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ABSTRACT

Data abstraction is the process of reducing a large datssedmne
of moderate size, while maintaining dominant characiessof
the original dataset. Data abstraction quality refers eodbgree
to which the abstraction represents the original data. Tiad-q
ity of an abstraction directly affects the confidence anystatan
have in results derived from such abstracted views abowtdhel
data. Some initial measures to quantify the quality of atasion
have been proposed; however, they currently can only bieedil
as an after-thought. An analyst can be made aware of thetguali
of the data he works with, but he cannot control the qualitgé&e
sires and the trade-off between the time required to gemehat
abstraction and its quality. While some analysts requileat a
certain minimal level of quality, others must be able to waiikh
certain abstraction quality due to time and resource litioits. To
tackle these problems, we propose a new data abstracti@magen
tion model, called the QoS model, that presents the perfocma
quality trade-off to the analyst. It then generates an abstm
based on the desired level of quality versus performancedis i
cated by the analyst. The framework has been integrateckimtb
vTool, a freeware multi-variate data visualization tooleleped at
WPI. Our experimental results show that our approach pesvid
better quality compared to existing abstraction techréque

1. INTRODUCTION

1.1 Motivation

Data abstraction techniques are commonly used to faeilite
efficient detection of patterns in large datasets and folyaimg a
huge database without actually having to explore the caigiata
[1]. Thus, analysts typically infer characteristics ofyamdatabases
by analyzing the abstracted data rather than looking authddta.
Some abstraction techniques select a subset of the oridptaset
as its abstraction, such as sampling and filtering, whilerstlkon-
struct a new abstract/summary representation, such aterthgs
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and summarizing [1]. Tasks conducted based on abstractadhda
clude pattern detection, cluster analysis, outlier ans|ysibspace
cluster analysis, filtering and sample analysis [1]. Figur&) and
1(b) represent an example of a dataset and its abstractiwwvi3u-
alization technique used, called parallel coordinates, j$3 pop-
ular multivariate visualization technique. In this methedch di-
mension corresponds to an axis, and the N axes are orgarszed a
uniformly spaced vertical or horizontal lines. A data elatrie an
N-dimensional space manifests itself as a connected satintsp
one on each axis. Thus one polyline is generated for repiiagen
each data point.
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Figure 1: Figure 1(a) Displays the cars dataset using the par
allel coordinates visual technique, while Figure 1(b) repesents
cluster centers of the dataset.

Abstraction quality versus data quality: Abstraction quality
captures how well the abstracted dataset represents thimadri
dataset. Intuitively, a good data abstraction represdhtiseamain
features of the original dataset. Since the abstractiofgarg 1(b)
captures all the main clusters present in the original éat&sgure
1(a)), the abstraction is considered to be of high qualitgck of
knowledge regarding quality can lead to inaccurate regeltpar-
dizing the reliability of conclusions gleaned from the ahstion.
Validating the quality of abstraction is made difficult dwest lack
of data abstraction quality measures. Although some Initisa-
sures [8] have recently been proposed to measure the dataabs
tion, those measures do not scale well to higher number ofiim
sions. Furthermore, a scalable data abstraction meastitedtiy
does not solve the problem. The main problem is a lack of densi
eration about quality by the abstraction generation pobefore
its commencement.

To further complicate matters, most systems and thus uders o
these systems assume that the raw data itself is always blood.
ever, real-world data is known to be imperfect, sufferirapirvar-
ious forms of defects such as sensor variability, estimagigors,
uncertainty, human errors in data entry, and gaps in dateegag.
Data qualityrefers to the quality of the underlying data used for



the abstraction generation. Clearly, if the quality of tinelerlying
data is not considered during abstraction generation, uhétyg of
an abstraction may indeed be adversely affected.

1.2 Existing Abstraction Generation Solutions

Figure 2 sketches the process most commonly used by abstrac
tion generation systems [2] [9].
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Figure 2: Existing Data Abstraction Solution.

