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ABSTRACT

Sensitivity analysis is a powerful method for discovering the sig-
nificant factors that contribute to targets and understanding the in-
teraction between variables in multivariate datasets. A number of
sensitivity analysis methods fall into the class of local analysis, in
which the sensitivity is defined as the partial derivatives of a tar-
get variable with respect to a group of independent variables. In-
corporating sensitivity analysis in visual analytic tools is essential
for multivariate phenomena analysis. However, most current multi-
variate visualization techniques do not allow users to explore local
patterns individually for understanding the sensitivity from a point-
wise view. In this paper, we present a novel pointwise local pattern
exploration system for visual sensitivity analysis. Using this sys-
tem, analysts are able to explore local patterns and the sensitivity
at individual data points, which reveals the relationships between
a focal point and its neighbors. During exploration, users are able
to interactively change the derivative coefficients to perform sensi-
tivity analysis based on different requirements as well as their do-
main knowledge. Each local pattern is assigned an outlier factor, so
that users can quickly identify anomalous local patterns that do not
conform with the global pattern. Users can also compare the local
pattern with the global pattern both visually and statistically. Fi-
nally, the local pattern is integrated into the original attribute space
using color mapping and jittering, which reveals the distribution of
the partial derivatives. Case studies with real datasets are used to
investigate the effectiveness of the visualizations and interactions.

Keywords: Knowledge Discovery, sensitivity analysis, local pat-
tern visualization.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Graphical user interfaces

1 INTRODUCTION

Sensitivity analysis is the study of the variation of the output of a
model as the input of the model changes. When we study the corre-
lation between a target (response) variable Y and a set of indepen-
dent variables {X1,X2, . . ., Xn}, sensitivity analysis can tell analysts
the change rate of Y as Xi varies. Analysts can also discover which
input parameters are significant for influencing the output variable.
Sensitivity analysis has been widely applied for understanding mul-
tivariate behavior and model construction for analyzing quantitative
relationships among variables [24]. For example, it can be applied
to car engine designs; fuel consumption is dependent on the rela-
tionships among the design choices, such as fuel injection timing,
as well as operation-varied conditions, such as engine speed [18].
The analysis results are important in helping engineers tune the pa-
rameters in designing an engine.

Sensitivity analysis is essential for decision making, system un-
derstanding, as well as model constructing. Numerous approaches
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have been proposed to calculate the sensitivity coefficients. In this
paper, we focus on differential analysis, where sensitivities are de-
fined as the partial derivatives of a target variable with respect to a
set of independent variables. Because the sensitivity using partial
derivatives is extracted in a small neighborhood of the data, it is
usually called local analysis. Generally, any information extracted
around a single focal point can be viewed as a local pattern, such
as neighbor count, distances to neighbors, and partial derivatives.
Local analysis is performed using the extracted local patterns, and
sensitivity information is one important type of local pattern.

Although many visual analytics systems for sensitivity analysis
follow this local analysis method, there are few that allow analysts
to explore the local pattern in a pointwise manner, i.e., the rela-
tionship between a focal point and its neighbors is generally not
visually conveyed. The key idea behind this paper is analogous to
the street view in a Google map [12], where the user can stand in
a position (focal point) in the global map (the attribute space) to
browse the vicinity (neighbors and local patterns), such as who are
the neighbors and what are the distances to the neighbors.

This pointwise exploration is helpful when a user wants to un-
derstand the relationship between the focal point and its neighbors,
such as the distances and directions. The analysis result can assist
analysts in understanding which neighbors do not conform to the
local pattern. This discovery can be used to detect local anomalies
and find potentially interesting neighbors.

To better understand the usefulness of pointwise sensitivity anal-
ysis, we discuss an application scenario for selecting an apartment
near a campus. The target variable is the price and the independent
variables are several apartment attributes that influence the target,
such as room size, bedroom number, distance to campus, and so
on. The local sensitivity analysis can tell users (students) how the
price is influenced by an independent variable, either positively or
negatively, as well as which variables are important for choosing an
apartment. However, users often cannot easily decide which apart-
ment is worth renting. Given a particular apartment or the one in
which they currently reside, it is not always clear whether there
are any better choices compared to this one. Specifically, can the
student pay a little more to get a much better apartment, or find
a similar one that is much cheaper. Finally, if users have domain
knowledge or certain requirements, they should be able to use this
to change this apartment finding task. For example, if the students
know that distance is much more important, i.e., they prefer a closer
one rather than a bigger one (assume both choices increase costs the
same amount), they should increase the influencing factor for dis-
tance, or similarly decrease the influencing factor of size.

We seek to develop a system focusing on these problems and
challenges. In this paper, we present a novel pointwise local pat-
tern visual exploration method that can be used for sensitivity anal-
ysis and, as a general exploration method, for studying any local
patterns of multidimensional data. Specifically, our system allows
users to interactively select any single data instance for browsing
the local patterns. Each instance is assigned a factor using sta-
tistical means to reveal outliers that do not conform to the global
distribution. In the local pattern view, the layout strategy reveals
the relationships between the focal point and its neighbors, in terms
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of the sensitivity weighting factors. Users can interactively change
the sensitivity information, i.e., the partial derivative coefficients,
based on their requirements. Users can also compare the local pat-
tern with the global pattern both visually and statistically.

