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ABSTRACT

Visualization systems traditionally focus on graphical representa-
tion of information. They tend not to provide integrated analytical
services that could aid users in tackling complex knowledge dis-
covery tasks. Users’ exploration in such environments is usually
impeded due to several problems: 1) valuable information is hard
to discover when too much data is visualized on the screen; 2) Users
have to manage and organize their discoveries off line, because no
systematic discovery management mechanism exists; 3) their dis-
coveries based on visual exploration alone may lack accuracy; 4)
and they have no convenient access to the important knowledge
learned by other users. To tackle these problems, it has been rec-
ognized that analytical tools must be introduced into visualization
systems. In this paper, we present a novel analysis-guided explo-
ration system, called the Nugget Management System (NMS). It
leverages the collaborative effort of human comprehensibility and
machine computations to facilitate users’ visual exploration pro-
cesses. Specifically, NMS first extracts the valuable information
(nuggets) hidden in datasets based on the interests of users. Given
that similar nuggets may be re-discovered by different users, NMS
consolidates the nugget candidate set by clustering based on their
semantic similarity. To solve the problem of inaccurate discoveries,
localized data mining techniques are applied to refine the nuggets to
best represent the captured patterns in datasets. Lastly, the resulting
well-organized nugget pool is used to guide users’ exploration. To
evaluate the effectiveness of NMS, we integrated NMS into Xmd-
vTool, a freeware multivariate visualization system. User studies
were performed to compare the users’ efficiency and accuracy in
finishing tasks on real datasets, with and without the help of NMS.
Our user studies confirmed the effectiveness of NMS.

Keywords: Visual Analytics, Visual Knowledge Discovery, Dis-
covery Management, Analysis Guided Exploration
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1 INTRODUCTION

Visualization systems traditionally focus on building graphical de-
pictions of relationships among information in a human compre-
hensible format. By doing so, they help their users to better under-
stand the information. This means the users can either learn some
facts that are not easy to discover without the graphical depiction,
or the users’ knowledge to some facts can become deeper or more
precise. The usefulness of visualization systems has been well es-
tablished [22,?, 18].
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Figure 1: “Cars” dataset visual-
ized with Parallel Coordinates

Figure 2: Complete cluster on
three dimensions of “Cars”

Figure 3: One “partial cluster”
found by users

Figure 4: Another similar yet
not identical “partial cluster”

Recently, visual analytics [20] has been employed to solve com-
plex knowledge discovery tasks in many important fields of human
society, ranging from homeland security and credit fraud detection
to financial market analysis. Solving such tasks usually requires an-
alysts to perform complicated and iterative sense-making processes
[11, 12]. Thus, it has been recognized that relying on analysts’ per-
ceptual power alone to conduct visual exploration may not always
be the most effective method to solve these problems.

To fully support visual analytics, visualization systems have to
be improved by tackling some key challenges. Here, while we use
simple examples in Figure 1 - 4 to illustrate the these challenges,
our goal over time is to support a rich set of patterns, including
clusters, outliers and association rules.1) Overloaded Displays:
When too much information is visualized on the screen, effective
knowledge discovery is difficult. For example, as shown in Figure
1, when a dataset, even with modest numbers of records and di-
mensions, is visualized, overloaded displays can make knowledge
discovery a time-consuming process.2) Disorganized Discover-
ies: Since there is no systematic discovery management mechanism
provided by visualization systems themselves, users have to man-
age and organize their discoveries off line on their own. For exam-
ple, some users, either due to rich domain knowledge or after a long
time of exploration, may be able to identify the patterns (e.g., the
cluster highlighted in red in Figure 2). But unfortunately, she may
not be able to store it in the system nor easily retrieve it for future
exploration. Even if the systems provide some simple recording
functionality, since a pattern may be repeatedly visited by a single
user or even multiple users, redundant recordings may be generated
(e.g., the clusters in Figures 3 and 4 are very similar). Such redun-
dancy causes information overload that may hinder the future use
of those recordings.3) Inaccurate Discoveries:Discoveries found
by user’s perceptual power alone may be inaccurate. For example,



the “clusters” found by users in Figures 3 and 4 are actually sub-
parts of a complete cluster depicted in Figure 2. Such inaccurate
discoveries may lead to low-quality decision making (i.e., this user
may miscount the population of the whole cluster, if she works on
the “partial cluster” in Figure 3).4) Isolated Knowledge: Even
if valuable knowledge may have already been uncovered, there is
no convenient mechanism for users to access and share it, not to
mention conduct collaborative visual analytics. For example, a user
interested in “clusters” in the dataset may spend a lot of time to find
the one mentioned in Figure 2, even if it may have already been
previously discovered.

