
Operator-Centric Design Patterns for Information Visuali zation
Software

Zaixian Xie, Zhenyu Guo, Matthew O. Ward, and Elke A. Rundensteiner

Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, USA

ABSTRACT

Design patterns have proven to be a useful means to make the process of designing, developing, and reusing software
systems more efficient. In the area of information visualization, researchers have proposed design patterns for different
functional components of the visualization pipeline. Since many visualization techniques need to display derived data as
well as raw data, the data transformation stage is very important in the pipeline, yet existing design patterns are, in general,
not sufficient to implement these data transformation techniques. In this paper, we propose two design patterns, operator-
centric transformation and data modifier, to facilitate thedesign of data transformations for information visualization
systems. The key idea is to use operators to describe the dataderivation and introduce data modifiers to represent the
derived data. We also show that many interaction techniquescan be regarded as operators as defined here, thus these two
design patterns could support a wide range of visualizationtechniques. In addition, we describe a third design pattern,
modifier-based visual mapping, that can generate visual abstraction via linking data modifiers to visual attributes. Wealso
present a framework based on these three design patterns that supports coordinated multiple views. Several examples of
multivariate visualizations are discussed to show that ourdesign patterns and framework can improve the reusability and
extensibility of information visualization systems. Finally, we explain how we have ported an existing visualizationtool
(XmdvTool) from its old data-centric structure to a new structure based on the above design patterns and framework.

Keywords: Design patterns, framework, information visualization, data transformation

1. INTRODUCTION

Over the past 15 years there has been increased attention on the use of information visualization techniques as a mechanism
for understanding and exploring large and complex data sets. Researchers in the information visualization area have de-
veloped many visualization techniques to aid users in analyzing data, which has resulted in a growing number of academic
and commercial software systems.

From the viewpoint of software engineering, a successful software system needs a good design in order to ensure
straightforward implementation and maintenance; this is obviously the case with information visualization software. De-
signers can expect many common issues among different software systems, especially within the same domain. For exam-
ple, all information visualization techniques need a mapping from data values to visual attributes, and thus it is worthwhile
for information visualization software developers to reuse or borrow ideas from other systems. Researchers in software
engineering proposed a term,design patterns,1 to describe general solutions for recurring problems. The term design
pattern can be considered at different granularities, fromthe high level architecture to the internal structure of a module.
Many design patterns proposed by software developers are represented in an object-oriented style. As stated by Gamma et
al.,1 software design patterns are “descriptions of communicating objects and classes that are customized to solve design
problems within a particular context.”

Some design patterns have been proposed in information visualization. Stolte et al. described several design patterns
for zooming within multi-scale visualizations.2 Giereth and Ertl presented three design patterns for the rapid prototyping
of information visualization applications .3 These patterns can help create a visualization system configured by scripts, in
which users can dynamically change settings of visual mappings. Heer et al. presented twelve design patterns4 based on
an analysis of Prefuse, an information visualization toolkit. These design patterns covered many issues for information
visualization software, including data representation, derived data, interaction, and visual encoding. Hong proposed a new

Further author information: (Send correspondence to Zaixian Xie)
Zaixian Xie: E-mail: xiezx@cs.wpi.edu
Project Homepage: http://davis.wpi.edu/˜xmdv

concept: visualization design patterns.5 They are not real design patterns, as software developers cannot directly use them
to design software. Instead “they are used by users of visualization systems to model, design, and perform visualization
tasks.”