The primary contributions of this paper include:

• A novel pointwise exploration environment: It supports users
in browsing a multivariate dataset from a pointwise perspec-
tive view. This exploration assists users in understanding the
vicinity of a focal point and reveals the relationships between
the focal point and its neighbors.

• A novel visualization approach for sensitivity analysis: Sensi-
tivity analysis is one important local analysis method, thus is
well suited for our pointwise exploration. The designed local
pattern exploration view indicates the relationships between
the focal point and its neighbors, and whether the relationship
conforms to the local pattern or not. This helps the user find
potentially interesting neighbors around the focal point, and
thus acts as a recommendation system.

• Adjustable sensitivity: We allow users to interactively adjust
the sensitivity coefficients, which gives users flexibility to
customize their local patterns based on their domain knowl-
edge and goals.

• System evaluation using real-world dataset: We evaluate the
effectiveness of our system based on a real-world dataset.

2 RELATED WORK

Multivariate analysis (MVA) involves observation and analysis of
more than one statistical variable at a time, which is an important
data analysis method and widely applied in many domains. There
exist many automatic techniques for multivariate analysis. For ex-
ample, regression analysis [9] establishes a linear relationship be-
tween independent variables and a target (response) variable. Gen-
eralized additive models [15] describe more complex relationships,
such as nonlinear relationships. Response surface analysis [3] ex-
plores the relationships between several explanatory variables and
response variables, using a sequence of designed experiments to ob-
tain an optimal response. Our approach is different from the auto-
matic techniques in that our system takes advantage of multivariate
analysis methods and interactive visual exploration, which enables
users to intuitively examine and adjust the analysis results.

Model construction and selection is another important research
topic in MVA. First, many multivariate analysis algorithms heav-
ily depend on the underlying models used. Second, the construc-
tion and selection of an appropriate model can help analysts predict
the target or class attribute value, as well as explain and describe
the multivariate phenomena using explanatory models. Numer-
ous automated methods have been discussed for model construc-
tion and selection [21, 10, 4]. In recent years, many user-centered
and semi-automated model selection and construction approaches
have been proposed, such as D2MS [16]. These approaches give
users the ability to easily examine various alternatives and to com-
pare the competing models quantitatively using effective visualiza-
tions. Guo et al. [14] presented a model space visualization system
that assists users in discovering linear patterns in a dataset. The
proposed system uses linear models as predictive models and to
explain the relationships among variables. The advantage is that
our new system allows users to interactively adjust the local model
based on their prior knowledge and the expected model.

Sensitivity analysis has been studied in the scope of multivari-
ate data analysis [25]. Sensitivity analysis is the analysis of the
variation of the output in a model based on small changes of their
inputs. A variety of approaches have been proposed in recent years.
A number of methods fall into the class of local analysis, such as

adjoint analysis [5] and automated differentiation [13], where the
sensitivity parameters are found by simply taking the derivatives of
the output with respect to the input. Because this is usually done
in a small neighborhood of the data, they are usually called local
methods. Our approach is based upon partial derivatives calculated
using numerical differentiation. There are many ways to calculate
partial derivatives [11, 22]. We obtain the partial derivatives using
the local linear regression model coefficients.

Subgroup pattern mining is a very popular and simple form of
knowledge extraction and representation [20]. In [19], an advanced
subgroup mining system called “SubgroupMiner” was proposed,
which allows the analyst to discover spatial subgroups of interest
and visualize the mining results in a Geographic Information Sys-
tem (GIS). In [1], it has been shown that subgroup discovery meth-
ods benefit from the utilization of user background knowledge. In
this paper, we assume each group of local neighbors is a subgroup,
and thus the anomalous local patterns can be discovered using sub-
group pattern mining techniques. Our system allows users to de-
tect interesting local patterns and compare the local pattern with
the global one both visually and statistically.

In recent years, many visual analytics approaches have been pro-
posed that allow analysts to visually perform sensitivity analysis.
Barlowe et al. [2] proposed a system called Multivariate Visual
Explanation (MVE). This system allows users to interactively dis-
cover correlations among multiple variables and use histograms to
visualize the partial derivatives of the dependent variable over the
independent variables. The histograms reveal the correlations, pos-
itive or negative, between the output and the coefficients. Correa et
al. [8] presented a framework to support uncertainty in the visual
analytics process through statistical methods such as uncertainty
modeling, propagation, and aggregation. It has been shown that the
proposed framework leads to better visualizations that improve the
decision-making process and help analysts gain insight into the an-
alytical process itself. Chan et al. [6] proposed a flow-based Scat-
terplot system, which extended 2D scatterplots using sensitivity co-
efficients to highlight local variation of one variable with respect to
another. In their system, a number of operations, based on flow-
field analysis, are supported so as to help users navigate, select and
cluster points in an efficient manner. In this paper, we also propose
a visual solution for sensitivity analysis. However, inspired by the
street view in Google maps, we allow users to explore the correla-
tions among variables from a new perspective, i.e., pointwise exam-
ination of relationships among variables, and the relations between
the focal point and its neighbors. The main difference between our
work and previous work is that the local information about each
data point is visually conveyed.

