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ABSTRACT

Discovering and extracting linear trends and correlations in datasets
is very important for analysts to understand multivariate phenom-
ena. However, current widely used multivariate visualization tech-
niques, such as parallel coordinates and scatterplot matrices, fail to
reveal and illustrate such linear relationships intuitively, especially
when more than 3 variables are involved or multiple trends coex-
ist in the dataset. We present a novel multivariate model parameter
space visualization system that helps analysts discover single and
multiple linear patterns and extract subsets of data that fit a model
well. Using this system, analysts are able to explore and navigate
in model parameter space, interactively select and tune patterns,
and refine the model for accuracy using computational techniques.
We build connections between model space and data space visu-
ally, allowing analysts to employ their domain knowledge during
exploration to better interpret the patterns they discover and their
validity. Case studies with real datasets are used to investigate the
effectiveness of the visualizations.

Keywords: Knowledge Discovery, visual analysis, multivariate
linear model construction, model space visualization.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Graphical user interfaces

1 INTRODUCTION

Discovering and extracting useful insights in a dataset are basic
tasks in data analysis. The insights may include clusters, classifica-
tions, trends, outliers and so on. Among these, linear trends are one
of the most common features of interest. For example, when users
attempt to build a model to represent how horsepower x0 and engine
size x1 influence the retail price y for predicting the price for a given
car, a simple estimated linear trend model (y = k0x0 + k1x1 + b)
could be helpful and revealing. Many computational approaches
for constructing linear models have been developed, such as linear
regression [6] and response surface analysis [3]. However, the pro-
cedure and results are not always useful for the following reasons:

• Lack of efficiency: When discovering trends in a large dataset,
users are often only concerned with a subset of the data that
matches a given pattern, so only these data should be used for
the computation procedure rather than the whole dataset. Fur-
thermore, locating a good estimation of the trend as an initial
input for the regression analysis could expedite the conver-
gence, especially for high dimensional datasets.

• Lack of accuracy: Computational results are often not as accu-
rate as the user expects because users are unable to apply their
own domain knowledge and perceptual ability during and af-
ter discovering models. User-driven modeling and tuning may
be required.
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Figure 1: A dataset with a sim-
ple linear trend: y = 3x1 − 4x2

is displayed with parallel coor-
dinates. The axes from left to
right are y, x1 and x2 respec-
tively.

Figure 2: A dataset with two lin-
ear trends: y = 3x1 − 4x2 and
y = 4x2 −3x1 is displayed with a
scatterplot matrix.

• Parameter setting problem: Most model estimation tech-
niques require users to specify parameters, such as the mini-
mum percentage of data points the model includes, maximum
error tolerance and iteration count. These are often particu-
lar to a concrete dataset, application, and task, but users often
don’t know conceptually how to set them.

• Multiple model problem: If multiple phenomena coexist in
the same dataset, many analytic techniques will extract poor
models.

Locating patterns in a multivariate dataset via visualization tech-
niques is very challenging. Parallel coordinates [10] is a widely
used approach for revealing high-dimensional geometry and ana-
lyzing multivariate datasets. However, parallel coordinates often
performs poorly when used to discover linear trends. In Figure 1,
a simple three dimensional linear trend is visualized in parallel co-
ordinates. The trend is hardly visible even though no outliers are
involved. Scatterplot matrices, on the other hand, can intuitively
reveal linear correlations between two variables. However, if the
linear trend involves more than two dimensions, it is very difficult
to directly recognize the trend. When two or more models coexist in
the data (Figure 2), scatterplot matrices tend to fail to differentiate
them.

Given a multivariate dataset, one question is how to visualize
the model space for users to discern whether there are clear linear
trends or not. If there are, is there a single trend or multiple trends?
Are the variables strongly linearly correlated or they just spread
loosely in a large space between two linear hyperplane boundaries?
How can we visually locate the trend efficiently and measure the
trend accurately? How can we adjust arbitrarily the computational
model estimation result based on user knowledge? Can users iden-
tify outliers and exclude them to extract the subset of data that fits
the trend with a user indicated tolerance? How can we partition the
dataset into different subsets fitting different linear trends?

