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Shared Execution Strategy for Neighbor-Based Pattern Mining
Requests over Streaming Windows
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In diverse applications ranging from stock trading to traffic monitoring, data streams are continuously
monitored by multiple analysts for extracting patterns of interest in real-time. These analysts often submit
similar pattern mining requests yet customized with different parameter settings. In this work, we present
shared execution strategies for processing a large number of neighbor-based pattern mining requests of
the same type yet with arbitrary parameter settings. Such neighbor-based pattern mining requests cover a
broad range of popular mining query types, including detection of clusters, outliers and nearest neighbors.
Given the high algorithmic complexity of the mining process, serving multiple such queries in a single sys-
tem is extremely resource intensive. The naive method of detecting and maintaining patterns for different
queries independently is often infeasible in practice, as its demands on system resources increase dramati-
cally with the cardinality of the query workload. In order to maximize the efficiency of the system resource
utilization for executing multiple queries simultaneous, we analyze the commonalities of the neighbor-based
pattern mining queries, and identify several general optimization principles which lead to significant sys-
tem resource sharing among multiple queries. In particular, as a preliminary sharing effort, we observe
that the computation needed for the range query searches (the process of searching the neighbors for each
object) can be shared among multiple queries and thus saves the CPU consumption. Then we analyze the
interrelations between the patterns identified by queries with different parameters settings, including both
pattern-specific and window-specific parameters. For that, we first introduce an incremental pattern rep-
resentation, which represents the patterns identified by queries with different pattern-specific parameters
within a single compact structure. This enables integrated pattern maintenance for multiple queries. Sec-
ond, by leveraging the potential overlaps among sliding windows, we propose a meta-query strategy which
utilizes a single query to answer multiple queries with different window-specific parameters. By combining
these three techniques, namely the range query search sharing, integrated pattern maintenance and meta-
query strategy, our framework realizes fully shared execution of multiple queries with arbitrary parameter
settings. It achieves significant savings of computational and memory resources due to shared execution.
Our comprehensive experimental study, using real data streams from domains of stock trades and moving
object monitoring, demonstrates that our solution is significantly faster than the independent execution
strategy, while using only a small portion of memory space compared to the independent execution. We
also show that our solution scales in handling large numbers of queries in the order of hundreds or even
thousands under high input data rates.
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1. INTRODUCTION

1.1. Motivation

Neighbor-based Patterns in Streaming Windows The discovery of complex pat-
terns such as clusters, outliers, and associations from huge volumes of streaming data
has been recognized as critical for many domains, ranging from stock market analy-
sis to traffic monitoring. In this work, we focus on shared query execution strategies
for neighbor-based pattern mining requests in streaming windows. Neighbor-based
pattern mining requests share the important property that their target patterns are
defined based on the “neighbor relationships” (links) among objects. Such requirement
for identifying neighbors, namely similar or close objects, is essential for many pattern
mining tasks. This is because the similarity (distance) is an important interrelation-
ship among objects and thus constitutes a key evidence from which analysts can draw
conclusions about the data. In fact, neighbor-based patterns cover a broad range of pop-
ular pattern types studied in the literature including density-based cluster detection
[Ester et al. 1996; Gorawski and Malczok 2006; Chen and Tu 2007; Cao et al. 2006],
distance-based outlier detection [Knorr and Ng 1998; Angiulli and Fassetti 2007], top-k
nearest neighbors search (kNN) [Mouratidis and Papadias 2007; Jagadish et al. 2005]
and reverse top-k nearest neighbor search (R-kNN) [Achtert et al. 2009; Achtert et al.
2006]. We define the class of the neighbor-based pattern mining requests in our pre-
liminary section (Section 2). Furthermore, we will categorize the data mining tasks in
the related work section (Section 8) and show where neighbor-based pattern mining
fits in this categorization. related while distinguishable from other data mining tasks.

The previous works listed above have shown that applying such neighbor-based pat-
tern mining requests against streaming windows is of relevance to many important
applications. For example, a density-based clustering query can help a financial ana-
lyst to continuously monitor the clusters formed in stock transactions within the last
10 minutes, as this may indicate the newest trends in the stock market. A distance-
based outlier detection query over sliding windows can help a banker to monitor the
potential frauds (outliers) in the latest, say last 1 hour, credit card transactions. A kNN
query over sliding windows can help a restaurant owner to monitor the nearest 100
vehicles to her restaurant, whom she would like to send advertisements or promotions
to.

In these applications, sliding window semantics need to be applied to form patterns
based on the recent portions of the input streams only. Out-of-date information, such as
the positions of the vehicles or transactions that were reported a long time ago, should
no longer contribute to the recent pattern detection results and must thus be purged
from the current query window. For example, the old transactions, namely the trans-
actions that happened 10 minutes ago, will expire (no longer be considered), because
the newest trends should only be extracted from the most recent transactions.

Parameterized Queries. Complex pattern detection queries are usually parame-
terized, because pattern detection processes are driven by the domain knowledge of the
analysts and the specific analysis tasks. A neighbor-based pattern mining request over
sliding windows typically has two sets of input parameters, namely a set of pattern-
specific parameters and a set of window-specific parameters. To illustrate this, we show
the query templates for three different types of such queries in Figures 1, 2 and 3. Us-
ing the density-based clustering as example, it has two pattern-specific parameters: a
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range threshold θrange and a count threshold θcnt, and two window-specific parameters:
window size win and slide size slide.

Qi: DETECT Density-Based Clusters FROM stream
USING θrange = r and θcnt = c
IN Windows WITH win = w and slide = s

Fig. 1. Templated density-based cluster detection query for sliding windows over a data steam

Qi: DETECT Distance-Based Outliers FROM stream
USING θrange = r and θfra = f
IN Windows WITH win = w and slide = s

Fig. 2. Templated distance-based outlier detection query for sliding windows over a data steam

Qi: DETECT pi.kNN FROM stream
USING K=k
IN Windows WITH win = w and slide = s

Fig. 3. Templated kNN detection query for sliding windows over a data steam

Why Multiple Queries. Given the prevalence of parameterized pattern mining
queries, stream processing systems often need to handle a large number of such
queries. This is caused for two major reasons. First, it is well known that in many
applications a popular data stream is monitored by a large number of analysts [Wang
et al. 2006; Zhang et al. 2005; Hammad et al. 2003; Li et al. 2005; Arasu and Widom
2004]. For example, the stock transaction stream from NYSE is monitored by thou-
sands of financial analysts every day. In our case, due to the specific domain knowledge
and analytical tasks of different analysts, the analysts may submit the same types of
neighbor-based pattern mining queries but with different parameter settings. For ex-
ample, while many analysts are monitoring the same pattern type, say outliers, in the
NYSE stock transaction stream, they may have their own customized interpretation
about the pattern mining parameter settings. In particular, some of them may have
very strict definitions to what constitutes an outlier in the stream. They may require
the system to report only very abnormal transactions (outliers), while others may be
interested in all abnormal transaction behaviors and thus request much more frequent
updates to the outlier report.

Second, determining a priori the most appropriate parameter settings is a difficult
problem for almost all data mining tasks, especially when faced with an unknown
input stream or an unpredictable fluctuating input stream. In static environments,
this problem is usually tackled by conducting pre-analysis of the static datasets or
repeatedly trying different parameter settings until satisfactory results have been ob-
tained. In streaming environments, the nonrepeatability of streaming data requires
analysts to supply the most appropriate input parameters early on. Otherwise, they
may permanently lose the opportunity to accurately discover the patterns in the por-
tion of the stream just gone by. Therefore, even a single analyst may submit multiple
queries of the same type but with different parameter settings, when she is not sure
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which parameter setting is the best. An ideal stream processing system should be able
to accommodate such multiple query workloads covering many, if not all, major pa-
rameter settings of a parameterized query. Note that given the number of parameters
required by streaming neighbor-based pattern mining queries, even allowing a very
limited number of optional settings on each parameter, say four or five, can easily end
up with hundreds of parameter combinations, namely hundreds of different queries.

Research Goal – Multiple Query Optimization. Previous research efforts that
have developed efficient algorithms for streaming pattern detection focused on pro-
cessing single mining requests [Cao et al. 2006; Chen and Tu 2007; Yang et al. 2009a;
Angiulli and Fassetti 2007]. Little effort has been made towards the efficient execution
of multiple pattern mining queries.

In this work, we aim to present multiple query execution strategies that efficiently
execute a workload composed of a large number of neighbor-based pattern mining
queries (as defined in 2). More precisely, we aim to design efficient algorithms to si-
multaneously execute a group of density-based clustering queries or distance-based
outliers or kNN queries against the same data stream but with varying parameter
settings. Our goal is to achieve real-time responsiveness required by stream applica-
tions even when the input rate of the stream is high and the number of queries in the
query group is large (on the order of hundreds or even thousands).

1.2. Research Challenges

Execution of even a single neighbor-based mining request in streaming environments
is expensive in terms of system resource utilization. In particular, the “neighbor-based”
property of such pattern mining requests requires a potentially large number of neigh-
bor searches during query execution. Each neighbor search has high system resource
costs. More specifically, a complete neighbor search for even just one single object may
take a full scan through the window, consuming not only a large amount of CPU pro-
cessing resources but also forcing the full storage of the whole window. Given such
high algorithmic complexity of neighbor-based pattern mining requests, serving a large
number of them in a single system is extremely resource intensive. The naive method
of executing multiple queries independently has prohibitively high demands on both
computational and memory resources. Thus it is not feasible in practice, especially
when the number of queries to be executed is large.

Therefore, the key problem that we solve in this work is to design shared execution
strategies that achieve effective sharing of system resources among multiple queries.
In particular, we aim to not only minimize the total number of neighbor searches by
sharing the neighbor search computation among multiple queries but also to share
the maintenance effort for the progressive pattern construction among queries. This
is a challenging problem, because the meta-information required to be maintained by
neighbor-based pattern queries is generally more complex than that for SQL query op-
erators. More specifically, we need to maintain the identified neighbor-based pattern
structures, such as clusters and outliers, which are defined by their member tuples
and the global topological relationships among tuples. While SQL operators, such as
join or aggregation operators, usually maintain pair-wise relations between two indi-
vidual tuples (independent from the rest of the tuples) or simply numbers (aggregation
results). The techniques introduced previously in the database community regarding
sharing among SQL queries [Hammad et al. 2003; Krishnamurthy et al. 2004] are thus
not adequate to solve our problem.

1.3. Proposed Solution

In order to maximize the efficiency of the system resource utilization for executing mul-
tiple neighbor-based pattern mining queries simultaneously, we analyze the common-
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alities of such queries. This helps us to identify several general optimization principles
which lead to significant system resource sharing among multiple queries.

As a preliminary sharing effort, we observe that the range query searches (the pro-
cess of searching for “neighbors” for each object) can be shared among multiple queries
and thus save overall CPU consumption (See Section 3). Although this is a straight-
forward sharing strategy, since the range query searches are frequently needed during
neighbor-based pattern mining processes, it constitutes an important multiple query
optimization principle for such queries.

However, range query search sharing alone is far from sufficient to achieve the goal
of scaling to workloads composed of many such queries within a single system. There-
fore, we further analyze the interrelations between the patterns identified by queries
with different parameters settings, including both pattern-specific and window-specific
parameters. First, we study the conditions under which all queries have the same win-
dow parameters. We observe that, if the pattern parameters of a query are “more re-
stricted” than those of another one, a “containment” relationship holds between the
patterns identified by them. We exploit this foundation of pattern containment to in-
crementally organize the patterns identified by multiple queries into an integrated
structure. We call it IntView (See Section 4). As a highly compact structure, IntView
saves the memory space needed for storing the patterns identified by multiple queries.
More importantly, IntView also enables integrated maintenance for the progressive
patterns of multiple workload queries, and thus effectively saves the computational
resources for maintaining them independently.

Second, we proposed a “meta query strategy”, which uses a single meta query to
represent all workload queries whose pattern parameters are the same while their
window parameters differ (See Section 5). The proposed meta query strategy adopts
a flexible window management mechanism to efficiently organize the query windows
that need to be maintained by multiple queries. By leveraging the overlap among query
windows, it minimizes the number of windows that are actually maintained in the
system. We show in Section 5 that our meta query technique successfully transforms
the problem of maintaining multiple queries into the execution of a single query.

Finally, we combine the range query search sharing, IntView technique and meta
query strategy to form our proposed comprehensive solution for each specific pattern
type, namely the shared execution strategies for multiple density-based clustering,
distance-based outlier or kNN queries over sliding windows. Computation-wise, all
these three proposed algorithms, require only a single pass through the new objects at
each window slide. In particular, they only run one range query search for each new
object, and each new object only communicates with its neighbors once for a group
of shared queries. Memory-wise, given the maximum window size allowed, the upper
bound of the memory consumption of our solution for a group of shared queries is
independent of the number of queries in the group (see Section 6).