3 LOCAL PATTERN EXTRACTION FOR SENSITIVITY ANALY-
SIS

3.1 Neighbor Definition

For each data point, the local pattern is extracted based on its vicin-
ity. We compute the neighborhood of a point as a region around
that point. The shape of its vicinity region could be sphere-shaped
or box-shaped. For a sphere-shaped area, a radius is specified by the
user and all the data points whose distances (usually the Euclidean
distance after normalization) to the focal point is less than the spec-
ified radius are considered that point’s neighbors. For a box-shaped
area, the user can specify the box size on each dimension. This
gives users flexibility to define the neighborhood based on different
applications and requirements. For example, for categorical inde-
pendent attributes, such as the country of origin or manufacturer of
a car, the coefficients of the sensitivity analysis are meaningless,
since the attribute values are not ordinal. However, for different
origins or manufacturers, the coefficients may be different and it is
useful to compare them. In this case, the user can specify the box
size on the categorical attributes so that the cars of the same origin
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and manufacturer are neighbors. Our system allows users to per-
form this neighborhood definition in a parallel coordinate view by
dragging and resizing a box-shaped region. The neighbors are all
the data points in the hyper-box, taking the focal point as the box
center. For the numerical independent attributes, the box size on
these dimensions controls how local the pattern is.

3.2 Calculating the Sensitivities

As mentioned earlier, there are many ways to compute the sensitiv-
ity of one dependent variable with respect to an independent vari-
able. In this paper, we follow a variational approach, where the
sensitivity can be calculated by the partial derivative of one vari-
able with respect to another. The derivative of a target variable, y,
as the independent variable, x, changes is approximated as ∂y/∂x.
The relationship is geometrically interpreted as a local slope of the
function of y(x). Since we do not know the closed form of the
function y(x) between variables in the general case, we approxi-
mate the partial derivatives using linear regression. The regression
analysis is performed in different neighborhoods around each point.
A tangent hyperplane for each focus point is calculated based on
its neighbors using linear regression. This linear function repre-
sents how the independent variables influence the target variable,
considering a constant local changing rate for all independent vari-
ables. Also, the representation enables the model to predict the
target value given the independent variables, as well as to assess
the error between the predicted value and the observed value. In a
sense, analysts assume that the local neighbors fit this trend since
the sum of the square errors to the regression line is minimized.

3.3 Local Pattern Extraction

Generally speaking, any local information that can assist analysts
in performing local pattern analysis can be extracted and visually
represented for examination, such as neighbor count, distances to
neighbors, and orientation to neighbors. In this paper, in particular,
we focus on the orientations from the focus point to the neighbors.
We choose this pattern for two reasons. First, this pattern tells users
the relationships between the focus point and its neighbors, i.e., the
directions to move from the focus point to its neighbors. Second,
and more importantly, since our system is designed for sensitivity
analysis and we extract a linear regression model, this direction re-
veals whether the relationship conforms with the local trend or not,
which can assist analysts in performing sensitivity analysis in this
neighborhood region. Here “conforms with the local trend” means
the vector between the focal point and a neighbor is approximately
parallel to the local trend, such as the blue point shown in Fig. 1.

Similar to the street view in Google Map, when a user stands at
a single point (the focal point) to examine the neighborhood, the
orientations to the neighbors tell users which direction they should
move from the standing point (the origin) to reach each of the neigh-
bors. In the map coordinate system, this direction is usually de-
scribed using an angle between a standard direction vector, such as
north, and a connecting vector, from the focal point to a neighbor
point. In our system, to assist users in performing sensitivity anal-
ysis, we take the normal vector of the regression hyperplane as the
standard direction. Since there are two normal vectors of one plane,
without any loss of generality, we take the one directed to the nega-
tive side of the target variable as the standard normal direction. For
each neighbor of the focal point, we calculate an angle θ between
the normal vector of the regression hyperplane and the connecting
vector between the focal point and that neighbor, as shown in Figure
1. Cos(θ ) is the dot product of the two unit vectors.

Due to the unit differences, the extracted local linear trend may
be dominated by some attributes. For example, a linear pattern of
y = 10000x+ 5 is dominated by y. In this case, all the connecting
lines between the focal point to other neighbors are nearly parallel
with each other (reduced to one dimension y). To remove the unit

differences among the different attributes, we assign a weight, us-
ing the regression coefficient, for each independent attribute, so that
the changing rates are the same between each independent variable
and the target variable. This step can be considered a normalization.
After the normalization, the slopes of the linear trend are all π/4 in
all dimensions (as shown in Fig. 1), and the angle θ is between 0
and π . The direction of the normal vector is orthogonal to the local
gradient, taking the focal point as the starting position. Therefore,
the angle θ for one neighbor represents whether the relationship
between the focal point and this neighbor conforms with the local
linear trend or not. The expectation of this angle is π/2, assuming
all the local points fit the extracted linear model very well. If the
angle is π/2, it means that the vector from the focal point to this
neighbor is the same as the local trend (the blue point in Fig. 1).
If the angle is less than π/2 (the green point in Fig. 1), it indicates
that the neighbor’s target attribute value is smaller than the estimate
using the extracted model. Note that when we say the predicted
value, we do not mean it is the predicted value using the local re-
gression plane (the solid red line in Fig. 1). Since we care about
the relationships between the focus point and its neighbors, the pre-
dicted value is based on the regression plane that is moved to the
focal point in parallel (the dotted red line in Fig. 1). In contrast, if
the angle is larger than π/2 (the yellow point in Fig. 1), it means
that the neighbor’s target attribute value is larger than the estimate,
taking the origin as the focal point.

Figure 1: The extracted local pattern. The red point is the focal point.
The three colored points indicate neighbors with different directions
from the focal point. The angle θ shows the direction to the green
point.