However, it is our opinion that currently existing design patterns are not sufficient to support the design of data transfor-
mations, which are an important stage in a visualization pipeline, since many visualization techniques display not only the
raw data but also derived data. For example, Heer’sCascaded Table4 supports a derived table via a subclass (derived data)
inheriting from the base class (the original data). This design pattern is clear and easy to use, but we have found it does
not handle complex requirements well and is difficult to extend. First, we have to change the interface of a cascaded table
when we need more derived information. Second, this patternis only suitable for a single step data transformation, which
is not sufficient in many real applications. Finally, Heer’spatterns focus on the data representation, and do not provide
much guidance in the design of the data transformation. To overcome these shortcomings, we propose two design patterns
especially for data transformation. The first one uses a vector of operators to represent a multi-step data transformation,
namely theoperator-centric transformationpattern. The second is thedata modifierpattern, whose key idea is to attach a
vector of modifiers to a data to describe derived data. In addition, we propose a third design pattern,modifier-based visual
mapping, to provide a general solution for the generation of visual abstraction via linking modifiers to visual attributes.

The main contributions of this paper are as follows:

• We propose two operator-centric design patterns, operator-centric transformation and data modifier, to facilitate the
design of information visualization software, focusing onthe data transformation stage. We provide a categorization
of such operators and modifiers.

• We propose a third design pattern, which is a general solution to do visual mapping via linking modifiers to visual
attributes.

• We present a visualization framework based on the above design patterns. Since this framework can manage multiple
pipelines, and different pipelines may share input datasets and operators, it can easily support coordinated multiple
views.

• We describe several examples to show that these design patterns and the framework can improve the flexibility and
extensibility of visualization software.

• We explain how we use the proposed design patterns and framework as we rewrite XmdvTool,6 a public-domain
software package for the interactive visual exploration ofmultivariate data sets.

In comparing our work with that of Heer and Agrawala,4 although we propose fewer design patterns and cover fewer
issues, our patterns are interrelated and can be easily assembled to generate a complete system. Most of design patterns
proposed by Herr and Agrawala are separate from each other, thus a developer must put significant effort to combine them
within one system. For example, they proposed a design pattern,Operator, to describe visual encoding, and other ones for
data representation, but did not discuss how to link data with visual attributes. Our proposed design patterns can overcome
this shortcoming and enable developers to more easily create a whole system.

2. THREE DESIGN PATTERNS

2.1 Operator-centric Transformation

This design pattern is the core of this paper. Its purpose is to help developers easily construct a module to support multi-
step data transformation via a set of operators having a uniform interface. It includes three basic classes,Transformation,
Operator, andData (See Figure 1). The main body ofTransformationis composed of a vector ofOperators. Each operator
represents a single step transformation, such as sampling,sorting and clustering. The input and output of an operator are
both instances of theData class. The functiondoOperation()in Operator is responsible for the conversion from input
to output. In order to support different types of operators and data, the actual data types and operators instantiate the
subclasses ofData (Figure 1(b)) andOperator (Figure 1(c)). Note that all subclasses of operator should override the
functiondoOperation(), in which we can define the specific behavior of data derivation. Based on the above description,
the functiontransformcan be implemented via the pseudocode shown in Algorithm 1.

Algorithm 1 Doing transformation via an operator sequence
1: Data* result← the raw data;
2: for i = 0 to opList.size()-1do
3: opList[i].setInput(result) ;
4: opList[i].doOperation() ;
5: result← opList[i].getOutput() ;
6: end for
7: return result

Operator

+setInput(Data*)
+Data* getOutput()
+void doOperation()

-Data* input
-Data* output

Data Transformation

-Data* input;
-Data* output;
-vector<Operator*> opList

+setInput(Data*)
+Data* getOutput()
+transform()

(a)

Data

DataType1DataType2 More data
types

(b)

Operator

Operator1

+void doOperation()

Operator2

+void doOperation()
... ... More

operators

(c)

Figure 1. The main body of operator-centric transformation. It is composed of three classes, transformation, operatorand data, as shown
in (a). Operatoranddataboth can have multiple subclasses to represent the actual operators and data types.

