Visual Exploration of Stream Pattern Changes Using a
Data-driven Framework

Zaixian Xie, Matthew O. Ward, and Elke A. Rundensteiner

Computer Science Department
Worcester Polytechnic Institute
{xiezx,matt,runden$@cs.wpi.edu

Abstract. When using visualization techniques to explore data stseam im-
portant task is to convey pattern changes. Challengesdec(i) Most data anal-
ysis tasks require users to observe the pattern change tvmeg éime range; (2)
The change rate of patterns is not a constant, and most ugsensr@nally more
interested in bigger changes than smaller ones. Althougtbrting the time axis
as proposed in the literature can partially solve this moblmost of these are
driven by the user. This is however not applicable to stregmdiata exploration
tasks that normally require near real-time responsiveregdbis paper, we pro-
pose a data-driven framework to merge and thus condenseniimdiews having
small or no changes. Only significant changes are shown t.udaxtaposed
views are discussed for conveying data pattern changesexpariments show
that our merge algorithm preserves more change informétiam uniform sam-
pling. We also conducted a user study to confirm that our megdechniques
can help users find pattern changes more quickly than via adisborted time
axis.

1 Introduction

The termdata streams, or streaming data, refers to data arriving at end-users in a con-
tinuous, unbounded, and normally very rapid way [1]. Margl+&orld examples exist,
such as traffic monitoring, intensive care units in hospjtahd the stock market. Stor-
ing data, performing queries, and mining patterns are comtasks on data streams
in order to retrieve useful information, understand asged phenomena, and provide
support for decision-makers. Because of this wide usaga,sleeam analysis has at-
tracted much attention in multiple areas of computer s@emzluding database man-
agement and data mining [1].

As an efficient technique to help data analysis, visualirais also increasingly
being employed to help users investigate data streamsh@higesulted in some frame-
works, algorithms, and techniques for preprocessing asdalizing streaming data,
along with interaction techniques to explore it [2-5]. Adtlgh some of this work only
focuses on time-series data, their techniques can oftepieed to data streams. We
can divide the tasks solved by these efforts into two catego(l) maintaining and
conveying data patterns of the current window; and (2) deig@nd representing the
pattern change over time. Not many researchers have foaustt second category,

2 Zaixian Xie, Matthew O. Ward, and Elke A. Rundensteiner

although this is an important part of stream analysis. Eidushows one intuitive ap-
proach to visualizing pattern change in the traffic datahisfigure, each time window
corresponds to 30 minutes; every subfigure shows two camtigwindows to convey
the pattern change. This can help users detect changesfiiflthe slope for the linear
trend betweeccupancy andSpeed. However, because significant pattern change only
happens when entering rush hours (see the subfigure withlieé€"big change”), such
useful information is buried by other subfigures. This migggult in a slow response
rate, which is not acceptable for some applications. Mozeahe display canvas is
wasted by a lot of subfigures with small or no changes.

Speed Speed Speed

woswseong
=nswocang
woswseong

02:0002:30 02:30-03:00 03:00.03:30
02:30-03:00 03:00-03:30 03:3004:00M
Speed Speed Speed

Q Q 0

g H H

u u u

5 & 3

Id fn n

o =3 C

¥ ¥ ¥

EEPTE . Tetnaghd | . ER : ."-:lfu

03:30-04:00 04:00-04:30 04:3005:00
04:0004:30 04:30-05:00 05:00-05:30
Speed Speed Speed

¢ ? 2

C C [

u u u

!) ! o ¥ 5

. i, e
05:0005:30) 05:30-06:00 ! 06:00-06:30
:30-06: Big 06:00-06:30 M Big 20.07+

05:30-06:00 Change Change 06:30-07:00

Fig. 1. A juxtaposed output using the traffic data of 5 hours from a#igesensor. 10 windows
are shown in this figure. Each subfigure shows two contiguandaws. Newer data is in dark
color, while the older data is light. Significant changeslarged in a lot of subfigures with few
or no changes.

In order to overcome the above shortcoming, our basic ideadssign algorithms
to automatically merge windows with small or no changes astha more screen space
to periods having large pattern changes. Figure 2 shows watioy example, where
48 original windows (24 hours) are merged to 3 windows anah tisualized by 2
subfigures. Note that each subfigure contains the data in tadows, and is linked to
the time axis via three lines (two thick and one narrow) tondiélthe time ranges for
these two windows. Obviously, Figure 2 reduces users’ msptime significantly, and
merging maintains most of the information about recogrizabanges of the fit line
slope, the increasing at 6AM, and the decreasing at 8PM.