To sum up, in our system, the extracted local pattern for a single
point is a vector V , in which each value is an angle introduced as
before. The size of V is the same as the neighbor count.

3.4 Anomaly Detection

Our system allows users to detect anomalous local patterns that de-
viate from others. In general, we follow the idea of subgroup dis-
covery to identify interesting subgroups from the dataset.

Since each local pattern is extracted from a small subset, i.e.,
neighbors of a single data point, we can take each local pattern as
a subgroup. Thus subgroup discovery can be applied to discover
the local patterns of certain special significance, such as the ones
different from the others, i.e. anomalies. The word “anomalous”
implies that there is something basic to which each subgroup can
be compared, i.e., there is some notion of ‘background’ or ‘ex-
pected’ pattern. For example, the angles from the trend normal to
the neighbors mentioned before are expected to be π/2. We know
this is because the analysts have knowledge of regression analysis.
In general, however, users may not have this prior knowledge.
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Figure 2: The global display using star glyphs (903 records from the diamond dataset). The color represents whether the data item is a
anomalous local pattern or not. The filled star glyphs are selected local pattern neighbors.

As a general solution, we assume each subgroup (a local pat-
tern) is one extracted sample (a subset of individuals). All the sam-
ples could be integrated as a population to simulate the underlying
model that generates the individuals. We use the term “global pat-
tern” to represent the integrated pattern. Each local pattern is com-
pared with this global one to decide whether it is different from it.
To better understand this idea, we give an example for searching for
anomalous patterns on a map. In this example, the extracted pattern
is the percentage of water coverage around each sample position,
and the goal is to detect anomalous areas in terms of this pattern.
Since we assume users do not know the expected pattern, we inte-
grate all the local patterns (percentages of water coverage) together
and use a statistical test to detect anomalies. It is not hard to under-
stand that for a map of mainland, areas near lakes and shores are
anomalies; for a map of the ocean, islands are anomalies.

As a statistical method, the significance value of each local pat-
tern is evaluated by a quality function. The value of this function is
an outlier factor showing how likely this local pattern is an anomaly.
As a standard quality function, the binomial test is used to examine
if the sample is significantly different from the rest of the popula-
tion [19]. The z-score is calculated as

µ −µ0

σ0

√
n

√

N

N −n

µ is the mean of the sample. The µ0 and σ0 are the mean and
standard deviation values of the population. N and n are data sizes
of the population and the sample, respectively. Although this is a
general way to detect anomalies, visual exploration on each single
pattern is still often needed. This is because this approach is based
on the assumption that the population is normally distributed, which
does not always hold for all applications. In our system, we support
users examining each local pattern and comparing it with the global
one both statistically and visually.

4 SYSTEM INTRODUCTION

In this section, we introduce the proposed local pattern exploration
method and our system design. In our system, we provide 5 differ-
ent coordinated views to assist users in exploring the local patterns.

4.1 Global Space Exploration

The global view is designed to give users a global sense of the
whole dataset. Basically, any multivariate data visualization tech-
niques, such as scatterplot matrices, parallel coordinates, pixel ori-
ented techniques, or glyphs, can be used to display and explore the
data globally. Of these methods, only glyphs show each data point
individually and completely as an entity without overlapping. We
use a star glyph because the analyst can easily specify which indi-
vidual data point he/she wants to examine, thus leading to an easy
exploration of the local pattern of that data point. A major draw-
back for the glyph display method is the scalability issue. When the
data size is very large, each glyph is very small and it is difficult to
recognize and specify a single data item. A solution is to use brush-
ing and filtering techniques to hide uninteresting local patterns to
save the display space. Another solution is clustering similar lo-
cal patterns and displaying different clusters in separate views. We
discuss these in the future work section.

To assist analysts in discovering anomalous local patterns, i.e., a
subgroup of neighbor data points that are different from the global
pattern, we encode the statistical results using color. As shown in
Fig. 2, gray color means there is no significant difference between
the sample and the population (p-value is larger than 0.05), sug-
gesting the local pattern is not an anomaly. Red and blue colors
mean that a significant difference is detected (p-value is less than
0.05). Red means the z-score is less than zero (the critical value is -
1.96 for 0.05 level), which means the local pattern has significantly
lower mean value than that of the global pattern. Similarly, blue
means the z-score is larger than zero (the critical value is 1.96 for
0.05 level), indicating a higher mean value compared to the global
pattern. We use a diverging color strategy for two colors from Col-
orBrewer [7]; this strategy is also used in the local pattern view for
comparative neighbor representation. The darker the red and blue
colors are, the higher the significance is (i.e., a smaller p-value is
obtained). When users examine each individual local pattern, red
and blue items are generally of users’ interests. Though we use
0.05 as the default significant level, if users only want to focus on
the data items that are extremely different from the global pattern,
they can change the significant level to a smaller value, such as 0.01
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Figure 3: Neighbor representation using
original values.

Figure 4: Neighbor representation using
comparative values.

Figure 5: The comparison view. The two pink
bars at the bottom represent the confidence
interval of the global pattern (upper) and the
selected local pattern (lower).

or 0.001, to reduce the number of anomalous local patterns.

When the user moves the cursor onto a single data item, its
neighbors and the item itself are highlighted using larger filled
glyphs to draw the user’s attention. Meanwhile, the basic statisti-
cal information is shown in the bottom bar, such as neighbor count,
mean value, z-score, and p-value.

