
Prefetching for Visual Data Exploration
�

Punit R. Doshi, Elke A. Rundensteiner and Matthew O. Ward
Computer Science Department, Worcester Polytechnic Institute, Worcester, MA 01609�

punitd,rundenst,matt � @cs.wpi.edu

Abstract

Modern computer applications, from business decision support to
scientific data analysis, utilize data visualization tools to support
exploratory activities. Visual exploration tools typically do not
scale well when applied to huge data sets, partially because being
interactive necessitates real-time responses. However, we observe
that interactive visual explorations exhibit several properties that
can be exploited for data access optimization, including locality
of exploration, contiguous queries, and significant delays between
user operations. We thus apply semantic caching of active query
sets on the client side to exploit some of the above characteristics.
We also introduce several prefetching strategies, each exploiting
characteristics of our visual exploration environment. We have
incorporated caching and prefetching strategies into XmdvTool, a
public-domain tool for visual exploration of multivariate data sets.
Experimental studies using synthetic as well as real user traces are
conducted. Our results demonstrate that these proposed optimiza-
tion techniques achieve significant performance improvements in
our exploratory analysis system.

1 Introduction

Whether the domain is stock market data, scientific measurements,
or the distribution of sales, visualization is becoming an increas-
ingly popular technique for data exploration. When presented with
visual depictions of the data, humans can often easily detect inter-
esting patterns as well as outliers, which may be more difficult to
identify and rate as relevant with automated techniques [22]. In-
teractive visual navigation tools play an important role in aiding
users to find their way through such large data sets. By present-
ing information visually and allowing dynamic user interaction
through direct manipulation paradigms, it is possible to traverse
larger information spaces in a shorter time and to discern relevant
knowledge effectively. Significant effort has thus been spent on
developing effective methods to display and visually explore in-
formation [1, 21, 17, 10, 11].

Most of these visualization tools nowadays still execute on data
that is first fetched from the file system and loaded entirely into
main memory. However, as typical sizes of datasets become larger
(on the order of giga-bytes or more), current datasets can no longer
be held entirely in main memory. We thus must scale visual tools
to work with large data sets stored on persistent storage without
sacrificing the near real-time response times required to service
user’s navigation and exploration requests. Note that even a small
movement in the user’s navigation tool may mean executing a new
query to retrieve the selected data, potentially resulting in a high
data access rate. Being an interactive feedback-driven paradigm,

�
This work is supported in part by NSF grants IIS-9732897, IRIS 97-

29878 and IIS-0119276.

it is critical that the user receives responses to her navigation re-
quests with little or no time lag.

Client-side caching is one important technology for achieving
quick response in client-server applications. Caching provides the
advantage of allowing most frequently requested data to be kept in
the cache to speed up the response. Hence, we put forth that man-
aging such client-side caches is a critical component of visual ex-
ploration systems. Furthermore, as we have identified through our
experience with a multivariate visual exploration tool [26], unlike
in traditional high-transactional multi-user database applications,
the queries coming from the visual interface tend to be contigu-
ous and follow some pattern rather than being random. To enable
excellent performance of subsequent user operations, we thus pro-
pose to apply semantic caching techniques [4, 13] for maintaining
the client cache. This logically groups data in the cache and thus
reduces cache lookup overhead due to the compact query-based
organization of the cache content.

To further improve the performance, we have also developed
an array of speculative non-pure prefetching methods. When the
system is idle, a prefetcher will bring data into the cache that is
likely to be used next. These strategies, working hand in hand
with the semantic caching scheme, exploit the characteristics of
the exploratory environment in order to optimize the contents of
the cache. These characteristics include: (1) incremental refine-
ment of queries formulated via a visual query tool in the quest to
explore the details of a particularly interesting subregion of the
data space, (2) contiguous queries by one user rather than unre-
lated adhoc queries requested by different users concurrently for
unrelated purposes, and (3) predictable user behavior due to lim-
ited means of data requests via the visual interactive tools and also
due to existence of some typical styles of exploration.

The proposed prefetching techniques have been incorporated
into XmdvTool [8, 28, 27, 26], a public-domain tool for multi-
variate visual exploration developed at WPI1. This tool, supported
by several NSF grants, aims to scale up existing visual explo-
ration techniques to work for large data sets and for data with
high dimensions. Our experiments confirm the important role of
caching and prefetching in visualization applications and in partic-
ular demonstrate that the benefit of using prefetching significantly
exceeds the result gained by using caching only.

