
QoS: Quality Driven Data Abstraction Generation For
Large Databases ∗

Charudatta V. Wad, Elke A. Rundensteiner and Matthew O. Ward
Department of Computer Science,

Worcester Polytechnic Institute,
Worcester, MA USA

{charu w, rundenst, matt}@cs.wpi.edu

ABSTRACT
Data abstraction is the process of reducing a large dataset into one
of moderate size, while maintaining dominant characteristics of
the original dataset. Data abstraction quality refers to the degree
to which the abstraction represents the original data. The qual-
ity of an abstraction directly affects the confidence an analyst can
have in results derived from such abstracted views about theactual
data. Some initial measures to quantify the quality of abstraction
have been proposed; however, they currently can only be utilized
as an after-thought. An analyst can be made aware of the quality
of the data he works with, but he cannot control the quality hede-
sires and the trade-off between the time required to generate the
abstraction and its quality. While some analysts require atleast a
certain minimal level of quality, others must be able to workwith
certain abstraction quality due to time and resource limitations. To
tackle these problems, we propose a new data abstraction genera-
tion model, called the QoS model, that presents the performance
quality trade-off to the analyst. It then generates an abstraction
based on the desired level of quality versus performance as indi-
cated by the analyst. The framework has been integrated intoXmd-
vTool, a freeware multi-variate data visualization tool developed at
WPI. Our experimental results show that our approach provides
better quality compared to existing abstraction techniques.

1. INTRODUCTION

1.1 Motivation
Data abstraction techniques are commonly used to facilitate the

efficient detection of patterns in large datasets and for analyzing a
huge database without actually having to explore the original data
[1]. Thus, analysts typically infer characteristics of large databases
by analyzing the abstracted data rather than looking at the full data.
Some abstraction techniques select a subset of the originaldataset
as its abstraction, such as sampling and filtering, while others con-
struct a new abstract/summary representation, such as clustering
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and summarizing [1]. Tasks conducted based on abstracted data in-
clude pattern detection, cluster analysis, outlier analysis, subspace
cluster analysis, filtering and sample analysis [1]. Figures 1(a) and
1(b) represent an example of a dataset and its abstraction. The visu-
alization technique used, called parallel coordinates [13], is a pop-
ular multivariate visualization technique. In this method, each di-
mension corresponds to an axis, and the N axes are organized as
uniformly spaced vertical or horizontal lines. A data element in an
N-dimensional space manifests itself as a connected set of points,
one on each axis. Thus one polyline is generated for representing
each data point.

Figure 1: Figure 1(a) Displays the cars dataset using the par-
allel coordinates visual technique, while Figure 1(b) represents
cluster centers of the dataset.

Abstraction quality versus data quality: Abstraction quality
captures how well the abstracted dataset represents the original
dataset. Intuitively, a good data abstraction represents all the main
features of the original dataset. Since the abstraction in Figure 1(b)
captures all the main clusters present in the original dataset (Figure
1(a)), the abstraction is considered to be of high quality. Lack of
knowledge regarding quality can lead to inaccurate results, jeopar-
dizing the reliability of conclusions gleaned from the abstraction.
Validating the quality of abstraction is made difficult due to a lack
of data abstraction quality measures. Although some initial mea-
sures [8] have recently been proposed to measure the data abstrac-
tion, those measures do not scale well to higher number of dimen-
sions. Furthermore, a scalable data abstraction measure byitself
does not solve the problem. The main problem is a lack of consid-
eration about quality by the abstraction generation process before
its commencement.

To further complicate matters, most systems and thus users of
these systems assume that the raw data itself is always good.How-
ever, real-world data is known to be imperfect, suffering from var-
ious forms of defects such as sensor variability, estimation errors,
uncertainty, human errors in data entry, and gaps in data gathering.
Data quality refers to the quality of the underlying data used for



the abstraction generation. Clearly, if the quality of the underlying
data is not considered during abstraction generation, the quality of
an abstraction may indeed be adversely affected.

1.2 Existing Abstraction Generation Solutions
Figure 2 sketches the process most commonly used by abstrac-

tion generation systems [2] [9].

Figure 2: Existing Data Abstraction Solution.

Predicaments of such a process include:

• Quality measures, if available, are plugged in only as an
after-thought to calculate the quality of a given abstraction.

• Data abstraction is a one way process. Thus, when an analyst
initiates the generation of an abstraction, he cannot indicate
the desired level of quality nor control the output of the pro-
cess in terms of its resulting quality. Rather, he would simply
be informed as an afterthought on the quality (or lack there-
after) that has been obtained.

