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Abstract. When using visualization techniques to explore data streams, an im-
portant task is to convey pattern changes. Challenges include: (1) Most data anal-
ysis tasks require users to observe the pattern change over along time range; (2)
The change rate of patterns is not a constant, and most users are normally more
interested in bigger changes than smaller ones. Although distorting the time axis
as proposed in the literature can partially solve this problem, most of these are
driven by the user. This is however not applicable to streaming data exploration
tasks that normally require near real-time responsiveness. In this paper, we pro-
pose a data-driven framework to merge and thus condense timewindows having
small or no changes. Only significant changes are shown to users. Juxtaposed
views are discussed for conveying data pattern changes. Ourexperiments show
that our merge algorithm preserves more change informationthan uniform sam-
pling. We also conducted a user study to confirm that our proposed techniques
can help users find pattern changes more quickly than via a non-distorted time
axis.

1 Introduction

The termdata streams, or streaming data, refers to data arriving at end-users in a con-
tinuous, unbounded, and normally very rapid way [1]. Many real-world examples exist,
such as traffic monitoring, intensive care units in hospitals, and the stock market. Stor-
ing data, performing queries, and mining patterns are common tasks on data streams
in order to retrieve useful information, understand associated phenomena, and provide
support for decision-makers. Because of this wide usage, data stream analysis has at-
tracted much attention in multiple areas of computer science, including database man-
agement and data mining [1].

As an efficient technique to help data analysis, visualization is also increasingly
being employed to help users investigate data streams. Thishas resulted in some frame-
works, algorithms, and techniques for preprocessing and visualizing streaming data,
along with interaction techniques to explore it [2–5]. Although some of this work only
focuses on time-series data, their techniques can often be applied to data streams. We
can divide the tasks solved by these efforts into two categories: (1) maintaining and
conveying data patterns of the current window; and (2) detecting and representing the
pattern change over time. Not many researchers have focusedon the second category,
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although this is an important part of stream analysis. Figure 1 shows one intuitive ap-
proach to visualizing pattern change in the traffic data. In this figure, each time window
corresponds to 30 minutes; every subfigure shows two contiguous windows to convey
the pattern change. This can help users detect changes of thefit line slope for the linear
trend betweenOccupancy andSpeed. However, because significant pattern change only
happens when entering rush hours (see the subfigure with the label “big change”), such
useful information is buried by other subfigures. This mightresult in a slow response
rate, which is not acceptable for some applications. Moreover, the display canvas is
wasted by a lot of subfigures with small or no changes.

Fig. 1. A juxtaposed output using the traffic data of 5 hours from a specific sensor. 10 windows
are shown in this figure. Each subfigure shows two contiguous windows. Newer data is in dark
color, while the older data is light. Significant changes areburied in a lot of subfigures with few
or no changes.

In order to overcome the above shortcoming, our basic idea isto design algorithms
to automatically merge windows with small or no changes and assign more screen space
to periods having large pattern changes. Figure 2 shows a motivating example, where
48 original windows (24 hours) are merged to 3 windows and then visualized by 2
subfigures. Note that each subfigure contains the data in two windows, and is linked to
the time axis via three lines ( two thick and one narrow ) to delimit the time ranges for
these two windows. Obviously, Figure 2 reduces users’ response time significantly, and
merging maintains most of the information about recognizable changes of the fit line
slope, the increasing at 6AM, and the decreasing at 8PM.
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Fig. 2. 48 windows, containing the data in Figure 1, are merged to 3 windows and then shown
with 2 scatterplots. Each scatterplot contains two windows, and is linked to the time axis via three
lines to delimit the time range for these two windows. Newer data is in dark color, while the older
data is light.

The main contributions of this paper include:

– We propose a framework to visualize data streams with the goal to show significant
pattern changes to users. The main approach is to merge thosewindows with few
or no changes when visualizing and storing recent as well as old data.

– The above framework is materialized using two important data patterns: linear
trends and data range.

– We performed experiments to show that our merge algorithm can preserve more
change information than uniform sampling. User studies were conducted to demon-
strate that our techniques can significantly reduce users’ response time when look-
ing for significant pattern change in a data stream.