We seek to develop a system focusing on these questions. Specif-
ically, we have designed a visual interface allowing users to nav-
igate in the model space to discover multiple coexisting linear
trends, extract subsets of data fitting a trend, and adjust the compu-
tational result visually. The user is able to select and tune arbitrary



high-dimensional linear patterns in a direct and intuitive manner.
We provide a sampled model space measurement map that helps
users quickly locate interesting exploration areas. While navigat-
ing in the model space, the related views that provide metrics for
the current selected trend, along with the status of data space, are
dynamically displayed and changed, which gives users an accurate
estimation to evaluate how well the subset of data fits the trend.

The primary contributions of this paper include:

• A novel linear model space environment: It supports users in
selecting and tuning any linear trend pattern in model space.
Linear patterns of interest can be discovered via interactions
that tune the pattern hyperplane position and orientation.

• A novel visualization approach for examining the selected
trend: We project color-coded data points onto a perpendicu-
lar hyperplane for users to decide whether this model is a good
fit, as well as clearly differentiating outliers. Color conveys
the degree to which the data fits the model. A corresponding
histogram is also provided, displaying the distribution relative
to the trend center.

• A sampled measurement map to visualize the distribution in
model space: This sampled map helps users narrow down
their exploration area in the model space. Multiple hot-spots
indicate that multiple linear trends coexist in the datasets. Two
modes with unambiguous color-coding scheme help users
conveniently conduct their navigation tasks. Two color-space
interactions are provided to highlight areas of interest.

• Linear trend dataset extraction and management: We present
a line graph trend tolerance selection for users to decide the
tolerance (maximum distance error tolerance from a point to
the regression line) for the current model. Users can refine the
model using a computational modeling technique after finding
a subset of linearly correlated data points. We also allow the
user to extract and save data subsets to facilitate further ad-
justment and examination of their discovery.

The remainder of this paper is organized as follows: In Section 2
existing techniques for model space visualization, user exploration,
and visual linear trend discovery are reviewed. In Section 3 we in-
troduce our model space visualization method and how to navigate
in the model space via our proposed pattern selection panel. The
related views that provide metrics for the chosen pattern are then
presented. Section 4 describes the sample model space map that
guides user in exploring model space efficiently, and also discusses
the power of this map for revealing multiple trends. Section 5 is
dedicated to the discussion of a case study involving the analysis of
a real dataset. We conclude this paper in Section 6 with a summary
and possible future research directions.

2 RELATED WORK

Visual data mining techniques [20, 5] suggest that a more efficient
and powerful data mining strategy should involve users in the vi-
sual analytical processes rather than being carried out completely
by machines. Recently, numerous visual analytics based systems
have been presented to solve knowledge discovery tasks. Schreck
et al. [18] propose a user-supervised SOM clustering algorithm that
enables users to control and monitor the computation process visu-
ally to leverage their domain knowledge. ClusterSculptor [15] de-
scribes a framework to assist users in extracting clusters directly in
N-D data space, allowing them to tune the parameters interactively
based on visual presentation of data characteristics. Savikhin et al.
[17] created a system for helping subjects improve decision mak-
ing through the use of an interactive visual analytics program. The
Nugget Management System (NMS) [21] provides a framework for

analysis-guided visual exploration of multivariate data for users to
manage their discoveries from range queries.

Model space visualization and model-driven analytics have been
studied for many years. The Hough Transform, widely used in im-
age processing and computer vision, builds a connection between
data space patterns and model space representations for detecting
arbitrary shapes, such as lines, circles and ellipses [7]. The GGobi
package [19] provides a Grand Tour [1] method for viewing mul-
tivariate data via orthogonal projections onto a sequence of two-
dimensional subspaces (scatter plots). Garg et al. [8] present a
visual high-dimensional data navigation and pattern painting sys-
tem that enables users to construct models and study relationships
present in the dataset. These techniques, however, are not designed
to reveal linear models within multi-dimensions effectively and do
not provide metrics for the patterns users discovered and measure-
ment of the model space they explored.

Model estimation and selection is a very important task for
understanding multivariate characteristics, attributes and correla-
tions. Numerous computational approaches and algorithms have
been proposed and discussed. Cherkassky and Ma [4] introduced
a constructive support vector machine (SVM)-based approach for
multiple regression estimation. Li et al. [11] present a new class of
variable-structure (VS) algorithms for multiple-model estimation.
D2MS [9] is a research system for knowledge discovery with sup-
port for model selection and visualization, providing the user with
the ability to try various alternatives of algorithm combinations and
their settings. MVE [2] is a multivariate visual system that helps
user interactively construct models and analyze multi-dimensional
relationships. These techniques are primarily directed toward auto-
matic or unsupervised model discovery. We will not only propose
a novel approach for model space visualization for the purpose of
linear trend discovery, but also present a system that assists users
in applying their domain knowledge for customized linear pattern
detection.