• Furthermore, the analyst doesn’t know how much time they
should budget for the abstraction process. Without such con-
trol, he cannot trade-off the acceptable level of quality with
the amount of time he is able to spend on the abstraction pro-
cess itself.

• Data quality is not taken into account. As discussed earlier, if
the data is imperfect (or of low quality), the abstraction result
should also reflect the underlying data quality.

1.3 Our Approach
To overcome the above identified problems, we propose to make

abstraction generation quality-aware. We present the analyst with
a quality-performance trade off indicating the different values of
quality measures achievable and time required for the process to
generate them. Using these computations, an analyst can demand
a quality level beforehand or he can request a certain performance,
knowing what quality he can expect and QoS will generate the ab-
straction accordingly. QoS takes into consideration both the data
abstraction quality and underlying data quality to calculate a com-
plete data abstraction quality measure.

The system framework for QoS, depicted in Figure 3, consistsof
the following main phases:

1. Pre-processing phase:We introduce a pre-processing phase
to compute the quality-performance trade-off. The computa-
tion is done using a multi-dimensional histogram which cal-
culates density information. Two main components in this
phase are:

Figure 3: Proposed QoS Framework.

a) A scalable data abstraction measure to quantify the data
abstraction result is proposed, called Multi-dimensionalHis-
togram Difference Measure (MHDM). Other measures [8]
could also be plugged in.
b) The estimator calculates the performance-quality trade-
off including confidence intervals and time estimations for
the process. This is at the heart of QoS, presenting the ana-
lyst with various trade-offs before the process of abstraction
commences.

2. Generation phase:This process generates an abstraction based
on quality values set by the analyst.

3. Post-processing phase:It combines the measure of the ab-
straction with quality of the underlying dataset to determine
the overall quality.

4. Interaction interface:This interface presents the performance
quality trade-off and the final abstraction quality to the ana-
lyst.

The QoS framework could be applied to many different data ab-
straction tasks, including hierarchical sampling, clustering, and se-
lection. However, for the sake of explanation, in the rest ofthis
paper we will focus on clustering for large databases.

2. QOS FOR CLUSTER ANALYSIS
Summarization techniques for data abstraction summarize the

data by creating fewer new representatives to convey the underlying
data [1]. Clustering is one such technique, where cluster represen-
tatives are used to represent the data. Since clustering is memory
and computationally intensive, clustering of large databases typi-
cally employs sampling as a pre-processing step [2][3].

2.1 Quality Measure (MHDM)
We now propose a measure of abstraction quality for high di-

mensional data. This multi-dimensional data abstraction quality
measure captures the distributions present in a high dimensional
dataset. The measure can be calculated before the abstraction is ac-
tually generated. The proposed measure, called Multi-dimensional
Histogram Difference Measure (MHDM), is a histogram differ-
ence method. Histograms are widely used for density and selec-
tivity estimation [4]. MHDM calculates the difference between the



multi-dimensional histogram of the original dataset and that of the
abstraction generated from the data. For the measure we assume
that the two multi-dimensional histograms (original and abstracted)
have the same number of bins, with bin sizes corresponding tothe
percentage of data falling into that bin. MHDM is the summation
of the difference between the corresponding bins. MHDM ranges
from 0.0 to 1.0 with 0 implying the worst case MHDM, and 1.0
indicating the best case.

One potential disadvantage of a multi-dimensional histogram is
its inability to scale due its high memory requirements [4].Un-
fortunately we cannot utilize just 1-dimensional histograms which
are less costly, they fail to capture the correlation present in high
dimensional data. To overcome the space inefficiency of multi-
dimensional histograms [4], we encode the multi-dimensional his-
togram structure by explicitly associated the multi-dimensional cell
address with its cell content value. For an example, Figure 4rep-
resents the formation of an encoded multi-dimensional histogram.
For instance, the cell with dimension 1 at bin 5 and dimesnion2
at bin 2 and dimension 3 at bin 1 having a value of 6 would be
encoded explicitly by the pair shown in the figure.

Building the encoded multi-dimensional histogram:Assume
the input tuple withd dimensions with data valuesv1,v2,..vd.

Step I: We partition each of thed dimensions into a number of dis-
tinct partitions. For simplicity, we’ll assume here that there
are exactlyn such partitions for each dimension, though other
more sophisticated strategies could be employed for bin siz-
ing in the future.