The remainder of the paper is structured as follows: Section
2 identifies key characteristics of interactive visualization envi-
ronments. Section 3 explains our approach to semantic caching,
while Section 4 introduces our prefetching strategies. Section 5
discusses the XmdvTool system implementation, while Section 6
presents our experimental evaluation. Sections 7 and 8 present
related work and conclusions, respectively.

1XmdvTool was demonstrated at ACM SIGMOD 2002 [20], and yearly
releases of the software can be found in our XmdvTool homepage [26].

2 Multivariate Data Visualization

We now introduce XmdvTool, a visual exploration tool for multi-
variate data [8, 26], which represents not only the driving force of
this work but also the testbed into which we incorporate our pro-
posed techniques and then evaluate them. The proposed optimiza-
tion techniques are however also applicable to other exploratory
analysis tools, as long as they meet the typical interactive visual
exploration characteristics identified below.

XmdvTool is a public-domain software package we have been
developing at Worcester Polytechnic Institute for the interactive
visual exploration of multi-variate data sets [25, 7]. XmdvTool
supports an active process of discovery as opposed to passive dis-
play. The major hurdles it overcomes are the problems of display
clutter (too much data at once tends to confuse viewers and too
many dimensions hinders the users from finding useful data fea-
tures) and intuitive navigation (what tasks comprise a typical ex-
ploration process and how they can be made intuitive). Given that
interactive exploration must be supported in near real-time, we de-
signed the necessary backend support for efficient data access for
the above operations scalable for large data sets.

Figure 1: Flat Parallel Coordinates Display of the 5-dimensional
Minerals data set with 16,384 data points.

Figure 2: Structure-based brush in XmdvTool. (a) Hierarchi-
cal tree frame; (b) Contour corresponding to current level-of-
detail; (c) Leaf contour approximates shape of hierarchical tree;
(d) Structure-based brush; (e) Interactive brush handles; (f) Color
map legend for level-of-detail contour.

XmdvTool supports four different displays, such as Scatter-
plots, Star Glyphs, Parallel Coordinates and Dimensional Stack-
ing [26]. Figure 1 shows the parallel coordinates display of a five
dimensional data set having 16,384 records. In this display tech-
nique, each of the � dimensions is represented as a vertical axis,
and the � axes are organized as uniformly spaced lines. A data

element in an � -dimensional space is mapped to a polyline that
traverses across all of the � axes crossing each axis at a position
proportional to its value for that dimension. For example, in Fig-
ure 1, the polyline that intersects the “Spot” axis at value 119, the
“Mag” axis at 149, the “Potas” axis at 41, etc. displays the tuple
(Spot, Mag, Potas, Thor, Uran) = (119, 149, 41, 56, 56).

As seen from Figure 1, displaying all the data to the user at the
same time results in display clutter. Hence we need to provide
user with operations such as drilling down and rolling up the level
of detail of the data. Towards this end, XmdvTool first clusters the
data points into a cluster hierarchy, and then associates aggregate
information with the resulting clusters [25], such as extents and
level-of-details to map the hierarchy into a two-dimensional plane.
Different levels in the cluster tree represent different degrees of
abstraction of the data.

In order to improve the support for visual navigation through
this cluster tree of data sets with millions or more records, we
have designed a visual navigation tool that we term structure-
based brush (see Figure 2) [7]. Structure-based brush can be used
to explore the data by interactively selecting and displaying the
data at different levels of detail of the cluster hierarchy. In Figure
2, the brushing tool component marked ‘e’ selects cluster(s) to be
displayed, while ‘b’ selects the level of detail for the selected clus-
ter(s). While exploring the data, a user may navigate by sliding the
extents of ‘e’ horizontally to select a particular cluster in the tree
hierarchy, or by moving the level brush ‘b’ vertically to display
data at different levels of detail.

Figure 3: Hierarchical Parallel Coordinates Display of Minerals
data set after Drill-down operation.

Figure 4: Drill-down operation of the Structure-based brush.

Figure 3 shows the display of the same data set now as the user
performs a drill-down operation using the structure-based brush;
corresponding to sliding the level-of-detail ‘b’ to the setting of the
brushing tool shown in Figure 4.

The user navigation operations expressed by our brushing tool
are translated into queries to the database. The queries are con-
tiguous rather than ad-hoc, since the visual interface provides con-
trolled means of expressing navigational requests via the structure-
based brush. Such contiguity of user queries can be exploited
when caching queries, as there is a high probability of a partial
query result from a prior query still being relevant (and thus in our
cache) for the next user request.