Predicaments of such a process include:

e Quality measures, if available, are plugged in only as an
after-thought to calculate the quality of a given abstracti

initiates the generation of an abstraction, he cannot ateic
the desired level of quality nor control the output of the-pro
cess in terms of its resulting quality. Rather, he would $ymp
be informed as an afterthought on the quality (or lack there-
after) that has been obtained.

Furthermore, the analyst doesn’t know how much time they
should budget for the abstraction process. Without such con
trol, he cannot trade-off the acceptable level of qualityhwi
the amount of time he is able to spend on the abstraction pro-
cess itself.

Data quality is not taken into account. As discussed eaifier
the data is imperfect (or of low quality), the abstractiosuie
should also reflect the underlying data quality.

1.3 Our Approach

To overcome the above identified problems, we propose to make
abstraction generation quality-aware. We present theysinaith
a quality-performance trade off indicating the differeatues of
quality measures achievable and time required for the peote
generate them. Using these computations, an analyst caandem
a quality level beforehand or he can request a certain pedoce,
knowing what quality he can expect and QoS will generate lthe a
straction accordingly. QoS takes into consideration bbéhdata
abstraction quality and underlying data quality to calteicom-
plete data abstraction quality measure.

The system framework for QoS, depicted in Figure 3, consists
the following main phases:

1. Pre-processing phasale introduce a pre-processing phase
to compute the quality-performance trade-off. The computa
tion is done using a multi-dimensional histogram which cal-
culates density information. Two main components in this
phase are:

Data abstraction is a one way process. Thus, when an analyst
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Figure 3: Proposed QoS Framework.

a) A scalable data abstraction measure to quantify the data
abstraction result is proposed, called Multi-dimensidtiak
togram Difference Measure (MHDM). Other measures [8]
could also be plugged in.

b) The estimator calculates the performance-quality trade
off including confidence intervals and time estimations for
the process. This is at the heart of QoS, presenting the ana-
lyst with various trade-offs before the process of absiwact
commences.

2. Generation phaseThis process generates an abstraction based

on quality values set by the analyst.

3. Post-processing phasdt combines the measure of the ab-
straction with quality of the underlying dataset to detereni
the overall quality.

. Interaction interfaceThis interface presents the performance
quality trade-off and the final abstraction quality to thaan
lyst.

The QoS framework could be applied to many different data ab-
straction tasks, including hierarchical sampling, cltietg and se-
lection. However, for the sake of explanation, in the resthis
paper we will focus on clustering for large databases.

2. QOS FOR CLUSTER ANALYSIS

Summarization techniques for data abstraction summahiee t
data by creating fewer new representatives to convey therlymalg
data [1]. Clustering is one such technique, where clusfmesen-
tatives are used to represent the data. Since clusteringrisony
and computationally intensive, clustering of large dasalsatypi-
cally employs sampling as a pre-processing step [2][3].

2.1 Quality Measure (MHDM)

We now propose a measure of abstraction quality for high
mensional data. This multi-dimensional data abstractioality
measure captures the distributions present in a high dioreals
dataset. The measure can be calculated before the atustriscic-
tually generated. The proposed measure, called Multi-dgiomal
Histogram Difference Measure (MHDM), is a histogram differ
ence method. Histograms are widely used for density anad-sele
tivity estimation [4]. MHDM calculates the difference beten the

di-



multi-dimensional histogram of the original dataset arat tf the
abstraction generated from the data. For the measure weassu
that the two multi-dimensional histograms (original andtedicted)
have the same number of bins, with bin sizes corresponditigeto
percentage of data falling into that bin. MHDM is the summati
of the difference between the corresponding bins. MHDM esng
from 0.0 to 1.0 with 0 implying the worst case MHDM, and 1.0
indicating the best case.