Previous efforts to tackle these problems can be roughly classi-
fied into two categories. 1) User-driven: In this category, while the
knowledge discovery process still relies on users’ perceptual power,
a variety of visual interaction mechanisms, such as zooming, filter-
ing, color coding and dynamic querying, are offered by the visu-
alization systems to facilitate exploration [2, 22]. Our framework
applies these techniques to allow users to best use their perceptual
power during visual exploration. 2) Data-driven: Data-driven tech-
niques aim to expedite knowledge discovery with the help of the
analytical power of machines. Data mining algorithms [27, 14, 10],
which detect useful patterns or rules in large datasets, fulfill an im-
portant role here. These techniques will be employed in our frame-
work to improve the accuracy of discoveries.

More recently, some initial efforts have emerged to take advan-
tage of both human perceptual abilities and computational power of
computers to deal with the challenging process of knowledge dis-
covery [20]. Visual data mining (VDM) [9, 13] involves users in
the mining process itself, rather than being carried out completely
by machines. In VDM, visualizations are utilized to support a spe-
cific mining task or display the results of a mining algorithm, such
as association rule mining. However, VDM offers little help for
knowledge organization and management, thus does not support
an iterative and comprehensive sense-making process. Our frame-
work takes a different approach from VDM, that is, we put users
at the first stage of knowledge discovery process and only apply
data mining techniques as secondary method to refine and enhance
what the users have already identified as interesting during their ini-
tial exploration. [11] proposed interactive tools to manage both the
existing information and the synthesis of new analytic knowledge
for sense-making in visualization systems. This work so far has
not paid much attention on how to consolidate the users’ discov-
eries. Collaborative visual analytics [12] introduced computational
power into the sense-making process with a focus on supporting the
exchange of information among team members.

In this work, we design, implement and evaluate a novel
analysis-guided exploration system, called the Nuggets Manage-
ment System (NMS), which leverages the collaborative effort of
human intuition and computational analysis to facilitate the process
of visual analytics. Specifically, NMS first extracts nuggets based
on both the explicit and implicit indication of users’ interest. To
eliminate possible redundancy among the collected nuggets, NMS
combines similar nuggets by conducting nugget clustering. Then,
data mining techniques are applied to refine the nuggets and thus
improve their accuracy in capturing patterns present in the dataset.
We provide a rich set of functionalities to manage the nuggets. With
them, nuggets can be maintained automatically (e.g., out-of-date
nuggets can be pruned by the system) or by the users (e.g., users
can attach annotations [15] to nuggets to facilitate nugget retrieval
and sharing). Lastly, the well-organized nugget pool will be used to
guide users’ exploration in both user- and system-initiated manners.

As a general framework for analysis-guided exploration of mul-
tivariate data, NMS can be incorporated into any multivariate visu-
alization system. To verify the feasibility of NMS, we have inte-
grated it into XmdvTool [22], a freeware tool developed at WPI for
visual exploration and analysis of multivariate data sets. The main

contributions of this paper are:

• We introduce a novel framework of analysis-guided visual
exploration, which facilitates visual analytics of multivariate
data.

• We design a nugget combination solution that reduces the
potential redundancy among nuggets.

• We present a nugget refinement solution, which utilizes data
analysis techniques to improve the accuracy of the nuggets in
capturing patterns in datasets.

• We sketch tools for the management and support of visual
exploration based on a nugget pool.

• We implement the above techniques of NMS in XmdvTool, a
freeware multivariate data visualization tool.

• We describe user studies evaluating the effectiveness of NMS.
The user study demonstrates that NMS is able to enhance both
the efficiency and accuracy of knowledge discovery tasks.

The remainder of this paper is organized as follows: Section 2 in-
troduces the Nugget Extraction. Section 3 describes the techniques
used in Nugget Combination. Nugget Refinement techniques are
discussed in Section 4. Sections 5 and 6 presents our ideas on
Nugget Maintenance and Nugget Guided Exploration respectively.
Finally, we describe experimental evaluation in Section 7.

2 NUGGET EXTRACTION

2.1 Definition of Nuggets
Generally, a nugget is some valuable information extracted from
the dataset, typically some subpart of the whole dataset, which
could be clusters, outliers, association and any other patterns. Ad-
ditional attributes of a nugget, such as a name and annotations,
can be attached to it as well. For the purpose of this paper, a
nuggetN is defined by a range queryQ over a particular dataset
D as well as the result of this query, namely the result dataset
Q(D). N = {D,Q,Q(D)}; The queryQ selects all items from
the datasetD for where the following constraints hold:D.Am =
[Am.bl : Am.bh],D.Al = [Al .bl : Al .bh], ...,D.An = [An.bl : An.bh];
{D.Am,D.Al , ...,D.An} ⊆ dimensions ofD. Q(D) projects these
queried dimensions from selected items.Ax.bl andAx.bh are the
lower bound and the upper bound of the query ranges on attribute
Ax, [Ax.bl : Ax.bh] denotes a range of values “fromAx.bl to Ax.bh”;
Q(D) ⊆ D.