The partitioning of the dimensioni is denoted asui
1, ui

2, ...
ui

n with n the number of partitions. For each input tuple
v1,v2,..vd, we determine which binb of dimensioni its ith

valuevi falls into. Given that each tuple value is mapped to a
particular partition, we haved partition numbers for a given
input tuple. Let us denote this byu1

i1,u2

i2,..ud
id, with ij the

partition number for the dimensions. Thus, the number of 1-
dimensional partitions formed directly influence the number
of multi-dimensional bins formed.

Step II: We encode the multi-dimensional bin from partition num-
bers obtained from each dimension by appending the bin
numbers into one code,u1

i1u
2

i2..ud
id is the multi-dimensional

bin corresponding to the example input tuple above. Thus,
if most of the d-dimensional cells remain empty, our his-
togram is relatively small. Most real datasets are very sparse
in nature (confirmed by our experimental study in Section 4).
Thus this technique saves a lot of memory in practice.

Advantages of this explicit encoding of a full matrix representa-
tion approach include :

• We never encode empty bins, leading to huge savings in terms
of memory in practice.

• The algorithm has a linear complexity (in the number of data
points), and thus can build multidimensional histograms ef-
ficiently even for high dimensional data.

MDHM can be expressed by the following equation:

MHDM = 1.0−

PN

i=1
|Poi − Psi|

MAXPh

(1)

• Poi is the percentage of data that falls into the i-th bin of the
original histogram;

Figure 4: Formation of encoded multi-dimensional histogram.

• Psi is the percentage of data that fall into the i-th bin of the
abstracted histogram;

• MAXPh is the maximum histogram difference.

Need for MHDM: In clustering of large databases, if the sam-
ples used for clustering are chosen randomly, they fail to represent
the original dataset. In that case, the clustering process fails to
abstract the original dataset. It is independent of the clustering al-
gorithm used and quality of clusters formed. There is no intuitive
way of setting the ”correct” sampling rate for a dataset. In absence
of measures to guide the process, the easiest method to ensure high
data abstraction quality is to increase the sampling rate. The user
may over-sample the database yielding a poor clustering perfor-
mance without guaranteeing necessarily improvement in quality.
Also, users might under-sample the dataset leading to low data ab-
straction quality. In that case, the clustering result might not be ac-
curate. Thus, misleading the users with clustering resultsthat may
not represent the original dataset. Thus, even though sampling can
be a direct representation of quality, setting the correct sampling
rate requires a quality measure.

2.1.1 Noise Elimination
Real world data is often fraught with noise. Clearly, noise elimi-

nation is crucial for high quality abstractions. The multi-dimensional
histogram of the original data is thus regulated to filter noise. Here
we propose one method in particular that is targeting the elimina-
tion of noise in support of the task of clustering; however, other
methods for the elimination of noise may need to be designed to
support alternate tasks. Clearly, noise in the context of clustering
may be important information when in search of outliers.

Our proposed cluster-centric noise elimination phase consists of
eliminating bins whose bin count is below a threshold (γ). This
thresholdγ can either be empirically determined (explained in Sec-
tion 4) or set by the analyst. Intuitively, we observe that the bin
count of a multi-dimensional bin will be below a threshold ifeither
the point is a random noise or the point belongs to the edge of a
cluster.

Figure 5 displays a grid representing a 2-dimensional histogram
placed over the data. Ignoring points from low bin counts may
have the side effect of ignoring points from the edge of the clusters.
However, since we are interested in picking more points fromnear
the center of the cluster rather than its edges, ignoring points from
the edges effectively adds more weight to the points in the center.
This improves the abstraction quality, as our experimentalstudy
confirms (see Section 4). It also decreases the number of multi-
dimensional bins to be maintained, increasing the efficiency of the
QoS estimator (Section 2.2).

2.2 QoS Estimator
The QoS estimator computes the performance quality trade-off

by generating a look-up table that indicates the relationship be-



Figure 5: Existence of noise in datasets.

tween MHDM, the sampling level and the estimated time required
for clustering. Figure 6 shows an example of a look-up table gen-
erated by the QoS estimator. Since sampling is the preliminary
step for clustering, the abstraction quality largely depends on the
sampling. If the samples chosen for clustering do not represent the
original dataset well, the abstraction quality of the clusters can be
low. Thus, the abstraction quality is determined by sampling. Var-
ious sampling techniques are defined in the literature whichcan be
used in this framework. Palmer et al. devised the strategy ofdensity
biased sampling [5], a probability based approach, which samples
more from a dense region and less from a sparse region.

According to density biased sampling [5]: suppose that we have
n valuesx1, x2, . . . xn that are partitioned into g groups that have
sizesn1, n2,, ng and we want to generate a sample with the ex-
pected size M in which the probability of pointxi is dependent on
the size of the group containingxi.