Our experimental study (in Section 7) shows that our proposed solution clearly out-
performs all the alternative methods, and has great scalability to a large number of
queries. In particular, for density-based clustering queries, the system using our pro-
posed algorithm comfortably handles a workload composed of 100 arbitrary queries
under a 1K tuples per second data rate. If the number of workload queries increases
to 1K, the system still works stably with a 300 tuples per second input rate. On the
same experimental platform, given the 300 tuples per second input rate, the existing
execution strategies from the literature, such as IncDBSCAN [Ester et al. 1998] and
Extra-N [Yang et al. 2009a], can only handle less than 1.7 and 12 percent of the same
1K query workload, respectively. Our performance analysis for distance-based outlier
and kNN queries shows that a similar performance can be expected from our proposed
strategies for those two pattern types as well.
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1.4. Contributions

The contributions of this work include:
1) We analyze the commonalities of mining neighbor-based patterns over stream-

ing windows, including three popular pattern types, namely density-based clusters,
distance-based outliers and k nearest neighbors (kNN). We identify that for each in-
dividual neighbor-based pattern mining query, the process of maintaining progressive
pattern structures is the most system-resource-consuming operation of the query pro-
cessing task. Therefore, it constitutes the operation that would bring the largest per-
formance gain if shared properly among such pattern mining queries.

2) We characterize the notion of pattern containment among neighbor-based pat-
terns. Based on this foundation, we present the integrated pattern maintenance tech-
nique for neighbor-based patterns identified by same type of mining queries yet with
different pattern-specific parameter settings.

3) We analyze the notion of window overlap in multiple query execution for sliding
window queries. Based on this analysis, we present a technique, called meta query
strategy, to efficiently share computation among multiple sliding window queries,
which detect the same pattern type using same pattern specific parameters yet have
arbitrary window specific parameters.

4) We combine those two proposed principles, namely the integrated pattern mainte-
nance and the meta-query strategy, along with range query search sharing, to realize
full sharing for multiple neighbor-based pattern mining queries of the same query type
in streaming environments.

5) Lastly, our comprehensive experiments on several real streaming datasets confirm
the effectiveness of our proposed techniques and also their superiority over the state-
of-art alternatives in both CPU time and memory utilization.

Extension from the Conference Version. An earlier version of this article has
appeared in a conference [Yang et al. 2009b]. The exposition of this manuscript has
been updated significantly to not only ensure easier understanding but also to extend
the scope of the conference version. First, the earlier conference version only discussed
multiple query optimization techniques for density-based clusters, while in this article
we abstract these techniques into general principles to serve as shared query execution
strategies for other major pattern types in the neighbor-based pattern family as well.
Second, in the earlier version, we keep the discussion of optimization strategies for
shared processing among queries with arbitrary window parameters brief, while we
now elaborate on it in depth in this manuscript. Third, we present the complete pseudo
code for shared execution methods of all three pattern types that we studied in this
work, namley density-based clusters, distance-based outliers and kNN queries. Fourth,
we add discussion on the performance analysis for distance-based outlier and kNN
queries. Fifth, we include additional lemmas and develop proofs for all lemmas and
theorems. Sixth, we add more intuitive examples for each of the major techniques
proposed.

2. PRELIMINARIES

2.1. Definition for Neighbor-Based Pattern Mining Queries

We now demonstrate that the neighbor-based pattern mining queries tackled by our
work correspond to a particular subclass of the general class of graph mining. This
subclass of graph mining tasks is composed of two phases, namely graph definiton and
graph mining.

Graph Definition Phase. First, unlike the traditional graph mining tasks, in
which the target graph structures are given as input, neighbor-based pattern min-
ing queries require a graph definition step before mining on the graph. In particular,
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given an input dataset D, a neighbor-based pattern mining query first defines a graph
G = (V,E), in which V = D corresponds to the set of vertices and E corresponds to the
set of edges, modeling all the pair-wise “neighbor relationships” among the vertices.
The edges in E can be either directed or undirected. Such graph definition step takes
two inputs from the query specification.

1): A user-defined distance function Dist(va, vb), ∀va, vb ∈ V , which returns a value
dist va vb reflecting the distance between va and vb.

2): An edge definition function M(va, vb, dist va vb), which decides whether
(true/false) an edge exits e(va, vb) between va and vb. The distance between va and
vb, dist va vb, is the base for M(va, vb, dist va vb) to make this decision, while the spe-
cific edge definition mechanism may vary depending on the specific neighbor-based
pattern mining query type. For example, M(va, vb, dist va vb) for density-based cluster
[Ester et al. 1996; Ester et al. 1998] and distance-based outlier [Knorr and Ng 1998;
Angiulli and Fassetti 2007] mining imposes a range threshold value to define an undi-
rected edge e(vi, vj) between va and vb, while M(va, vb, dist va vb) for k nearest neigh-
bor (kNN) [Mouratidis and Papadias 2007; Jagadish et al. 2005] and reverse k nearest
neighbor mining queries [Mouratidis and Papadias 2007] take a count threshold to de-
fine directed edges e(va, vb) and e(vb, va) We will introduce the precise edge definition
function for each specific neighbor-based pattern type in their formal definitions later
in of this section.

Graph Mining Phase. Given the graph G defined in the graph definition phase, in
the second phase, each neighbor-based pattern mining query type mines for a particu-
lar type of sub-graph(s) in G that exhibits certain characteristics. We will explain the
specific sub-graph(s) that each neighbor-based pattern mining query type mines for in
the formal definition of each pattern type.

2.2. Definitions for Specific Neighbor-Based Patterns

We use the term data point to refer to a multi-dimensional tuple (object) in the data
stream. To be consistent with the graph mining problem definition given above, we use
vi to represent each data point in the following definitions.

Definition 2.1. Density-Based Cluster Mining Query: Besides the input dataset
D and a distance function Dist(va, vb), density-based cluster mining takes two input
parameters, namely a range threshod θrange and a count threshold θcnt.

In the graph definition phase, density-based cluster mining defines an undirected
edge between any va and vb ∈ D, if Dist(va, vb) < θrange. We say that va and vb are
neighbors of each other in this situation. It thus defines an undirected graph G =
(V,E), with V corresponding to all data points in D and E corresponding to all the
undirected edges among data points in V .

Then, in the graph mining phase, we use the function NumNei(vi, θ
range) to de-

note the number of neighbors a data point vi has, given the θrange threshold. A data
point vi with NumNei(vi, θ

range) ≥ θcnt is defined as a core point. Otherwise, if vi is a
neighbor of any core point, vi is an edge point. vi is a noise point if it is neither a core
point nor an edge point. Two core points v0 and vn are connected if they are neighbors
of each other, or there exists a sequence of core points v0, v1, ...vn−1, cn, where for any i
with 0 ≤ i ≤ n − 1, a pair of core points vi and vi+1 are neighbors of each other. Each
density-based cluster is a group of connected core points and the edge points attached
to them. Density-based cluster mining mines for all such clusters in the defined graph
G.

Figure 4 shows an example of a density-based cluster composed of 11 core points
(black) and 2 edge points (grey) in W0.

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:8 D. Yang et al.

Definition 2.2. Distance-Based Outlier: Besides the input dataset D and a dis-
tance function Dist(va, vb), distance-based outlier detection takes two input parame-
ters, namely a range threshod θrange and fraction threshold θfra.

In the graph definition phase, distance-based outlier mining defines an undi-
rected edge between any va and vb ∈ D, if Dist(va, vb) < θrange. We say that va and
vb are neighbors of each other in this situation. It thus defines an undirected graph
G = (V,E), with V corresponding to all data points in D and E corresponding to all the
undirected edges among data points in V .

Then, in the graph mining phase, we use the function NumNei(vi, θ
range) to de-

note the number of neighbors a data point vi has, given the θrange threshold. Distance-
based outlier mining mines for all data points vi in the defined graph G, where
NumNei(vi, θ

range) < |D| ∗ θfra, with N the number of vertices in G.

Definition 2.3. Top-k Nearest Neighbor Query (kNN): Besides the input dataset
D and a distance function Dist(va, vb), top-k mining query takes a query object vq and
a count threshold k.

In the graph definition phase, a top-k mining query defines a directed edge from
va to vb ∈ D, if there exist less then k data points v0, v1, ... ,vk−1 ∈ D that dist vb vi <
dist vb va(0 ≤ i ≤ k − 1). We say vb is a neighbor of va if there exists an edge from va to
vb. It thus defines a directed graph G = (V,E), with V corresponding to all data points
in D and E corresponding to all the directed edges among data points in V .

In the graph mining phase, a kNN mining query mines for all neighbors for the
query object vq in the defined graph G.

The templates for these pattern mining queries in streaming environments can be
found in Figures 1, 2 and 3 in Section 1.

2.3. Sliding Window Semantics

We focus on periodic sliding window semantics as proposed by Continuous Query Lan-
guage (CQL) [Arasu et al. 2006] and widely used in the literature [Yang et al. 2009a;
Arasu and Widom 2004; Yang et al. 2009a]. Such semantics can be either time-based
or count-based. For both cases, each query Q has a window size Q.win (either a time
interval or a tuple count) and a slide size Q.slide. The patterns will be generated only
based on the data points falling into the window. The query window slides periodically
either when a certain number of tuples arrives or a certain amount of time elapses.
By sliding, a new window will be built to replace the old window, and thus again cover
only the most recent portion of the stream at that moment. The templates of neighbor-
based pattern mining queries using this query semantics have been shown in Figures
1, 2 and 3 in Section 1.

“Data Expiration” in Sliding Window Semantics. The notion of “data expira-
tion” that we used in this work is defined by this sliding window query semantics,
indicating that the data points are no longer included in the current query window.
This means that the data points are no longer of interest to the analyst who speci-
fied the query. In such context , each data point carries a single time stamp indicating
the time when this object was observed or arrived at the system. However, it does not
carry validity information, which would indicate when it will expire. When a specific
data point will “expire” (be no longer of the analyst’s interest) is solely decided by the
relationship between the data point’s time stamp, current system time and the window
size specified in the query. The specification of the window parameters are driven by
the domain knowledge of the analysts and their specific analytical task.

Data-Driven Object Expiration. There is a notion of ”expiration” that is differ-
ent from sliding window semantics, namely data-driven expiration of tuples instead
of query-semantics driven expiration of tuples, as we will explain below. Namely, in-
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dependent from the sliding window semantics, the stream objects may have their own
natural periods of “validity”, or also called ”lifetimes” [StreamInsight ]. For example,
each object in a stream reporting the sales items from online stores has a natural valid
period. This is because a particular sale for each item may only be valid for a certain
period of time, say a 50% off MacBook deal will only be available for the first hour of
the Black Friday Sale, while the other 20% off sale items from Apple may be available
for that whole day. This data-driven expiration semantics is not the target of this work.

2.4. Optimization for Multiple Queries

We support multiple neighbor-based pattern detection queries of the same query type
that are specified on a common input stream but with arbitrary pattern and window
parameters. We call all the queries submitted to the system together a Query Group
QG, and each of them a Member Query of QG. All the queries within a same query
group should have the same query type, be it density-based clustering, distance-based
outlier detection or kNN queries. We use a common assumption that all the member
queries are registered to and pre-analyzed by our system before the arrival of the input
stream, indicating that all the member queries will be started simultaneously. Our goal
is to minimize the overall CPU- and memory- resource consumption for executing all
the member queries registered to our system.

2.5. Review of Existing Single Query Execution Strategy

Alternative methods for processing a single density-based clustering and distance-
based outlier query over sliding windows are discussed in [Yang et al. 2009a]. Both
analytical and experimental studies conducted in [Yang et al. 2009a] show that Extra-
N and Abstract-M are the best existing approach for executing a single query of this
type. They realize efficient evaluation by incrementally maintaining the cluster struc-
tures identified in the query window. Technically, they are based on a key idea, namely
the notion of predicted views.

General Notion of Predicted Views. The key challenge that needs to be solved
for incremental maintenance of neighbor-based patterns is to efficiently discount the
effect of expired data points from the previously formed patterns. The expiration of ex-
isting data points may cause complex pattern structure changes, ranging from shrink-
age, splitting to the termination of the patterns. Detecting and handling these changes
caused by expirations, especially splitting, may require large amount of computation,
which could be as expensive as recomputing the patterns from scratch.

To address this problem, Extra-N and Abstract-M exploit the general notion of pre-
dicted views. It is well known that, since sliding windows tend to partially overlap
(slide < win), some of the data points falling into a window Wi will also participate in
some of the windows right after Wi. Based on the data points in the current window,
say a dataset Dcur, and the slide size, we can exactly “predict” the specific subset of
Dcur that will participate in each of the future windows. We can thus pre-determine
some properties of these future windows (referred as “predicted windows”) based on
these known-to-participate data points and thus form the “predicted views” for them.
This general concept is widely used in the literature [Li et al. 2005; Yang et al. 2009a;
Krishnamurthy et al. 2006] to process sliding window queries, and is called Predicted
View technique. As an example, Figure 4 shows the predicted views for three future
windows when detecting density-based clusters. The black, grey and white spots repre-
sent the core, edge and noise points identified in each predicted view. The lines among
any two data points represent the neighborship between them. By using the predicted
view technique, we can avoid the computational effort needed for discounting the effect
of such expired data points from the detected clusters. The idea is to pre-generate the
partial clusters for the future windows based on the data points that are in the current
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Fig. 4. Predicted views of four consecutive windows at W0

window and known to participate in those future windows (without considering the to-
be-expired ones). Then when the window slides, we can simply use the new data points
to update the pre-generated patterns in the predicted views and form the up-to-date
patterns in each window. Figures 4 and 5 respectively demonstrate examples of the
“pre-generated” clusters in future windows and the updated clusters after the window
slides.