4.2 Local Pattern Examination

During the interactive exploration in the global view, when the user
moves the cursor onto a data item, another view displaying all its
neighbors and the selected point are drawn, called the local pattern
view. The main purpose for this view is to illustrate the relation-
ships between the focal point and all its neighbors. As a general
solution, assume that the focal point is placed in the center of this
view; all the neighbors’ positions should be designated to reflect
their relationships, according to different types of extracted local
patterns and the users’ requirements.

In particular, in our system, the focal point is shown in the center
of the display using a star glyph, which allows the user to easily
recognize the connection between the local pattern view and the
global view. The two cross lines (vertical and horizontal) passing
the center create four quadrants, using the focal point as the origin.
As a layout strategy, we map the difference in target values between
a neighbor and the focal point as Y, meaning for each neighbor, if its
target value is higher than the focal point’s target value, it is located
in the upper half. Contrariwise, if the target value is lower than the
focal point, it is located in the lower half. The higher the absolute
difference is, the further away the neighbor is placed. This layout
strategy tells users where to find an interesting neighbor when the
goal is to discover a neighbor with different target attribute values,
such as looking for a more/less expensive apartment.

As discussed before, the local pattern in this paper is the orien-
tation angle θ . The angle is mapped to X in this view. The angle
of the focal point is π/2, assuming the direction conforms with the
local trend. When the angle between a connecting vector and the
normal vector of the local trend is less than π/2, the corresponding
neighbor is placed in the left half of the view. If θ is smaller (larger)
than π/2 it means the neighbor’s target value is smaller (larger) than
the estimate. The user can use this piece of information to discover
interesting neighbors. For instance, taking the example of the apart-
ment finding problem, given a focal apartment, the students should
have more interest in the neighbor apartments shown on the left

Figure 6: Users can use a scale factor to shrink the size of data
items for reducing overlapping and visual clutter. Some data items
are shown in the original size by hovering and clicking the cursor.

side, as those neighbors are detected by our system as having lower
prices than predicted comparing with the focal point.

For each neighbor, we support two display methods. The first
one is the original value display, which means that for each neigh-
bor, the attribute values in the original dataset are shown. In this
case, we again use the star glyphs to represent each neighbor, so
that users can connect this view with the global view (Fig. 3). The
second display method is a comparative display (Fig. 4), in which
the focal point is the base line, represented as m dashes, where m
is the number of attributes. For each neighbor, there are m bars
corresponding to its m attributes, where a upward (downward) bar
for an attribute indicates that the neighbor’s value in that dimension
is higher (lower) than that of the focal point. This piece of infor-
mation is also redundantly represented using colors: blue means
higher and red means lower. The larger the difference is, the darker
the color is. Note that the height of a bar represents the difference
between the neighbor and the focal point in the normalized space,
so that when the relationship between the neighbor and the focal
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Figure 7: The local pattern adjusting view.
The poly-line represents the adjustable coef-
ficients.

Figure 8: The local pattern view before
adjusting the horsepower coefficient. The
neighbor (ID 68) is a worse deal.

Figure 9: The local pattern view after adjust-
ing the horsepower coefficient. The neighbor
(ID 68) became a better deal.

point conforms with the local trend, the sum of the bar heights of
the independent attributes are the same as the bar height of the tar-
get for that neighbor. To reduce overlapping when there is a large
number of neighbors, we allow users to interactively change a scale
factor to reduce the size of each data item. A data item will be
enlarged to its original size when the user moves the cursor onto
it. Fig. 6 shows a local pattern view after scaling the data items
to reduce overlapping. Some data items are shown in the original
size after being clicked. In terms of the scalability for the compara-
tive display, when there is a large number of attributes, a dimension
reduction or selection technique could be applied before analysis.
This issue is discussed in the future work section.

The local regression line in an equation form is shown in the
bottom bar to assist the analyst in performing sensitivity analysis.
For the interactions in this view, when the user moves the cursor
on the focal point or one of the neighbors, the data item ID and its
attribute values are displayed next to it (in the form of ID[attribute
1, attribute 2, ..., attribute n]). The user can click any data point to
show or hide the attribute values.

4.3 Compare the Local Pattern with the Global Pattern

The color of each data point in the global view represents the statis-
tical test results, i.e., an outlier factor indicates how likely the local
subgroup is an anomaly. However, knowing the statistical test re-
sults is often insufficient. For example, some insignificant results
may also be interesting due to a large deviation. Therefore, a visual
comparison of the local with the global is still needed. To allow the
user to compare the local pattern with the global pattern both statis-
tically and visually, we provide users a comparison view, showing
the global distribution (directions to neighbors) using a histogram.
The mean values and confidence intervals for both the global and
local pattern are also shown in the bottom (Figure 5). The use of
this view is shown in the case study section.

4.4 Adjusting the Local Pattern

The local partial derivative values reflect how the independent vari-
ables influence the target variable in the local area. However, the
derivative values may not necessarily meet the user’s expectations
and requirements when they want to find interesting neighbors. For
instance, assume that the students want to move to another apart-
ment from the current one and are willing to increase their pay-
ments, e.g., they would be willing to pay around $100 more for
one more bedroom, or pay $100 more for moving a mile closer to
the campus. In this case, one more bedroom is the same as 1 mile

closer, in terms of influencing ability on the target. For different
users, the requirements are likely different. Students with cars may
prefer a larger apartment, while ones without cars prefer a closer
apartment. In the first case they would like to increase the influenc-
ing factor of size on price, while in the second case, they would like
to increase the influencing factor of distance. It means that different
users have different ways to define “better” when they want to find
“better” neighbors around the focal point.