3 MODEL SPACE VISUALIZATION

3.1 Linear Trend Nugget Definition

We define a nugget as a pattern within a dataset that can be used
for reasoning and decision making [21]. A linear trend in n-
dimensional space can be represented as (w,X)− b = 0, where
Xi ∈ R

n denotes a combination of independent variable vector xi

(xi ∈ R
n−1) and a dependent target value y (y ∈ R). Here w and b

are respectively a coefficient vector and a constant value (w ∈ R
n,

b ∈ R). The data points located on this hyperplane construct the
center of the trend. A data point x that fits the trend should satisfy
the constraint

|(w,x)−b| < ε

Considering that noise could exist in all variables (not just the de-
pendent variable), it may be appropriate to use the Euclidean dis-
tance from the regression hyperplane in place of the vertical dis-
tance error used above [12]. We define a linear trend nugget (LTN)
as a subset of the data near the trend center, whose distance from
the model hyperplane is less than a certain threshold E:

LT N(X) = {x| |(w,x)−b|
‖w‖ < E}

Here E is the maximum distance error, which we call tolerance,
for a point to be classified as within the trend. If the distance from a
data point to the linear trend hyperplane is less than E, it is covered
and thus should be included in this nugget. Otherwise it is consid-
ered as an outlier or a point that does not fit this trend very well.
The two hyperplanes whose offsets from the trend equal E and −E
construct the boundaries of this trend. The goal of our approach is
to help users conveniently discover a good linear model, denoted by



Figure 3: The Data Space interface overview. Figure 4: The Model Space interface overview.

a small tolerance and, at the same time, covering a high percentage
of the data points.

As the range of the values in the coefficient vector could be very
large and even infinite, we transform this linear equation into a nor-
mal form to make ‖w‖ = 1 and then represent this vector as Sn, a
unit vector in hypersphere coordinates [14] as described in [7]:

w0 = cos(θ1)

w1 = sin(θ1)cos(θ2)

· · ·
wn−2 = sin(θ1) · · ·sin(θn−2)cos(θn−1)

wn−1 = sin(θ1) · · ·sin(θn−2)sin(θn−1)

Now our multivariate linear expression can be expressed as:

ycos(θ1)+x1 sin(θ1)cos(θ2)+ · · ·+

xn−2 sin(θ1)sin(θ2) · · ·sin(θn−2)cos(θn−1)+

xn−1 sin(θ1)sin(θ2) · · ·sin(θn−2)sin(θn−1) = r

The last angle θn−1 has a range of 2π and others have a range
of π . The range of r, the constant value denoting the distance from
the origin to the trend hyperplane, is (0,

√
n) after normalizing all

dimensions.
An arbitrary linear trend can now be represented by a single data

point (θ1,θ2, · · · ,θn−1,r) in the model parameter space. Users can
select and adjust any linear pattern in data space by clicking and
tuning a point in the model space.

3.2 System Overview

We now briefly introduce the system components and views. The
overall interface is depicted in Figures 3 and 4. The user starts
from a data space view displayed with a scatterplot matrix. To ex-
plore in the linear model space, the user first indicates the depen-
dent variable and independent variables via clicking several plots
in one row. The clicked plots are marked by blue margins; clicking
the selected plot again undoes the selection. The selected row is
the dependent variable and the columns clicked indicate the inde-
pendent variables. After the user finishes selecting the dependent
and independent variables, he/she clicks the “model space” button
to show and navigate in the model space. The points in the data
space scatterplot matrix are now colored based on their distance to

the currently selected linear trend and dynamically change when the
user tunes the trend in the model space. As shown in Figure 3, the
selected dependent variable is “Dealer Cost” and the two indepen-
dent variables are “Hp” and “Weight”. The points are color-coded
based on the currently selected trend: dark red means near the cen-
ter and lighter red means further from the center; blue means the
points do not fit the trend. Figure 4 is the screen shot of the model
space view. Each view in the model space is labeled indicating the
components, as described in the following sections.