A more extensive range of nugget types will be considered in
our future work. The concept of nuggets is independent of the dis-
play methods in multivariate visualization systems, such as Parallel
Coordinates, Scatterplots and Glyphs [22]. Without loss of gener-
ality, we use Parallel Coordinates, which is a widely used method,
to demonstrate the examples in this paper. Thus visually a nugget
appears as a blue band across the axes, which represents the query
ranges on each dimension, and the red (highlighted) lines that indi-
cate the selected records (result) of the query. As shown in Figures
2, 3 and 4, users can specify different queries by adjusting the lower
and upper bounds of the blue band (selection ranges). Users can
also hide some dimensions if they are not interested in them.

2.2 Nugget Extraction Based on User Interest
Nugget extraction can be achieved by observing users’ exploration
process (user-driven) or by conducting analysis of the patterns ex-
isting in the data (data-driven). The NMS framework is compatible
with the nuggets derived using either of these two methods. Data
mining algorithms for pattern detection have been extensively stud-
ied in the KDD community [10, 5] and any of these methods could
be plugged into our framework. Here, we instead focus on nugget



extraction via user-driven methods. The main benefit of user-driven
methods is that we can bring into play the advantage of human per-
ceptual and cognitive abilities to identify patterns in a knowledge
discovery process, which is in fact one of the main reasons for de-
veloping visualization systems.

Similar to other systems [11, 12], users can explicitly indicate if
a particular piece of information is of interest. This is done by ex-
plicitly saving the given query and labeling it by a persistent nugget
name. NMS provides a rich set of functionalities to let users input,
edit, and remove the nuggets as further discussed in Section 5. A
non-intrusive alternative to explicit indication is implicit indication,
a method found in intelligent systems [7, 4]. In NMS, nuggets can
be extracted automatically by observing a user’s exploration. “Vis-
iting time” is one factor [7] used as the main indicator of a user’s
interest during visual analysis. NMS extracts a nugget if a user
spends a long time visiting (querying over and looking at) a sub-
part of the dataset. For example, if a subpart shown in Figure 2 has
been visited for a long time by a single user or repeatedly visited
by one or more users, NMS will flag this data subset as a potential
nugget. Problems that could be caused by such log mining, such
as redundancy, out-of-date nuggets, and misinterpretation of users’
interests, will be tackled in Sections 3 and 5.

3 NUGGET COMBINATION

Relying on nugget extraction alone suffers from several problems.
1) Nugget redundancy may arise, because as the users navigate in
the datasets by moving the sliders which control the range query
boundaries, similar nuggets with slightly different boundaries are
likely to represent the same data features. 2) An excessively large
nugget pool generated during a long exploration period may make
it difficult for users to access individual nuggets, because search-
ing for nuggets of potential interest may become increasingly time-
consuming. 3) Continuous growth of the nugget population may
lead to low system performance. An efficient method is needed to
keep the nugget pool of modest size yet with high representative-
ness. Several techniques, such as sampling [3], filtering [19] and
clustering [5] of nuggets may be employed to achieve this goal.

After careful comparison, we chose clustering, which groups
similar nuggets and generates representatives for each group. This
is because when constructing a representative for each group, clus-
tering techniques consider and combine the features of all the group
members, while filtering and sampling techniques tend to just pick
an “important” group member as their representative. Since in
many cases, we can hardly tell which nugget is more important
than others, constructing a representative which “speaks” for every
nugget in a group makes more sense than just picking one.

3.1 Distance Metrics

Clustering aims to group objects based on their similarities. It re-
quires a distance measure that best expresses the domain specific
similarity between objects. To solve this problem, we developed
distance metrics to effectively capture the distance between any pair
of nuggets.

3.1.1 Query Distance

Nuggets are defined by both queries and their results. So, naturally,
nuggets that are defined by similar queries should be considered to
be more similar than those defined by rather different queries.

Thus our problem can be transformed into determining how to
quantify the similarity of queries. The major principle utilized in
previous work [23, 24] for measuring query similarity (QS) can be
summarized as:

QS(A,B) =
QA∩QB
QA∪QB

(1)

Here QS(A,B) represents the query similarity between Nugget
A and Nugget B, and QA and QB are the qualifiers of these two
queries. For example, given QA: select * from X where X.height
=[5.25:5.85], QB: select * from X where X.height=[5.45:6.15],
then we haveQA∩QB = 5.85− 5.45 = 0.40,QA∪QB = 6.15−
5.25= 0.9, QS=0.4/0.9=0.44. We adopt this idea as the basic prin-
ciple for our query similarity measure on individual dimensions.
We have also studied several important refinements to this basic
idea, which enhance it to handle different types of domains (dis-
crete, continuous, nominal) and at best level capture the visual sim-
ilarity of nuggets. We have also extended the previous metric de-
fined for a single dimension to now be applicable for multiple di-
mensions. Details of these techniques can be found in [25].