In our system, we provide users a local pattern adjusting view,
using parallel coordinates (Fig. 7). The partial derivatives are
drawn as a poly-line. The last dimension is the constant (intercept)
of the linear trend. The user can interactively change the coefficient
values, i.e., the slope of the trend line, by dragging the poly-line
on each axis. During the adjustment, the local pattern view is also
dynamically changed to reflect the new relationships among the fo-
cal point and its neighbors in the new “environment”, i.e., using the
new trend. This is because we calculate the relationships among the
focal point and its neighbors based on the normal vector of the hy-
perplane. Since we define the standard direction using the normal
vector, we can understand this tuning as equivalent to changing the
definition of north in a map.

Figures 8 and 9 show the local pattern view before and after
changing the coefficients. The dataset is a car sales dataset (from
the SPSS sample datasets). For easier understanding, only two in-
dependent attributes are considered: horsepower and MPG. The
target is the price of the car. The goal is to compare a neighbor
car, whose ID is 68 (the upper one with attribute values) with the
focal one (ID is 72). It is shown that locally horsepower influences
the price positively. Before adjusting, this neighbor is in the right
hand side, which means a worse deal since the price is higher than
estimated. We can recognize this by the comparative display of the
neighbor; the sum of the height of the independent attribute bars is
less than the target bar height (a lower bar for horsepower than the
bar for price), which means the price is higher than estimated. After
changing the weight (coefficient) of horsepower to a higher value,
this neighbor become a better deal (in the left side). This is because
the customer considers horsepower as an important attribute. Af-
ter changing, the sum of the bar heights for independent attributes
increases and exceeds the target bar height. This example shows
users can change the coefficients according to their priorities.

4.5 Integrate the Local Pattern into the Global Space

Generally, a local pattern is a value (e.g., neighbor count) or a vec-
tor (e.g., distances to neighbors). Thus, the local pattern can be
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treated the same as the attribute values in the original data space.
Assume there are n independent attributes and 1 target attribute, we
can create n new dimensions taking the derivative values as derived
dimensions and integrate them into the original attributes, thus re-
sulting in a new dataset with 2n+1 dimensions. Any multivariate
data visualization technique can be used to display this new dataset,
such as scatterplot matrices and parallel coordinates. This visual-
ization enables users to discover the relationships among the de-
rived dimensions and the original dimensions.

Fig. 10 shows an example of the integrated view. In this exam-
ple, each data point is a child’s basic body information: age, gen-
der, height and weight. The age range is between 5 and 11. We use
weight as the target and the goal is to discover for children of differ-
ent ages and genders, how height influences weight. The neighbors
are defined as children with the same age and gender, and similar
height and weight. The figure shows the distribution of the deriva-
tives (∂weight/∂height) in the original space (age and gender). The
derivative values are color-coded (darker color means higher value)
and the points are jittered to avoid overlaps. We can discover that
the derivatives increase as age increases. Analysts can also compare
the derivatives for different genders to answer questions, such as for
8-years-old children, which gender has larger derivative values (the
answer is female).

Figure 10: The view for integrating derivatives into global space.
The jittered points with different colors indicate the coefficient of
∂weight/∂height. As age increases, the coefficient increases. For the
same age, the coefficient values are different for different genders.

5 CASE STUDY

In this section, we discuss case studies to evaluate our approach
and show the effectiveness of our system. The dataset is a diamond
dataset obtained from an online jewelry store [17]. Each data item
is one diamond. The target attribute is price. There are 4 different
independent attributes that influence the price of a diamond: weight
(carat), color, clarity and cut. The goal is to assist customers in
choosing a diamond. The discovery can also tell the retailer whether
the price of a certain diamond is set appropriately. We use a subset
of the diamonds with a certain price range ($5000 - $8000), since
we assume that customers have a budget range for shopping, rather
than caring about the whole dataset. The whole dataset has 13298
data items and the subset has 903 data items.

The main computational bottleneck is in the calculations in-
volved in finding neighbors, which would be performed in a O(n2)
time cost without any index data structure, assuming the data size
is n. After the neighbors for each data item are found, the least
square linear regression cost is O(Km2), where K is the average
neighbor count and m is the dimension number. During the explo-
ration of each local pattern, there is no computational cost since the
neighbor index is already created. Another cost in our system is in
the local pattern adjusting period, which is O(k) (k is the neighbor

count of the examined focal point). On a 3 Ghz dual core desk-
top PC with 4 GB of RAM and an ATI Radeon X1550 graphics
card, we ran our system both for the whole dataset and the subset
of the diamond dataset (neighbor range is defined as 0.1 of the en-
tire range of each attribute). For the subset, the time for finding
neighbors and regression calculating took less than 2 seconds. For
the whole dataset, the time required is about 6 minutes. The huge
difference is mainly due to the quadratic time complexity for find-
ing neighbors. For both datasets, the exploration of local patterns,
as well as local pattern adjustment, can be performed and updated
in real time. We discuss improvements in finding neighbors in the
future work section.