Discussion. Generally, at each window slide, Extra-N and Abstract-M run one
range query search for each new data point to update the progressive patterns, which
are represented by the predicted views. As the best existing algorithms for single query
execution, they achieve the minimum number of range query searches needed at each
window. However, executing such single query algorithm for each member query inde-
pendently is not a scalable solution for handling a QG with large |QG|. This is because
the consumption of both computational and memory resources will increase linearly
with the increase of |QG|. We thus need to design an optimized processing mechanism
for multiple queries to handle a large query group against high speed data streams.

3. A PRELIMINARY SHARING EFFORT: SHARING RANGE QUERY SEARCHES

The basic strategy to share the computations among multiple neighbor-based pattern
mining queries is to share the range query searches. Generally, to execute a query
group QG with |QG| = N , we can execute N single query algorithms, each for a member
query, independently (with each query maintaining its own progressive patterns inde-
pendently), yet share the computations needed by the range query searches. Specifi-
cally, at each new query window, the single query algorithms require every new data
point pnew to run a range query search to identify its neighbors, and communicate with
them to update progressive patterns in the window (as discussed in Section 2.5). This
means that, if executed independently, for a query group QG with |QG| = N , we need
to run N range queries for each new data point pnew. However, by using range query
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Fig. 5. Updated predicted views of four windows at W1

search sharing, we could instead run just one range query search for each pnew, even
if the queries in QG have different range thresholds θrange.

In particular, we run the range query search for each pnew using Qi.θ
range, with

Qi.θ
range larger or equal to any Qj .θ

range in QG. Using the result set of this “broadest”
range query search, we then gradually filter out the results for the other queries with
smaller and smaller θrange. Clearly, for a given data point, the result set of a range
query search using smaller θrange is always a subset of that using a larger one. Also,
since the range query search with largest θrange is in any case needed for the partic-
ular query, no extra computation is introduced by this process. This general principle
of sharing range query searches can be applied to any neighbor-based pattern mining
requests that requires neighbor searches for data points, such as distance-based out-
lier detection. Sharing range query searches can be very beneficial for optimizing the
system resource utilizations, especially when the window size is large.

3.1. Discussion

However, sharing range query searches alone is not sufficient for handling a heavy
workload containing hundreds or even thousands of queries. Two critical problems
still remain: 1) Since every member query still stores its progressive patterns indepen-
dently, the memory space needed by executing a query group QG grows linearly with
|QG|. 2) Because of the independent pattern storage, the pattern maintenance compu-
tation of different queries cannot be shared. To solve these two problems, we need to
further analyze and exploit the commonalities among the member queries. Our goal is
thus to design an integrated pattern maintenance mechanism that effectively shares
both the storage and computational resources needed for multiple queries.

In our experimental studies shown in Figures 30, 31 and 32 in Section 7 we demon-
strate how much performance gains that can be achieved by using this range query
search sharing strategy alone. Also, in the same figures we compare such gains with
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that can be achieved by our complete proposed solutions, which include more sophisti-
cated sharing strategies introduced in the following Sections 4 and 5.

4. SHARING AMONG QUERIES WITH ARBITRARY PATTERN PARAMETERS

In this section, we discuss the shared processing of multiple queries with arbitrary
pattern parameters. We first assume that the queries have the same window parame-
ters, namely the same window size win and the same slide size slide. In such cases all
the member queries will always detect patterns from exactly the same portion of the
data streaming data (those fall into the current query window). This assumption will
later be relaxed in Section 6 to allow completely arbitrary parameters.

To solve this problem, we analyze the relationships between the pattern sets iden-
tified by neighbor-based pattern mining queries with different pattern-specific param-
eter setting. In particular, we characterize the conditions under which one query is
“more restricted” than the other, and discovery that a “containment” relationship holds
between the pattern sets identified by the queries following such “strictness order”. By
exploiting this containment relationship, we incrementally organize the patterns iden-
tified by multiple queries into an integrated structure, and thus manage to maintain
them in a shared manner. Such shared execution strategy leads to significant savings
in both CPU time and memory utilization.

4.1. “Containment” among Neighbor-Based Pattern Sets

The definition of “containment” between neighbor-based pattern sets is generally more
complex than the traditional “containment relationship” between the result sets of SPJ
queries. In particular, such containment among neighbor-based pattern sets is not re-
stricted to simple super- or sub-set relationships. Here we first use density-based clus-
ters, which have one of most complicated pattern structures and complex containment
relationships among neighbor-based pattern family, to explain this concept.

“Growth Property”. We call the specification of such containment relationship
among density-based cluster sets the “Growth Property”. We now first define the “con-
tainment” between two density-based clusters.

Definition 4.1. Given two density-based clusters Ci and Cj (each cluster is a set of
data points, which are called cluster members of this cluster), if for any data point
p ∈ Ci, p ∈ Cj , we say that Ci is contained by Cj , denoted by Ci ⊂ Cj .

We now give the definition for the “growth property” between two density-based
cluster sets.

Definition 4.2. Given two cluster sets Clu Set1 and Clu Set2 with for i = 1, 2,
Clu Seti =

⋃
1≤x≤n Cx, and for any y 6= z, Cy ∩ Cz = ∅. If for any Ci in Clu Set1, there

exists exactly one Cj in Clu Set2 that Ci ⊂ Cj , Clu Set2 is defined to be a “growth” of
Clu Set1. We say the growth property holds between Clu Set1 and Clu Set2.

Beyond this definition, we now characterize all the possible interrelationships be-
tween the clusters belonging to Clu Set1 and Clu Set2.

Observation 4.1. Given Clu Set1 and Clu Set2 with Clu Set2 a growth of
Clu Set1, then any cluster Cj in Clu Set2 must either be a new cluster (for any p ∈ Cj ,
p 6∈ Ci, if Ci is in Clu Set1), an expansion of a single cluster in Clu Set1 (there ex-
ists exactly one Ci in Clu Set1 such that Ci ⊂ Cj), or a merge of multiple clusters in
Clu Set1 (there exist Ci, Ci+1,...Ci+n(n > 0) in Clu Set1 with Ci, Ci+1,...Ci+n ⊂ Cj .

Figures 6 and 7 give an example of two cluster sets between which “growth property”
holds.
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Fig. 6. Cluster Set 1 containing 3 clusters
Fig. 7. Cluster Set 2 containing 3 clusters, which
is a growth of Cluster Set1

The black spots in the figures represent the data points belonging to both cluster
sets, while the gray ones represent those belonging to Clu Set2 only. As depicted in the
figures, the cluster C4 in Clu Set2 is a “merge” of clusters C1 and C2 in Clu Set1, while
the cluster C5 and cluster C6 in Clu Set2 are an “expansion” of cluster C2 in Clu Set1
and a “new” cluster respectively. Generally, if Clu Set2 is a “growth” of Clu Set1, any
two data points belonging to the same cluster in Clu Set1 will also be members of the
same cluster in Clu Set2.

Hierarchical Pattern Representation. If the “growth property” transitively
holds among a sequence of cluster sets, a hierarchical cluster structure can be built
across the clusters in these cluster sets. The key idea is that, instead of storing cluster
memberships for different cluster sets independently, we incrementally store the clus-
ter “growth information” from one cluster set to another. Figures 8 and 9 respectively
give examples of independent and hierarchical cluster membership structures built for
the two cluster sets shown in Figures 6 and 7.

Fig. 8. Independent Cluster Membership Stor-
age for Cluster Sets 1 and 2

Fig. 9. Hierarchial Cluster Membership Storage
for Cluster Sets 1 and 2

As shown in Figure 8, if we store the cluster memberships for cluster members in
these two cluster sets independently, each cluster member (black squares) belonging
to both clusters has to store two cluster memberships, one for each cluster set. How-
ever, if we store them in the hierarchical cluster membership structure as depicted
in Figure 9, we no longer need to repeatedly store the cluster memberships for these
“shared” cluster members. Instead, we simply store cluster memberships for each clus-
ter member belonging to Clu Set1, and then store the cluster “growth” information
from Clu Set1 to Clu Set2. In particular, we just need to correlate each cluster Ci in
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Clu Set1 with a cluster in Clu Set2 that contains it, and thereafter each cluster mem-
ber can easily find its cluster membership in a specific cluster set by tracing to the
corresponding level of the hierarchical cluster membership structure. Such “growth”
information is now based on the granularity of complete clusters rather than the
granularity of individual cluster members. Generally, for a sequence of cluster
sets for which the “growth property” transitively holds, the hierarchical cluster struc-
ture can largely save the memory space needed for storing them.

Lemma 4.1. Given a query group QG for which the growth property transitively
holds among the cluster sets identified by all its member queries, the upper bound of the
memory space needed for storing the cluster memberships using hierarchical cluster
structure is 2 ∗ Ncore (independent from |QG|), with Ncore the number of distinct data
points that are at least once identified as core point in any member query of QG.

Proof: The relationship between the number of cluster memberships stored and
Ncore is equal to the relationship between the total size of a binary heap and the num-
ber of leaf nodes of this heap. This is because a higher level cluster membership will
only be stored if a merge of the cluster memberships happened at the lower level.

Besides the benefit of potentially huge memory savings, such hierarchical cluster
structure can also help us to realize the integrated maintenance for multiple cluster
sets identified by different queries, and thus save computational resources from main-
taining them independently. In the later parts of this work, we will carefully discuss
how this general principle can be used to benefit our multiple query optimization strat-
egy.

Containment and Incremental Representation for Other Pattern Types.
The containment relationship of other neighbor-based pattern types, such as distance-
based outliers and top-k nearest neighbors are simpler than density-based clusters.
In particular, as the outlier set or nearest neighbor set identified by a query is simply
an object set, the containment relationship between any two outlier sets or nearest
neighbor sets is simply the super- or sub-set relationship. Thus, the incremental rep-
resentation of such pattern sets is simple as well. More precisely, we can store the
smallest sets first and then incrementally store the extra objects for larger and larger
sets.

4.2. Integrated Maintenance for Multiple Density-Based Clustering Q ueries

Now we discuss, for density-based clusters, in which cases such containment relation-
ship holds and how it can help us to conduct shared execution for multiple queries.
For a group of density-based clustering queries, they can vary on both pattern param-
eters, namely θrange and θcnt. We first look at the cases in which the variations are only
allowed on one parameter.

4.2.1. Arbitrary θ
cnt/θrange Cases. In the first case, all queries have the same θrange but

arbitrary θcnt. Here, we make a straightforward observation.

Observation 4.2. Given all queries in a query group having the same θrange, the
neighbors of each data point identified by these queries are the same.

This observation indicates that for all our member queries, the neighborships identi-
fied in each specific window are exactly the same. However, this does not mean that
the cluster structures identified by all queries are same and we can store them in the
same way. This is because the different θcnts of the member queries may assign dif-
ferent “roles” to a data point. For example, a data point with 4 neighbors is a “core
point” for query Q1 having Q1.θ

cnt = 3, while it is a “none-core point” for Q2 having
query Q2.θ

cnt = 10. As the hybrid neighborship abstraction (discussed earlier in Sec-
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tion 2.5) requires each none-core point to store the links to its exact neighbors, while
the core points store the cluster memberships only, a data point may need to store dif-
ferent types of neighborship abstractions depending on its roles identified by different
queries.

To solve this problem, we turn to the “growth property” of density-based cluster
structure discussed in Section 4.1.

Lemma 4.2. Given two queries Qi and Qj specified on the same dataset, with
Qi.θ

range = Qj .θ
range and Qi.θ

cnt ≤ Qj .θ
cnt, the cluster set identified by Qi is a “growth”

of the cluster set identified by Qj (see growth property as defined in Definition 4.2).

Proof: First, since Qi.θ
cnt ≤ Qj .θ

cnt, the “core point” set identified by Qj is a
subset of that identified by Qi. Second, since all the neighborships identified by Qi

and Qj are exactly the same, all the “connections” in any cluster structure identified
by Qj will also hold for Qi. This indicates that the cluster structure identified by Qj

will also be identified by Qi (although it may be further expanded or merged). Finally,
the “additional” core points identified by Qi may only cause the birth of new clusters
or expansion or merge of the clusters identified by Qj , because they either extend
these cluster structures when they are “connected” to one or more of them (causing
expansion or union) or form new clusters by themselves when they are not “connected”
to any (causing birth). This indicates that the cluster set identified by Qi is a “growth”
of that identified by Qj (by Observation 4.1). This proves the lemma 4.2.

Figure 10 demonstrate an example of the cluster sets identified by three queries
having the same θrange but different θcnts.

Fig. 10. Cluster sets identified by three different queries

Integrated Representation of Predicted Views across Multiple Queries
with Arbitrary θcnt. As we discussed earlier in Section 4.1, once the “growth” prop-
erty holds among the cluster sets, we can build the hierarchical cluster structure for
them. We thus build an integrated hierarchical structure to represent multiple pre-
dicted views identified by different queries for the same corresponding predicted win-
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dow. We refer to such Integrated Representation of Predicted Views across Queries
with arbitrary θcnt by IntV iew θcnt. For each predicted window, IntV iew θcnt starts
from the predicted view with the most “restricted clusters”. In this context, this cor-
responds to the predicted view maintained by Qi with the largest θcnt among QG.
Then, it incrementally stores the cluster “growth information”, namely the “merge”
of existing cluster memberships and the new cluster memberships, from one query to
the next in the decreasing order of θcnt. Figure 11 gives an example of an IntV iew θcnt,
which represents the predicted views (shown in Figure 10) identified by three different
queries.