3.3 Linear Trend Selection Panel

We employ Parallel Coordinates (PC), a common visualization
method for displaying multivariate datasets [10], for users to select
and adjust any linear trend pattern. Each poly-line, representing a
single point, describes a linear trend in data space. PC was cho-
sen for its ability to display multiple trends at the same time, along
with the metrics for each trend. For example, average residual and
outlier percentage are easily mapped to poly-line attributes, such as
line color and line width. Users can add new trends, delete trends
and select trends via buttons in the model space interaction control
panel. Users can drag up and down in each dimension axis to adjust
parameter values. During dragging, the poly-line attributes (color
and width) dynamically change, providing users easy comprehen-
sion of pattern metrics. The parameter value of the current axis is
highlighted beside the cursor. This direct selection and exploration
allows users to intuitively tune linear patterns in model space, sens-
ing the distance from hyperplane to origin as well as the orientations
rotated from the axes. Because the parameters in hypersphere coor-
dinates can be difficult to interpret, the familiar formula in the form
of y = k0x0 +k1x1 + · · ·+kn−1xn−1 +b is calculated and displayed
in the interface. In Figure 5, three linear trends for a 3-D dataset
are displayed. The percentage of data each trend covers (with the
same model tolerance) is mapped to the line width and the average
residual is mapped to color (dark brown means a large value and
light yellow means small).

3.4 Views for Linear Trend Measurement

When the user tunes a trend in model space, it is necessary to pro-
vide detailed information in data space related to the currently se-
lected trend. Based on this the user can differentiate datasets having
linear trends from non-linear trends or without any clear trends, as
well as discover a good model during tuning. We provide users
three related views for discovering trends and deciding the proper



Figure 5: The Model Space Pattern Selection Panel.

model parameters.

Line Graph: Model Tolerance vs. Percent Coverage

For any multi-dimensional linear trend, there is a positive corre-
lation between the tolerance of the model (the distance between
the trend hyperplane and the furthest point considered belonging
to the trend) and the percentage of data points this model covers:
the larger the model tolerance is, the higher the percentage it cov-
ers. There is a trade-off between these two values, because users
generally search for models with small tolerance that cover a high
percentage of the data. The users expect to find the answer to the
following two questions when deciding the model tolerance and
percentage it covers: (a) If the model tolerance is decreased, will
it lose a large amount of the data? (b) If this trend is expected to
cover a greater percentage of the data, will it significantly increase
the model tolerance?

To answer these questions, we introduce an interactive line graph
for the currently selected model. Model Tolerance vs. Percent Cov-
erage is provided for users to evaluate this model and choose the
best model tolerance. It is clear that the line graph curve always
goes from (0,0) to (1,1), after normalizing. This line graph also
indicates whether this model is a good fit or not. If this curve passes
the region near the (0,1) point, there is a strong linear trend existing
in the dataset, with a small tolerance and covering a high percentage
of the data. This interactive graph also provides a selection func-
tion for the model tolerance. The user can drag the point position
(marked as a red filled circle in Figure 6) along the curve to enlarge
or decrease the tolerance to include more or fewer points.

Figure 6 shows an example of how to use this view to discover
a good model. The line graph for a linear trend with about 9 per-
cent outliers is shown. The red point on the curve indicates the
current status of model tolerance and percentage. From the curve
of the line graph, it is easy to confirm that when dragging the point
starting from (0,0) and moving towards (1,1), the model tolerance
increases slowly as the percentage increases, meaning that a strong
linear trend exists. After moving across 0.90 percent, the model
tolerance increases dramatically while the included point percent-
age hardly increases, indicating that the enlarged model tolerance is
mostly picking up outliers. So for this dataset, the user could claim
that a strong trend is discovered covering 90 percent of the data
points because the model tolerance is very small (0.07). The cor-
responding Orthogonal Projection Plane view and Histogram view
showing the distribution of data points are displayed in Figure 7 and
Figure 8 (described next).

Projection on the Orthogonal Plane

Given an n-dimensional dataset and an n-dimensional linear trend
hyperplane, if the user wants to know whether the dataset fits the
plane (the distance from points to the hyperplane is nearly 0), a di-
rect visual approach is to project each data point onto an orthogonal
hyperplane and observe whether the result is nearly a straight line.