To bias the sample size, the probability function is defined as [5]:

f(ni) =
β

ne
i

(2)

whereni is the number of points in groupgi and e is a constant.
The number of points selected from groupgi:

n = f(ni) ∗ ni (3)

β is defined based on the sample size (M) as follows:

β =
M

Pg

i=1
n1−e

i

(4)

Group formation : It is very important to form groups based on
density for density biased sampling [5] to be effective.Thegroup
assignment is done using the encoded multi-dimensional histogram.
Each bin is treated as group of points used by density biased sam-
pling.

Algorithm for estimation using density biased sampling: A
look-up table is generated after the multi-dimensional histogram
for the original data has been formed. Starting with sampling level
α, the number of points falling in each bin are calculated. This
enables us to calculate MHDM for sampling levelα. It is repeated
until MHDM reaches the maximum value of 1.0.

The look-up table (as shown in Figure 6) will have a sampling
level, minimum quality level followed for the sampling, andthe

Algorithm 1 Populating look up table
Input: x= Initial sampling rate, andα = Increment in the sampling
rate. /*Populatinglookup table for performance-quality trade off.
Initialize by setting M← x, and calculatingβ from Equation 4.
*/

91: while (MHDM ≤ 1) do
92: for eachbin ∈ multi− dimensionalhistogram do
93: Number of points selected from each group from equation

3;
94: end for
95: Compute MHDM for M ;
96: Compute time and confidence interval;
97: Updatelookup table with sampling rate and MHDM;
98: M←M+α, computeβ ;
99: end while
Output: lookup table of performance quality trade off.

Figure 6: Sample look-up table created by QoS estimator.

time required for the process to complete. Whenever an analyst
chooses a quality value, the value closest to it is returned.

2.3 Interaction Interface
The Interaction module allows the analyst to attain information

on the quality performance trade off. The analyst can set oneof
three values: data abstraction quality (MHDM) value, sampling
rate, and time for completion of the clustering process.

2.4 Abstraction Generator
Once the analyst decides on the quality and other performance

settings he desires, the interaction interface passes the sampling
level to the abstraction generator. The abstraction generator sam-
ples the database using density biased sampling with a sampling
level set by the interaction interface. The abstraction generator
then passes the generated samples to a clustering algorithm. At this
point, we can use any existing clustering technique [1] to cluster
the data.

2.5 Inclusion of Data Quality
As a last step, the quality of the underlying data is incorporated

into the abstraction result. As is commonly done [12] [14], we as-
sume that each data tuple has an associated record quality. Every
cluster consists of data points of the original dataset. Thus, to cal-
culate the total abstraction quality, we incorporate the data quality
of all its members using some statistical function. Many alternative
methods are possible, such as arithmetic mean and standard devia-
tion, median values, geometric mean, root mean square and soon.
For illustration purposes, henceforth, we chose to represent the data
quality of clusters using the arithmetic mean of the record qualities,



Figure 7: QoS sampling interface.

called Cluster Data Quality (CDQ).
The Cluster Data Quality (CDQ) can be expressed as:

CDQ =

Pn

i=1
RecordQuality

n
(5)

• CDQ: Cluster Data Quality

• Record Quality: Data quality of the record [ 0 : 1 ].

• n: number of points in the cluster.

2.6 Total Abstraction Quality
The MHDM of the data clustered is identical to the value set

by the analyst in the pre-processing phase. However, we can also
evaluate the performance of the clustering algorithm usinga quality
measure [9]. One possible clustering quality measure can bethe av-
erage distance of every point from its nearest cluster center [9]. We
can plug these clustering quality measures in the generation phase
to find the quality of clustering performed, which we call Cluster
Quality (CQ). MHDM can be visualized as a global measure on the
entire dataset, whereas clustering quality measure gives aquality
value for each cluster formed.

Thus, the total data abstraction quality can be calculated as the
weighted average of cluster data quality, cluster quality and abstrac-
tion quality:

TAQ =
ρ ∗ CQ + δ ∗ CDQ + λ ∗MHDM

3
(6)

• TAQ: Total data abstraction quality;

• ρ: Weight associated with clustering quality;

• CQ: Cluster quality;

• δ: Weight associated with the data quality;

• CDQ: Cluster data quality;

• MHDM: Abstraction quality;

• λ: Weight associated with abstraction quality.

ρ, δ andλ can be user set parameters or can be set to 1 to default
to the arithmetic mean.
We display the TAQ visually using an InterRing display [15].