2 The Data-driven Framework

Before describing the framework and algorithms, we give some terms.
Terms: If we merge windowsW1, W2, ..., andWk to a windowW ′, we callW ′ theparent
window or parent of W1, W2, ..., andWk, andW1, W2, ..., andWk thechild windows or
children of W ′. We also callW1, W2, ..., andWk original windows andW ′ themerged
window. Current view means the most recentn0 windows over which users want to
observe data pattern changes. Many multivariate data patterns can be described using a
vector(v1,v2, . . . ,vr), which we call apattern vector. An example is the vector(−2,5)
that describes a linear trendy = −2x +5.
Merge Algorithm : We first explain how to mergen0 windows tonm(≤ Nm) windows,
whereNm is the maximal number of windows that the canvas can hold, andthen some
special requirements for handling streams will be discussed.

Data patterns in real applications normally need some complex presentations, such
as the linear trend. However, in most cases, it is enough to represent the pattern change
as a real number. For example, if we want to investigate how the slopes of fit lines
change in the linear trend, we can define the pattern change asthe slope difference
between two contiguous windows. Based on this reasonable assumptions, we use an



4 Zaixian Xie, Matthew O. Ward, and Elke A. Rundensteiner

example shown in Figure 3 to describe our merge algorithm. Inthis example, the pattern
is described by a real number and the change is defined by the difference between two
numbers. Actually we only consider the change instead of thepatterns themselves, this
simplified example can show our idea very well. In Figure 3, the first row shows all 9
original windows with their pattern description. Recall that our approach is to merge
contiguous windows if the change between them is small. Thus, the intuitive idea is to
calculate all changes between contiguous windows and mergethose with small changes.
In the first row (original windows) of Figure 3, we can find the following facts: (1) the
change between neighbor windows is 0.1 or 0.2; (2) the pattern differences betweenW1

andW2, W2 andW3, W3 andW4, all are 0.1, which is a small change compared to other
changes. Can we mergeW1, W2, W3 andW4 to one window? Absolutely no. The reason
is that the data pattern is increasing steadily fromW1 toW4. The aggregate change is 0.3,
which is not small. If we merge these four windows to one window, we will lose this
important change. Therefore, in our merge algorithm, we only merge two windows at
once. To explain this idea, assume that we are merging the window list{Wn0−1, Wn0−2,
. . . ,W0 }, whereW0 is the current window, and the change threshold isδ . We search the
whole window list from the beginning, until we meet two contiguous windows, sayWj

andWj−1 having a change less than or equal toδ , and then merge them. After that, we
do the same searching and merging fromWj−2 until W0. For example, in Figure 3 in the
first pass of searching and merging, we get four merged windows:W ′

1, W ′
2, W ′

3 andW ′
4,

given δ=0.1. Note that a single pass scan is not enough because the change between
a merged window and an original window, or two merged windowscan be less than
δ , e.g.,W ′

3 andW ′
4. Thus we need to do multiple pass searching and merging from the

beginning of the window list for a givenδ , until we cannot find a change less thanδ in
a complete pass. In Figure 3, we finally get a new window list{W ′

1,W
′
2,W5,W ′′

3 }.
After multiple pass searching and merging given a thresholdδ , the number of win-

dows in the new window list is probably still bigger thanNm. Under this situation, we
can increaseδ and do searching and merging again. For flexibility, we allowusers to
provide a sequence,{δi}p

i=0(δi < δi+1). The searching and merging will be run on these
δ values one by one untilnm < Nm. δp should be the maximal possible change to make
this algorithm applicable to any input.
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W1 W2 W3 W4 W6 W7 W8 W9
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T

Fig. 3.An example to show how we do a one pass merge given a change magnitudeδ = 0.1. First,
all pairs of windows are merged if their change magnitude is smaller than or equal to 0.1, and
then the window list is scanned again to find window pairs thatneed to merge, until all changes
between contiguous windows are bigger than 0.1.
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When we discuss the merge algorithm, we fix the number of original windows to
n0. For data streams, if one new window arrives, the oldest window, namely the expired
window, has to be removed from the current view before we add the new window to
the visualization. For example, in Figure 3, if we have a new window W10, thenW1

must be removed from the view. The easiest approach is to run the the merge algorithm
again on this new window list{W2,W3, . . . ,W9,W10}. Obviously this is not efficient
because the merge result of the last time period is not reused. Thus we handle the new
arrival window via the following steps: (1) If the oldest window in the current view
has been merged into other windows, decompose the oldest merged window and put
all its child windows back to the window list. (2) Remove the oldest window from the
window list. (3) Add the new window to the window list. (4) Runthe merge algorithm
on the new window list. Therefore, for the new windowW10, we run merge algorithm
on{W2,W ′