Although this design pattern is for data transformation, italso can be employed for the implementation of many in-
teraction techniques. For example,brushingis a commonly used interaction technique for selecting a subset of data for
highlighting, masking, deletion, and other tasks. Based onour design patterns, we can implement brushing using an oper-
ator, namelyBrushOp, and visual mapping.BrushOpcan tag a subset based on the brush definition, and visual mapping
can then be used to highlight the data items in this subset.

Our operators are inspired by the framework proposed by Chi and Riedl.7 The operators in Chi and Riedl’s framework
not only exist in data transformations, but also work for visualizations and visual mapping transformations. Their frame-
work aims to give a uniform representation for different stages of the visualization pipeline via operators and states.We,
however, have a different goal, which is to provide patternsfor the design of operators especially in the data transformation
stage. Heer and Agrawala also proposed a design pattern, namely Operator,4 that has the same name as ours. However,
their operators are used to describe visual encodings rather than data transformations.

2.2 Data Modifier

Communicating classes in the design pattern,Data Modifier, are shown in Figure 2. The purpose of this pattern is to
provide a flexible data structure to represent the derived data. The original data is denoted by the class,Data. In order to
represent the derived information for the original data, weintroduce a class,DataModifier, which is the key idea of this
design pattern. Since oneData can have more than one type of derived data, we use a class,DataModifierManager, to
manage a vector ofmodifiers. Different types of data modifiers are described by subclasses ofDataModifier. The biggest
advantage of this design pattern is its excellent extensibility. When we want to add more derived data to extend the existing
system, we only need to add a new class inheriting fromDataModifier, instead of change the existing data structure.

An example isSamplingModifier, which represents the data transformation result of a sampling operator. As we know,
sampling is often used in visualization to pick a subset of the original data to display, as a means for reducing visual clutter.
Assume that the original data is a set{D1, D2, ..., Dn}. The sampling result (SamplingModifier) can be represented by
a vector(a1, a2, ..., an). ai(1 ≤ i ≤ n) can only be0 or 1. Di is in the displayed subset if and only ifai = 1. Recall
the operatorBrushOpdiscussed in Section 2.1. The output of this operator also can be represented by such a vector
(a1, a2, ..., an) as a modifier to denote which data items to select.

Another issue is how to design the function members in classData to reflect the existence of data modifiers. For
example, the result of a function getData(LineNo), which serves the rendering class by returning a single item in the
displayed subset, is impacted by aSamplingModifier. To solve this problem, we letDataModifierManagerwork as an
agent to manage data modifiers and provide appropriate derived data to other objects such as visual mapping and rendering.
All of the requests to access data in the classDatawill be first sent to this agent class, and thenDataModifierManagerwill
seek an appropriate modifier to handle the request.

Data

DataModifier1 DataModifier2 …… More
modifiers

DataModifierManager

+addModifier(DataModifier*)

+vector<DataModifier>* dmList

DataModifier

Figure 2. Data Modifier: A vector ofDataModifieris managed byDataModifierManager. EachDataModifierdescribes its own derived
information for the original data.

2.3 The Categorization of Operators and Modifiers and Further Discussion

Categorization of Operators: We notice that there are two types of operators, namelymodifier operatorsandcreation
operators. The former only attaches a modifier to the original data, e.g., the sampling operator, while the latter will create
a totally new data set. For example, a hierarchical clustering operator can be regarded as a creation operator because its
output, a cluster tree, is a new data type totally different from the original data. Note that an operator’s type depends on
how the developer designs the system. For example, we can define a cluster tree as a modifier of the original data, thus the
clustering operator will be a modifier instead of a creator, although this might make the design and reuse of the software
more difficult.