One potential disadvantage of a multi-dimensional histogis
its inability to scale due its high memory requirements [4]n-
fortunately we cannot utilize just 1-dimensional histagsawhich
are less costly, they fail to capture the correlation presehigh
dimensional data. To overcome the space inefficiency ofimult
dimensional histograms [4], we encode the multi-dimeredidins-
togram structure by explicitly associated the multi-disienal cell
address with its cell content value. For an example, Figurep4
resents the formation of an encoded multi-dimensionabgisim.
For instance, the cell with dimension 1 at bin 5 and dimesiZion
at bin 2 and dimension 3 at bin 1 having a value of 6 would be
encoded explicitly by the pair shown in the figure.

Building the encoded multi-dimensional histogram: Assume
the input tuple withd dimensions with data values ,vs,..v4.

Step |: We partition each of thé dimensions into a number of dis-
tinct partitions. For simplicity, we’ll assume here thagté
are exactlyr such partitions for each dimension, though other
more sophisticated strategies could be employed for bin siz
ing in the future.

The partitioning of the dimensiohis denoted as!, uj, ...

ul, with n the number of partitions. For each input tuple
v1,v2,..v4, We determine which bib of dimensior its i*"
valuew; falls into. Given that each tuple value is mapped to a
particular partition, we havd partition numbers for a given
input tuple. Let us denote this by} ,u%,..ud;, with i; the
partition number for the dimensions. Thus, the number of 1-
dimensional partitions formed directly influence the numbe
of multi-dimensional bins formed.

Step Il: We encode the multi-dimensional bin from partition num-

Domd 5
L r 77 Dim 1: Bin 5
slojojgjojo Dim 2: Bin 2
SlafejFjajofs Dim 3: Bin 1
mm 3 |o|o]1[z]3]
HEREDE 4 Encoded Multi dimensional Bin code: 5\2\1
HHOBOE
123 45
Timl

Figure 4: Formation of encoded multi-dimensional histogram.

e Ps; is the percentage of data that fall into the i-th bin of the
abstracted histogram;

e M AXpp is the maximum histogram difference.

Need for MHDM: In clustering of large databases, if the sam-
ples used for clustering are chosen randomly, they fail poergent
the original dataset. In that case, the clustering procais tb
abstract the original dataset. It is independent of thetetirgy al-
gorithm used and quality of clusters formed. There is naiting
way of setting the "correct” sampling rate for a dataset.lgemce
of measures to guide the process, the easiest method t@drighr
data abstraction quality is to increase the sampling rabe user
may over-sample the database yielding a poor clusterinfprper
mance without guaranteeing necessarily improvement ititgua
Also, users might under-sample the dataset leading to |oavaia
straction quality. In that case, the clustering result rmigit be ac-
curate. Thus, misleading the users with clustering regludtsmay
not represent the original dataset. Thus, even though s@gngzn
be a direct representation of quality, setting the corracting
rate requires a quality measure.

2.1.1 Noise Elimination

Real world data is often fraught with noise. Clearly, noismie
nation is crucial for high quality abstractions. The muditinensional
histogram of the original data is thus regulated to filteseoHere
we propose one method in particular that is targeting thaieé-
tion of noise in support of the task of clustering; howeveheo

bers obtained from each dimension by appending the bin methods for the elimination of noise may need to be desigoed t

numbers into one code,; u%..ud; is the multi-dimensional
bin corresponding to the example input tuple above. Thus,
if most of the d-dimensional cells remain empty, our his-
togram is relatively small. Most real datasets are veryspar
in nature (confirmed by our experimental study in Section 4).
Thus this technique saves a lot of memory in practice.

Advantages of this explicit encoding of a full matrix repreta-
tion approach include :

e \We never encode empty bins, leading to huge savings in terms

of memory in practice.

e The algorithm has a linear complexity (in the number of data
points), and thus can build multidimensional histograms ef
ficiently even for high dimensional data.