Second, we note that user may be viewing the data around a
particular region for a while before moving to another region. In
other words, the user navigation tends to be composed of several
small and local movements of the brushing tool rather than major
global and unrelated movements (queries).

Furthermore, users’ exploratory movements are somewhat
more predictable when they explore the data using such visual-
ization tools, as such explorations are different from, say, random
accesses via an ad-hoc SQL query interface. We thus postulate
that prefetching may be a suitable mechanism for improving the
performance of such exploratory applications.

Since the user will be examining the visual displays for inter-
esting patterns, there typically would be delays between two user
operations. Such delays could provide us with the opportunity to
prefetch highly probable data into main memory during idle times.

To summarize, typical characteristics of visual exploration
tools that can be exploited for caching and prefetching are: (1)
contiguous queries passed to the database, (2) locality of explo-
ration and thus data access, (3) predictable user’s exploratory
movements, and (4) significant delays between user operations.

3 Semantic Caching for XMDVTool

Semantic caching [13, 4] is a popular strategy for providing ef-
ficient support for access to cached data. Traditional caching
schemes [5] either cache pages of data (even when possibly only a
small subset of the objects on the disk page may be required) or in-
dividual objects (that requires heavy lookup overhead at the gran-
ularity of each object in the cache). In contrast, semantic caching
caches dynamic groups of objects that logically belong together
and thus can be described by one semantic descriptor, such as
a query expression indicating the logical conditions that a given
group of cached objects meets.

Semantic caching works well in environments that exhibit pri-
marily queries that are contiguous in nature, which is typical for
visual exploration environments as discussed in Section 2. Seman-
tic descriptors are a compact notation for describing all objects
that can be found in the cache. It allows us to adjust cached query
groups to incorporate new data from an incoming query so that
no irrelevant data is cached along with the relevant ones, thus re-
ducing overhead in managing the cache, to dynamically adapt the
cache content based on the pattern of user queries rather than just
caching static clusters of tuples, so that data that logically belongs
together is described by the same semantic descriptor, and to min-
imize the cost of cache lookup due to the compact representation
of the cache content based on semantic descriptors.

A semantic caching scheme must at a minimum handle the fol-
lowing three tasks: first, decide whether the answer for a query
resides in the cache or not; second, extract the parts of the answer
available in the cache from the cache; and third, construct remain-
der query to fetch the remaining data. These tasks must be tuned
to work for the characteristics of the particular application [9].

The recursive processing involved when navigating through hi-
erarchies in main memory is no longer appropriate when storing
those hierarchies on the disk. In our prior work, we have found

that the computation of such recursive unions of joins and divi-
sions to navigate the hierarchical structure can efficiently be ac-
complished by organizing the hierarchy as a MinMax tree [23]
that encodes special positioned attributes (See Figure 5). These
encodings include the left and right extents ��� , ��� and the level
values

�
, as defined in Section 2. Given a MinMax tree encoding,

the recursive processing can be transformed into a set of fast range
queries. For example, consider Figure 5 which models a continu-
ous MinMax tree. To access the objects in nodes 4 and 7, a simple
range query 0.25,0.75, 3 can be used (See also Figure 7).

Figure 5: A MinMax tree.

MinMax tree [23] models the hierarchical exploration via our
visual brush in XmdvTool [7] (see Section 2) as a two-dimensional
exploration in which a selection window, called the active window,
slides over an ���
	 grid of integers, called the navigation grid.
� is the depth of the navigation tree and 	 is the number of leaf
nodes in the tree. The objects (data clusters) now have a spatial
representation that makes them selectable by the active window.
As shown in [23, 24], this additional information, consisting of a
level value

�
and two extents values ��� and ��� makes the objects

behave like small rectangles ��� �� � ��� � ��� ��� �� � �� � � where
��������� , while still preserving their hierarchical structure (Fig. 6).

X2X1

L

Figure 6: Objects as rectangles in XmdvTool and an active win-
dow � � ��� �� � �� � � .