Fig. 11. IntV iew θcnt: Integrated Representation for density-based clusters identified by three different
queries

IntV iew θcnt successfully integrates the representations of multiple “predicted
views” into a single structure, thus saving the memory space otherwise needed to store
them independently.

Lemma 4.3. Given the maximum window size allowed, the upper bound of the
memory space needed by IntV iew θcnt is independent of |QG|, the cardinality of the
query group.

Proof: First, there are two types of meta-information that need to be stored by
IntV iew θrange, namely the cluster memberships and the exact neighbors of the data
points. Since IntV iew θrange uses the hierarchical structure described in Section 4.1
to store the cluster memberships for the data points, the upper bound of the memory
space used for storing cluster memberships is independent from |QG| (as proven in
Lemma 4.1). Second, IntV iew θcnt only stores the exact neighbors for “non-core” data
points, and the maximum number of exact neighbors a “non-core” point can have is a
constant (namely, max(Qi.θ

cnt)− 1). Thus, the upper bound of the memory space used
for storing exact neighbors is again independent from |QG|. This proves Lemma 4.3.
Without using IntV iew θcnt, the memory space needed for independently storing the
cluster memberships identified by all member queries in QG will increase linearly with
|QG|. Our method now makes it independent from |QG| (as proven in Lemma 4.3).
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Maintenance of IntV iew θcnt. Besides the memory savings, we can also incremen-
tally update multiple predicted views represented by a IntV iew θcnt, thus saving com-
putational resources. In particular, for each new data point pnew, we start the update
process from the bottom level of IntV iew θcnt, namely the predicted view identified by
the query with largest θcnt. Then we incrementally propagate the effect of inserting
this new data point to the next higher level of predicted views. Using the example
utilized earlier in Figure 11, a new data point identified to have 3 neighbors in the
window is a “none-core” in the bottom (most restricted) level predicted view, where
θcnt = 4. So, at the bottom level, we simply add all its neighbors to its neighbor list.
However, its effect to upper level predicted views may differ, as this data point may
be identified as a “core point” by a more “relaxed” query, say when θcnt = 3. Then, we
need to generate a cluster membership for it at that predicted view and merge it with
those cluster memberships (if any) belonging to its neighbors.

The pseudo-code for the maintenance algorithm of IntV iew θcnt can be found in Fig-
ure 16, which is a special case of our final solution Chandi. In this special case, besides
the exact same predicted windows built for all queries, the neighbor sets of a new data
point identified by all queries are exactly same. We emphasize that the maintenance
process is efficient for the following two reasons: 1) No extra range query search is
needed when a data point is found to be a “core point” in an upper level predicted view
and thus needs to communicate with its neighbors. This is because as a “none core
point” in the lower level predicted views, it would already have stored the links to all
its exact neighborships and thus would have direct access to them. 2) As the “growth”
of cluster sets identified in predicted views is incremental, less and less maintenance
effort will be needed as we handle the higher level predicted views.

We also found that the “growth property” holds between two queries with the same
θcnt but different θranges.

Lemma 4.4. Given two queries Qi and Qj specified on the same data set with
Qi.θ

cnt = Qj .θ
cnt and Qi.θ

range ≥ Qj .θ
range, the cluster set identified by Qi is a “growth”

of that identified by Qj .

The shared execution strategy for this case is very similar to the previous case in
which all queries have the same θranges. Thus, the detailed discussion for this case is
omitted here.

4.2.2. Arbitrary θ
range, Arbitrary θ

cnt Case. Now we discuss the shared processing for a
query group QG with queries having totally arbitrary pattern parameters, namely ar-
bitrary θrange and arbitrary θcnt values. Although the “growth property” holds between
the cluster sets identified by two queries Qi and Qj , if Qi and Qj share at least one
query parameter, it does not necessarily hold if both query parameters of Qi and Qj

differ. To again take advantage of the compact structure of the Integrated Representa-
tion of Predicted Views, we need to explore when the “growth property” holds between
two queries in the most general cases.

Lemma 4.5. Given two queries Qi and Qj specified on the same dataset, with
Qi.θ

cnt ≤ Qj .θ
cnt and Qi.θ

range ≥ Qj .θ
range, the cluster set identified by Qi is a “growth”

of that identified by Qj .

Proof: Lemma 4.5 can be proven by the transitivity of the “growth property”.
Given a query Qk with Qi.θ

cnt ≤ Qk.θ
cnt ≤ Qj .θ

cnt and Qk.θ
range = Qj .θ

range, the
cluster set identified by Qk is a “growth” of that identified by Qj (by Lemma 4.2). This
means that for any cluster Ca identified by Qj there exists a cluster Cb identified by Qj

such that Ca ⊆ Cb. Also, the cluster set identified by Qi is a “growth” of that identified
by Qk (by Lemma 4.4). This means that for any cluster Cb identified by Qj there exists
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a cluster Cc identified by Qi that Cb ⊆ Cc. So for any cluster Ca identified by Qj there
exist a cluster Cc identified by Qi such that Ca ⊆ Cc. Thus, the cluster set identified by
Qi is a “growth” of that identified by Qj (by Definition 4.2).

To more intuitively describe the relationship between any two queries in a query
group, we give the following definition.

Definition 4.3. Given two queries Qi and Qj specified on the same dataset, if
Qi.θ

cnt ≤ Qj .θ
cnt and Qi.θ

range ≥ Qj .θ
range. we say Qj is a “more restricted” query

than Qi, and Qi is a “more relaxed” query than Qj .

Integrated Representation of Predicted Views across Multiple Queries with
Arbitrary Pattern Parameters. We aim to build a single structure which represents
the “predicted views” identified by all member queries of QG in the same window.
However, given the “growth property” only holds between two queries if one is more
restricted than the other, we can no longer expect to put all member queries into a
single hierarchy.

Our solution is to build a “Predicted View Tree”, which integrates multiple lin-
ear predicted view hierarchies into a single tree structure. In this tree structure,
each predicted view (except the root) only needs to store and maintain the incremen-
tal information (cluster “growth”) from its parent, much like the predicted views in
IntV iew θrange and IntV iew θcnt. In particular, such a “Predicted View Tree” starts
from the predicted view that represents “the most restricted query” among QG. “The
most restricted query” here corresponds to the member query that has both the small-
est θcnt and the largest θrange among QG. If such a “most restricted query” does not
naturally exist in QG, we build a “virtual” one by generating a query with the small-
est θcnt and the largest θrange among QG. The predicted view representing this “most
restricted query” will be the “root” of our “Predicted View Tree”. If the most restricted
query is a virtual query, its predicted view will be used for “Predicted View Tree” main-
tenance but it will never generate any output. Then the predicted views representing
more relaxed queries will be iteratively put on the next higher level (farther from the
root) of the tree. More specifically, after picking “the most restricted query” as the root
of the tree, we iteratively pick (and remove) “the most restricted queries” remaining in
QG and put their predicted views as the next level of the tree. Here, a member query
Qj is one of “the most restricted queries” remaining in QG, if there does not exist any
other member query Qi in QG, which is “more restricted” than Qj .

For example, given QG = {Q1(θ
range = 0.5, θcnt = 5), Q2(θ

range = 0.4, θcnt =
7), Q3(θ

range = 0.2, θcnt = 10), Q4(θ
range = 0.3, θcnt = 7), Q5(θ

range = 0.4, θcnt = 8)}.
The root of the “Predicted View Tree” is the predicted view representing “the most re-
stricted query”, namely Q3 in this case. Then, the second level “most restricted queries”
are Q4 and Q5, which are more relaxed than Q3 but more restricted than Q1 and Q2.
Finally, the third level “most restricted queries” are Q1 and Q2. This process of figur-
ing out “the most restricted queries” at each level is equal to the problem of iteratively
calculating the “skyline” [Yuan et al. 2005; Zhang et al. 2009; Soliman et al. 2007] in
the two dimensional space of θrange and θcnt. Since this process of building ”Predicted
View Tree” can be conducted offline during query compilation, any existing skyline
algorithm can be plugged into our system to solve this problem.

The predicted views on the lower level of the tree always represent more restricted
queries than those on the higher levels. Then, the “growth information”, namely the
evolution of cluster memberships and the “additional exact neighbors”, will be stored
from one predicted view to each of its “children” on the higher level. Such building
process guarantees an important property of “Predicted View Tree” as described in the
following lemma.
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Lemma 4.6. Given a cluster set Clu Setm identified by a query Qm on the ith level
of the “Predicted View Tree”, and a cluster set Clu Setn identified by a query Qn on
the (i− 1)th level, the “growth information” between Clu Setm and Clu Setn is no more
than that between Clu Setm and any cluster set Clu Seto identified by a query Qo on
the (i− j)th(i > j > 1) level.

Proof: Since the queries on the (i−j)th level are always more restricted than those
on the (i)th level, we know that Clu Setn is a growth of Clu Seto, Clu Setm is a growth
of Clu Setn and Clu Setm is also a growth of Clu Seto. This means the “growth infor-
mation” from Clu Seto to Clu Setm can actually be divided into two parts, namely the
“growth information” from Clu Seto to Clu Setn and that from Clu Setn to Clu Setm.
This proves that the “growth information” from Clu Setn to Clu Setm is no more than
that from Clu Seto to Clu Setm.
This property assures that each predicted view in the “Predicted View Tree” main-
tains the smallest increments and represent multiple predicted views as compact as
possible.

To finalize the tree structure, for each query Qn on the ith level of the tree, we need
to determine its “parent” on the (i−1)th level. We aim to find such a “parent” query Qm

that is most similar to Qn, indicating that there exists the least “growth information”
from the cluster set identified by itself to that identified by Qn. Since the queries with
similar θranges tend to identify similar neighborships in the window, this indicates that
the difference on θranges has a larger influence on cluster changes compared with θcnts.
So, when we determine the parent predicted view, although we consider the similarity
between both pattern parameters, more “weight” is given to that between θranges. To
unify the names of the hierarchical structures representing multiple predicted views,
we henceforth call this the “Predicted View Tree” IntV iew θ.

Although IntV iew θ is a tree structure, instead of a linear sequence like
IntV iew θcnt and IntV iew θrange, they share the core essence that each predicted view
is incrementally built based on the predicted view most similar with it, and the “growth
property” holds between them. We call the member queries on each path of IntV iew θ
a group of shared queries.

Lemma 4.7. The upper bound of the memory space needed by IntV iew θ for any
group of shared queries is independent from the number of queries in this group.

Since all these queries are on the same path of IntV iew θ structure, indicating that the
growth property transitively holds among the cluster set identified by them. The in-
dependency between the upper bound of the memory space and the number of queries
can be proven using the same method as we used for proving Lemma 4.3.

The maintenance process of IntV iew θ is also similar with that for IntV iew θcnt

and IntV iew θrange. For each new data point, we always start the maintenance from
the root of the IntV iew θ, namely the predicted view representing the most restricted
query. Then we incrementally maintain the predicted views on the next higher level
of IntV iew θ. Again, this maintenance process is a special case of our final uniform
solution Chandi (pseudo code shown in Figure 16). In this special case, the predicted
windows built for all queries are exactly same.

Now we conclude with the contribution of IntV iew θ.

Theorem 4.3. For a given density-based clustering query group QG with member
queries having arbitrary pattern parameters, IntV iew θ achieves full sharing of both
memory space and query computation.

Proof: First, the storage mechanism of IntV iew θ is completely incremental. In
particular, since each predicted view in IntV iew θ only stores the increments from
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its “parent”, no duplicate information is ever stored among any two predicted views.
This proves that IntV iew θ achieves full sharing of memory space. Second, since the
maintenance process of IntV iew θ is incremental as well, indicating that each new
data point only communicates with each of its neighbors once on each path of the tree
structure, no matter how many different predicted views their neighborship appears
in. This proves that IntV iew θ achieves full sharing of the computation of multiple
queries.

4.3. Integrated Maintenance for Multiple Distance-Based Outlier Det ection Queries

For distance-based outlier detection over sliding windows, the solution for processing
a single request is discussed in the literature [Angiulli and Fassetti 2007; Yang et al.
2009a]. Using the most up-to-date technique, namely the Abstract-C algorithm [Yang
et al. 2009a], the meta-information that needs to maintained to update the outliers
is simple. In particular, for each data point in the window, its neighbor count will be
sufficient to determine whether it is an outlier or not. Thus, for an individual query,
the meta-information it maintains for each predicted view is the potential outlier set
in the corresponding predicted window, namely the data points that are known to have
less than win ∗ θfra neighbors in that window, if no new data points were to join its
neighborhood. Also, a predicted neighbor count will be maintained for each potential
outlier in each predicted window. Such neighbor counts will be updated when the new
data points come in. This then helps us to decide whether the data points should still
be kept in the potential outlier set. More specifically, each new data point updates the
predicted neighbor count of its own and of all its neighbors in each future window. The
data points with too many neighbors (neighbor count larger or equal than win ∗ θfra)
will be removed from the potential outlier set of a particular window, since they can no
longer be identified as outliers.

Figure 12 shows the predicted views built for two queries Q1 and Q2 on a 2D dataset.
That is Q1.θ

range = 0.1, θfra = 25%, win = 8, slide = 2 (for Q1, a data point with 2 or
less neighbors will be identified as an outlier), and Q2 with Q2.θ

range = 0.15, θfra =
15%, win = 8, slide = 2 (for Q2, a data point with 1 or less neighbors will be identi-
fied as an outlier) . Figure 13 (top 2 lines) shows the corresponding meta-information
Abstract-C maintains for these two queries independently. More details of Abstract-C
can be found in [Yang et al. 2009a].