After we’ve normalized the acquired query similarities (between
0-1), we can easily calculate the query distances (QD) as shown in
Formula 2:

QD(A,B) = 1−QS(A,B) (2)

3.1.2 Data Distance

However, nuggets are not only characterized by their queries (pro-
file), but also by the results of the queries obtained when applying
the queries to a particular dataset (content). As shown in Figures 5

Figure 5: A nugget capturing a
cluster in the “Iris” dataset

Figure 6: A nugget with no data
record included

and 6, two nuggets generated by very similar queries may be rather
different in terms of actual data content. The former contains a clus-
ter, while the latter is empty. Clearly, we need to enhance the ca-
pability of our distance metrics by also considering the “contents”
of the nuggets. Now, the problem we must solve can be viewed
as a general date analysis problem. That is, given two subsets of
a multi-dimensional dataset, how can we measure the distance be-
tween them. Previous work to tackle such problems [17, 16, 8]
can be classified into two main categories: statistic and transform-
cost approaches. Below, we will introduce our proposed algorithm
based on extending a basic transform cost algorithm.

In transform-cost approaches, the distance between two objects
is expressed as the minimum cost of transforming one object to an-
other. A well known algorithm that relies on Transform Cost is the
Nearest Neighbor Measure (NNM) [17]. But unfortunately, NNM
is a population-insensitive algorithm. It may lead to bad compari-
son results in our case, because comparing nuggets with different
populations is going to be the norm in our work. To solve this prob-
lem, we propose a new algorithm called the Exact Transformation
Measure (ETM). First, we formulate the problem.

Given datasetD, |D| = m, and datasets A and B,A ⊆ D,B ⊆
D, |A| = a, |B| = b,0 ≤ a ≤ b ≤ m, |A∩B| = l , |B| − |A∩B| = n.
Assume data points in D can be viewed as geometrically distributed
in the value space based on their values in different dimensions. Our
goal is to transform A to be exactly equal to B with minimum cost.

To solve this problem, simply moving data points in A to their
nearest neighbors in B will fail in many cases, because it is nei-
ther globally optimal nor sensitive to population. Thus, in order
to achieve the transformation with minimum cost, we define three
types of operations:



• Move(x, y): given x∈ A,y∈ B, move x to the position where y
lies.

• Add(x, y): given y∈ B, add a new data point x to A at the
same position where y lies.

• Delete(x) x∈ A, delete x from A.

By using “Move” and “Add”, we are guaranteed to always be able
to transform A to B, since A always has a smaller or equal sized
population to that of B. However, simply relying on “Move” and
“Add” will impose “forced matches”, which may not always lead
to the capture of the real distance between two datasets. Figure
7 shows an example of two 2-dimensional datasets where moving
and adding are not sufficient to make a cost effective transforma-
tion plan. As shown in Figure 7, given datasets A and B whose

Figure 7: Trasforming A to B
with moving and adding only

Figure 8: Transforming A to B
with, moving, adding &deleting

members are represented as white and black points respectively, by
using “Move” and “Add” only, we have to match some data points
in A with data points in B that are far away from them. In the worst
case, the existence of a few “outlier” data points that do not have a
“near neighbor” close to them will eliminate opportunities for many
other data points to be matched with their real nearest neighbors.

To deal with this disadvantage of “forced matches”, we use a
“Delete” operation. With it, we no longer need to suffer from
“forced matches”, because for a given data point in A, “Move” is
no longer the only option for it. We can choose to “Delete”, if mov-
ing it will bring too much global cost. However, how to make an
optimal transformation plan, which has the minimum cost, is still a
complex problem. In order to tackle this problem, we need to study
the cost of each operation first.Cost(M[x,y]): The cost of moving
a data point x to y is equal to the normalized Euclidean distance
between x and y (between 0-1).COA: Cost of adding a new point
and COD: Cost of deleting an existing point are both estimated
values that have a negative association with|A|. Our heuristics for
estimation are discussed in depth in [25].

Having set the costs of all our transfer operations, we now estab-
lish our solution for finding an optimal (most cost-effective) trans-
formation plan. We note that making such an optimal transforma-
tion plan is non-trivial. Fortunately, the Hungarian Assignment [21]
which was designed for finding minimum cost bipartite matches,
provides a good approach to solve this problem. The algorithm
takes ann×n matrix as input. Each row in the matrix represents
a data point in A, and each column represents a data point in B.
Then each entry is filled with the distance between the row and the
column it belongs to. The algorithm returns a minimum cost match
in O(n3) time. Other issues that need to tackled when applying this
algorithm to our case can be found in [25]

Once we make a proper input matrix, the Hungarian Assignment
Method will generate an output matrix representing the optimal
matches. When the output matrix has been produced, by simply
summing all the values in the input matrix entries that match an en-
try location with a “0” in its output matrix, and dividing the sum by
|B|, we get the Data Distance (DD) between two nuggets.

3.1.3 Nugget Distance

Finally, we combine the Query Distance(QD[X,Y]) and Data Dis-
tance(DD[X,Y]) to present the Nugget Distance(ND[X,Y]) be-
tween any pair of nuggets X and Y.