Objects are similar to active windows: they are both rect-
angular regions of the form ����� ��� � � �

. The cache con-
tent is described as a set of such range queries. The con-
tainment test of whether an object belongs to the active win-
dow or not reduces to an inclusion test between rectangles.
For example, Fig. 7 presents such a range SQL query, as-
suming that our ��������	����! ���"#�%$'& cluster tree is stored in
a table called (*)�+-,.��� �/ � �# � ����	 �� ����	 ���010101 ����	*2 � , and
���3	4� ����	*� 5060101 ����	 2 denote the multidimensional values of the
data points.

select *
from HIER
where e_1 >= :x_1
and e_2 <= :x_2
and L = :L;

Figure 7: SQL Queries in XmdvTool for active window � �
��� � �%� � � .

4 Prefetching Strategies

In visualization applications such as ours, users typically spend a
significant amount of time interpreting the graphical presentation
of the selected data, while the processor and I/O system are idle.
It is thus beneficial to predict what data the user will request next,
and start fetching that data into the cache before the user asks for
it. Thus, when the user requests that data later, she should perceive
a faster response time. Due to the properties of visual exploration,
such as the contiguity of queries, we can often accurately predict
the user’s next movement. Thus a viable solution to apply here is
to prefetch the data before the request comes from the tool.

Figure 8: Hierarchy of Prefetching Strategies.

We have developed several strategies for prefetching, as de-
scribed below, in order to perform a comparative evaluation of
their applicability to exploratory visualization systems. Figure 8
organizes these prefetching strategies into a hierarchy based on
different hints they utilize. The assumption is that the predictor
can discover the hints gradually rather than complete knowledge
apriori. The approach implies an evolutionary behavior; at the be-
ginning, less information is available to the predictor and therefore
the number of prefetching hints that it can discover (with a rea-
sonable confidence) is also low. In time, more information (e.g.,
statistics) becomes available, and therefore more patterns (and im-
plicitly hints) can be discovered. In all cases the prefetcher bases
its strategy on the maximum amount of information it can find.
In our case, we assume that the predictor can discover two types
of navigation patterns. Specifically, we assume that the predic-
tor can detect if the user tends to use more frequently the current
navigation direction instead of changing it, and also it can detect
if the data being analyzed has some regions of interest (so called
hot regions) towards which the user will more likely go, sooner or
later. Based on these assumptions, we have designed five prefetch-
ing strategies: random (S1), direction (S2), focus (S3), mean (S4),
and exponential weight average (S5). No prefetching is referred
to as S0.

Figure 9: Random Strategy.

Random Strategy. As shown in Figure 9, strategy S1 (ran-
dom) is based on randomly choosing the direction in which to
prefetch next. The directions are either lateral (left or right at the
same level in hierarchy) or vertical (increase or decrease level of
detail). Our visualization tool only allows manipulation in either
of those four directions. This strategy is appropriate when the pre-
dictor either cannot extract prefetching hints or provides hints with
a low confidence measure.

Figure 10: Direction Strategy.

Direction Strategy. Strategy S2 (direction) is analogous to the
sequential prefetching scheme [3, 18]. This direction strategy as-
sumes that the most likely direction of the next operation can be
determined. It is intuitive, for instance, that the user will continue
to use the same navigation tool for a while before changing to
another one. In our system, each navigation tool of the structure-
based brush happens to precisely control one direction only. Based
on user’s past explorations, the predictor would assign probabili-
ties to the four directions. The prefetching strategy (S2) then is to
“prefetch data in the direction” currently with the highest proba-
bility. As depicted in Figure 10, if ��	 � � � and 	 are the last two
directions navigated into by the user, then the direction strategy
may predict ��	�� � � as the next direction to be visited by the user
in the same direction of the previous two movements.

Figure 11: Hot Regions.

Focus Strategy. Strategy S3 (focus) uses information about
the most probable next direction and hints about regions of high
interest (hot regions) (Figure 11) in the data space as identified
based on prior navigations of this same data by other users. We
found the hot regions for each user by keeping the statistics of the
regions visited by the user during the past explorations, and then
maintaining regions that have frequency of visits above a particu-
lar threshold as hot regions. This strategy prefetches data in the
given direction using the above mentioned direction heuristics.
However, when a hot region is near the current navigation win-
dow, the prefetcher switches from the default direction prefetching
to prefetch in that now more desirable direction. The hypothesis is
that the user will likely stop at such a region of interest to explore
those hot regions if she got close enough to notice them.

Vector Strategies. In these strategies, we use a three-
dimensional vector to indicate the movement of the user’s brushes
- one for the start of brush ��� , one for the end of brush �#� , and one
for the level

�
. For each user, we maintain a user trace contain-

ing the set of movement vectors over time, 	 � 	*� �050�0� 	���� �
where 	�� � ��� � � � � � &�� � . Each vector is calculated from the corre-
sponding user’s location and orientation, containing a move direc-
tion and a move distance. The general principle of such a vector
strategy is to predict the ��� � � � st movement vector, 	 ��� � , and
prefetch objects that would be required if the user goes that way.