By analyzing the semantics of distance-based outliers, we observe that the contain-
ment relationship holds between the outlier sets identified by different queries under
certain conditions. First, let us fix the distance threshold θrange, while varying the frac-
tion threshold θfra among the member queries in a query group QG. We then note that
the outliers identified by a query Qi with the largest θfra among QG will always cover
(be a superset of) all the outliers that are identified by other member queries. For any
two queries Qi and Qj , if Qi.θ

range ≤ Qj .θ
range, the outlier set identified by Qj is a

subset of that identified by Qi. In other words, the identified outlier set “grows” mono-
tonically as θfra increases. So, in this case, for each predicted window, we can store and
maintain the potential outlier sets identified by different queries incrementally for all
member queries. As shown in Figure 13, we can just store a single copy of the largest
potential outlier set and use a flag (depicted with different levels of darkness) to dis-
tinguish by which queries each outlier is identified. Here a single integer flag will be
sufficient to distinguish among all the possible combinations, because the “strictness”
of the queries are exactly ranked. In other words, a data point can only be identified
as outlier by Qi, if it can be identified by all queries that have Qj .θ

fra > Qi.θ
fra. Also,

since the neighbor count of each data point identified by all queries will always be
same, we can simply maintain a single predicted neighbor count for each data point
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and use it to answer all queries. Thus, in this case both the storage and computation
of the meta-information maintained by all queries are fully shared.

Second, if we fix the fraction threshold θfra, while varying the distance threshold
θrange among a query group QG, the outliers identified by a query Qi with smallest
θrange among QG will always cover all the outliers that should be identified by the
other member queries. For any two queries Qi and Qj , if Qi.θ

range ≥ Qj .θ
range, then

the outlier set identified by Qj is a subset of that identified by Qi. In other words, the
identified outlier set “grows” monotonically as θfra decreases. This case is very similar
to the previous case just discussed in the last paragraph. Thus, the same incremen-
tal maintenance mechanism of potential outlier sets is also applicable here. The only
difference between this case and the previous case is now the neighbors identified by
different queries for the same data point may be different. However, as the neighbor
counts identified for any data point monotonically increase with the θrange parameter,
we simply maintain the increments on the neighbor counts for each query, if there are
any. See data point 4 in Figure 13 for an example.

Finally, we allow arbitrary settings on both distance and fraction thresholds. In this
more general case, we can observe that the outlier set identified by a “stricter” query Qi

is a subset of that identified by a more “relaxed” query Qj , if Qi.θ
range ≤ Qj .θ

range and
Qi.θ

fra ≤ Qj .θ
fra. Thus we can group the member queries into several non-overlapping

subgroups to ensure that such containment relationship transitively holds among the
queries in each of the subgroups. Then we can use the same techniques discussed in
the previous cases to maintain the outliers integrally for all queries in each subgroup.

Fig. 12. Distance-Based Outliers Identified by Q1 and Q2

4.4. Integrated Maintenance for Multiple kNN Queries

This pattern type takes only one pattern-specific parameter, namely the input k. Thus,
a group of such queries with different input k settings are all querying the nearest
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Fig. 13. Independent vs. Integrated Representation for Distance-Based Outliers Identified by Q1 and Q2

neighbors of the same given object but are asking for different numbers of such near-
est neighbors. In this case, using the incremental pattern maintenance mechanism
is quite straightforward. Basically, in any predicted window, the k nearest neighbors
(kNN) identified by a query Qi with the largest k among the query group will cover all
the kNN that should be identified by other queries. For any two queries Qi and Qj , if
Qi.k ≥ Qj .k, the kNN identified by Qj is a subset of that identified by Qi. So, we can
again incrementally store and maintain the k nearest neighbors identified by different
queries in an integrated manner.

In particular, in any predicted window, for a group of kNN queries, rather than main-
taining one kNN set for each query, we only maintain a single “KNN set” of the query
object, namely its K Nearest Neighbors, with K the largest k setting among all queries
in the query group. This single KNN set will represent the kNN of all queries in the
query group. This KNN set can be simply implemented as a sorted list based on their
distance to the query object.

When a new data point pnew comes into the system, we only compare the distance
between pnew and the query object with the distance between the query object and its
Kth nearest neighbor in KNN. If the pnew is closer to the query object compared to its
Kth nearest neighbor, it qualifies for the KNN set, indicating that it will be in kNN
set for at least one query in the group. Otherwise pnew is discarded for this predicted
window, as it has no chance to make kNN for any query in this predicted window.

If pnew qualified the KNN set, we use pnew to update the KNN set, We only need two
operations to finish the update. First, we put pnew into the KNN set and then remove
the previous Kth nearest neighbor (the farthest one) from KNN. During the output, we
simply scan the kNN set from the 1st to kth nearest neighbors. The nearest ones will
be reported as kNN for all queries, while the farther ones will be reported to less and
less queries depending on the k settings of the particular queries. Clearly, the cost of
our integrated maintenance strategy for multiple kNN queries is almost equal to the
cost of executing the single kNN query with the largest k setting.
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5. SHARED EXECUTION FOR QUERIES WITH DIFFERENT WINDOW PARAMETERS

In this section, we discuss memory and CPU sharing strategy among multiple
neighbor-based pattern queries with different window parameters, namely variations
in the window size win and the slide size slide. During this discussion, we assume that
all these queries have the same pattern parameters. The techniques proposed in this
section are general, and can be equally applied to all the neighbor-based pattern min-
ing queries discussed in this work and even other query types, such as graph mining.
This is because the optimizations introduced here are at the window level, namely,
regarding to planning and organization of predicted windows but independent from
the specific pattern maintenance within each window. To explain the proposed ideas
in details, we pick density-based clusters as the specific pattern type in our running
examples.

5.1. Same win, Arbitrary slide Case.

In this case, all member queries have the same window size win, while their slide sizes
may vary. First, we assume that all queries start simultaneously. The equality of win-
dow sizes implies that all queries always query on the same portion of the data stream.
More specifically, at any given time the data points falling into the windows of different
queries are the same. Then, the only difference among different queries is that they
need to generate output at different moments, as they have different slide sizes. For
example, given three queries Q1, Q2 and Q3, with Q1.win = Q2.win = Q3.win = 10(s),
Q1.slide = 2(s), Q2.slide = 3(s) and Q3.slide = 6(s), the query windows of them cover
exactly the same portion of the data stream at any given time, while they are required
to output the clusters at every 2, 3 and 6 seconds respectively. So, to serve the different
output time points, they need to build predicted windows starting at different times,
each serving a future output time point. In this example, assuming all three queries
start at wall clock time 00:00:00, they all need to build a predicted window starting at
00:00:00 for generating the output at 00:00:10, which is their first and shared output
time point. Then Q1 needs to build predicted windows starting at 00:00:02, 00:00:04,
etc, to serve the output time points at 00:00:12, 00:00:14, while Q2 and Q3 need to
build predicted windows starting at 00:00:03, 00:00:06, etc, and 00:00:06, 00:00:012,
etc respectively.

To solve this problem, for a given group QG, we build a single meta query Qmeta

which integrates all the member queries of QG. In particular, this meta query Qmeta

has the same window size with all member queries in QG, while its slide size is no
longer fixed but adaptive during the execution. More specifically, the slide size of Qmeta

at a particular moment is decided by the nearest moment which at least one member
query of QG needs to be answered. The specific formula to determine the next output
moment is:

Tnextoutput = Min(⌈
T − win

Qi.slide
⌉+ 1) ∗Qi.slide+ win)

With T the current wall-clock time and win the common window size among all queries.
Using the earlier example, for the query group having three member queries, we build
a meta query Qmeta for it with win = 10s. So, at wall-clock time 00:00:10, the slide size
of Qmeta should be 2s, as 00:00:12 will be the nearest time at which a member query
(Q1) needs to be answered. Then its slide size is adapted to 1s, 1s and 2s at 00:00:02,
00:00:03 and 00:00:04 respectively for the same reason.

Such adaptive slide size strategy is compatible with the “view prediction” technique.
This is because, although the slide size of Qmeta may keep changing, these changes
are still predictable and periodic. In particular, given the slide size of all the mem-
ber queries, we always know at which moments which member queries need to be an-
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swered. The interval between any two successive output moments is actually changing
periodically. So, we can construct an output schedule (with a lookahead of finite num-
ber of output time points) for Qmeta, which predetermines the slide size of Qmeta at any
given moment.

Knowing the slide sizes of Qmeta, we can just build predicted windows for Qmeta

based on the output time points. Still using the earlier example, at wall-clock time
00:00:10, we would have built eight “predicted windows” for Qmeta , which start from
00:00:00, 00:00:02, 00:00:03, 00:00:04, 00:00:06, 00:00:08, 00:00:09 and 00:00:10 re-
spectively, as each of them corresponds to an output time point for at least one member
query. Among these eight “predicted windows”, many of them are actually serving mul-
tiple queries. For example, the “predicted windows” starting at 00:00:00 and 00:00:06
will be used to answer Q1, Q2 and Q3 as they correspond to the output time points that
are shared by all three queries. This also means that if we were to maintain the pre-
dicted windows for these queries independently, four more predicted windows would
need to be maintained at this given moment. In particular, Q2 and Q3 would have
needed to maintain their own predicted windows starting at 00:00:00 and 00:00:06
separately, although they are exactly the same as those maintained by Q1. In this
example, 33 percent of the “predicted windows” are saved from the independent main-
tenance mechanism. This means that 33 percent of storage space and computational
resources are saved in this case.

In conclusion, by building a meta query representing all member queries in a query
group, we can save both the memory space and CPU processing time for answering the
query group for the following reasons: 1) No overhead, in particular, no extra predicted
views will be introduced, as a predicted window is built only if at least one member
query needs output at that moment. In other words, all the predicted windows built in
our integrated solution need to be maintained by individual member queries anyways.
2) Many predicted views can be shared as several member queries may require output
at the same time. The specific amount of sharing depends on the percentage of overlaps
of member queries’ output time points.

5.2. Same slide, Arbitrary win Case

In this case, although the window size may vary among the member queries, we hold
the slide size steady, indicating that their output schedules are identical. Here we first
work with a common assumption that all the window sizes of the member queries
are multiples of their common slide size. We observed that, given a query group with
member queries having the same slide size but different window sizes, all the member
queries require output at exactly the same moments. Based on this observation an
important characteristic can be discovered for such query groups.

Lemma 5.1. Given a query group QG with member queries having the same slide
size slide but arbitrary window sizes (multiples of slide), the “predicted windows” main-
tained for Qi, with Qi.win larger or equal to any other Qj .win in QG, will be sufficient
to answer all member queries in QG.

Proof: This is because the “predicted windows” maintained for Qi will cover all
the “predicted windows” that need to be maintained for all the other queries. More
specifically, at any given moment, say wall-clock time T , the “predicted windows” that
need to be maintained for a member query Qn include all those starting at T −n∗ slide
(1 ≤ n ≤ Qn.win

slide
). As Qi.win is larger or equal than any Qj .win, the “predicted windows”

maintained for Qi cover all those needed by other queries. At time T , any member
query Qj can be answered by the “predicted window” starting from T −Qj .win.
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For example, given three queries Q1, Q2 and Q3, with Q1.slide = Q2.slide =
Q3.slide = 5s, Q1.win = 10, Q2.slide = 15s and Q3.slide = 20s, at wall clock time
00:00:20, the “predicted windows” built by Q3 start from 00:00:00, 00:00:05, 00:00:10
and 00:00:15 respectively, while those need to be maintained by Q1 and Q2 start from
00:00:10, 00:00:15 and 00:00:05, 00:00:10, 00:00:15 respectively. The later all overlap
with those built by Q3. At this moment, the “predicted window” starting from 00:00:00
can be used to answer Q3, while the predicted windows starting from 00:00:10 and
00:00:05 can be used to answer Q1 and Q2 respectively.

In summary, we only need to maintain the predicted windows for a single member
query, namely the query with the largest window size, and then can answer all the
member queries in the query group with different predicted windows it maintains.
Clearly, full sharing is achieved. Here, we also note that although we made the common
assumption in Lemma 5.1 that the window sizes are multiples of slide, to make the
problem easier to understand, it is not crucial for our solution. Our solution can easily
be relaxed to handle the cases where window sizes of member queries are completely
arbitrary.

5.3. Arbitrary slide, Arbitrary win Case

We now give the solution for the more general case that both window parameters,
namely win and slide, are arbitrary. Generally, the solution for this case is a straight-
forward combination of the two techniques introduced in the last two subsections. In
particular, we simply build one single meta query that has the largest window size
among all the member queries and uses an adaptive slide size. These two techniques
are fully compatible, because they were both designed to make sure correct predicted
windows (start and end as required by query semantics) are created to answer the
member queries.