In particular, we project each high-dimensional data point to a 2-
dimensional space and display it in the form of a scatterplot, similar
to the Grand Tour [1]. Two projection vectors are required: the first
vector v0 is the normal vector of the trend plane, i.e. the unit vector

Figure 6: The Line Graph of
Model Tolerance vs. Percent
Coverage.

Figure 7: The Orthogonal Pro-
jection Plane.

w described before; the second vector v1, which is orthogonal to
v0, can be formed similar to v0, simply by setting θ1 = θ1 + π/2.
The positions of data points in the scatterplot are generated by the
dot products between the data points and the two projection vec-
tors, denoting the distance from the points to the trend hyperplane
and another orthogonal plane, respectively. This view presents the
position of each point based on their distance to the current trend,
which provides users not only a detailed distribution view based on
the current trend, but also the capability of discovering the relative
positions of ouliers. Figure 7 shows the projection plane. The two
blue vertical lines denote the two model boundaries. Data points
are color-coded based on their distance to the trend center (not dis-
played). The red points are data points covered by this trend; darker
red means near the center and lighter red means further from the
center. The blue points are data that are outliers or ones that do not
fit this trend very well.

Linear Distribution Histogram

The histogram view displays the distribution of data points based on
their distance to the current model. As shown in Figure 8, the mid-
dle red line represents the trend center and the right half represents
the points above the trend hyperplane; and the left half are those
below the trend hyperplane. Users can set the number of bins; the
data points included in the trend are partitioned into that number of
bins based on their distance to the trend center. The two blue lines
represent the boundary hyperplanes. The trend covered bars are red
and color-coded according to their distance. The color-mapping
scheme is the same as the projection plane view so the user can
easily compare these two views. The two blue bars represent the
data outside the trend; the right bar is for the data whose position
is beyond the upper boundary and the left bar is for the data whose
position is beyond the lower boundary.

Figure 8: The Histogram View.

3.5 Nugget Refinement and Management

After finding a good model covering a larger number of data points,
the analyst can use a refinement function to tune the model using a
computational technique. We employ Least Median Squares [16],
a robust regression technique, to compute the regression line based
only on the points covered in the current trend, so it is more effi-
cient than basing it on the whole dataset and more accurate because



Figure 9: The Projection Plane
view before refinement.

Figure 10: The Projection
Plane view after refinement.

the outliers are not considered. Figure 9 shows the user-discovered
trend before refinement and Figure 10 shows the refinement results.

A linear trend nugget is a subset of data points that lie within
trend boundaries. Assuming the user has discovered a trend within
several dimensions, it is useful to save it to a file and reload it to
examine, adjust and distribute it to other users. After the users find
a strong trend, they can extract the points in the trend by saving it
as a nugget file. This model selection method is similar to brushing
techniques and provides a convenient way for users to identify and
exclude outliers that deviate from the trend. This data selection
technique is also useful if multiple phenomena are present in the
dataset, since the user can save and manage them separately.

4 NAVIGATION IN MODEL SPACE AND LINEAR TREND

MODEL DISCOVERY

4.1 Sampled Measurement Map Construction

Even with the metrics of a linear pattern mapped to the poly-line
attributes and with the related views for single model measurement
mentioned in Section 3, the user may still feel challenged when
searching for good linear trends by tuning the parameter space val-
ues, due to the large search area associated with multiple data di-
mensions. We introduce a sampled model space measurement map
for users to view the high dimensional model measurement distri-
bution and navigate in the model space directly and efficiently. The
basic idea is that we sample some points in the model space and
calculate the measurements for each point (linear pattern), so the
user can tune the patterns starting from good parameter sets.

This map is constructed via the following three steps:

(a) We first partition each parameter space variable into several
bins. The points in model space located in the center of each com-
bination of bins are selected as sample patterns and the metrics are
calculated for model measuring.

(b) Then we eliminate the patterns with low measurement values
and project a high dimensional sampled pattern set to a series of
two dimensional pairs. Specifically, for each paired bin position in
two dimensions, only the largest measurement (assume larger mea-
surement values denote better models) with the same bin position
of these two dimensions is kept as the map value. For example,
the bottom left bin in one plot corresponds to the two first bin posi-
tion in that dimensional pair, say, bin position 1 for dimension i and
bin position 1 for dimension j (the bin number starts from 1). The
map value for this position of this dimension pair is selected as the
largest measurement in all the sampled patterns whose bin position
in the ith dimension and the jth dimension are both 1.