MDHM can be expressed by the following equation:

Zf\;1 |Poi — Psi|

MHDM =1.0—
0 MAXpn

@)

e Po, is the percentage of data that falls into the i-th bin of the
original histogram;

support alternate tasks. Clearly, noise in the context udteting
may be important information when in search of outliers.

Our proposed cluster-centric noise elimination phaseistnsf
eliminating bins whose bin count is below a threshojd. (This
thresholdy can either be empirically determined (explained in Sec-
tion 4) or set by the analyst. Intuitively, we observe tha Hin
count of a multi-dimensional bin will be below a thresholeither
the point is a random noise or the point belongs to the edge of a
cluster.

Figure 5 displays a grid representing a 2-dimensional disio
placed over the data. Ignoring points from low bin counts may
have the side effect of ignoring points from the edge of thstelrs.
However, since we are interested in picking more points fnear
the center of the cluster rather than its edges, ignoringtpdiom
the edges effectively adds more weight to the points in timece
This improves the abstraction quality, as our experimesitiadly
confirms (see Section 4). It also decreases the number of-mult
dimensional bins to be maintained, increasing the effigierfiche
QoS estimator (Section 2.2).

2.2 QoS Estimator

The QoS estimator computes the performance quality tréfde-o
by generating a look-up table that indicates the relatignle-
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Figure 5: Existence of noise in datasets.

tween MHDM, the sampling level and the estimated time rexglLir
for clustering. Figure 6 shows an example of a look-up takle-g
erated by the QoS estimator. Since sampling is the prelimina
step for clustering, the abstraction quality largely dejzean the
sampling. If the samples chosen for clustering do not reprethe
original dataset well, the abstraction quality of the dustcan be
low. Thus, the abstraction quality is determined by sangplvar-
ious sampling techniques are defined in the literature wtéchbe
used in this framework. Palmer et al. devised the strateggnsity
biased sampling [5], a probability based approach, whichpses
more from a dense region and less from a sparse region.

According to density biased sampling [5]: suppose that we ha
n valuesr1, x2, ... x, that are partitioned into g groups that have
sizesni, n2,, ng @and we want to generate a sample with the ex-
pected size M in which the probability of poimt is dependent on
the size of the group containing.

To bias the sample size, the probability function is defirefba

d @

f(”i):n—

wheren; is the number of points in group and e is a constant.
The number of points selected from grogp

n = f(n:) *ni 3
[ is defined based on the sample size (M) as follows:
M
ST “

Group formation: It is very important to form groups based on
density for density biased sampling [5] to be effective.Tineup
assignment is done using the encoded multi-dimensionaidrem.
Each bin is treated as group of points used by density bics®d s
pling.

Algorithm for estimation using density biased sampling: A
look-up table is generated after the multi-dimensionatdgsam
for the original data has been formed. Starting with sanggiavel
«, the number of points falling in each bin are calculated. sThi
enables us to calculate MHDM for sampling levellt is repeated
until MHDM reaches the maximum value of 1.0.

The look-up table (as shown in Figure 6) will have a sampling
level, minimum quality level followed for the sampling, atite

Algorithm 1 Populating look up table

Input: x= Initial sampling rate, andx = Increment in the sampling
rate. /*Populatinglookup_table for performance-quality trade off.
Initialize by setting M« x, and calculating3 from Equation 4.
*/

91: while (MHDM < 1) do

92: for eachbin € multi — dimensionalhistogram do

93: Number of points selected from each group from equation
3;

94: end for

95:  Compute MHDM for M ;

96: Compute time and confidence interval;

97:  Updatdookuptable with sampling rate and MHDM

98: M «— M+a, computes ;

99: end while
Output: lookup table of performance quality trade off.

LHD M sampling level (%9) | Time(sec)
a0 0.1 2.38
60 (] 4,599
0 1.2 756
B0 27 1016
B0 3 12.23
1.0 38 153

Figure 6: Sample look-up table created by QoS estimator.

time required for the process to complete. Whenever an saly
chooses a quality value, the value closest to it is returned.