Here we use an example to demonstrate our solution. Given three queries Q1, Q2

and Q3, with Q1.win = 10, Q1.slide = 4, Q2.win = 9, Q2.slide = 5, Q3.win = 6 and
Q3.slide = 2, and all starting at wall clock time 00:00:00, we build a meta query Qmeta

with Qmeta.win = max(Qi.win)(1≤i≤3) = 10. Then we adaptively change its slide size
based on the next nearest output time point required by (at least) one of these three
queries. For instance, at wall clock time 00:00:10, six predicted windows would have
been built, which start from 00:00:00 (serving Q3 for output at 00:00:10), 00:00:01
(serving Q2 for output at 00:00:10), 00:00:04 (serving Q1 for output at 00:00:12 and Q3

for output at 00:00:10), 00:00:06 (serving Q2 for output at 00:00:13 and Q3 for output
at 00:00:12), 00:00:08 (serving Q1 for output at 00:00:18 and Q3 for output at 00:00:14)
respectively. Figure 14 shows the predicted views that need to be maintained by each
of these three queries independently, versus those would instead be maintained by the
meta query at wall clock time 00:00:10.

6. PUTTING IT ALL TOGETHER: THE GENERAL CASE

Finally, we now discuss the case that the pattern and window parameters are both
arbitrary for the queries in a query group. Although sharing among a group of totally
arbitrary queries is a hard problem if we had to solve it from scratch, we now can easily
handle it by combining the two techniques introduced in last two sections, namely the
incremental pattern representation technique and the meta query technique. These
two techniques are orthogonal to each other, and can thus be easily combined. In par-
ticular, the integrated pattern representation technique (introduced in Section 4) is
designed to share among a group of queries that are specified on the same dataset,
which in our case is each predicted window. So, we can consider this here as an “intra-
predicted-windows” sharing technique. On the other hand, the meta query tech-
nique (introduced in Section 5) is designed to make sure that the predicted windows,
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Fig. 14. Predicted Views Maintained By Three Queries Q1, Q2 and Q3 Independently versus Those Main-
tained By a Single Meta Query

which needs to be maintained by different queries, start and end properly and share
across the different predicted windows. So, it is an “inter-predicted-windows” shar-
ing technique. Thus, these two orthogonal techniques can be easily applied together
to realize the full potential of sharing of the member queries on both the inner- and
inter-predicted window level.

Here we use an example to demonstrate such a combination. Given three queries
Q1, Q2 and Q3 starting at 00:00:00, with Q1(win = 10, slide = 4, θrange = 0.2, θcnt = 5);
Q2(win = 9, slide = 5, θrange = 0.3, θcnt = 4) and Q3(win = 6, slide = 2, θrange =
0.2, θcnt = 3), we first use the meta query technique to build the predicted windows
they need to maintain. At wall clock time 00:00:10, the required predicted windows
are the same as those shown in Figure 14. Then, for each predicted window built, we
apply the IntV iew θ technique to build an “Predicted View Tree” to integrate the pre-
dicted views (of different queries) in this window. For the predicted window starting
from 00:00:04, which is serving Q1 and Q3, we build a “Predicted View Tree” repre-
senting both Q1 and Q3. Now the “Predicted View Tree” structures built for different
windows may no longer be all the same as those in the example we demonstrated in
Figure 15. This is because the predicted view of a particular query will appear on a
“Predicted View Trees” only if this predicted window needs to be maintained by this
query, indicating this predicted window corresponds to an output time point for it. Us-
ing the same example, Q2 has no predicted view in W4, as W4 is not a predicted window
that need to be maintained by it.

We call this ultimate hierarchical structure IntV iew. Figure 15 depicts the final
IntV iew built for the three queries mentioned in the earlier example.

In particular, IntV iew is a tree structure that starts from the predicted view act-
ing as the root (rnewest) of the “Predicted View Tree” in the newest predicted window
(with the largest window number). Thus, each root predicted view in an older predicted
window is now incrementally built based on that in the next window. This indicates
that, as subtrees for IntV iew, each “Predicted View Trees” in an older window is now
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Fig. 15. IntV iew: Integrated Representation for Predicted Views Identified by 3 Queries in 5 Predicted
Windows

built based on the incremental information from the next (the newer) window (as its
root itself now is incremental). We call the final solutions for density-based clustering,
distance-based outlier detection and kNN queries Chandi, “SDOD and SkNN respec-
tively. We give the pseudo-code of them in Figures 16, 17 and 18.

As shown in our pseudo-code in Figures 16 and 17, when a new data point arrives
at the system, the Chandi and SDOD algorithms, which handles density-based clus-
ters and distance-based outliers respectively, first run a range query search using the
largest θrange among the query group to collect all its potential neighbors. Then it dis-
tributes each of them to the first predicted view on each path of IntV iew, in which
their “neighborship” truely exists. Then, it starts the IntV iew maintenance process
from the root of IntV iew, namely the root predicted view of the newest predicted win-
dow in IntV iew, and then incrementally maintains those at higher levels of IntV iew.
During the maintenance of each predicted view, it only needs to communicate with the
neighbors assigned to that particular view. The computation needed by SkNN is sim-
pler. For each predicted window, it first decides whether the new object is qualified for
the KNN set in that window. If the answer is “yes”, then it updates the KNN in that
window using the new object, otherwise the new object will not affect the KNN in that
window.

Computation-wise, all three proposed algorithms, namely Chandi, SDOD and SkNN
only require a single pass through the new data points at each window slide. In par-
ticular, Chandi and SDOD only require one range query search for each new object,
and each new object only communicates with its neighbors once for all shared queries.
SkNN only requires each new object to update the KNN in each window at most once.

Memory-wise, for all three proposed algorithm, as they all maintain the pattern sets
identified by the multiple queries in a single IntV iew structure, the upper bound of
the memory consumption of them for a group of shared queries on the same path is
independent from the “length” of this path, namely the number of shared queries in
this group This can be proven using the same methods as we used for proving Lemma
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pi: a data point. pnew:a new data point. pi.T :pi’s time stamp.
clu mem:cluster membership. Wi : predicted window. Woldest/newest: oldest/newest
W on IntV iew. W.Tend : ending time of W. Wi.root : the root predicted view of in
Wi. IntV iew: the overall IntView structure. PV : a predicted view.
Qi : a member query. Qi.PV : a predicted view built for Qi.
Chandi (QG)
1 For each new data point pnew
2 If pnew.T > Woldest.Tend

3 Purge(Woldest); //purge the oldest predicted window // purge
4 load pnew into index // load
5 neighbors:=RangeQuerySearch(pnew,max(Qi.θ

range))
6 UpdateIntView (pnew, neighbors) // IntView Maintenance
7 If pnew.T == Toutput

8 Output(); // output
9 add new window Wnewest to IntV iew
Purge(Wi)
1 purge any pi from index If pi.T < Wi.Tend

2 remove Wi from IntV iew
UpdateIntView (p, neighbors)
1 For i:=1 to neighbors.size()
2 DistributeNeighbor(p, neighbors[i],Wnewest.root);
3 UpdatePredictedView(p,Wnewest.root);
DistributeNeighbor(pnew, pi, PV )
1 If dist(pnew, pj) ≤ Qi.θrange

2 add pi to PV.neighbors (neighbors distributed to PV)
3 Else For each Qj .PV at higher level
4 DistributeNeighbor (p,neighbor, Qj .PV );
UpdatePredictView (p, PV )
1 p.neighborcount = PV.neighborsinthisview.size();
2 For i:=1 to PV.neighbor.size()
3 PV.neighbors[i].neighborcount++;
4 If PV.neighbors[i] becomes a new core
5 HandleNewCore(PV.neighbors[i]);
6 If p.neighborcount ≥ Qi.θ

cnt

7 HandleNewCore(p, PV );
8 For each Qj .PV at higher level
9 UpdatePredictView (p,Qj .PV );
HandleNewCore(p, PV )
1 p.type = core;
2 p.clu mem=new clu mem (cluster membership);
3 For i:=1 to PV.neighbors.size()
4 If PV.neighbors.type == core
5 Merge PV.neighbors[i].clu mem and p.clu mem;
6 If PV.neighbors[i].type == noise
7 PV.neighbors[i].type := edge;
8 PV.neighbors[i].clu mem := p.clu mem;
9 For each Qj .PV at higher level
10 PropagateNewCore(p,Qj .PV );

Fig. 16. Chandi: Proposed Algorithm for Multiple Density-Based Clustering Queries
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pi: a data point. pnew:a new data point. pi.T :pi’s time stamp.
Wi : predicted window. Woldest/newest: oldest/newest W on IntV iew.
W.Tend : ending time of W. PV.p outlier : the potential outliers in PV .
IntV iewoutlier: the overall IntView structure. Wi.PV : predicted view built for Wi.
Qi : a member query. Qi.PV : a predicted view built for Qi.
SDOD (QG)
1 For each new data point pnew
2 If pnew.T > Woldest.Tend

3 Purge(Woldest); //purge the oldest predicted window // purge
4 load pnew into index // load
5 neighbors:=RangeQuerySearch(pnew,max(Qi.θ

range))
6 UpdateIntView (pnew, neighbors) // IntView Maintenance
7 If pnew.T == Toutput

8 Output(); // output
9 add new window Wnewest to IntV iew

Purge(Wi)
1 purge any pi from index If pi.T < Wi.Tend

2 remove Wi from IntV iew

UpdateIntView (p, neighbors)
1 For each Wi on IntV iewoutlier

2 UpdatePredictedView(p,Wi.PV ,neighbors);

UpdatePredictView (p,Wi.PV, neighbors)
1 For each Qi that maintains Wi (in the ascending order of “strictness”)
2 p.neighborcount := 0
3 For i:=1 to neighbor.size()
4 If Distance(p, neighbor[i]) < Qi.θ

range

5 p.neighborcount++;
6 neighbors[i].neighborcount++;
7 If neighbors[i] ∈ Wi.PV.p outliers and

neighbors[i].neighborcount ≥ Qi.θ
fra × win

8 mark neighbors[i] as safe non-outlier for Qi;
9 If neighbors[i] has been marked as safe non-outlier for all queries;
10 remove neighbors[i] from Wi.PV.p outliers;
11 If p /∈ Wi.PV.p outliers p.neighborcount < Qi.θ

fra × win;
12 put p in Wi.PV.p outliers;

Fig. 17. SDOD: : Proposed Algorithm for Multiple Distance-Based Outlier Detection Queries

4.7. In conclusion, our proposed algorithms, namely Chandi, SDOD, SkNN achieve full
sharing for multiple density-based clustering, distance-based outlier queries and kNN
queries over the same input stream in terms of both CPU and memory resources.

7. EXPERIMENTAL STUDY

All our experiments are conducted on a HP Pavilion dv4000 laptop with Intel Centrino
1.6GHz processor and 1GB memory, which runs Windows XP operating system. We
implemented all algorithms with VC++ 7.0.

Real Streaming Dataset. We used two real streaming data sets. The first data set,
GMTI (Ground Moving Target Indicator) data [Entzminger et al. 1999], records the
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pi: a data point. pnew:a new data point. pi.T :pi’s time stamp. Wi : predicted window.
Woldest/newest: oldest/newest W on IntV iew. W.Tend : ending time of W.
pQ: the query object. PV.KNN : the KNN (see Section 4.4) in PV .
PV.pQ.Kth NN : the Kth nearest neighbor of pQ in PV .
IntV iewkNN : the overall IntView structure for kNN queries.
Wi.PV : predicted view built for Wi. Qi : a member query.
Qi.PV : a predicted view built for Qi.
SDOD (QG)
1 For each new data point pnew
2 If pnew.T > Woldest.Tend

3 Purge(Woldest); //purge the oldest predicted window // purge
4 load pnew into index // load
5 UpdateIntView (pnew) // IntView Maintenance
6 If pnew.T == Toutput

7 Output(); // output
8 add new window Wnewest to IntV iew

Purge(Wi)
1 purge any pi from index If pi.T < Wi.Tend

2 remove Wi from IntV iew

UpdateIntView (p)
1 For each Wi on IntV iewkNN

2 UpdatePredictedView(p,Wi.PV );

UpdatePredictView (p,Wi.PV )
1 If Wi.PV.KNN.size() < K
2 insert p into Wi.PV.KNN ;
3 Else
4 If Dist(pQ, p) < Dist(pQ,Wi.PV.pQ.Kth NN)
5 insert p into Wi.PV.KNN ;
6 remove Wi.PV.pQ.Kth NN from Wi.PV.KNN ;

Fig. 18. SkNN: : Proposed Algorithm for Multiple kNN Queries

real-time information of moving objects gathered by 24 different data ground stations
or aircrafts in 6 hours from JointSTARS. It has around 100,000 records regarding the
information of vehicles and helicopters (speed ranging from 0-200 mph) moving in a
certain geographic region. In our experiment, we used all 14 dimensions of GMTI while
detecting clusters based on the targets‘ latitude and longitude. The second dataset is
the Stock Trading Traces data (STT) from [INETATS ], which has one million trans-
action records throughout the trading hours of a day.

Alternative Algorithms. As we discussed earlier in Section 4, density-based clus-
ter has one of the most complex pattern structure within the neighbor-based pattern
family. Also, given the same window size and input rate, each individual density-based
clustering query is also much more system-resource consuming compared with individ-
ual distance-based outlier or kNN query. Therefore our experimental evaluation will
concentrate on thoroughly evaluate the performance of our proposed algorithm Chandi
which handles multiple density-based clustering queries. This will include evaluations
on its performance under a broad range of parameter settings, how it compares with
method using straightforward sharing method, and test to its scalability on the num-
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ber of queries that can be handled. Beyond that, theoretical analysis to the perfor-
mance of other two pattern types will be given later in Sections 7.1 and 7.1.