As shown in Figure 1(a),Operatorhas a functiondoOperation(). This function is responsible for performing data
transformations, which is the main behavior ofOperator. For different types of operators, theirdoOperation()functions
will be significantly different from each other. Figure 3 shows the detailed semantics of themodifier operator(Figure
3(a)) andcreation operator(Figure 3(b)). As shown in Figure 3(a), the input of themodifier operatorprobably has been
attached some modifiers (from modifier-1 to modifier-k in thiscase), thus the output has to contain these existing modifiers
as well as a new modifier. In Figure 3(b),Data1andData2may instantiate from the same or different classes, which both
inherit from the base classData. For example, the input and output of an operatorClusterOpare a multivariate dataset and
a cluster tree, respectively. However, an operator to perform multidimensional scaling (MDS) can apply an algorithm ona
high-dimensional data set and produce a lower dimensional data set. Both input and output can be the instances of a data
type representing multivariate data.

Modifier Operator

void doOperation()Data
input

Data

New Modifier

output

... ...Modifier-1 Modifier-k Modifier-1 Modifier-k... ...

(a)

Creation Operator

void doOperation()Data1
Input

Data2

(b)

Figure 3. Different behaviors for two types of operators: (a) modifier operator; (b) creation operator.

Categorization of Data Modifiers: Data modifiers can be categorized into two types:view modifiersandattribute modi-
fiers. The first one only provides a view, namely mapping from the original dataset to the derived data, to the objects using
the data, e.g., rendering. It does not add additional data tothe original dataset. For multivariate data we can identifytwo
types of mapping, one on records(rows) and the other on dimensions(columns). For instance, sampling modifiers represent
mappings on records, and dimension on/off/reordering modifiers correspond to the mapping on dimensions. Compared to
view modifiers, attribute modifiers contain new data as the attributes of the original data. One example of such a modifier,
namelyHighlightModifier, represents the output of the operatorBrushOpvia a vector(a1, a2, ..., an) (see Section 2.2).
Note thatn is the number of data items in the original dataset. Theith data item is in the highlighted subset if and only if
ai = 1 . Obviously, this modifier is similar to the sampling modifierin the form of representation, but they have different
semantics.

With the above categorization, we add more details to the data modifier design pattern to reflect behaviors for different
types of modifiers (Figure 4). InAttributeModifier, the main function members aim to provide an access to the attributes.

For multivariate data, three functions,getAttr(int rec, int dim), getRecAttr(int rec), andgetDimAttr(int dim), can return
the attribute values for a specified value, record or dimension. For other types of data, e.g., 3D spatial data, software
designers can develop other functions using the same style.Let us recallHighlightModifier. In this modifier, the function
getRecAttr(i)can return a boolean value to represent whether the data itemin the recordi will be highlighted in the final
display. RegardingViewModifier, we define two subclasses,RecViewModifierandDimViewModifier, corresponding to the
mapping on records and dimensions. They both provide two functions,mapandinvmap. The functionmap(i)returns the
position in the view for a specified record or dimension whoseindex isi in the original dataset. The other function,invmap,
does the inverse mapping. It can find the index for a record or dimension whose position in a view is known. The inverse
mapping is very useful for those objects that need to access data. For example, the visual mapping and rendering class only
show the data in the final view, but they need to get the physical data to determine attributes, such as the position, length,
and size, of visual elements. Thus they need the inverse mapping (invmap) to create the linkage between views and the
original data.

DataModifier

AttributeModifier

+getAttr(int rec, int dim)
+getRecAttr(int rec)
+getDimAttr(int dim)

ViewModifier

RecViewModifier

+int map(int rec)
+int invmap(int rec)

DimViewModifier

+int map(int dim)
+int invmap(int dim)

Figure 4. The design pattern,Data Modifier, with more de-
tails.

E

H

C

B

G

F

A

D

1

2

3

4

1

2

3

4

Sampling
Operator

Sorting
Operator

1

2

3

4

5

6

7

8

A

C

E

G

E

C

G

A

Order Value Order Value Order Value

Original Data Intermediate View Final View

Figure 5. An example of view modifiers, two of which are ap-
plied to one dataset in a specified order.