Lecture Notes in Computer Science 3

Speed Speed

“oSamoonon
~
F

-
g

00:00:00 (0&:00:00 20:00:00 00:00:00

Fig. 2. 48 windows, containing the data in Figure 1, are merged torlows and then shown
with 2 scatterplots. Each scatterplot contains two wind@msl is linked to the time axis via three
lines to delimit the time range for these two windows. Newagads in dark color, while the older
data is light.

The main contributions of this paper include:

— We propose a framework to visualize data streams with thetgshow significant
pattern changes to users. The main approach is to mergeulindews with few
or no changes when visualizing and storing recent as welldedata.

— The above framework is materialized using two importanadadtterns: linear
trends and data range.

— We performed experiments to show that our merge algorithmpraserve more
change information than uniform sampling. User studieswenducted to demon-
strate that our techniques can significantly reduce usesganse time when look-
ing for significant pattern change in a data stream.

2 The Data-driven Framework

Before describing the framework and algorithms, we givestenms.
Terms: If we merge windows\Vy, W, ..., andi\ to a windowW’, we callw’ theparent
window or parent of Wy, Wh, ..., andW, andWy, W, ..., andW the child windows or
children of W/. We also cal\Wy, Ws, ..., andW original windows andwW’ themerged
window. Current view means the most receng windows over which users want to
observe data pattern changes. Many multivariate datarpattan be described using a
vector(vy, Vo, ...,V), which we call gpattern vector. An example is the vectdr-2,5)
that describes a linear treyd= —2x+ 5.
Merge Algorithm : We first explain how to mergey windows tonm,(< Nm) windows,
whereNy, is the maximal number of windows that the canvas can hold tlaewa some
special requirements for handling streams will be disalisse

Data patterns in real applications normally need some cexplesentations, such
as the linear trend. However, in most cases, it is enougiptesent the pattern change
as a real number. For example, if we want to investigate hanstbpes of fit lines
change in the linear trend, we can define the pattern chantfeeaslope difference
between two contiguous windows. Based on this reasonablargdions, we use an

4 Zaixian Xie, Matthew O. Ward, and Elke A. Rundensteiner

example shown in Figure 3 to describe our merge algorithihisnexample, the pattern
is described by a real number and the change is defined byffeeedice between two
numbers. Actually we only consider the change instead op#terns themselves, this
simplified example can show our idea very well. In Figure &, first row shows all 9
original windows with their pattern description. Recalattour approach is to merge
contiguous windows if the change between them is small. Tihesintuitive idea is to
calculate all changes between contiguous windows and ntleoge with small changes.
In the first row (original windows) of Figure 3, we can find tlaléwing facts: (1) the
change between neighbor windows is 0.1 or 0.2; (2) the padiéierences betweeaw;
andWs, W, andWs, W5 andWj, all are 0.1, which is a small change compared to other
changes. Can we mergé, Wo, W5 andW, to one window? Absolutely no. The reason
is that the data pattern is increasing steadily fkpio W,. The aggregate change is 0.3,
which is not small. If we merge these four windows to one wingdwe will lose this
important change. Therefore, in our merge algorithm, we omérge two windows at
once. To explain this idea, assume that we are merging theowitist { Wh, 1, Wh,—2,

., Wp }, whereWp is the current window, and the change thresholil ig/e search the
whole window list from the beginning, until we meet two caguitous windows, saw,
andW;_; having a change less than or equadtand then merge them. After that, we
do the same searching and merging fddfn.» until Wy. For example, in Figure 3 in the
first pass of searching and merging, we get four merged wisdéty W;, W andW,,
given 6=0.1. Note that a single pass scan is not enough becauseahgehetween
a merged window and an original window, or two merged windoas be less than
o, e.g., W andW,. Thus we need to do multiple pass searching and merging fnem t
beginning of the window list for a gived, until we cannot find a change less tham
a complete pass. In Figure 3, we finally get a new window{Nsf, W;, W5, W;'}.