ND[X,Y] = α ·QD[X,Y]+β ·DD[X,Y] (α +β = 1) (3)

SinceQD andDD are both normalized (between 0 to 1),ND will
be normalized as well.

3.2 Nugget Clustering
Once we have learned the distances between nuggets, any generic
clustering algorithm [10, 5, 27] can be applied to conduct nugget
clustering. To provide a real time clustering service for our nugget
pool, we employ incremental clustering algorithms [5, 27] in our
system. Further discussion on the specific clustering algorithm used
in our system can be found in [25]. The clustering process consol-
idates our nugget pool by removing redundant nuggets while keep-
ing good representativeness.

4 NUGGET REFINEMENT

4.1 Benefits from Nugget Refinement
In this section, we’ll introduce the novel concept of using data min-
ing techniques to refine the candidate nuggets extraced from users’
logs. Such a refinement can be performed when a nugget was made
because users were searching for some identifiable pattern types,
such as clusters or outliers. For example, assume a user was search-
ing for a cluster in the dataset, and for some reason, she missed part
of it (Figure 9). Then, NMS will refine the nugget to capture the
complete cluster (Figure 10).

Figure 9: A nugget which cap-
tures the main body of a cluster
but misses part of it

Figure 10: The refined nugget
which captures the complete
cluster

Nugget refinement offers two main advantages over both pure
log analysis or mining techniques of the data itself. Firstly, log
analysis techniques, for example, the nugget extraction introduced
in Section 2, rely on users’ actions only, without any help from
computational analysis of the datasets and their properties. Thus
they may lack accuracy in nugget specification. While nugget re-
finement likely improves the accuracy by exploiting both of them.
Secondly, even assuming the system knows the specific pattern type
a user is interested in, in many cases the user is not searching for
all possible patterns but only for certain patterns of this type. This
makes running expensive global pattern detection algorithms not
cost effective and unrelated patterns detected may even cost users
more effort to isolate the useful ones. In this work, we chose
density-based clustering [10] and distance-based outlier detection
[14] as our sample pattern detection algorithms, which are popular
algorithms in data mining field. However, the specific patterns and
the refinement methods we propose below are only some of the pos-
sible ways that the nugget refinement could be carried out. Other
refinement methods could equally be plugged into our framework.

4.2 Techniques for Nugget Refinement
The refinement process is divided into two phases, called the match
and refine phases.



4.2.1 Match phase

In this phase, we aim to match the identified nuggets with patterns
“around them” within the data space. In other words, our goal is
to determine which patterns users were searching for when these
specific nuggets were made. In this work, we concentrate nuggets
refinement on two important pattern types, clusters and outliers. We
first formally define the concept of “Match”.

The concept of “Match” is used to judge whether some data pat-
terns or the major parts of these patterns primarily contribute to
a nugget. If it is the case, we call the nugget and these patterns
“matched”. The nuggets may be “matched” with more than one
pattern. Or, put differently, a nugget may contain several patterns.
Technically, to match a nugget with patterns, we have to compute
two important factors that each represent one side of the match:

• Participation Rate(PR) : A pattern P should be matched with
a nugget N, only if most of its members, if not all, participate
in (covered by) the nugget. For example, in Figure 11, for the
cluster at the left side, data points 2, 3, 4, 5, 6 are covered by
the nugget. So, we usePRto present how much of a pattern P
is covered by a nugget N.

PR(N,P) =
P.population∩N.population

P.population
(4)

• Contribution Rate(CR) : Since “match” is two-directional,
while PR just expresses one direction, namely, nugget to pat-
tern, we introduce CR to capture the opposite direction, from
patterns to nugget. This shows how much a pattern or a partial
pattern contributes to the nugget. Moreover, because a nugget
is decided by a query and the results of this query (selected
data), we consider both the selected area and data population
of the pattern and the nugget when calculating CR.

CR(N,P) =
P.area∩N.area

2∗N.area
+

P.population∩N.population
2∗N.population

(5)

Next we show a specific example of how to calculate PR and CR
between a nugget and a cluster (the left side cluster on Figure 11).

Figure 11: A nugget which cap-
tures the main bodies of two
clusters

Figure 12: A nugget which in-
cludes an outlier (data point 1)
and noise (data point 2)

The covered pattern population (P.population∩N.population)
equals 5 (containing data points 2, 3, 4, 5, 6), and the pattern
population (P.population) equals 6. SoPR= 5/6 = 0.83. The
Nugget Area (N.area) in this example is the area denoted by the
Nugget Boundary. The Pattern Area (P.area) is indicated by the
Pattern Boundary. Overlap Area (P.area∩N.area) is the overlap
area depicted by the shaded area in the figure. Let’s assume Overlap
Area/Nugget Area=0.3. The concept of “Area” here extends to hy-
pervolume when the number of dimension increases. We also know
that the Nugget Population equals 12. So CR= (0.3+5/12)/2=0.39

Now we use PR and CR to match a nugget with the patterns
around it. We useMatchRate(P,N) to express the result of a match
between a nugget N and all patterns of type P. Based on the match
results, we classify nuggets into 3 different categories.