(c) The map values are color-coded based on the metrics. All the
pairwise measurement maps are displayed in a matrix view. The
initial parameter values are set at the center of the bin with the best
measurement, i.e. the minimum tolerance or the maximum percent
coverage when fixing the other, which generally provides a good
linear pattern for users to start tuning.

Figure 11: The Measurement
Map: mode is “fix coverage”.

Figure 12: The Measurement
Map: mode is “fix model toler-
ance”.

The complexity of construction is PrP1P2 · · ·Pn−1N, where N is
the size of dataset;Pr is the number of patitions for r and Pi is the
number of patitions for θi.

Two alternative modes are associated with this view, fixed per-
cent coverage and fixed model tolerance, corresponding to the two
measurements for the trends. As mentioned before, the user could
change the model tolerance and coverage together in the line graph
view. For the first mode, with model tolerance as the measure-
ment, each bin on the map represents a model tolerance with a
user-indicated fixed coverage. When the user changes the percent-
age, this map is dynamically re-calculated and changed (Figure 11).
For each pairwise bin position in the two dimensional pair, the mini-
mum model tolerance is selected as map value and mapped to color.
In this mode, the percentage of points the user wants to include in
the trend is designated and users can search for the smallest model
tolerances.

The second mode is similar to the first one (Figure 12). The
difference is we change the measurement to coverage, with a user-
indicated fixed model tolerance. This mode is designed for users to
specify the maximum model tolerance and search for models that
cover a high percentage of points.

For the two modes of measurement map, we use two unambigu-
ous color-coding schemes: (a) Model tolerance is mapped from
dark red to light pink, with dark red meaning small model toler-
ance. (b) The coverage is mapped to color from yellow to blue,
with blue meaning large coverage.

When the user moves the cursor over each bin, the map value is
shown. The bin in which the current model resides is highlighted by
a colored boundary. The parameter values are dynamically changed
to the bin center, with the largest measurement value as mentioned
before, when the user clicks or drags to a certain bin position. This
map indicates roughly where good models can be found before tun-
ing the model in the parallel coordinates view. Figure 12 shows
the coverage distribution map in a 3 dimensional linear trend dis-
play. Users can easily find interesting hot spots and drag or click
the current selected bin into a dark blue area.

4.2 Color Space Interactions

It is common that several bins with similar values of interest are
shown at the same time in the sampled map near the local maxi-
mum, making it hard to locate the best settings. To solve this prob-
lem, we provide two interactions in color space:

(a) Scale the map value to employ the whole color range. Be-
cause the values are normalized to (0,1) and then mapped to color,
it is possible that all map values are in a small range; for example,
all the coverage values in the map might be located in (0.7,1) for a
very large tolerance in the second mode. In other words, the color
map range is not fully used. We allow the user to scale the value
range to (0,1) to use the whole color map.

(b) Color map base-point adjustment. For the sampled measure-
ment map, the user is only concerned with the high metric values, so



Figure 13: The first hot spot is
selected representing the first
linear trend.

Figure 14: The data points that
fit the first trend are highlighted
in red color.

Figure 15: The second hot
spot is selected representing
another linear trend.

Figure 16: The data points that
fit the second trend are high-
lighted in red color.

a “filter” function to map values less than a threshold to 0 is useful
for users to locate the local maximum. In particular, we provide a
function for users to change the color map base-point as the thresh-
old. After filtering out the uninteresting areas with low metrics,
users can more easily find the positions of good models.

The color space interactions are illustrated from Figures 18 to 21
and described in Section 5.

4.3 Multiple Coexisting Trends Discovery

This map is also designed to reveal when multiple linear trends co-
exist in the dataset, which is very hard to find without visualization.
Figure 2 shows an example where two linear trends, y = 3x1 −4x2

and y = 3x2 −4x1 coexist in the three dimension dataset mentioned
earlier. Each trend has 50 percent of the data points. When the user
fixes the percentage at 0.50, there are clearly two separate hot spot
regions indicating two linear trends coexist. Figure 13 shows two
different hot spots in the sampled map with one of them selected
(colored bin). The corresponding subset of data that fit this trend
are colored as shown in Figure 14. Red means the point fits the
model and blue means it doesn’t. The other trend and fitting data
are shown in Figure 15 and 16.