After multiple pass searching and merging given a thresbpttie number of win-
dows in the new window list is probably still bigger thil,. Under this situation, we
can increas® and do searching and merging again. For flexibility, we alisers to
provide a sequencédi} (& < &.1). The searching and merging will be run on these
0 values one by one until, < Nm. 8, should be the maximal possible change to make
this algorithm applicable to any input.

W1 A W3 Wy 5 We W7 B Wy

3 b b

Fig. 3. An example to show how we do a one pass merge given a changétnagh= 0.1. First,
all pairs of windows are merged if their change magnituderialier than or equal to.Q, and
then the window list is scanned again to find window pairs tiestd to merge, until all changes
between contiguous windows are bigger thah 0

Lecture Notes in Computer Science 5

When we discuss the merge algorithm, we fix the number of mailgiindows to
np. For data streams, if one new window arrives, the oldest sindamely the expired
window, has to be removed from the current view before we addew window to
the visualization. For example, in Figure 3, if we have a newdew W, thenW,
must be removed from the view. The easiest approach is tdauthe merge algorithm
again on this new window lisfWs, W, ... Wo,Wio}. Obviously this is not efficient
because the merge result of the last time period is not reli$es we handle the new
arrival window via the following steps: (1) If the oldest wiow in the current view
has been merged into other windows, decompose the oldegetherindow and put
all its child windows back to the window list. (2) Remove tHdest window from the
window list. (3) Add the new window to the window list. (4) Rtlee merge algorithm
on the new window list. Therefore, for the new winddWy, we run merge algorithm
on {Wo, W), W5, W5, Wi} instead offWo, W, ..., W, Wio}.

How to Merge Windows. We have two options to merge two windows: (1) We first do
a union set operation on two windows and get a merged windoa. then we apply
uniform sampling to this merged window to reduce the nhumbetadapoints to the
size of one window. For example, if each window has 100 datapowe can get a
window having 200 datapoints after union set operation. fmh, we apply uniform
sampling to this merged window with 50% as the sampling rg#p Once when we
get a complete time window in the data stream, we calculatiestore its pattern in
the memory. Assume the patterns of two time winddWsandW, are denoted by,
andV,, respectively. When we merd# andWs to W', we calculate the pattern &’
directly fromVy, andVp,. This way saves the time to calculate the pattern for merged
window but can only be applied to some specified data pattfghs

The two streaming datasets used in this paper are the foltpwi
Traffic Data Stream: In Section 1, We showed a slice of this data stream, whiclhads p
vided by Mn/DOT (the Minnesota Department of Transportatid@]. There are more
than one thousand sensors on highway entrance/exit randpsain lanes throughout
the Twin Cities metro area. Each detector can collect thieviahg values every 30
seconds: (1) Volume: the number of vehicles passing thectbetg?2) Occupancy: the
percentage of time that the detector sensed a vehicle. €dSphe average speed of
vehicles passing the detector. We normally select one tetand retrieved its three
measures during a specific time period, e.g., one day or orskwan the Mn/DOT
website.

Sleep Data Stream This data stream is a physiological dataset (Santa Fe &mess
competition data set B) selected from the PhysioBank aedi8i It is recorded from a
patient suffering from sleep apnea in a sleep laboratongeSi is relatively long (about
4 hours at a frequency of 2Hz), we use it to simulate a datarstr&his dataset has three
measures: heartrate, chest volume (respiration forcdplmod oxygen concentration.

3 Visualization of Patterns and Their Changes

In this section, we discuss the juxtaposed view to convelgpathanges over merged
windows.

6 Zaixian Xie, Matthew O. Ward, and Elke A. Rundensteiner

Assume that we hawewindows W, W, ..., andW,, we need to visualize. We gen-
eraten— 1 subfigures using standard multivariate visualizatiohmégues, e.g., scatter-
plots or parallel coordinates. The first contaigsandWs; the second showss ands,
and so on. This design is from our prior work [9] and enablessto quickly detect
pattern changes in the visualizations.

In juxtaposed views, we develop two types of visualizatiechhiques: (1)uxta-
posed full view that uses traditional visualization techniques to shovdathpoints in
the windows (Figure 2); and (3uxtaposed pattern outline view that shows only the
outline of the discovered pattern for each window. Patterttiree view is specific to
each pattern. For example, it can be a line for linear treRigire 4 shows a pattern
outline view for the same data as Figure 2.