5.1 Where are the Good Deals

For easier understanding, we start from a single independent at-
tribute weight. The user of our system can achieve this by defining
an appropriate neighborhood: two diamonds are neighbors when
they have similar weight and price, as well as they are of the same
color, clarity and cut. The extracted local pattern is the orientations
to the neighbors. Fig. 2 shows the global star glyph display. The
color indicates whether the diamond is an anomalous one. To exam-
ine the global distribution, the user can open the comparison view
(Fig. 5). The global distribution is similar to a normal distribution,
except for that there are two peaks on each side. We will show later
this is due to some anomalies, i.e., some diamonds whose prices
are not set appropriately. The mean of the distribution is about π/2,
which is the same as we discussed before, assuming the neighbors
fit the local linear trend.

To understand the normal and abnormal data items in detail, we
show three local pattern views for gray, red, and blue data points.
Figure 11 shows the local pattern view of a gray data point. All
the neighors of this data point are in the center of the view (x po-
sition), indicating that the directions to the neighbors are all about
π/2. This means that all the data points in the local area fit the re-
gression hyperplane, which is very common in the dataset. We can
also recognize this local fitting by the comparative representation
of all neighbors: the height of the first bar (weight) is almost the
same as the height of the last bar (price). This indicates the price
difference, between the focal point and one neighbor, is propor-
tional to the weight difference. To assist the analyst in performing
the sensitivity analysis, i.e., what is the change rate of the target as
an independent attribute value varies, we show the local regression
model in the bottom bar. It is shown that in this local area, as the
weight increases, the price increases, which means a positive in-
fluencing factor. The changing rate of price is $55, as the weight
increases 0.01 carat. The influencing factors of the other indepen-
dent attributes are all 0, since all neighbors have the same values.

Fig. 12 shows the local pattern view for a diamond that is blue
in Fig. 2, suggesting that it is an anomaly and the test result shows
the mean of this local pattern is significantly higher than the global
pattern. The user can see that all the neighbors are in the right half
of the view. This means for each neighbor, the direction is larger
than π/2. In particular, the local sensitivity shows that as weight
increases 0.01 carat, the price increases $118. However, the price
of the local neighbors are higher than estimated considering this
changing trend. Take the upper diamond for example. The upper
half means a higher target value based on our local pattern lay-
out strategy.For this neighbor, the weight is 0.01 carat higher than
the focal point, while the price is $450 higher than the focal point,
which is a larger change rate, compared with the local trend. The
user can also read this from the comparative representation of this
neighbor: a higher and darker bar for price than the bar for weight,
which means the price change rate is higher than weight. This tells
users that this neighbor is a worse deal compared with the focal
point. Similarly, we can consider another neighbor whose price is
lower than the focal point, i.e., in the bottom half of the display (the
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Figure 11: The local pattern view of a gray
data item. The orientation from the focal
point to all its neighbors are π/2, which is
common in the dataset.

Figure 12: The local pattern view of a blue
data item. The orientations from the fo-
cal point to most of its neighbors are larger
than π/2, which means the neighbors’ target
values are higher than estimated. In other
words, the focal point is a “good deal”.

Figure 13: The local pattern view of a red
data item. The orientations from the fo-
cal point to most of its neighbors are lower
than π/2, which means the neighbors’ tar-
get values are lower than estimated. In other
words, the focal point is a “bad deal”.

nearest one to the focal point). The neighbor’s weight is 0.02 lower
than the focal point. If this neighbor fits the local trend, the price
would be $118*2=$236 lower than the focal diamond. However,
the price is only $120 lower than the focal diamond, which also
means this neighbor is not a good deal compared with the focal di-
amond. From these discussions, we know that for blue diamonds,
generally most of neighbors are in the right half side of the view,
which means there are worse deal compared with this one. Thus,
the blue diamonds should be preferable for the customers.

Finally, we give an example of a diamond mapped to red in Fig.
2. Similar with the discussion for blue diamonds, a red diamond
means there are many better deals compared with this one. Fig. 13
shows the local pattern view of a red diamond. It is shown that lo-
cally as the weight increases 0.01 carat, the price increases $332.
The two neighbors (with attribute values) are better than this one
(left part). For the upper neighbor, the weight is the same as the
focal point, while the price is $570 lower than the focal point (a
downward red bar). For the lower neighbor, the weight is higher
than the focal point, while the price is $150 lower than the focal
diamond. For the focal diamond, the neighbors in the left half are
better recommendations. Since there are many blue and red dia-
monds (anomalies), the distribution of the global pattern has two
peaks in each side. From the retailer side, it should consider in-
creasing (decreasing) the prices of the blue (red) diamonds.

This method of discovering good and bad deals in this dataset is
also suitable for more than one independent attribute. We choose
only one independent attribute just because it is easy to verify
whether the diamonds are worth buying.

5.2 Display the Local Pattern in the Global View

It is shown that for different local patterns (subsets of neighbors),
the price increases differently as the weight increases. This means
the coefficients (∂ price/∂weight) are different in the whole space.
It is useful to give users a global sense in terms of how the sensitiv-
ity derivatives are distributed in the original space. To assist users
in better understanding this, we use the whole dataset rather than a
subset of a certain range. Fig. 14 shows a scatter plot view of the
dataset. We use color to represent the derivative values: dark blue
means high and dark orange means low. The color strategy is again
diverging. The points are jittered to reduce overlapping.