Given that we do not want to treat all movements of the user
equally, but rather prefer to age older information over time, we
propose to utilize two different strategies to predict the next lo-
cation of the user: mean (S4) and exponential weighted average
(S5), as depicted in Figures 12 and 13.

Figure 12: Mean Strategy.

Figure 13: EWA Strategy.

In the mean strategy, the next movement vector is predicted to
be the average of the previous � movement vectors 	 � where � ��
	��0�0�05 � . Our experiments have shown that the ideal value of �
for our tool ranges from 2 to 4. The magnitude of the movement
is determined by the average of the magnitudes of the previous
movements. The predicted vector will then be:

	 ��� � ��� �
�� � 	������ . (1)

To adapt to changes in the user’s moving patterns, the second
vector strategy employs exponential smoothing. In this Exponen-
tial Weight Average strategy, we assign a weight to each previous
movement vector 	 � so that recent vectors have higher weights
than movements from the distant past. We use an exponentially
decreasing weight, � . The most recent vector receives a weight
of 1; the previous vector a weight of � ; the next previous one a
weight of � � , and so on.

The predicted vector hence is:

	���� � ��� �
�� � � ��� � 	 � ����� with ��� ��� �

�� � � ��� � . (2)

Our experiments show that for both vector strategies, the num-
ber of history vectors we should consider as window is fairly
small. Larger values of the window tend to lower the valid data
being fetched.

5 Implementing Caching and Prefetch-
ing in XmdvTool

The caching and prefetching strategies described above have been
implemented in XmdvTool 5.0 [26] (see Figure 14). XmdvTool
is coded in C++ with Tcl/Tk and OpenGL primitives. The newly
added modules are written in C with Pro*C (embedded SQL)
primitives for Oracle8i. First, an off-line process clusters the flat
data sets and then transforms the hierarchical data into MinMax
trees [24], a pre-coded indexing structure that allows us to express
hierarchical navigation as range queries. The transformed data is
then loaded into the database.

Figure 14: System architecture. Dotted-line rectangles show on-
line versus off-line computation. Solid-line rectangles represent
the modules. Ovals represent data. Arrows show control flow.

The interaction with the original system (shown as GUI in Fig-
ure 14) has been encapsulated as a database access API. We have
implemented a prepare/iterate paradigm. When the user issues a
new request, the front-end informs the back-end about the request
by calling the prepare function. After that it can retrieve the de-
sired objects one at a time from the buffer by repeatedly calling
the iterate function.

Our semantic cache indexes the cache content with descriptors
of the queries used to retrieve the cached data. This allows for a
fast look-up, since only a few set-based operations are performed
to compare a new query against cached queries (see Section 3).
Details on our caching system can be found in [6].

When the system is idle, the prefetcher thread is created which
communicates with the estimator to make decisions about the next
most probable data to be prefetched depending on the prefetching
strategy and the current cache content. The prefetching query is
then passed to a rewriter. The rewriter consults the semantics of
the cache (expressed by cached queries) and generates a set of
sub-requests to adjust the data in the cache. Each sub-request is
transformed into an SQL query by the translator. The queries are
passed to the loader, which fetches the necessary objects from the
database using a cursor and places them in the cache. Whenever
the cache is full, the estimator removes the objects from the cache
by examining probability values that depend on their semantic dis-
tance from the active region. On explicit user request, the fetching
process is started by the main thread. If the prefetcher thread is
still running, it is preempted and the contents of the cache are ad-
justed for consistency.

6 Experimental Evaluation

6.1 Experimental Setup

Due to space limitations, we only present a selected subset of our
results below [6]. All experiments were conducted on an Alpha
v4.0 878 DEC station, running Oracle 8i. We used C and embed-
ded SQL for accessing Oracle 8i.

To eliminate data-specific effects, we used real and synthetic
data sets. The real data sets were gathered from online repos-
itories, while the synthetic data was generated using a random
number generator. The experimental results reported below were
based on a synthetic data set with 16,384 leaf nodes. We used real
as well as synthetic user traces with different navigation patterns,
each with around 300-3000 user requests.