5 CASE STUDY

In this section, we discuss case studies showing how to discover sin-
gle or multiple linear trends and construct models for real datasets.
The dataset was obtained from the Mn/DOT Traveler Information
[13], that collects traffic data on the freeway system throughout the
Twin Cities Metro area. Each data point is the traffic information
collected by detectors every 30 seconds. The information includes
the following variables:

(a) Volume: the number of vehicles passing the detector during
the 30 second sample period. (b) Occupancy: the percentage of
time during the 30 second sample period that the detector sensed

Figure 17: Traffic dataset data space view (scatterplot matrix).

Figure 18: The measurement
map with the original color
range.

Figure 19: After full use of the
color map.

Figure 20: Adjust the color map
base point to 0.46.

Figure 21: Adjust the color map
base point to 0.11.

a vehicle. (c) Speed: the average speed of all vehicles passing the
detector during the 30 second sample period.

We collected the traffic information for a whole day and added
another variable based on the index order to represent the time
stamp. Figure 17 shows the dataset displayed in a scatterplot ma-
trix. Assume a user wants to analyze the correlations between de-
pendent variable occupancy and independent variables speed and
volume and construct linear models for these three variables. The
aim of this study is to analyze how the average speed and vehicle
numbers interactively influence the occupancy. The result is helpful
for detecting anomalies, dealing with missing data points and pre-
dicting traffic conditions, which can be used for traffic surveillance
and control.

If the user wants to build a single linear model to explain the
correlations, the first step is to select the view mode and adjust the
point on the line graph view to indicate the model tolerance or cov-
erage. Here we use the first mode to discover a model and indicate
85 percent of the data to be covered by the trend, and then search
for models with small tolerances.

For further analysis, users can navigate in sampled measurement



Figure 22: The model space
view: a discovered linear trend
in a bin center.

Figure 23: The corresponding
data space view.

Figure 24: The model space
view: a better linear trend after
user adjustment and computa-
tional refinement.

Figure 25: The corresponding
data space view.

map and model selection panel alternately to observe the orthogonal
projection plane and histogram to decide whether the current model
is a good estimation. To narrow down the search area, the user
explores first in the sampled measurement map to drag or click a
bin with a good estimation of the model parameters. Notice that
the user is only concerned with dark red bins indicating a small
tolerance; the user could interact with the color space to fully use
the color map and then adjust the color map base-point until the
uninteresting areas are eliminated and only red areas remain.

Figures 18 to 21 show the manipulation details for locating the
local maximum value in the sampled measurement map. Figure 18
shows the map with the original color range and Figure 19 shows
the map after fuller use of the color range. Figures 20 and 21 show
the process of adjusting the base point from 0.86 to 0.46 and then
0.11 (shown in the color bar legend). If the map value (tolerance) is
larger than this base point, then it will be set to 1 and then mapped
to color. From Figure 22, the user can easily locate the approximate
position of good models and then tune them in the model selection
panel.

Figure 22 shows the model metric views for the trend in the bin
center (model tolerance is 0.07); its corresponding data space view
is shown in Figure 23. Figure 24 shows the adjusted model that fits
the data better (model tolerance is 0.05) via tuning the parameter
values in the parallel coordinate view; Figure 25 displays the data
space view.

After refining the model, a good linear estimation for the three
variables is constructed: a trend with small tolerance (0.05) cover-
ing more than 85 percent of the data points (y =−0.29x0 +1.4x1 +
25.3, y: Occupancy, x0: Speed, x1: Volume). From the linear
equation, we notice that occupancy is negatively correlated with
car speed and positively correlated with volume. This three dimen-
sional linear trend plane could also be observed after projection to
a two dimensional plane in the data space view displayed by scat-
terplot matrices. From this we conclude that the more vehicles and
the lower speed of the vehicles, the higher percentage of time the
detector sensed vehicles, which is fairly intuitive.

Can we use this model to estimate occupancy when we know the
speed and vehicle numbers? When we look at the data space view in

Figure 26: Trend fit the
data points with low vol-
ume.

Figure 27: Data Space view. The two
dimensional trend is y =−0.11x+13.8 (y:
Occupancy, x: speed).

Figure 28: Trend fit the
data points with medium
volume.