2,W5,W ′′
3 ,W10} instead of{W2,W3, . . . ,W9,W10}.

How to Merge Windows: We have two options to merge two windows: (1) We first do
a union set operation on two windows and get a merged window. And then we apply
uniform sampling to this merged window to reduce the number of datapoints to the
size of one window. For example, if each window has 100 datapoints, we can get a
window having 200 datapoints after union set operation. Andthen, we apply uniform
sampling to this merged window with 50% as the sampling ratio. (2) Once when we
get a complete time window in the data stream, we calculate and store its pattern in
the memory. Assume the patterns of two time windowsW1 andW2 are denoted byVp1

andVp2 respectively. When we mergeW1 andW2 to W ′, we calculate the pattern ofW ′

directly fromVp1 andVp2. This way saves the time to calculate the pattern for merged
window but can only be applied to some specified data patterns[6].

The two streaming datasets used in this paper are the following.
Traffic Data Stream: In Section 1, We showed a slice of this data stream, which is pro-
vided by Mn/DOT (the Minnesota Department of Transportation) [7]. There are more
than one thousand sensors on highway entrance/exit ramps and main lanes throughout
the Twin Cities metro area. Each detector can collect the following values every 30
seconds: (1) Volume: the number of vehicles passing the detector. (2) Occupancy: the
percentage of time that the detector sensed a vehicle. (3) Speed: the average speed of
vehicles passing the detector. We normally select one detector and retrieved its three
measures during a specific time period, e.g., one day or onw week, on the Mn/DOT
website.
Sleep Data Stream: This data stream is a physiological dataset (Santa Fe time series
competition data set B) selected from the PhysioBank archive [8]. It is recorded from a
patient suffering from sleep apnea in a sleep laboratory. Since it is relatively long (about
4 hours at a frequency of 2Hz), we use it to simulate a data stream. This dataset has three
measures: heart rate, chest volume (respiration force), and blood oxygen concentration.

3 Visualization of Patterns and Their Changes

In this section, we discuss the juxtaposed view to convey pattern changes over merged
windows.
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Assume that we haven windows,W1,W2, . . ., andWn, we need to visualize. We gen-
eraten−1 subfigures using standard multivariate visualization techniques, e.g., scatter-
plots or parallel coordinates. The first containsW1 andW2; the second showsW2 andW3,
and so on. This design is from our prior work [9] and enables users to quickly detect
pattern changes in the visualizations.

In juxtaposed views, we develop two types of visualization techniques: (1)juxta-
posed full view that uses traditional visualization techniques to show alldatapoints in
the windows (Figure 2); and (2)juxtaposed pattern outline view that shows only the
outline of the discovered pattern for each window. Pattern outline view is specific to
each pattern. For example, it can be a line for linear trends.Figure 4 shows a pattern
outline view for the same data as Figure 2.

Fig. 4.A pattern outline view to visualize the pattern change in traffic data slice used in Figure 2.
Each line represents a linear model for a merged window.

In Figures 2 and 4, all subfigures are placed on the canvas horizontally in the order
of the timestamp. Because the time axis is evenly spaced and subfigures have different
lengths of time range, we use lines to connect subfigures to the time axis. This can help
users understand where the change is fast and where the change is slow. We call this a
1D even layout.

The 1D even layout is intuitive to interpret, but it does not make full use of the
canvas when the number of merged windows is large, especially for those visualization
techniques that generate output in a shape close to square, such as scatterplots or parallel
coordinates. In order to avoid this drawback, we propose a grid layout, in which we lay
out all subfigures in a grid havingn rows andn columns. If there arem subfigures,
n = ⌊

√
m−1⌋+ 1. In grid views, the representation of the time axis is problematic. If

we use the same method as the 1D even layout to connect the subfigures to the time
axis via lines, we will encounter a lot of overlapping. We solve this problem using an
interaction techniques : when the mouse hovers over a subfigure, the corresponding
time range will be highlighted on the time axis (Figure 5).