Measures calculated from each navigation session include:
number of objects displayed, object-based hit ratio, and latency.
Since older display requests are cancelled if two requests come
from the same user, loss of information (previous data not being
displayed) is caused when the display requests are close in time to
one another. The number of objects actually being displayed is a
measure of the visual quality; a high value means more requested
data is being displayed to the user. The object-based hit ratio is
the number of objects already in cache over the total number of
objects requested from the database. The latency is the total time
that the user waited for her requests to be served. It also includes
the time period when queries were cancelled due to new user re-
quests. A high value means a low response time.

6.2 Experiments with Caching

Figure 15 shows the improvement in the performance of the sys-
tem when the caching is turned ON or OFF on both the server (Or-
acle) and client side (our customized cache) respectively. Oracle
optimizer was provided with cache hints “cache” and “nocache”.

Latency reduces by 85 percent just by caching at the client side
as the hit ratio when client-side caching is turned ON is around
85 percent. Latency increases slightly with server-side caching
turned ON as well as it caches the old data that the client may
already have cached.

6.3 Varying Navigation Patterns

We study the effect of differences in navigation patterns by (1)
varying the number of hot regions (Figures 16), (2) erratic versus

0

40

80

120

160

200

Client OFF

Server OFF

Client OFF

Server ON

Client ON

Server OFF

Client ON

Server ON

Caching

R
e

s
p

o
n

s
e

T
im

e
(s

e
c

o
n

d
s

)

Figure 15: Latency vs. Caching.

directional navigation patterns (Figure 17), and (3) delay between
user requests (Figure 18).

Figure 16 shows the normalized latency for each strategy as the
number of hot regions changes (on the X-axis), where:

� "��#	 $ & ��� ��� � $ � ������� � �	� ��
 $'& � $ � ������� �� �3� � $ � �������
 $'� � $ � �������

with ��� � $ � ������� and $ � � $ � ������� the minimum and max-
imum value of latency from the observed latency values. Fig-
ure 16 confirms that any kind of prefetching improves the system
response time (latency) compared to no prefetching at all. As the
number of hot regions increases, the latency increases for all the
prefetching strategies; but for the focus strategy, the latency re-
duces more in comparison with the other strategies. The focus
strategy is the best as the number of hot regions increases.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Number of Hot Regions

N
o

rm
a
li

z
e
d

L
a
te

n
c
y

No Prefetch

Random

Direction

Focus

Mean

EWA

Figure 16: Latency vs. Number of Hot Regions (Normalized for
Zero Latency).

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

'Keep Direction' factor

N
o

rm
a
li

z
e
d

L
a
te

n
c
y

No Prefetch

Random

Direction

Focus

Mean

EWA

Figure 17: Latency vs. ‘Keep Direction’ factor.

Figure 17 shows the performance of each prefetching strategy
when the navigation pattern changes from erratic to more direc-
tional. Recall that all strategies, except for the random strategy,
use information about the direction of previous requests to make
the next prediction. This figure confirms that the random strategy
works best for erratic patterns, while the rest of the strategies show
improved latency as the pattern becomes more directional and thus
more predictable. The direction prefetching strategy has the best
performance as the user becomes more ‘directional’.

6.4 Effectiveness of the Prefetcher

Figure 18 charts the percentage of improvement (percent of la-
tency reduced) in performance achieved by applying a prefetching
strategy (focus strategy selected as representative) compared to not
applying prefetching for various delays between user operations:

���������
	����������������� ������� �"! �$# ��% � �'& ����� ������� �"! �$# �)(
����� ������� �"! �$# ��% � � *)+�,
,

.

0

5

10

15

20

25

30

0 2 4 6 8
De lay between User Operations (seconds)

P
e

rc
e

n
ta

g
e

Im
p

ro
v

e
m

e
n

t
(%

)

Figure 18: Prefetcher Effectiveness vs. Delay.

In Figure 18, the performance is improved up to 28%. This
improvement is attained when the user manipulates the navigation
interface (which means issues a new query to the backend) at the
rate of one query per second. The curve flattens as the prefetching
gets completed most of the time and is no longer preempted by
user inputs. This indicates that an improvement in performance as
the delay between user operations increases is not feasible beyond
a certain point. This is as expected because the prefetching phase
finishes most of the time and the system is idle.