• Clusters

MatchRate(C,N) = ∑
1≤i≤n

PR(Ci ,N)∗CR(Ci ,N) > T (6)

WhereCi ’s are all the cluster patterns covered or partially con-
vered by the nugget. T is a threshold which decides whether
the nugget and the patterns match. In this case, a nugget is
matched with one or more clusters. In other words, the main
components of this nugget are clusters.

• Outliers

MatchRate(O,N) = ∑
1≤i≤n

CR(Oi ,N) > T (7)

WhereOi ’s are all the outlier patterns covered by the nugget.
T is the same threshold we use in Formula 6. In this case, a
nugget is matched with one or more outliers. In other words,
the main components of this nugget are outliers. Here, we
need to point out that although we still follow the notion of
PR and CR as we did in the cluster cases, the way we cal-
culate them is a little different. First, since an outlier pattern
only has one data member, the PR for an outlier pattern is
always 1. So we omit it from Formula 7. Second, the way
we present pattern boundaries of outlier patterns is different
also. As shown in Figure 12, the pattern area of an outlier is a
(hyper) square area, where the distance from it to any bound-
ary equals the maximum distance (among all the dimensions)
between it to its nearest neighbor. All the other calculation
processes remain the same as those for the cluster cases.

• No Specific Pattern

It is also possible that a nugget can be matched with neither
clusters nor outliers. In this case, the nugget belongs to the
“No Specific Pattern” category. Expanding the library of rec-
ognized patterns is an important part of our future work.

4.2.2 Refinement Phase

The match phase reveals to us what type of patterns that a user
was likely searching for. If a nugget is classified into the first two
categories mentioned above, we finish nugget refinement using the
following two steps, called splitting (if necessary) and modification.

Splitting: If a nugget is composed of more than one pattern,
we could split it into several new nuggets, each representing one
pattern only. Because we already know all patterns the users was
searching for from the match phase, simply putting all the members
of each pattern into a new nugget will finish this job.

Modification: For the nuggets representing a single pattern only,
the modification process becomes simple also, because we just
need to make the nugget boundaries exactly the same as the pat-
tern boundaries. In Figures 13 and 14, we show the new nuggets

Figure 13: The refined nuggets
which each capture a complete
cluster

Figure 14: The refined nugget
which includes an outlier only

after nugget refinement. Each now represents one pattern only.



5 NUGGET MAINTENANCE

In this section, we will discuss maintenance of the nugget pool.
The nugget pool, which holds the nuggets collected during users’
exploration, can be viewed as a database about users’ insights about
a specific dataset. Specifically, each nugget, namely the “tuple” in
this database, is stored as an query specification annotated with ad-
ditional attributes, as further discussed below. To faciliate users’
further exploration, the nugget pool has to be built as an effi-
cient, well-organized and user-friendly knowledge base. In our sys-
tem, we build different types of indices to support quick access to
nuggets. By providing different search features, nuggets can be
easily located by searching on partial or complete query specifica-
tions or additonal attributes (e.g., names of nuggets). For example,
a user can search for all the nuggets about the “car” dataset ( a
real dataset with 7 dimensions), which satisfy that the query range
on dimension “cylinder” is between 4 and 8, or the names of the
nuggets contain the string “high performance”. NMS also provides
the service to explicitly classify nuggets based on their characteris-
tics, such as implicitly or explicitely indicated or types of patterns
contained. Users can quickly narrow their search by browsing into
different categories.

Besides organization of nugget pool, another important aspect
of nugget maintenance is “clean up” of useless nuggets. Over the
duration of the exploration, two potential hazards may leave useless
nuggets in the nugget pool. 1) Out-of-date Nuggets: Some out-of-
date nugget extracted early on and no longer of interest may become
an unnecessary burden. 2) Misinterpreted Nuggets: Some nuggets
may have been wrongly learned by misinterpreting users’ interests.

To exclude these useless nuggets from our nugget pool, we intro-
duce the concept of “vitality”. Generally, the “vitality” of a nugget
reflects the importance of this nugget. We use accumulated “vis-
iting time” as its main indicator. A similar idea can be found in
the literature [5, 1]. Specifically, each nugget obtains an initial “vi-
tality” when it is extracted. This “vitality” fades as users’ explo-
ration period increases. A nugget can also gain “vitality” through
two methods. 1) Being Directly Visited: If a nugget is retrieved
by a user from the nugget pool, the time that this user spent on it
contributes to its “vitality” increase. 2) Being Indirectly Visited:
An existing nugget is indirectly visited if a similar new nugget is
combined into it. This existing nugget absorbs the initial “vitality”
of the new one as the increase of its own. Thus, briefly, nuggets
created recently or visited frequently will have higher “vitalities”,
while those extracted a long time ago and never visited thereafter
will have lower ones. Once the “vitality” of a nugget drops below a
certain threshold, the nugget retires from the system.