Figure 29: Data Space view. The two
dimensional trend is y =−0.17x+29.7 (y:
Occupancy, x: speed).

Figure 30: Trend fit the
data points with high
volume.

Figure 31: Data Space view. The two
dimensional trend is y =−0.38x+60.2 (y:
Occupancy, x: speed).

which the data points are colored according to their distance to the
trend, we found this model estimates occupancy well for most of the
data points, except the data collected at noon and night. Therefore,
a single linear trend could not fit all the data points well, except by
increasing the model tolerance to a larger value.

If users want to explain the phenomenon by a single linear trend,
the slope of the trend line of occupancy vs. speed does not change
for different volume numbers (only the intercept changes). If users
want to construct a more complex model with several trends to esti-
mate the occupancy more accurately, multiple linear trends consid-
ering different levels of volume can be discovered.

For multiple trend modeling, each trend is not required to cover a
large percentage of data points. Conversely, each trend needs to be
a strong linear trend represented by a very small tolerance. There-
fore, we chose the second mode, i.e. fixed tolerance, and adjust
the tolerance to a very small value and then explore in model space
as mentioned before. Notice that the value of volume is a discrete
number, so it is easy to observe from the Orthogonal Projection
Plane view that each subset of data with the same volume value is
nearly a straight line in three-dimensional space and the lines are
nearly parallel. Thus we adjust the parameter values until each sub-
set of data with a similar volume value aligns to the trend center
(Figure 32). Adjust the first parameter value (the distance from the
hyperplane to the origin) from zero to maximum to extract the data
points with different volume values (3 different levels: low volume,



median volume and high volume, colored by purple, yellow and red
respectively). We can observe from the data space view that differ-
ent subsets of data reveal different linear trends in the plot of speed
vs. occupancy.

Figure 32: The Orthogonal Projection Plane view after adjusting so
that data points with similar volume align to the linear trend center.
Color coding: purple points are low volume; yellow points are median
volume; red points are high volume.

We then select two dimensional correlation with occupancy as
the dependent variable and speed as the independent variable. We
color-code the third dependent variable volume with three levels in
the orthogonal projection plane view and adjust the parameters to fit
different subsets of data with different levels of volume. Figure 26
to 31 show the three subsets of data fit to different discovered lin-
ear trends after refinement in the orthogonal projection plane view
and data space view. We can observe from the data space view that
as the number of vehicles passing the detector changes, the trend
for speed and occupancy alters: the more vehicles passing through,
the higher the trend line is and, also the steeper the slope of the
trend line. If the volume and speed are known for estimating the
occupancy, the user can classify the volume into three bins: low,
medium and high, and use different trend lines of speed vs. occu-
pancy to estimate the occupancy value.

How can one explain this model with multiple linear trends for
different volumes? If it is ensured that when the detector senses a
vehicle, there is only a single car (without any overlapping) passing
the detector, then the occupancy is mainly influenced by volume
(also influenced a little by speed, but not significantly when volume
number changes); it is also clear that low volume indicates low oc-
cupancy, which is demonstrated by the lower and less steep trend
for speed vs. occupancy when volume is low. But sometimes, es-
pecially when volume is large, several vehicles pass the detector
together: consider that when two overlapping vehicles pass the de-
tector together, the volume increases but occupancy doesn’t. As the
volume increases, the occupancy increases, and meanwhile, the de-
gree of vehicle overlapping increases. When the volume is large,
meaning that several vehicles pass the detector together with over-
lapping, the occupancy is not as predictable just based on volume
as it is when volume is small. This suggests the average speed will
be more helpful for estimating occupancy. A steeper and higher
trend for speed vs. occupancy when volume is large means that
occupancy depends more on speed than on volume.

6 CONCLUSION

In this paper, we describe a novel model space visualization tech-
nique to support users in discovering linear trends among multiple
variables. Using this system, analysts can discover linear patterns
and extract subsets of the data that fit the trend well by navigating
in the model space and building connections between model space
and data space visually. The case studies show how our system can
be used effectively to reveal single and multiple linear trends and to
build explanation models for multivariate datasets. In the future, we
plan to expand our system to support constructing more complex
and generalized models other than linear ones, such as quadratic

and logarithmic correlations among variables. In addition, we be-
lieve many of the same techniques can be applied to the design of
linear classifiers, which we are actively pursuing.
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