Speed Speed

<oSeooong

00:00:00 06:00:00 20:00:00 00:00:00

Fig. 4. A pattern outline view to visualize the pattern change iffitraata slice used in Figure 2.
Each line represents a linear model for a merged window.

In Figures 2 and 4, all subfigures are placed on the canvaadmiailly in the order
of the timestamp. Because the time axis is evenly spacedudnidjsres have different
lengths of time range, we use lines to connect subfigurestbrtte axis. This can help
users understand where the change is fast and where theecisasigw. We call this a
1D even layout.

The 1D even layout is intuitive to interpret, but it does naka full use of the
canvas when the number of merged windows is large, espefialhose visualization
techniques that generate outputin a shape close to squeheas scatterplots or parallel
coordinates. In order to avoid this drawback, we proposéddayout, in which we lay
out all subfigures in a grid having rows andn columns. If there aren subfigures,
n=|vm—1] +1. In grid views, the representation of the time axis is pealdtic. If
we use the same method as the 1D even layout to connect thguselsfto the time
axis via lines, we will encounter a lot of overlapping. Wevgothis problem using an
interaction techniques : when the mouse hovers over a subfithe corresponding
time range will be highlighted on the time axis (Figure 5).

Figure 5 shows an example using the pattern outline view addayout. Each sub-
figure is a two-dimensional parallel coordinates. Therev@oebands in each subfigure.
One band represents the data range in a time window. On diomeXstwo corners of
the rectangles correspond @ + s) and (X — s) respectively. Note thaX is the mean
value, ands is the standard deviation for dimension X in an arbitraryetiwindow. In

Lecture Notes in Computer Science 7

this figure, we can find two types of range: Type 1 (low heag eatd high blood oxy-
gen concentration, e.g., the yellow band in the highligistaefigure) and Type 2 (high
heart rate and low blood oxygen concentration, e.g., thke band in the highlighted
subfigure). Our merge algorithm can automatically detexsthift between two types,
as shown in Figure 5. From the time axis, we can find that Typerghally only exists
in a short time range, so it can be treated as an outlier. Tightrbe associated with
sleep apnea (periods during which a patient takes a few dueiths and then stops
breathing for up to 45 seconds) [8].

heart_rate oxygen heart_rate oxygen heart_rate oxygen
108.34 8000 108.34 8000 108.34 8000

| e
-

53.67 124 53.67 124 53 67 124

Al

L L Ll L1 [l 1
06:30 08:00 2[e0mn 2/3M028:30 30:30

Fig. 5. A pattern outline view in grid layout to visualize the chasge data range for sleep data.
A subfigure is highlighted with a purple border when the mdwseers over it. The corresponding
part of the time axis is highlighted as well.

4 Evaluation

In this section, we evaluate two importantissues: (1) hoWaees the merge algorithm
preserve the change information for data patterns? and{2ntuch can the proposed
techniques reduce users’ response time?

4.1 Measuring Result Quality of The Merge Algorithm

To the best of our knowledge, there are no existing algostdesigned and optimized
for achieving the same goal as our proposed merge algorittverefore, we chose
uniform sampling as our competitor in this algorithm to esdé the output quality.

8 Zaixian Xie, Matthew O. Ward, and Elke A. Rundensteiner

We first defined a measure for merging quality, and then ranmarge algorithm and
uniform sampling on the traffic data stream to compute quatieasures in different
configurations.

In order to explain the quality measure, we show an examfégare 6. The num-
bers in this figure have the same definition as Figure 3. In sabfigure, the first row
represents the original windows; the merged windows are/stio the second row that
will be visualized. Thus the actual change information paed by users shown in the
third row may be different from that in the original window=or example, the origi-
nal change betweén, and\W is 0.4. In Figure 6(a) (our proposed merge algorithm),
the perceived change by users is 0.35. This value becomg&Figure 6(b) (uniform
sampling). Obviously, regarding this change, our proposerye algorithm has a better
result than uniform sampling becauge35— 0.4| < |0.55— 0.4|. Based on the above
discussion, the formula to measure the result quality isrglvelow:

n-1 |d 6/

g ()
Note thatn is the number of original windows} denotes the actual change between
W andW_.1; &' represents the perceived change; &ag means the maximal change.
If dmax = 1.0, the quality measures for Figures 6(a) and 6(b) are 0.99&a%] respec-
tively. In addition, normally we are more interested in kdgghanges than small ones,
so we count only those changes bigger than a thresholdhen using the above equa-
tion. If we setdr = 0.2, the quality measures for Figures 6(a) and 6(b) becomes0.97
and 0.725, respectively . In this experiment, we chiése- 17/6 and calculated quality
measures in two cases: In this set of experiments, we ainstarterge algorithm by
treating a slice of traffic data within one day as the curréatwwHence the number of
original windows is 48. Figure 7 shows the quality measuoeséven different values
as the number of merged windows.

WigaWr g W1 WegaWega W Wigq W2 W3 1W" 04" 0
NN SN N N

%ims E IIIIE
\’\/Av;g:jvs 15 w, Wy wy Wy . wy

>

o
P

e - - < <
by users 5 0 o3 04 0 0 ©0 05 0
(a) The proposed merge al gorithm (b) Uniform sampling

Fig. 6. This figure shows how to measure result quality of the mergerdghm and uniform
sampling regarding the degree to which the change magnisysteserved.

We can make the following observations based on Figure 7Tli&)merge algo-
rithm performs better than uniform sampling in all configioas of this experiment;
(2) When we decreased the number of merged windows in theruriew, the merge
algorithm shows good stability, but uniform sampling doet n

Lecture Notes in Computer Science 9

Quality Measure

0.4 ——Merge
0.2 -@-Sampling

3 6 7 8 14 15 23
The number of merged windows

Fig. 7. The quality measures for merge algorithm and uniform sargpiihen merging a slice of
traffic data in the current view with differentnumber of medgvindows.

4.2 Comparing Proposed Techniques with Uniform Time Axis

Our initial goal is to reduce users’ response time for da@tggiattern changes. To verify
whether we have achieved this, we conducted a user studyrpa@ users’ response
accuracy (RA) and response time (RT) on different visutibzetechniques. The tech-
niques we tested included: (1) Juxtaposed views with thgarai windows; (2) Juxta-
posed full views; (3) Juxtaposed pattern outline views. fits¢ one is the competitor,
and the techniques 2 and 3 use the merged windows.

In this experiment, we chose the traffic data and set the tewigthe current view
to one day. The target data pattern was linear trends. TiggHerf one time window
was 30 minutes. The number of merged windows is set to 6. Wee@i2 sensors and
generated 2 figures for each technique, resulting in 10 figuEeery participant was
asked to observe each figure on a laptop monitor and answdrefilid the biggest
change of the fit line slope happen?” Note that one figure usialgnique 1 contains
47 scatterplots, so we allowed users to apply zooming ondguhen explore them.
8 graduate students in computer science participateddgruigr study. Since there was
no significant difference for the RA using the five techniques only calculated the
average RT shown in Figure 8 with 95% confidence interval,@mdpared the RT of
different techniques using a paired samples t-test. Thistital result revealed that our
proposed techniques (Techniques 2 and 3) have significstmbiger response time than
the visualizations of the original windowp & 0.01).

Based on the experiment results, we conclude that our peopgasualization tech-
niques combined with the merge algorithm can significamitiuce users’ response time
when exploring the linear trend changes on streaming dathelfuture, we plan to in-
troduce other data patterns, such as data range, into thésiment. More participants
will also be invited.

5 Related Work

In order to deal with large time-series datasets, someaadi&in algorithms have been
introduced into time-series visualization. These can begmaized into two approaches:
user-driven [10, 5] and data-driven [11, 3]. Hao et al. [Ififéduced DOI (degree of
interest) functions to determine the sampling rate. The fD@dtion is used to represent

10 Zaixian Xie, Matthew O. Ward, and Elke A. Rundensteiner

60

40

- :
Techt Techz Tech3

95% CI

Fig. 8. The response time for five techniques with 95% confidenceviateTech 1: juxtaposed
views with the original windows; Tech 2: juxtaposed viewdl(¥iew); Tech 3: juxtaposed views
(pattern outline).

how users are interested in different portions of a timéesafataset. The subset with a
higher DOI value is visualized using a higher sampling rist@nother paper by Hao et

al. [5], they used variable resolution density displaysisualize univariate data. These
user-driven approaches can show more details for impasttat but are not applicable

to data streams whose requirements normally are closelttimea

Miksch et al. [11] developed an abstraction algorithm fonperal univariate data
that aims to transform numerical values to qualitative dpsons. It can smooth data
oscillation near thresholdBinX [3] is a real-time system to visualize time-series data
onthe fly. It uses an aggregation algorithm to adapt largesad#s to a limited canvas and
supports online adjustment for the levels of aggregatiath®f these techniques, only
handle univariate data trends, but our framework can beicgipé to more complex
data patterns.