Figure 5 shows an example using the pattern outline view and grid layout. Each sub-
figure is a two-dimensional parallel coordinates. There aretwo bands in each subfigure.
One band represents the data range in a time window. On dimension X, two corners of
the rectangles correspond to(X + s) and(X − s) respectively. Note thatX is the mean
value, ands is the standard deviation for dimension X in an arbitrary time window. In
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this figure, we can find two types of range: Type 1 (low heart rate and high blood oxy-
gen concentration, e.g., the yellow band in the highlightedsubfigure) and Type 2 (high
heart rate and low blood oxygen concentration, e.g., the dark band in the highlighted
subfigure). Our merge algorithm can automatically detect the shift between two types,
as shown in Figure 5. From the time axis, we can find that Type 2 normally only exists
in a short time range, so it can be treated as an outlier. This might be associated with
sleep apnea (periods during which a patient takes a few quickbreaths and then stops
breathing for up to 45 seconds) [8].

Fig. 5. A pattern outline view in grid layout to visualize the changes in data range for sleep data.
A subfigure is highlighted with a purple border when the mousehovers over it. The corresponding
part of the time axis is highlighted as well.

4 Evaluation

In this section, we evaluate two important issues: (1) how well does the merge algorithm
preserve the change information for data patterns? and (2) how much can the proposed
techniques reduce users’ response time?

4.1 Measuring Result Quality of The Merge Algorithm

To the best of our knowledge, there are no existing algorithms designed and optimized
for achieving the same goal as our proposed merge algorithm.Therefore, we chose
uniform sampling as our competitor in this algorithm to evaluate the output quality.
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We first defined a measure for merging quality, and then ran ourmerge algorithm and
uniform sampling on the traffic data stream to compute quality measures in different
configurations.

In order to explain the quality measure, we show an example inFigure 6. The num-
bers in this figure have the same definition as Figure 3. In eachsubfigure, the first row
represents the original windows; the merged windows are shown in the second row that
will be visualized. Thus the actual change information perceived by users shown in the
third row may be different from that in the original windows.For example, the origi-
nal change betweenW4 andW5 is 0.4. In Figure 6(a) (our proposed merge algorithm),
the perceived change by users is 0.35. This value becomes 0.55 in Figure 6(b) (uniform
sampling). Obviously, regarding this change, our proposedmerge algorithm has a better
result than uniform sampling because|0.35−0.4| < |0.55−0.4|. Based on the above
discussion, the formula to measure the result quality is given below:

Q =
1

n−1

n−1

∑
i=1

(

1− |δi − δ ′
i |

δmax

)

Note thatn is the number of original windows;δi denotes the actual change between
Wi andWi+1; δ ′

i represents the perceived change; andδmax means the maximal change.
If δmax = 1.0, the quality measures for Figures 6(a) and 6(b) are 0.95 and0.85, respec-
tively. In addition, normally we are more interested in bigger changes than small ones,
so we count only those changes bigger than a thresholdδT when using the above equa-
tion. If we setδT = 0.2, the quality measures for Figures 6(a) and 6(b) become 0.975
and 0.725, respectively . In this experiment, we choseδT = π/6 and calculated quality
measures in two cases: In this set of experiments, we aim to test merge algorithm by
treating a slice of traffic data within one day as the current view. Hence the number of
original windows is 48. Figure 7 shows the quality measures for seven different values
as the number of merged windows.
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(a) The proposed merge algorithm (b) Uniform sampling

W3'

Fig. 6. This figure shows how to measure result quality of the merge algorithm and uniform
sampling regarding the degree to which the change magnitudeis preserved.

We can make the following observations based on Figure 7: (1)The merge algo-
rithm performs better than uniform sampling in all configurations of this experiment;
(2) When we decreased the number of merged windows in the current view, the merge
algorithm shows good stability, but uniform sampling does not.
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Fig. 7. The quality measures for merge algorithm and uniform sampling when merging a slice of
traffic data in the current view with differentnumber of merged windows.