Discussion. The focus strategy needs to analyze user traces
(off-line) over a given data set to identify potential hot regions.
This represents difficulty for its realization in some applications.
The two vector strategies, mean and ewa, are less effective than the
other prefetching strategies for our navigation environment since
they try to fetch the data according to the vector-specific direction
(which can be anywhere in the -/.10/2), while our navigation tool
supports only four immediate directions. The direction strategy
requires no prior knowledge and is simple, especially as its per-
formance is nearly equal to that of the focus prefetching strategy.
Based on this analysis, we have adopted the direction solution in
our current XmdvTool system.

6.5 Experiments Using Real User Traces

We have performed a user-study with real users during which time
our logging tool collected the traces of user explorations. The

users were given different real datasets to visualize and find inter-
esting patterns in the data. This allowed us to figure out the various
ways users try to understand the data. These traces consisted of 30
minutes each for 20 different users. These traces when given as in-
put to our tool under various system settings gave results similar
to our synthetic user traces, confirming our conclusions outlined
above. Due to space reasons actual charts are omitted here [6].

7 Related Work

Integrated visualization-database systems such as Tioga [1],
IDEA [21] and DEVise [17] are most closely related to ours.
Tioga [1] implements a multiple browser architecture for a recipe,
a visual query. IDEA [21] is an integrated set of tools that sup-
ports interactive data analysis and exploration by providing multi-
ple display views. In DEVise [17], a set of query and visualization
primitives to support data analysis is provided. Special memory
management techniques such as caching and prefetching have not
been studied in the context of these systems.

Semantic caching is used for client-side caching and replace-
ment in a client-server database system. It is aimed at providing
support for navigational access to data, hence our proposal to ap-
ply them to visualization applications. We have implemented a
hash-based caching structure inspired by [13, 4] to support effi-
cient access to data. Most work on prefetching can broadly be
classified into three classes: web prefetching [16], prefetching for
memory caches by operating systems [19, 12], and I/O prefetch-
ing [15]. No work has been done to date focussed on prefetch-
ing for visualization applications. Web prefetching typically uses
the idle time when the user is thinking what to do. We utilize
the same principle. Similarly, the work done in I/O prefetching
uses the I/O idle time to prefetch the data into the memory. The
prefetching techniques in web prefetching [16] typically prefetch
the pages most frequently visited by the user. This is similar to
our focus strategy, in the sense of associating usage values with
the object space instead of focussing on user trace analysis. Mean
and exponential weight average strategies have been inspired by
[2]. Direction strategy is similar to sequential prefetching strate-
gies [3, 18].

8 Conclusions

To achieve scalability of exploratory analysis systems such as
XmdvTool, good memory management strategies must be em-
ployed to reduce the overhead of I/O intensive database accesses.
Our research identifies different properties of visualization envi-
ronments exploitable for optimizing data access performance, ap-
plies semantic caching to visualization applications such as Xmd-
vTool, develops prefetching techniques in support of visual ex-
ploration, implements both semantic caching and prefetching in
XmdvTool, and performs experimental studies evaluating the pro-
posed strategies in our XmdvTool system. Our experiments have
shown that caching and prefetching at the client-side improves the
performance of our visual environment considerably, for example,
in some cases from approximately 190 seconds to 30 seconds. We
note that these prefetching strategies are general and thus applica-
ble to any applications that exhibit characteristics similar to those
identified in Section 2.

Acknowledgements. We thank Jing Yang, Geraldine Rosario
and other students in XMDV team for their XMDV tool develop-
ment efforts - without them this work would not have been pos-
sible. We also thank students in the DSRG research group for

helpful feedback on the work. Last but not the least, we would
like to thank all the students who participated in our user study to
help us get real user traces.

References

[1] A. Aiken, J. Chen, M. Lin, and M. Spalding. The Tioga-2
database visualization environment. Lecture Notes in Com-
puter Science, 1183:181–190, 1996.

[2] J. Chim et al. On caching and prefetching of virtual ob-
jects in distributed virtual environments. ACM Multimedia,
pp.171–180, Sept. 1998.

[3] F. Dahlgren, M. Dubois, and P. Stenström. Fixed and Adap-
tive Sequential Prefetching in Shared Memory Multiproces-
sors. In Int. Conf. on Parallel Proc., 1993, pages 56–63.

[4] S. Dar, M. J. Franklin, B. T. Jónsson, D. Srivastava, and
M. Tan. Semantic data caching and replacement. VLDB,
pp.330–341, Sept 1996.

[5] D. DeWitt, D. Mayer, P. Futtersack, and F. Velez. A study of
three alternative workstation-server architectures for object-
oriented database systems. VLDB’90, pages 107–121. 1990.