If using an abstraction algorithm, a distorted timeline Intige necessary to give
important data more space. This technique is used in mapgmas efforts. For exam-
ple, Bade et al. designed an intensive care unit monitoystes in which multiple
timelines are displayed. Users can select a subrange abttogrbtimeline, then rescale
the time range and show it in the middle and top timelines.[# borrowed the ideas
from the above literature to represent the unevenly spacegite in this paper.

6 Conclusions

This paper addresses the problem of how to efficiently viseigdattern changes on a
data stream given the fact that the pattern change rate isamstant. Distorting the
time axis can partially solve this problem, but most exgtechniques are user-driven.
This is not applicable to data streams that normally neeckqeisponses. We proposed
a data-driven approach to automatically merge adjacem windows with few or no
changes in the current view. Our experiments show that apqeed merge algorithm
can preserve more change information than uniform sampifegproposed two types
of visualization techniques: juxtaposed full views andioetviews. The former keeps

Lecture Notes in Computer Science 11

the data details while the latter aims to convey only the gatéern users want to ob-
serve. We conducted a user study to confirm that our visumlizéechniques together
with the merge algorithms can significant reduce the timétoodetect pattern changes
over data stream.

References

10.

11.

12.

. Lukasz, G.Ozsu M. Tamer: Issues in data stream management. SIGMOD3RE¢2003)

5-14

. Wong, P., Foote, H., Adams, D., Cowley, W., Thomas, J.:dDyic visualization of transient

data streams. Proc. IEEE Symposium on Information Visatitn (2003) 97-104

. Berry, L., Munzner, T.: Binx: Dynamic exploration of tinseries datasets across aggregation

levels. IEEE Symp. Information Visualization Poster (2p245.2

. Albrecht-Buehler, C., Watson, B., Shamma, D.A.: Viszialj live text streams using motion

and temporal pooling. IEEE Computer Graphics and Applice®5 (2005) 52-59

. Hao, M.C., Keim, D.A., Dayal, U., Oelke, D., Tremblay, ©ensity displays for data stream

monitoring. Comput. Graph. Foru@v (2008) 895-902

. Chen, Y., Dong, G., Han, J., Wah, B.W., Wang, J.: Multi-dirsional regression analysis of

time-series data streams. In: VLDB. (2002) 323-334

. Minnesota Department of Transportation: Mn/DOT trawvelénformation.

http://www.dot.state.mn.us/tmc/trafficinfo/, accessad-eb. 25, 2009 (2009)

. Goldberger, A.L., Amaral, L.A.N., Glass, L., HausdodfM., Ivanov, P.C., Mark, R.G., Mi-

etus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhyaidB PhysioToolkit, and Phys-
ioNet: Components of a new research resource for complesiglogic signals. Circulation
101(2000 (June 13)) e215-€220

. Xie, Z., Ward, M.O., Rundensteiner, E.A.: Visual anadysi multivariate data streams based

on doi functions. Technical Report TR-10-06, Worcesteryeahnic Institute, Computer
Science Department (2010)

Hao, M.C., Dayal, U., Keim, D.A., Schreck, T.: Multi-mdstion techniques for visual ex-
ploration of large time-series data. EuroVis07: Joint Euaphics - IEEE VGTC Symp. on
Visualization (2007) 27-34

Miksch, S., Horn, W., Popow, C., Paky, F.: Utilizing teon@l data abstraction for data vali-
dation and therapy planning for artificially ventilated rtwn infants. Artificial Intelligence
in Medicine8 (1996) 543-576

Bade, R., Schlechtweg, S., Miksch, S.: Connecting timented data and information to a
coherent interactive visualization. CHI (2004) 105-112

