] D. Yang, E. A. Rundensteiner, and M. O. Ward. A
unified framework supporting interactive exploration of
density-based clusters in streaming windows. WPI

Technical Report WPI-CS-TR-10-04, 2010.