[6] P. R. Doshi, E. A. Rundensteiner, and M. O. Ward. Prefetch-
ing for visual data exploration. Technical Report TR-02-07,
WPI, CS Dept, 2002.

[7] Y. Fua, M. Ward, and E. Rundensteiner. Structure-based
brushes: A mechanism for navigating hierarchically orga-
nized data and information spaces. IEEE Trans. on Visual-
ization and Computer Graphics, pp. 150-159, 2000.

[8] Y. H. Fua, M. O. Ward, and E. A. Rundensteiner. Hierar-
chical parallel coordinates for exploration of large datasets.
IEEE Proc. of Visualization, pages 43–50, Oct. 1999.

[9] P. Godfrey and J. Gryz. Answering queries by semantic
caches. In Proc of Database and Expert Systems Applica-
tions, Florence, Italy, pages 485–498, Sept. 1999.

[10] S. Hibino and E. A. Rundensteiner. Processing incremen-
tal multidimensional range queries in a direct manipulation
visual query. ICDE, Florida, USA, pages 458–465, 1998.

[11] S. Hibino and E. Rundersteiner. User interface evaluation of
a direct manipulation temporal visual query language. MUL-
TIMEDIA, pages 99–108, Nov. 1998. ACM Press.

[12] D. Joseph and D. Grunwald. Prefetching using Markov
predictors. In Intl Symposium on Computer Architecture
(ISCA), pages 252–263, 1997.

[13] A. M. Keller and J. Basu. A predicate-based caching scheme
for client-server database architectures. VLDB Journal,
5(1):35–47, 1996.

[14] A. Ki and A. E. Knowles. Adaptive data prefetching using
cache information. In International Conference on Super-
computing, pages 204–212, 1997.

[15] P. Krishnan and J. Vitter. Optimal prediction for prefetching
in the worst case. ACM-SODA, pages 392–401, 1994.

[16] T. M. Kroeger, D. D. E. Long, and J. C. Mogul. Explor-
ing the bounds of Web latency reduction from caching and
prefetching. USENIX Symposium on Internet Technologies
and Systems (ITS-97), pages 13–22, 1997.

[17] M. Livny, R. Ramakrishnan et. al. DEVise: Integrated query-
ing and visualization of large datasets. ACM SIGMOD,
pp.301–312, May 13-15, 1997.

[18] S. Manoharan and C. R. Yavasani. Experiments with se-
quential prefetching. Lecture Notes in Computer Science,
2110:322–331, 2001.

[19] R. H. Patterson et al. Informed prefetching and caching.
ACM Symposium on Operating Systems Principles, pages
79–95, 1995.

[20] E. A. Rundensteiner, M. O. Ward, J. Yang, and P. R. Doshi.
XmdvTool: Visual interactive data exploration and trend dis-
covery of high-dimensional data sets. Proceedings of ACM
SIGMOD 2002, page 631, 2002.

[21] P. G. Selfridge, D. Srivastava, and L. O. Wilson. Idea: Inter-
active data exploration and analysis. ACM SIGMOD, pp.24–
34, June 1996.

[22] B. Shneiderman. Designing the User Interface: Strategies
for Effective Human-Computer Interaction. Addison-Wesley
Publishing, third edition, 1997.

[23] I. D. Stroe, E. A. Rundensteiner, and M. O. Ward. Min-
max trees: Efficient relational operation support for hierar-
chy data exploration. Tech. Rep. TR-99-37, WPI, 1999.

[24] I. D. Stroe, E. A. Rundensteiner, and M. O. Ward. Scalable
visual hierarchy exploration. In Database and Expert Sys-
tems Appl., pages 784–793, Sept. 2000.

[25] M. O. Ward, J. Yang, and E. A. Rundensteiner. Hierarchi-
cal exploration of large multivariate data sets. Proceedings
Dagstuhl ’00: Scientific Visualization, May 2001.

[26] Xmdvtool home page. http://davis.wpi.edu/˜xmdv.

[27] J. Yang, M. O. Ward, and E. A. Rundensteiner. Interactive
hierarchical displays: A general framework for visualization
and exploration of large multivariate data sets. Computers
and Graphics journal, 2003, (to appear).

[28] J. Yang, M. O. Ward, and E. A. Rundensteiner. An interac-
tive tool for visually navigating and manipulating hierarchi-
cal structures. In InfoVis 2002, pp. 77-84.