Users can discover that the derivatives are pretty consistent for
diamonds of the same color, clarity and cut. This means that for dif-

Figure 14: The coefficients of ∂ price/∂weight are color-mapped and
displayed in a scatterplot matrix of original attribute space.

ferent subset of neighbors, although their weights and prices are of
different range, the influencing factors of weight on price are very
similar. Another discovery is that as color, clarity and cut increase,
the derivatives generally increase (from dark orange to dark blue).
This means that for diamonds of higher quality, the weight is more
important for price, i.e., the price is very sensitive with changing
weight for the subspace of higher color, clarity and cut. When cus-
tomers notice that, they could consider changing their choices based
on this discovery. For the blue region, they can consider choosing
a diamond of lower weight, since it will save them a lot of money.
In contrast, for the orange region, they can consider choosing a dia-
mond of higher weight, since it won’t increase their costs too much.
We can also notice that in the upper right of the plot of clarity vs.
color, there is a dark orange block in the blue area. A possible ex-
planation for this divergence from the main pattern is that there are
not enough diamonds in this region, whose color and clarity values
are both very high. The low price variance results in low coefficient
values.

5.3 Customize the Local Pattern

Given budget limits, customers have to find a trade-off when con-
sidering the diamond attributes. We show an example to illustrate
how customers can customize their requirements. Assume that a
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Figure 15: The local pattern view before tun-
ing the coefficients. One neighbor (ID 533)
has higher color and the other neighbor (ID
561) has higher clarity.

Figure 16: The local pattern view after in-
creasing the coefficient of color and de-
creasing the coefficient of clarity. The neigh-
bor with higher color became a “good” deal.

Figure 17: The local pattern view after de-
creasing the coefficient of color and increas-
ing the coefficient of clarity. The neighbor
with higher clarity became a “good” deal.

customer has decided the weight and cut of the selection, and is
struggling with higher color or higher clarity. In this case, the
neighborhood is defined as diamonds of the same weight and cut.
For color and clarity, the neighborhood region covers three levels
of each, indicating lower, current, and higher values. Fig. 15 shows
the local pattern view of a preferable diamond before adjusting the
coefficients. The two neighbors, shown with attribute values, are
two alternative options compared with the focal one. Both of them
are more expensive than the focal one: one has higher (better) color
and one has higher (better) clarity. Before tuning the coefficients,
none of them are better deals (in the left half). If the customer
knows that she prefers higher color (clarity), she can accordingly
increase the coefficient for color (clarity) and/or decrease that for
clarity (color). Fig. 16 and Fig. 17 show the local pattern views af-
ter adjusting the coefficients. In Fig. 16, the coefficient for color is
increased and the coefficient for clarity is decreased. It is clear that
the neighbor with high color became a good deal. These two neigh-
bors can be easily differentiated and the customer can tell which
one is worthy purchasing in this circumstance. A similar result is
shown in Fig. 17. In this case, the coefficient for clarity is increased
and the coefficient for color is decreased. We can discover that the
two neighbors shift in the opposite directions compared with Fig.
16. According to this example, we can see that customers can de-
fine “good” when selecting a diamond. Generally speaking, for any
other type of local patterns, users can customize the definition of
“interestingness” and the system is able to provide users different
recommendations of neighbors.

6 CONCLUSION

This paper presents a novel pointwise visualization and exploration
technique for visual multivariate analysis. Generally, any local pat-
tern extracted using the neighborhood around a focal point can be
explored in a pointwise manner using our system. In particular, we
focus on model construction and sensitivity analysis, where each
local pattern is extracted based on a regression model and the re-
lationships between the focal point and its neighbors. Using this
system, analysts are able to explore the sensitivity information at
individual data points. The layout strategy of local patterns can
reveal which neighbors are of potential interest. Therefore, our sys-
tem can be used as a recommendation system. During exploration,
analysts can interactively change the local pattern, i.e., the deriva-
tive coefficients, to perform sensitivity analysis based on different
requirements. Following the idea of subgroup mining, we employ

a statistical method to assign each local pattern an outlier factor, so
that users can quickly identify anomalous local patterns that deviate
from the global pattern. Users can also compare the local pattern
with the global pattern both visually and statistically. We integrated
the local pattern into the original attribute space using color map-
ping and jittering to reveal the distribution of the partial derivatives.
We discuss case studies with real datasets to investigate the effec-
tiveness and usefulness of our approach.

Some future work we are actively pursuing are as follows:

• Supporting other types of local patterns: we plan to expand
our system to support more types of local patterns, such as dis-
tances to the neighbors, and errors of the neighbors, in terms
of the extracted local model.

• Solving other tasks: besides the regression analysis and sen-
sitivity analysis, we plan to expand our system to solve other
multivariate analysis and data mining tasks, such as classifi-
cation based on nearest neighbors.

• Local pattern management: in addition to visually examining
the local patterns, we plan to allow users to efficiently manage
the extracted local patterns, such as finding similar local pat-
terns, connecting similar local patterns, and clustering similar
local patterns.

• Customize the local pattern view: when multiple types of lo-
cal patterns are extracted, users should be able to specify how
to visually map the values using color, size, and position.

• Interactions and queries: user can interactively submit a
query to discover interesting local patterns using brushing
techniques in the local pattern view. This can also save the
display space in the global display view since only interesting
local patterns are shown.

• Evaluation: we plan to perform formal user studies and an
expert study to better evaluate our approach in the future.

• Performance and scalability: we plan to incorporate efficient
neighbor finding techniques in our system in the future, such
as binning the space or using k-d tree search [23]. For datasets
with large number of attributes, a user-driven attribute selec-
tion technique, or a dimension reduction technique based on
influencing factors, could be applied [26].
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