To evaluate our proposed Chandi algorithm, for any input QG, we compare Chandi’s
performance of two major alternative methods, executing QG with four alternative
methods, namely executing one Extra-N algorithm [Yang et al. 2009a] for each mem-
ber query with and without sharing of range query searches (henceforth referred as
Extra-N with rqs and Extra-N), and executing one IncDBSCAN algorithm [Ester et al.
1998] for each member query with and without sharing of range query searches (re-
ferred as IncDBSCAN with rqs and IncDBSCAN). The reasons why we choose them
are: 1) Extra-N algorithm is the only algorithm we are aware of in the literature solv-
ing density-based clustering over sliding windows; 2) IncDBSCAN algorithm is the
most well known method for incremental density-based clustering (but not designed
for sliding window semantics).

Experimental Methodologies. We measure two common metrics for stream pro-
cessing algorithms, namely average processing time for each tuple (CPU time) and
memory footprint, indicating the peak memory space required by an algorithm.

As we know, each density-based clustering query using sliding window semantics
has four input parameters, namely two pattern parameters: θcnt, θrange, and two win-
dow parameters: win and slide. In many cases, the domain knowledge or specific re-
quirements of the analysis tasks may restrict some of them to particular values. For
example, a moving object monitoring task may require the θrange to be the maximum
distance that two objects can keep wireless communication, and the window size to be
the time interval between two successive reports of a single object. Thus the queries
submitted by different analysts may only differ on a subsets of these parameters. In
our experiments, we first evaluate the four test cases, each has only one of the four
parameters different among the member queries.

Evaluation for One-Arbitrary-Parameter Cases. For each test case, we prepare
a query group QG with |QG| = 20 by randomly generating one input parameter (in
a certain range) for each member query, while using common parameter settings on
the other three parameters. The parameter settings in our experiment are learned
from a pre-analysis of the datasets. In particular, we pick parameter ranges that allow
member queries to identify all the different major cluster structures that could be
identified in the datasets. In all our test cases, the largest number of clusters identified
by a member query is at least five times the smallest number of clusters identified by
the other, indicating that the cluster structures identified by different queries vary
significantly. In each test case, we use different subsets of QG (sized from 5 to 20) to
execute against GMTI data.

Arbitrary θcnt case. We use θrange = 0.01, win = 5000 and slide = 1000, while
varying θcnt from 2 to 20. In this test case, at most 16 clusters are identified by the
most restricted query with θcnt = 20, while at least 3 clusters are identified by the
most relaxed one with with θcnt = 3. As shown in Figures 19 and 20, both the av-
erage processing time and the memory space used by all five alternatives increases
as the number of member queries increases. This is because more meta-information
needs to be computed and stored by all of them. However, the utilization of CPU re-
sources by Chandi is significantly lower than those consumed by other alternatives,
especially when the number of the member queries increases, and its memory con-
sumption is almost equal to IncDBSCAN and much lower than Extra-N. This matches
with our analysis in Section 4, because in this test case, the predicted windows need to
be maintained by Chandi for different queries are completely overlapped. Also, since
there is no “extra neighborships” existing in any window, the cluster growth informa-
tion need to be maintained by Chandi among the queries are relatively simple. Thus,
the system resource consumption of Chandi increases very modestly when the num-
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ber of member queries increases. While since other alternative methods maintain the
progressive clusters independently for different queries, their consumption to system
resources increases dramatically when the number of member queries increases.

Fig. 19. CPU time used by five competitors in ar-
bitrary θcnt cases

Fig. 20. Memory space used by five competitors
in arbitrary θcnt cases

Arbitrary θrange case. In this case, we use θcnt = 10, win = 5000 and slide = 1000,
while varying θrange from 0.01 to 0.1. In this test case, at most 10 clusters are identified
by the most restricted query with θrange = 0.1, while at least 2 clusters are identified by
the most relaxed one with θrange = 0.1. As shown in the Figures 21 and 22, similar situ-
ations can be observed that Chandi uses significantly less CPU and memory resources
than other alternatives. In this test case, the system resource consumption of Chandi
increases more as the number of queries increases compared with the previous test
cases. This is for of two main reasons. 1) Since the θrange parameters vary among the
queries, the range query search cost increases along with the increase of the number
of queries even with the range query sharing (each data point needs to figure out its
neighbors defined by different queries). 2) As the neighborships identified by different
queries differ, such “extra-neighborships” are more likely to cause cluster structure
changes and thus requires Chandi to maintain more meta-information in IntV iew.
The performance of other competitors, especially for IncDBSCAN, is affected by the
increasing cost of range query searches as well. This is because the performance of
IncDBSCAN (with rqs or not), which consumes large numbers of range query searches
during the purging process, largely relies on the cost of range query searches.

Fig. 21. CPU time used by five competitors in ar-
bitrary θrange cases

Fig. 22. Memory space used by five competitors
in arbitrary θrange cases
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Arbitrary win case. In this case, we use θcnt = 10, θrange = 0.01, slide = 500, while
varying win from 1000 to 5000 (we use 500 as granularity for any window parameter).
As shown in Figures 29 and 30, we can observe that the performance of Chandi is even
better compared with the previous test cases. In particular, its resource utilizations
for both CPU and memory are almost unchanged as the number of queries increases.
This is expected, because in this case Chandi only maintains the meta-information
for a single query, which is sufficient to answer all the member queries. Thus, the
cost of Chandi in this case only depends on the query with the largest win, which is
independent of the number of queries in the query group.

Fig. 23. CPU time used by five competitors in ar-
bitrary win cases

Fig. 24. Memory space used by five competitors
in arbitrary win cases

Arbitrary slide case. In this case, we use θcnt = 10, θrange = 0.01, window = 5000,
while varying slide from 500 to 5000. As shown in Figures 25 and 26, the performance
of Chandi is similar with that in the arbitrary win case. This is because the cost of
Chandi in this case depends on the number of predicted windows that need to be main-
tained, which is decided by the query with smallest slide size but does not necessarily
increase with the number of queries in the query group.

Fig. 25. CPU time used by five competitors in ar-
bitrary slide cases

Fig. 26. Memory space used by five competitors
in arbitrary slide cases

Evaluation for Two-Arbitrary-Parameter Cases We evaluate two test cases,
each has two of the four parameters different among the member queries. In the first
test case, member queries have arbitrary pattern parameters but common window pa-
rameters, indicating that they may have different definition to the clusters but always
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have the same query window. In the second test case, member queries have arbitrary
window parameters but common pattern parameters, indicating they may have differ-
ent query windows but have the same definition to the clusters.

Arbitrary Pattern Parameters. In this case, we use win = 5000, slide = 1000,
while vary θcnt from 2 to 20 and θrange from 0.01 to 0.1. As shown in Figures 27 and
28, Chandi still consumes significantly less CPU time compared with the other alter-
natives, although the increase of CPU consumption caused by the increase of member
queries is more obvious. This is because totally arbitrary pattern parameters lead to an
even larger difference in the clusters identified by different queries, and thus increase
the maintenance costs of Chandi. In particular, in this test case, the largest number
of clusters identified by the number query with θrange = 0.01 and θcnt = 14 reaches
35, while the smallest number of clusters identified by the query (with θrange = 0.1
and θcnt = 3) is only 2. The memory space used by Chandi in this case is much less
than Extra-N while being only slightly higher than IncDBSCAN. Again, this is caused
by the more incremental information existing among the predicted views maintained
by Chandi. However, as the CPU performance of IncDBSCAN is much worse than
Chandi, the overall performance of Chandi is still much better.

Fig. 27. CPU time used by five competitors in ar-
bitrary pattern parameter cases

Fig. 28. Memory space used by five competitors
in arbitrary pattern parameter cases

Arbitrary Window Parameters. In this case, we use θcnt = 10 and θrange = 0.01,
while varying win from 1000 to 5000 and slide from 500 to 5000 (for any query Qi,
Qi.slide < Qi.win). As shown in Figures 29 and 30, the performance of Chandi is simi-
lar with that observed in the arbitrary win or slide case. This is because, although the
queries now have arbitrary settings on both parameters, such fact does not affect the
principle of how the “meta query” strategy works. In particular, the cost of answering
a query group still only depends on the largest win in the query group and the number
of predicted views that need to be maintained. Both do not necessarily increase along
with the number of queries.

General Case: Four Arbitrary Parameters. Finally, we evaluate the general
case, with all four parameters being arbitrary. We divide this experiment into three
cases, each measuring the performance of the algorithms when executing different
numbers of queries. In particular, for each test case, we generate 30 query groups each
with N member queries (N equals to 20, 40 and 60 for three cases respectively). Each
query group is independently generated, and the member queries in each group are
randomly generated with parameter settings: θcnt = 2 to 20, θrange = 0.01 to 0.1, win =
1000 to 5000, and slide = 500 to 5000. For each test case, we measure the average cost
of each algorithm for executing all 30 query groups. Beyond that, we zoom into the
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Fig. 29. CPU time used by five competitors in ar-
bitrary window parameter cases

Fig. 30. Memory space used by five competitors
arbitrary window parameter cases

overall average cost of each algorithm, and measure the cost caused by each specific
subtask. In particular, the CPU measurement is divided into two parts, namely the
CPU time used by range query searches and that used by cluster maintenance. For
the memory space consumed, we distinguish between the memory used by raw data
(for storing actual tuples) and the memory used for meta-data.

Fig. 31. Detailed comparison on CPU time consumption of five algorithms

As shown in charts C1, C2 and C3 in Figure 31, we observe that the average CPU
time used by Chandi is 70, 76, and 85 percent lower then the best alternative method,
Extra-N with rqs, in the three cases respectively. In particular, the CPU time used
by Chandi to conduct range query searches is always less than 10% compared with
that needed by IncDBSCAN with rqs. This is because Chandi only requires each new
data point to run one range query search when it arrives at the system, while IncDB-
SCAN relies on repeated range query searches to determine the cluster changes. The
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CPU time used by Chandi to maintain meta-information is at least 62% less than that
used by Extra-N with rqs. This is because Chandi updates the meta-information for
different queries integrally, while Extra-N maintains them independently.

Besides the comparison of the average system resource consumption, we also mea-
sure the savings of Chandi for each individual query group in all three test cases.
In particular, for each query group, we measure the difference in resource utilization
between Extra-N with rsq and Chandi, which corresponds to the difference between
executing them using the best existing technique and our proposed strategy. More
specifically, for each group, we first calculate the difference on CPU (or memory) uti-
lization between two Chandi and Extra-N. Then, we use the difference to divide that
used by Extra-N with rqs to get the saving percentage achieved by Chandi. As shown
in C4 of Figures 31, Chandi never performs worse than Extra-N with rqs for any query
group. For the first test case (each query group has 20 queries), the average savings
achieved by Chandi in terms of CPU time are 62%. Although the minimum savings
in this case among the 30 groups is 23%, the maximum savings reach 84% , and the
standard deviation is only 19% . As the number of queries in each group increases, the
savings achieved by Chandi are even higher in the other two test cases. In particular,
the average savings achieved by Chandi of CPU time increases to 80% when the num-
ber of queries in each group increases to 60. The minimum and maximum savings on
CPU time increases to 45% and 92% respectively in this case, and the standard devi-
ation of the savings decreases to 12%. This shows the promise of Chandi that, for a
query group with 60 queries, it can achieve savings between 73% to 92% of CPU time
in most of the cases. Among the 30 queries in this query group, 23 of them fall into
this range. The average savings achieved by Chandi on memory space in this 60-query
cases is 89%.

Evaluation for Scalability. Now we evaluate the scalability of the algorithms in
terms of the number of queries they can handle under a certain data rate. In this ex-
periment, we use Extra-N, Extra-N with rqs and Chandi to execute query groups sized
from 10 to 1000 against GMTI data. Similar with the earlier experiment, the member
queries in the query group are randomly generated with the arbitrary parameter set-
tings in certain ranges. In particular, the parameters settings in this experiment are
θcnt = 2 to 30, θrange = 0.001 to 0.01, win = 1000 to 5000, and slide = 500 to 5000.

Fig. 32. CPU time used by five competitors in
logarithmic scale

Fig. 33. Memory space used by five competitors
in logarithmic scale

As shown in Figures 32 and 33, both the CPU time and the memory space used by
Chandi increase modestly as the number of member queries increases. In particular,
the CPU time consumed by Chandi increases around 6 times when the number of
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queries grows from 10 to 100 (increased 9 times), and then it increases less than 4
times when number of queries grows from 100 to 1000. Thus totally the CPU time
consumed by Chandi increases 33 times when the number of queries increased from
10 to 1000, which is 100 times. Such increase for Extra-N and Extra-N with rqs are
105 times and 89 times respectively. More specifically, in our test cases, the average
processing time (CPU) for each tuple used by Chandi to execute the 100-query and
1000-query query groups are 0.76ms and 3.3ms respectively. This indicates that our
system can comfortably handle 100 queries under a 1000 tuples per second data rate,
and handle 1000 queries under a 300 tuples per second data rate. For the memory
space used, Chandi has even better performance as its utilization of memory space
only increases 5 times when the number of queries increases from 10 to 1000, while
such increase for Extra-N and Extra-N with rqs are both 98 times.