Given these two types of modifier, we define the following rules to avoid possible conflicts among different modifiers:
(1) In all attribute modifiers, attributes have the same order as the original data. Thus, if other objects want to access
attribute values and they only know its position in the view,they need to use view modifier to get the physical position of
the requested attribute value. (2) If one dataset has more than one view modifier, a fixed order of these modifiers should be
predefined. Any mapping should be applied to the dataset in this order.

To clarify the second rule, we show an example in Figure 5, in which a sampling operator (with sampling rates=50%)
and then a sorting operator are applied to a dataset having 8 data items. We list the return values of the functionsmap(i)and
invmap(i)of these two operators in Table 1. Note thatmap(i)=0 means this data item does not exist in the view. Assuming
we want to know the position of ’G’ in the final view starting from the original data, we can usemap2(map1(5)) =
map2(3) = 4 to get it. In the reverse order, if we start from the final view,and want to get the index of ’E’ in the original
data, we can calculate this usinginvmap1(invmap2(3)) = invmap1(1) = 1. In general, if we haven view modifiers, the
mapping from the original data to the final view should usemapn(mapn−1(...map1(i)...)) and the mapping in the other
direction can be performed viainvmap1(invmap2(...invmapn(i)...)).

Sampling Modifier Sorting Modifier
i map1(i) i invmap1(i) i map2(i) i invmap2(i)
1 1 1 1 1 3 1 4
2 0 2 3 2 2 2 2
3 2 3 5 3 4 3 1
4 0 4 7 4 1 4 3
5 3 - - - - - -
6 0 - - - - - -
7 4 - - - - - -
8 0 - - - - - -

Table 1. The return values for the functionsmap(i)andinvmap(i)in two operators shown in Figure 5.

If we explore how operators derive data, we can find an obviousefficiency issue. As shown in Figure 3(a), for a
modifier operator, its output should include all of the raw data and modifiers inthe input as well as the new modifier.

Assume that there aren operators in the pipeline, the last operator needs to copyn − 1 modifiers. Since some operators
include vectors whose sizes are comparable to the raw data, this will cause a significant time cost if we do the copy item
by item. However, in a traditional framework for information visualization, one component is responsible for a type of
data derivation and has its own data structure to represent the derived data, thus such a copy is not necessary. In order to
avoid this possible reduction on performance while using our design patterns, we can make eachmodifier operatoronly
copy the reference of raw data and modifiers. This is an operation with constant time complexity in most of programming
languages. For example, in C++, the reference can be represented via pointers, thus the copy of the reference is only an
assignment operation.

2.4 Modifier-based Visual Mapping

In multivariate visualization, one data item will normallybe visualized by one or a set of visual items. For example, in a
scatterplot matrix, one tuple corresponds toN2 points, whereN is the number of dimensions. In the visual mapping (or
visual abstraction) stage of multivariate visualization,visual attributes of these visual items can be determined bydimension
values or attributes. For instance,HighlightModifierrepresenting the result of brushing, can determine the colors of visual
items to denote whether they are highlighted or not. Thus we propose a design pattern for visual mapping as shown in
Figure 6. The key idea is to associate a data modifier with visual attributes. Although this design pattern is for multivariate
data, it is easy to extend it to other data types.

The core class of this design pattern isVisualMap. It maintains two maps,visModiandvisData, which associate an arbi-
trary visual attribute with a specific attribute modifier or dimension values, respectively. The developer can use functions,
register(AttributeModifier*, VisAttr*)and register(int dim, VisAttr*), to create both maps. The functiondoVisualMap()
generates an instance of classVisualMapResult. This result contains a vector of instances of classVisAttrList. The size of
this vector is normally the number of displayed data items. Each instance represents the visual attributes of one data item.
Since one visual item can have multiple attributes, such as color, size and shape, the classVisualAttrListis an aggregation
of classVisualAttr, which represents a single visual attribute. Some visualization techniques do not fit the above description
very well. For example, we can color each segment in parallelcoordinates by the value on the corresponding dimension.
It should be easy to implement this based on the above design pattern with only minor changes.