4.2 Comparing Proposed Techniques with Uniform Time Axis

Our initial goal is to reduce users’ response time for detecting pattern changes. To verify
whether we have achieved this, we conducted a user study to compare users’ response
accuracy (RA) and response time (RT) on different visualization techniques. The tech-
niques we tested included: (1) Juxtaposed views with the original windows; (2) Juxta-
posed full views; (3) Juxtaposed pattern outline views. Thefirst one is the competitor,
and the techniques 2 and 3 use the merged windows.

In this experiment, we chose the traffic data and set the length of the current view
to one day. The target data pattern was linear trends. The length of one time window
was 30 minutes. The number of merged windows is set to 6. We picked 2 sensors and
generated 2 figures for each technique, resulting in 10 figures. Every participant was
asked to observe each figure on a laptop monitor and answer: “When did the biggest
change of the fit line slope happen?” Note that one figure usingtechnique 1 contains
47 scatterplots, so we allowed users to apply zooming on figures when explore them.
8 graduate students in computer science participated in this user study. Since there was
no significant difference for the RA using the five techniques, we only calculated the
average RT shown in Figure 8 with 95% confidence interval, andcompared the RT of
different techniques using a paired samples t-test. The statistical result revealed that our
proposed techniques (Techniques 2 and 3) have significantlyshorter response time than
the visualizations of the original windows (p < 0.01).

Based on the experiment results, we conclude that our proposed visualization tech-
niques combined with the merge algorithm can significantly reduce users’ response time
when exploring the linear trend changes on streaming data. In the future, we plan to in-
troduce other data patterns, such as data range, into this experiment. More participants
will also be invited.

5 Related Work

In order to deal with large time-series datasets, some abstraction algorithms have been
introduced into time-series visualization. These can be categorized into two approaches:
user-driven [10, 5] and data-driven [11, 3]. Hao et al. [10] introduced DOI (degree of
interest) functions to determine the sampling rate. The DOIfunction is used to represent
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Fig. 8. The response time for five techniques with 95% confidence interval. Tech 1: juxtaposed
views with the original windows; Tech 2: juxtaposed views (full view); Tech 3: juxtaposed views
(pattern outline).

how users are interested in different portions of a time-series dataset. The subset with a
higher DOI value is visualized using a higher sampling rate.In another paper by Hao et
al. [5], they used variable resolution density displays to visualize univariate data. These
user-driven approaches can show more details for importantdata, but are not applicable
to data streams whose requirements normally are close to real-time.

Miksch et al. [11] developed an abstraction algorithm for temporal univariate data
that aims to transform numerical values to qualitative descriptions. It can smooth data
oscillation near thresholds.BinX [3] is a real-time system to visualize time-series data
on the fly. It uses an aggregation algorithm to adapt large datasets to a limited canvas and
supports online adjustment for the levels of aggregation. Both of these techniques, only
handle univariate data trends, but our framework can be applicable to more complex
data patterns.

If using an abstraction algorithm, a distorted timeline might be necessary to give
important data more space. This technique is used in many research efforts. For exam-
ple, Bade et al. designed an intensive care unit monitoring system in which multiple
timelines are displayed. Users can select a subrange at the bottom timeline, then rescale
the time range and show it in the middle and top timelines [12]. We borrowed the ideas
from the above literature to represent the unevenly spaced timeline in this paper.

6 Conclusions

This paper addresses the problem of how to efficiently visualize pattern changes on a
data stream given the fact that the pattern change rate is notconstant. Distorting the
time axis can partially solve this problem, but most existing techniques are user-driven.
This is not applicable to data streams that normally need quick responses. We proposed
a data-driven approach to automatically merge adjacent time windows with few or no
changes in the current view. Our experiments show that our proposed merge algorithm
can preserve more change information than uniform sampling. We proposed two types
of visualization techniques: juxtaposed full views and outline views. The former keeps
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the data details while the latter aims to convey only the datapattern users want to ob-
serve. We conducted a user study to confirm that our visualization techniques together
with the merge algorithms can significant reduce the time cost to detect pattern changes
over data stream.
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