Conclusion for Experimental Study. Generally, Chandi is more efficient than
other alternative methods in terms of both CPU and memory utilization when exe-
cuting multiple density-based clustering queries specified on the same input stream.
Chandi achieves most sharing when only one of the four parameters differ among
the member queries. Among the four one-arbitrary-parameter cases, Chandi achieves
most sharing in the arbitrary win case, while least is achieved in the arbitrary θrange

case. For the two-arbitrary-parameter cases, Chandi performs better when the mem-
ber queries have arbitrary window parameters rather than arbitrary pattern parame-
ters. For the general cases, where the member queries have arbitrary parameter set-
tings on all four parameters, Chandi still clearly outperforms the other alternative
methods by achieving on average 60 percent savings for CPU time and 84 percent sav-
ings in memory space. Lastly, Chandi shows a good scalability in terms of handling a
large number (hundreds or even thousands) of queries under a high data rate.

7.1. Discussion

Now we discuss the potential performance of our proposed methods for other neighbor-
based pattern types. The savings expected for our proposed methods for the other
neighbor-based pattern types are similar to those observed from our above compre-
hensive case study with the clustering-pattern type. Thus we only briefly review these
expected savings below.

Performance Analysis for Distance-Based Outlier Queries. For individual
distance-based outlier queries, the CPU processing resources for query execution
is composed by two major parts, namely running range query searches for each new
object arriving at the system and updating the neighbor-counts for each data point
whose neighborhood is affected by those new objects. This is really identical to the
situation observed for density-based clustering queries. In our experiments for density-
based clusters, for a single query execution, the cost for neighbor searches constitutes
around 40 percent of the overall CPU processing costs, while and the remaining costs
is primarily consumed by updating the cluster structures. For distance-based outlier
queries, this percentage of CPU utilization for conducting neighbor searches will surely
be even much higher, as the pattern structures to be updated for maintaining outliers
are simpler and thus clearly need much less computational for processing updates on
them.

Same as clustering queries, the cost of the neighbor searches can be completely
shared among all queries using our method. In particular, we simply need to run one
single range query search for each new data point (using the largest range, of course)
to collect all the point’s neighbors for all participating queries. This indicates that,
for executing a large group of queries, the costs for conducting neighbor searches can
almost be completely saved. This is because the cost of running a single range query
search for each data point is neglectable compared with the cost required for updating
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the neighbor counts for for potentially large number of queries upon the arrival of each
data point.

For the second part of the cost, namely the cost associated with the neighbor count
maintenance, the savings depend on the overlap of the stream windows and on the
number of queries that identify the same number of neighbors for each data point.
Thus, the savings that can be achieved in this component may vary somewhat. How-
ever, as indicated above we can completely save the costs associated with neighbor
searches (at least 40 percent). In addition, we can expect to have fairly significant
amount of sharing among the pattern updating processes for the different patterns,
especially for larger query groups (where similar queries tend to be more likely). Thus
one can safely expect that savings achieved by our method for distance-based outlier
queries will be en par or even outperform those for the cluster-based queries.

Memory-wise, the cost for individual distance-based outlier query execution is com-
posed by both raw and meta data storage. In particular, each query needs to store all
the valid data points in the window and the neighbor counts for each data point. For
this pattern type, the major memory savings that could be achieved by our method
should come from the storage for raw data, as now using incremental pattern repre-
sentation, we only need to store one reference for each data point for all queries. The
storage for meta information, namely the neighbor counts, may not be saved signifi-
cantly. This is because each neighbor count maintained by a query is just an integer.
Storing a new count number for a query or only storing the increments from a “stricter”
query will not make any different in terms of memory usage.

Performance Analysis for kNN Queries. Computation-wise, the major cost for
executing individual kNN queries comes from updating the k nearest neighbors when
the new data points arrive. As we discussed in Section 4, the k (the largest k setting
among all queries) nearest neighbors of the query object are incrementally stored, and
thus the updating effort can be completely shared. In particular, if a new data point
qualifies for the kNN of the query object, we only need two operations to first put the
new data point into a single kNN set and remove the previous Kth nearest neighbor
(the farthest one). This cost is much cheaper than placing the new data point into the
kNN sets for all queries, and more importantly, will almost not affected by the number
of queries in the query group. Therefore, we envision that the percentage of savings
achieved by our method on CPU time will increase linearly the number of queries
increases.

Memory-wise, as discussed in Section 4, using our shared execution method, the
information (raw and meta) needs to be stored by a group of query is same with that
needs to be stored by a single query (the query with largest k setting). Therefore the
memory cost of our method is independent from the number of queries in the query
group.

8. RELATED WORK

Data mining, as a general concept for extracting or “mining” knowledge from large
amounts of data, covers a rather diverse range of mining tasks. Also, any data mining
task may consist of an iterative sequence of the following steps: 1) data cleaning, 2)
data integration, 3) data selection, 4) data transformation, 5) pattern extraction, 6)
pattern evaluation and 7) knowledge representation [Han 2005]. In this work, we fo-
cus on the problem of shared execution strategies for multiple neighbor-based pattern
mining queries in streaming windows. Such query execution techniques falls into the
pattern extraction step of data mining, which is an essential process where intelligent
methods are applied to extract patterns form well prepared data.

Next, we review a categorization of the common data mining tasks from the liter-
ature and show where our target query types lie in this categorization. Traditionally,
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data mining techniques [Zhang et al. 1996; Ester et al. 1996; Ankerst et al. 1999; Knorr
and Ng 1998; Breunig et al. 2000; Jagadish et al. 2005; Koudas et al. 2004; Nutanong
et al. 2008] are designed for static environments with large volumes of stored data.
More recently, as stream applications are becoming prevalent, the problem of mining
streaming data is being tackled [Aggarwal et al. 2003; Yang et al. 2009a; Babcock et al.
2003; Subramaniam et al. 2006; Angiulli and Fassetti 2007; Mouratidis and Papadias
2007]. Based on the dynamics of the input data, we can first divide the data mining
tasks into static data mining and stream data mining. Clearly, our tasks of min-
ing neighbor-based patterns in streaming windows falls into the stream data mining
category.

Second, for both static and streaming data mining, Han and Kamber [Han 2005]
divide the data mining tasks into two categories based on their purposes, namely de-
scriptive and predictive mining. In particular, descriptive mining tasks character-
izes the general properties of the data in the database. Predictive mining performs
inferences on the current data in order to make predictions for future data. Typical
predictive data mining tasks include classification, prediction and trend mining [Han
2005]. Since our task of mining neighbor-based patterns in the data streams aims to
find specific patterns in the most recent portion of the stream, which does not necessar-
ily predict anything about the future, our task falls into the descriptive data mining
category.

Among the descriptive streaming data mining tasks, they can be further divided
them into following categories based on their distinct key characteristics [Han 2005].
1) graph mining: The one-to-one relationships, namely the (directed or undirected,
weighted or unweighted) edges among objects and the topological relationships among
objects are the key factors that defines the patterns which graph mining mines for.

2) association rule and correlation mining: Frequency is the key factor for as-
sociation rules and correlations. Namely, the frequency of a certain type of objects to
appear together or the frequency of a certain relationship existing among certain at-
tributes of the objects defines association rules and correlations.

3) text mining: In text mining, the appearance of certain key workds and relation-
ships among their linguistic meanings of these key words are the key factors that
define the patterns in the text.

4) sequence mining: In sequence mining, the time sequences in which certain events
happen or the time sequences in which values of an attribute appears are the key
factors for the sequence mining process.

5) clustering: Cluster mining processes aim to divide the input objects into differ-
ent groups, each having its own characteristics. Maximizing the similarity among the
objects within the same groups and the disimilarity among objects within the different
groups are the goals pursued by the clustering algorithms.

6) outlier mining: The abnormality of some objects compared to the majorities is
the knowledge that the outlier mining process mines for.

7) web page mining: The textual content and the link structures among the web
pages is explored by web page mining.

8) multimedia mining: Mining on images and voices distinguishes multimedia
mining from other mining tasks.

Given this categorization, if we analyze our neighbor-based pattern mining tasks
from the perspective of their general purpose, they are clearly related to multiple
categories, including cluster and outlier mining. However, as discussed earlier in Sec-
tion 2, if we analyze the characteristics of the target pattern structures of neighbor-
based pattern mining queries, namely how these pattern strcutures are defined, all
the neighbor-based pattern mining queries can be viewed as subclass of the graph
mining category. In conclusion, our target neighbor-based pattern mining queries over
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streaming windows fall into the graph mining category in descriptive streaming data
mining.

Within our target neigbor-based pattern types, density-based clustering was first
proposed in [Ester et al. 1996] as DBSCAN algorithm for static data. Later an Incre-
mental DBSCAN [Ester et al. 1998] algorithm was introduced to incrementally update
density-based clusters in data warehouse environments. However, as both analytically
and experimentally shown in [Yang et al. 2009a], since all optimizations in [Ester
et al. 1998] were designed for single updates (a single deletion or insertion) to the data
warehouse, it may fit well for the relatively stable data warehouse environment, but
it is not scalable to highly dynamic streaming environments. Our experimental study
conducted in Section 7 also demonstrates that executing multiple queries using [Es-
ter et al. 1998] in streaming environments is prohibitively expensive in terms of CPU
resource consumption.

Algorithms for density-based clustering queries over streaming data include [Yang
et al. 2009a; Chen and Tu 2007; Cao et al. 2006]. Among these works, [Chen and Tu
2007] and [Cao et al. 2006] have goals different from ours, because they are neither
designed to identify the individual members in the clusters nor enforce the sliding win-
dow semantics for the clustering process. Thus these two algorithms cannot be applied
to solve the problem we tackle in this work. [Yang et al. 2009a] is the only algorithm we
are aware of that detects density-based clusters in sliding windows. Our experimental
study conducted in Section 7 shows that our shared execution strategy largely outper-
forms the strategy of using this algorithm independently for each query. [Yang et al.
2010] builds a visual system to allow analysts to interatively explore density-based
clusters in streaming environments.

[Angiulli and Fassetti 2007] and [Mouratidis and Papadias 2007] discuss the prob-
lem of detecting distance-based outliers and top-k nearest neighbors in data streams
respectively. Again, these works concentrate on single query execution only. We borrow
the basic ideas of maintaining meta-information, such as potential outlier sets and k
nearest neighbors from them. However, instead of maintaining such meta-information
independently for each query, we developed the integrated maintenance strategies for
shared execution among multiple queries, and thus achieve significant savings on both
CPU and memory resources.

As a general query optimization problem, multiple query optimization has been
widely studied for not only static but also streaming environments. Such techniques
can be roughly divided into two different groups, namely “plan level” and “operator
level” sharing. “Plan level” sharing techniques [Liu et al. 2008; Chen et al. 2000; Chen
et al. 2002] aim to allow the different input queries to share the common operators
across their query plans, and thus lower the overall costs for multiple query execution.
Operator level sharing studies the sharing problem on a finer granularity, namely
within the individual operators. In particular, they aim to share the operator state
as well as the query processing computation within a single operator, when multi-
ple queries have similar yet not identical operator specifications. For example, two
queries may calculate aggregations for the same input stream but using different win-
dow sizes. The problem we solve in this paper falls into the operator level sharing
category.

Previous research efforts discussing such operator level sharing techniques focus
on simple operators, such as selection and join operators [Madden et al. 2002; Ham-
mad et al. 2003; Krishnamurthy et al. 2004; Wang et al. 2006; Zhang et al. 2005], and
aggregation operators [Krishnamurthy et al. 2006; Arasu and Widom 2004; Zhang
et al. 2005]. To our best knowledge, none of them discuss the sharing for clustering
operators. Some general principles used in these works, such as query containment
[Hammad et al. 2003], can also be applied in our context (used in sharing range query
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searches for our solution). However, the key problem we address in this work, namely
the integrated maintenance of density-based cluster structures identified by multiple
queries, is different from the optimization effort required by selection, join or aggre-
gation sharing. In particular, the meta-information we need to maintain, namely the
cluster structures defined by individual cluster member objects as well as their in-
terrelationships, is much more complex than those for selection, join or aggregation
operators, which are usually pair-wise relations or simply numbers (aggregation re-
sults). Efficient maintenance of such meta-information requires thorough analysis of
the properties of density-based cluster structures, which is a key contribution of our
work. This has not been studied in any of these works.

9. CONCLUSION

In this work, we present the first framework for the efficient shared processing of a
large number of neighbor-based pattern mining requests over streaming windows. It
is the first step of applying multiple query optimization principles from the field of
databases to process large numbers of data mining requests in stream environments.
We propose several general optimization principles that are applicable to different
(at least three) neighbor-based pattern mining query types. Both our analytical and
experimental studies show that these principles can bring significant system resource
sharing among multiple queries. In particular, our proposed algorithms Chandi, SDOD
and SkNN, which are based on these optimization principles, respectively achieve full
sharing of both CPU and memory utilization when simultaneously executing multiple
density-based clustering, distance-based outlier and kNN queries. Our experimental
study shows that, our proposed solution Chandi that handles the density-based clus-
tering queries, which has the most complex pattern structure within neighbor-based
pattern family, is on average four times faster than the best alternative method while
using 85% less memory space. More savings can be achieved if the queries have sim-
ilar parameter settings. Chandi also exhibits excellent scalability in terms of being
able to handle large numbers of queries under high speed input streams in our exper-
iments. Our performance analysis for distance-based outlier and kNN queries shows
that the similar performance can be expected from our proposed strategies for those
two pattern types as well.
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