3. RELATED WORK
Recently some abstraction measures are introduced in the field

of information visualization. Cui et. al. [8] proposed a histogram
based measure. In contrast to HDM [8], our measure uses a multi-
dimensional histogram to capture co-relations in higher dimensional
data. Sampling and clustering has been extensively studied[1] [2]
[3]. Olken et. al [11] proposed the idea of random sampling for
data analysis which was improved by C. Palmer et. al [5] using
density biased sampling. We employ density biased samplingas a
sampling method in QoS due to its density preservation property.

Human interaction in the field of clustering was advocated byK.
Chen et al. [6] via Vista Software. Vista allows manual clustering
of databases by analysts. Widom proposed a data model calledTrio
[14] which incorporates lineage and accuracy of the data. However,
Trio does not deal with quality of abstracted data nor with cluster-
ing tasks – rather, it assumes simple sql-style queries are being pro-
cessed against the data. In other words, the proposed data model is
in effect an extended relational model.

4. EXPERIMENTAL EVALUATION
We have evaluated the framework using both real and synthetic

datasets. The framework is integrated into XmdvTool, a public do-
main data visualization tool [7] developed at WPI. Experiments
were conducted on Pentium 4 (1.66 GHz) running on Microsoft
Windows XP with 1.0 GB RAM. We have conducted experiments
for assessing the different components of QoS.

4.1 Practicality of Encoded Multi-Dimensional
Histograms for Real Datasets

In this experiment, we formed encoded multi-dimensional his-
tograms for numerous real dimensional datasets with different num-
bers of dimensions, such as Iris, Out5d, Cars, Aaup, Censusincome
and Supercos2.

Figure 8 displays the comparisons of the number of bins actually
formed and the maximum number of bins possible. As seen from
Figure 8, savings (difference between maximum possible bins and
bins actually formed) increase enormously. This confirms the fact
that the real datasets are sparse in nature and our encoding based
approach indeed saves memory in practice.

Figure 8: Savings for real datasets.

The savings also increase greatly if we form a larger number of
partitions. Figure 9 represents the effect of increasing the number
of partitions on number of multi-dimensional bins formed and thus
on the MHDM.



Figure 9: Effect of increasing number of 1-d partitions for
Aaup dataset.

4.2 Validating QoS Clustering Accuracy
For this experiment, we used synthetic datasets generated with

a known number of clusters. We compare the clustering resultof
the dataset without sampling and after applying QoS. We useda K-
means algorithm to find the RMS error between the cluster centers
of the original datasets and those of the abstractions generated by
QoS. RMS error (ǫ) can be defined as:

ǫ =

r

Pm

i=1
(ci

o − ci
s)2

m
(7)

• ci
o: original cluster center;

• ci
s: cluster center of the abstraction;

• m: number of clusters.

Figure 10: Decrease in RMS error with increase in MHDM.

As seen from Figure 10, the RMS error decreases with an in-
crease in MHDM. Thus, an increase in MHDM leads to a more
accurate identification of clusters.

4.3 Conformance of MHDM with Average Dis-
tortion

For this experiment, we calculate the average distortion ofthe
dataset. Average distortion is the average distance of a datapoint
from its cluster center. Figure 11 represents the average distortion
with and without noise elimination phase. It can be noticed that in
absence of noise elimination phase, with an increase in MHDM
(and thus, the chosen sampling level) the average distortion in-
creases. This is because of the introduction of noise in sampling.
Thus, we introduced a noise elimination phase,γ was set at 0.2
percent, eliminating all the bins below the threshold. Withthe in-
troduction of the noise elimination phase, the average distortion de-
creases linearly with the increase in MHDM. Since, K-means clus-
tering algorithm was used, the number of clusters formed remains

the same. In short, the noise elimination stage facilitatesformation
of dense clusters.

Figure 11: Average distortion with and without noise elimina-
tion for various real datasets.

5. CONCLUSIONS
To enable effective use of abstraction results, we observe that

one, data abstraction quality must be quantified and two thatthe
analyst must be given the ability to control this quality. Weaddress
this problem by making the abstraction process both quality-aware
and interactive. In particular, we have introduced an abstraction
generation framework which enables the analyst to trade-off be-
tween the time dedicated for the generation of the abstraction ver-
sus the level of quality one can expect to achieve as result ofthe
abstraction process. This framework has been successfullyimple-
mented, and then incorporated into the XmdvTool data visualiza-
tion application. Experiments have demonstrated that our proposed
framework indeed improves the quality and scalability of the ab-
straction process to a great extent. The framework is general in that
it can be used for any application working with abstraction genera-
tion in support of tasks such as clustering.
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