Data

DataModifier

DataModifierManager

VisualMap

+register(AttributeModifier*, VisAttr*)
+register(int dim, VisualAttr*)
+doVisualMap()

+map<AttributeModifier*, VisAttr*> visModi
+map<int, VisualAttr*> visData
+Data* input
+VisualMapResult* output

VisualMapResult

VisAttr

VisAttrList

+vector<VisAttrList*> allVisAttr

+vector<VisAttr*> itemVisAttr

Figure 6. The design pattern for visual mapping based on the data represented by data modifier.

2.5 Extensibility of Proposed Design Patterns

Compared to other design patterns and frameworks, the biggest advantage of the operator-centric design patterns is that
they make the visualization system easy to extend. The main reason is a uniform interface of operators. This can be
further explained by our experience in the design of XmdvTool. In the currently released version of XmdvTool (7.0), we
used a data-centric structure. We added each new feature as aseparate component that directly manipulated the existing
data structures. Thus we had to handle potential conflicts among different components, which resulted in many bugs
and slower development time. Sometimes it was difficult to make two components work together, and we had to disable
one component when users activated the other component. Forexample, the current released version of XmdvTool does
not allow users to hide some of the dimensions while using thestructure-based brush.8 Another example is the conflict
between the multidimensional brush and dimension on/off. Because we introduced dimension on/off after implementing
the brushing feature, we had to rewrite a significant amount of code to resolve the conflicts between these two components.

The above problems (and others) we faced were the main reasons to push us toward the development of operator-centric
design patterns for use in redesigning XmdvTool. The designpatterns force all operators to have a uniform interface, so
the impact on one operator from other operators is extremelylimited. Now, as we redesign XmdvTool using the proposed
design patterns. the multidimensional brush, structure-based brush, dimension on/off, and many other components areall
represented by operators. The co-existence of different components can be easily enabled if the semantics are valid.

BrushOp DimOp

Raw
Data

Raw data with a
highlighted subset

Considers all
dimensions

Final
Data

Turns off
some dimensions

(a)

DimOp BrushOp

Raw
Data

Raw data with a
dimension view

Turns off
some dimensions

Final
Data

Considers only
visible dimensions

(b)

Figure 7. Different brush semantics generated by reordering the operators. (a) All dimensions are considered (as in XmdvTool); (b) Only
visual dimensions are involved in the brush definition (as inTableau).

We show another example to explain how our proposed design patterns help us to easily obtain new features via
changing the combination and sequence of operators. This isin regards to the multidimensional brush in XmdvTool and
Tableau,9 both of which use dimension ranges as the parameters in brushdefinition. Only those data items falling into
dimension ranges are highlighted. Because users often turnoff some dimensions to focus on those attributes of interest,
one problem is whether we need to consider all dimensions or only those visible dimensions when we judge whether one
data item should be highlighted. XmdvTool, in its current framework, always considers all dimensions, while Tableau only
uses visible dimensions to perform this task. In our new version (soon to be released), we use an operator to do brushing
(BrushOp) and another to do dimension on/off/reordering (DimOp). If we putBrushOpbeforeDimOp, we are doing the
same thing as the current XmdvTool (Figure 7(a)). If we reverse the sequence, the behavior of the system is the same as
Tableau (Figure 7(b)).

3. THE FRAMEWORK

Based on the design patterns described in Section 2, we propose a framework for information visualization as shown in
Figure 8. This framework can contain multiple pipelines. Each pipeline is composed of three stages: data transformation,
visual mapping, and rendering. Different pipelines can share operators. For the convenience of design, we provide an
operator pool that contains operator instances used in the whole system. When each pipeline is created, operator instances
in the operator pool are requested and added into the pipeline. For most interaction techniques, arguments in operatorsor
the visual mapping stage need to be changed to reflect users’ requests. Thus we link interactions to the operators or visual
mapping stage in the pipeline. For example, when a user changes the dimension ranges in a multidimensional brush, we
only need to change the brush parameters in theBrushOpand then send the raw data to the pipeline again and repaint the
canvas, resulting in a view with the new brush.