In NMS, such a natural “evolution” process of nuggets can be
controlled by users. NMS allows users to cease, quicken, or slow
down the “evolution” by setting different parameters, such as initial
“vitality”, fading rate, and increasing rate. Besides such macro-
control, users can also directly manipulate any individual nugget.
For example, users can mark a nugget as crucial, indicating that it
should never be expired from the system. They could also directly
delete some useless nuggets. Since the concept of “vitality” is to
indicate the importance of nuggets, it may also provide meaningful
hints for users’ exploration in the nugget pool. For example, users
could rank the nuggets by their “vitalities”, and thus easily retrieve
the “hottest” nuggets, which have received most attention.

Nugget maintenance leaves many opportunities for our future
work, including: 1) How to give proper rights to multiple users
working on the same nugget pool. 2) How to automatically learn
and modify the parameters controlling nugget pool “evolution” dur-
ing users’ exploration .

6 NUGGET-GUIDED EXPLORATION

Nugget-guided exploration makes use of the nuggets we have
learned to facilitate the knowledge discovery process. Figure 15

shows a screen shot of our prototype system. As we mentioned
earlier, nuggets, as important carriers of valuable information, can
be augmented with different kinds of additional attributes. Besides
“vitality”, names and annotations are examples of other attributes
that can enrich the meaning of nuggets. For example, when ex-
ploring a dataset about “arriving passengers”, a border control of-
ficer finds a nugget that represents a cluster existing in dimensions
of “nationality”, “arriving time”, and “criminal records”, she can
give the nugget a meaningful name (i.e., “Suspicious Passengers
Group”), and attach an annotation about her concerns to this pas-
senger group. Such attached information will not only make it more
convenient to retrieve this nugget, but also makes her nuggets share-
able with other users. Meanwhile, statistical information, such as
the number of data records included and average values on each
dimension, can be automatically computed and attached to the
nugget.

Nugget-guided exploration can be carried out in both user- and
system-initiated modes. 1) User-initiated: Within this mode, users
take the initiative to search and retrieve nuggets when they desire to.
As mentioned earlier, NMS provides functionalities, such as sorting
and querying on statistic information, keyword based search on ad-
ditional attributes, to help users quickly access the nuggets of inter-
est. Moreover, as our users are working with visualization systems,
which hold the natural advantages of constructing graphic presen-
tations to information, we could re-apply these visualization tech-
niques to our nugget pool. For example, pixel oriented techniques
[26] could be adopted to visualize our nugget pool in a condensed
format, while VaR [26] could be employed to display the similar-
ity between nuggets. With them, users could observe the whole
nugget pool in a single screen and quickly learn the interrelations
among nuggets. 2) System-initiated: NMS can take the initiative
also when guiding users’ exploration. Such guidance will be given
based on watching the users’ exploration. For example, when a user
is querying a subpart of the dataset that is similar to one of the ex-
isting nuggets, NMS could inform the user that previous users have
already found a nugget similar to what she is looking for. Other
sophisticated services and HCI issues will be studied in our future
work, including: How to provide hint to users about potential useful
information in an as non-intrusive way as possible. How to build
hierarchical structures among nuggets based on their interrelation
(e.g., some nuggets may be subparts of a bigger nugget). How to
guide users based on their profiles using collaborative filtering tech-
niques [6].

Figure 15: A screen shot from the NMS prototype when looking for
clusters hidden in the dataset

7 USER STUDIES

In order to show the effectiveness of NMS, we have performed user
studies to compare users efficiency and accuracy when solving tasks



with and without the help of NMS. Also, we have observed and
analyzed the stability of NMS through our user studies.

7.1 Experimental Setup

For all the user studies, we use an HP Pavilion laptop computer with
1.6MHz CPU and 512M memory. NMS is integrated in XmdvTool
7.0, which is the latest version of this multivariate visualization sys-
tem [22].Users:17 subjects, all WPI students from various majors,
participated in our user studies. Those in the NMS group were also
given the basic idea of how NMS works and made familiar with
the interfaces. Three real datasets were employed in our user stud-
ies. They are the “Iris” dataset (4 dimensions, 150 records); the
“Cars” dataset (7 dimensions, 392 records); and the “Aaup” dataset
(14 dimensions, 1161 records).Tasks: Users were asked to finish
five knowledge discovery tasks. Each of the tasks requires users
to study a dataset and answer a question about the dataset. These
questions ranged from straightforward ones, such as, “in the car
dataset, which origin has the highest average MPG?”, to complex
ones, such as, “How many clusters exist in the “Cars” dataset on 3
dimensions: Cylinders, Horsepower and Origin?”.Methodology:
In this user study, users were not allowed to communicate informa-
tion about the user study through any other channel except NMS
at any time before, during, or after the user study. This is to make
sure that users can only solve the tasks based on their own explo-
ration and the help from NMS (if available). A uniform training
process was designed to give the basic idea of how NMS works and
made users familiar with the interfaces of NMS. All the users were
encouraged to finish the tasks as quickly and correctly as possible.
No fixed time limit was inforced. Users were asked to finish the
tasks in the same sequence as the tasks appeared on the task sheet.