2.3 Interaction Interface

The Interaction module allows the analyst to attain infaioma
on the quality performance trade off. The analyst can setofne
three values: data abstraction quality (MHDM) value, sangpl
rate, and time for completion of the clustering process.

2.4 Abstraction Generator

Once the analyst decides on the quality and other perforenanc
settings he desires, the interaction interface passesathelisg
level to the abstraction generator. The abstraction gésresam-
ples the database using density biased sampling with a sampl
level set by the interaction interface. The abstractionegior
then passes the generated samples to a clustering algoAttthis
point, we can use any existing clustering technique [1] tster
the data.

2.5 Inclusion of Data Quality

As a last step, the quality of the underlying data is incompext
into the abstraction result. As is commonly done [12] [14¢ &s-
sume that each data tuple has an associated record qualiyy E
cluster consists of data points of the original dataset.sTtucal-
culate the total abstraction quality, we incorporate thia daality
of all its members using some statistical function. Mangralative
methods are possible, such as arithmetic mean and stanglaed d
tion, median values, geometric mean, root mean square aowl. SO
For illustration purposes, henceforth, we chose to reptébe data
quality of clusters using the arithmetic mean of the recaralitjes,
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Figure 7: QoS sampling interface.

called Cluster Data Quality (CDQ).
The Cluster Data Quality (CDQ) can be expressed as:

_ Yiy RecordQuality
n

CDQ (%)

e CDQ: Cluster Data Quality
e Record Quality: Data quality of the record [0 : 1].
e n: number of points in the cluster.

2.6 Total Abstraction Quality

The MHDM of the data clustered is identical to the value set
by the analyst in the pre-processing phase. However, welsan a
evaluate the performance of the clustering algorithm ugiqgality
measure [9]. One possible clustering quality measure cémegey-
erage distance of every point from its nearest cluster c¢dijte\We
can plug these clustering quality measures in the genarphiase
to find the quality of clustering performed, which we call Ster
Quality (CQ). MHDM can be visualized as a global measure en th
entire dataset, whereas clustering quality measure givpskty
value for each cluster formed.

Thus, the total data abstraction quality can be calculasetthe
weighted average of cluster data quality, cluster qualityabstrac-
tion quality:

_pxCQ+0+xCDQ+ X+ MHDM
N 3
TAQ: Total data abstraction quality;

TAQ (6)

p: Weight associated with clustering quality;

e CQ: Cluster quality;

6: Weight associated with the data quality;

CDQ: Cluster data quality;
e MHDM: Abstraction quality;

A Weight associated with abstraction quality.

3. RELATED WORK

Recently some abstraction measures are introduced in tde fie
of information visualization. Cui et. al. [8] proposed atbgram
based measure. In contrast to HDM [8], our measure uses & mult
dimensional histogram to capture co-relations in higheregtisional
data. Sampling and clustering has been extensively stitfj¢a]

[3]. Olken et. al [11] proposed the idea of random sampling fo
data analysis which was improved by C. Palmer et. al [5] using
density biased sampling. We employ density biased sampbray
sampling method in QoS due to its density preservation ptape

Human interaction in the field of clustering was advocate& by
Chen et al. [6] via Vista Software. Vista allows manual chuistg
of databases by analysts. Widom proposed a data model daited
[14] which incorporates lineage and accuracy of the dataveyer,
Trio does not deal with quality of abstracted data nor witrstgr-
ing tasks —rather, it assumes simple sql-style querieseing Ipro-
cessed against the data. In other words, the proposed dd&l im0
in effect an extended relational model.

4. EXPERIMENTAL EVALUATION

We have evaluated the framework using both real and syntheti
datasets. The framework is integrated into XmdvTool, aipuds-
main data visualization tool [7] developed at WPI. Expernitse
were conducted on Pentium 4 (1.66 GHz) running on Microsoft
Windows XP with 1.0 GB RAM. We have conducted experiments
for assessing the different components of QoS.

4.1 Practicality of Encoded Multi-Dimensional
Histograms for Real Datasets

In this experiment, we formed encoded multi-dimensionat hi
tograms for numerous real dimensional datasets with éifftemum-
bers of dimensions, such as Iris, Out5d, Cars, Aaup, Ceinsasne
and Supercos2.

Figure 8 displays the comparisons of the number of bins #gtua
formed and the maximum number of bins possible. As seen from
Figure 8, savings (difference between maximum possibls i
bins actually formed) increase enormously. This confirnesféct
that the real datasets are sparse in nature and our encaatied b
approach indeed saves memory in practice.

| B O OB ]
B Max. number of bins

O Number of multi-dimbins
actually formed

Numberof Dimensions

Figure 8: Savings for real datasets.

The savings also increase greatly if we form a larger number o

p, 6 and\ can be user set parameters or can be set to 1 to defaultpartitions. Figure 9 represents the effect of increasiegrithmber

to the arithmetic mean.
We display the TAQ visually using an InterRing display [15].

of partitions on number of multi-dimensional bins formedi ainus
on the MHDM.
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4.2 Validating QoS Clustering Accuracy

For this experiment, we used synthetic datasets generathd w
a known number of clusters. We compare the clustering re$ult
the dataset without sampling and after applying QoS. We aséd
means algorithm to find the RMS error between the clusteecgnt
of the original datasets and those of the abstractions gteby
QoS. RMS errord) can be defined as:

@)

e c.: original cluster center;
e ¢: cluster center of the abstraction;

e m: number of clusters.

—#—10 dim, 4 clusters
—#—10 dim, 10 clusters
===20 dim, 4 clusters

04 \
Q\\‘\\\ ——20dim, 10 clusters
03 — \—»@50 dim, 4 clusters

RMS Error.

098 1

09 092

Figure 10: Decrease in RMS error with increase in MHDM.

As seen from Figure 10, the RMS error decreases with an in-
crease in MHDM. Thus, an increase in MHDM leads to a more

accurate identification of clusters.

4.3 Conformance of MHDM with Average Dis-
tortion

For this experiment, we calculate the average distortiothef
dataset. Average distortion is the average distance of apdit
from its cluster center. Figure 11 represents the averagjertion
with and without noise elimination phase. It can be notideat tn

absence of noise elimination phase, with an increase in MHDM

(and thus, the chosen sampling level) the average distoitio
creases. This is because of the introduction of noise in kagap
Thus, we introduced a noise elimination phageyas set at 0.2
percent, eliminating all the bins below the threshold. Wfité in-

troduction of the noise elimination phase, the averagedist de-

creases linearly with the increase in MHDM. Since, K-medas-c
tering algorithm was used, the number of clusters formechnesn

the same. In short, the noise elimination stage facilittitesation

of dense clusters.
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Figure 11: Average distortion with and without noise elimina-
tion for various real datasets.

5. CONCLUSIONS

To enable effective use of abstraction results, we obsdrae t
one, data abstraction quality must be quantified and twottteat
analyst must be given the ability to control this quality. ¥dgress
this problem by making the abstraction process both qualitgire
and interactive. In particular, we have introduced an altitin
generation framework which enables the analyst to trafibef
tween the time dedicated for the generation of the abstractr-
sus the level of quality one can expect to achieve as resuheof
abstraction process. This framework has been succesgfybhe-
mented, and then incorporated into the XmdvTool data vizaal
tion application. Experiments have demonstrated that mpqgsed
framework indeed improves the quality and scalability & tb-
straction process to a great extent. The framework is gkindizat
it can be used for any application working with abstractieneya-
tion in support of tasks such as clustering.
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