7.2 Users’ Time Efficiency

To compare users’ efficiency of finishing this given set of tasks with
and without help of NMS, we randomly divide the twelve users into
four groups, three per group. Each user is asked to finish the same
five tasks. Among these 4 groups, users of group 1 were asked to
finish the tasks without NMS, while the other three groups (2- 4)
were supported by NMS. Members of each group were randomly
given a sequence number ranging from 1 to 3, which represents the
user’s sequence of solving the problems in his/her group. For ex-
ample, once a user from group 1 receives the sequence number 2,
he/she will be the second one in group 1 to finish the tasks. Group
members were encouraged to use the functionalities of NMS (if
available) to manage and share their discoveries with later users.

Figure 16 shows the time used by each user and group to finish

Figure 16: Comparison of users’ efficiency in different groups

the tasks. As shown in Figure 16, groups 2, 3, and 4 (with NMS)
spent noticeable less time (around 50 percent) than group 1 (with-
out NMS). Such time savings due to the second and the third users,
given that the first users all worked from scratch. Although NMS
did facilitate their job, managing discoveries needed time. How-
ever, once the nuggets were extracted during the exploration by the

Figure 17: Comparison of users’ efficiency with and without guidance
from nugget pool

first users, the exploration processes of the second and the third
users largely benefited from the nugget pool.

To better support our analysis, we compared the time used by six
users working from scratch (three members of group 1, and three
first users of each other groups) and by the other six users work-
ing with guidance of the nugget pool (the second and third users of
groups 2,3 and 4). Figure 17 shows that the later six users with guid-
ance of nugget pool were working much more efficiently. Specifi-
cally, the minimum, maximum, and the average time spent by these
users are all much less than those who worked from scratch. The
standard deviation is lower too.

7.3 Accuracy of Accomplished Tasks
We also studied the effect of NMS on the accuracy of the accom-
plished tasks. Among the five tasks we mentioned earlier, tasks 2
to 5 are straightforward problems. Users gave correct answers, al-
though spending different amounts of time on them. However, task
1 is a common but complex knowledge discovery problem. Since
not all the clusters can be easily found, in our user study the answer
provided by the users varied. Figure 18 shows the number of clus-
ters found by each user and also the number of clusters that actually
exist. Two facts can be observed from Figure 18: 1) The number

Figure 18: Comparison of users’ accuracy of finishing complex task
with and without help from NMS

of clusters correctly found by users working with NMS are gener-
ally closer to the number of actual clusters. 2) The later users in
each group are more likely to find all existing nuggets compared to
the earlier ones. These two facts show the promise of NMS indeed
improving the accuracy of the tasks accomplished by the users.

7.4 Stability of NMS
Lastly, we consider NMS’s stability, meaning how well it performs
after long-term use. To give a preliminary evaluation of this, we
asked a 7-user group to solve the five tasks mentioned earlier. We
analyzed the population of the nugget pool after use by each user.
The change of the nugget pool population is shown in Figure 19.
The comparison of average number of nuggets identified by the 7
users for each task and the estimated number of nuggets needed



for each task is shown in Figure 18. The “Estimated” number of
nuggets is given based on our own experience of how many nuggets
are needed for each task. From Figures 18 and 19, we observe two

Figure 19: Evolution of nugget populations over time

Figure 20: Comparson of numbers of nuggets generated by users
and those are estimated

facts: One, the average number of nuggets formed by each user
for each question is generally a little higher than estimated (Figure
20). Two, the populations of the nugget pools are relatively stable
during users’ exploration (Figure 19). Thus although some useless
nuggets may be generated during exploration, they are usually only
small portions of the whole nugget pool. Thus, this is indication
that the population of the nugget pool is not likely to degenerate
dramatically during a long-term use.

8 CONCLUSION

In this paper, we introduce a framework for analysis-guided visual
exploration of multivariate data. Our system (NMS) leverages the
collaborative effort of human intuition and machine computations
to extract, combine, refine and maintain the valuable information
hidden in large datasets. Finally, a well-organized nugget pool can
be used to guide users exploration. Our preliminary evaluations in-
dicate that NMS may greatly improve users time efficiency when
solving knowledge discovery tasks. It may also be able to enhance
users accuracy of finishing these tasks, although more complicated
tasks are needed to validate this. Lastly, NMS works in a stable
manner during explorations by a sequence of users. This shows its
promise of working well during long-term exploration. More com-
prehensive user studies which involve more users and more com-
plex tasks will be one of the directions for our future work.
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