Since this framework uses the operator-centric design patterns, visualization software systems based on it will exhibit
enhanced reusability and extensibility. Moreover, this framework can support the design and implementation of coordinated
multiple views (CMV). Our approach to implementing CMV is asfollows. We create multiple pipelines, each of which
corresponds to one of the linked views. These pipelines share some operators and/or visual mappings. A typical style of
sharing is a fan out solution, as shown in Figure 9. When a userperforms interactions within one view, changes in the
parameters of shared operators are distributed among all the linked pipelines and the views are updated.

4. USING THE DESIGN PATTERNS AND FRAMEWORK IN XMDVTOOL

In this section, we briefly explain how we use the presented design patterns while redesigning XmdvTool, a public domain
multivariate data visualization package developed at WPI.Some of the operators we have introduced into XmdvTool are
listed in Table 2. The descriptions of these operators are asfollows. Note that if we do not list the input of one operator,it
means the input is a multivariate dataset by default.

FlatBrushOp

Operator Pool

Op1 Opk1

Raw
Data

Intermediate
Data

Final
Data

Visual Mapping Rendering View 1Pipeline 1

Pipeline n Op1 Opkn Visual Mapping Rendering View n

Intermediate
Data

Visual
Abstraction

Visual
AbstractionRaw

Data

Final
Data

Data Transformation

Interaction

Figure 8. The framework based on the design patterns proposed in this paper. It can contain multiple pipelines that shareoperators from
an operator pool. Interaction is associated with operatorsand visual mappings.

Opm+1 Opk1 Visual Mapping Rendering View 1

Opm+1 Opkn Visual Mapping Rendering View n

Raw
Data

Op1 Opm

Shared operators Non-shared operators

Figure 9. A fan out solution for the design of coordinated multiple views based on our proposed framework.

Output: A modifier that contains a bit array to denote which data items are highlighted in the final display.

Operation: Select a subset whose datapoints fall into specified dimension ranges.

SamplingOp

Output: A modifier to map from the original data to a sampled subset.

Operation: Apply a uniform sampling to the original dataset. Other sampling methods are easily added.

DimOp

Output: A modifier to map from the original dimension order to a new one.

Operation: Reorder the dimensions or disable/hide a subset of them based on either user interactions or a heuristic algo-
rithm that reorders dimensions to reduce visual clutter.10

SortOp

Output: A modifier to map from the original dataset to a new one with records ordered based on the values in a specified
dimension.

Operation: Sort datapoints in terms of values on a specified dimension.

ClusterOp

Modifier Operator FlatBrushOp, SamplingOp, DimOp, SortOp
Creation Operator ClusterOp, ClusterLODViewOp, DimTreeOp, DimReductViewOp

Table 2. Some important operators introduced into XmdvToolto port from a data-centric structure to the current operator-centric frame-
work.

Output: A hierarchical cluster tree. Each leaf is a data item in the original dataset. Similar data items compose a cluster,
and in turn similar clusters form a higher level cluster, until the entire dataset is represented by a single cluster.8

Operation: Perform hierarchical clustering on the input.

ClusterLODViewOp

Input: A hierarchical cluster tree.

Output: A new multivariate dataset which is an abstraction of the original dataset.

Operation: Select a subset of the data hierarchy to view. This operatoris associated with an interaction interface, namely
the structure-based brush, as shown in Figure 10.8 The tree shape is approximated by its leaf contour (see (c)).The colored
bold contour (see (b)) represents the current selected level-of-detail. The interactive brush handles (see (e)) determine a
range based on a pre-defined attribute value. The user can drag the colored bold contour (see (b)) to change the LOD
parameters, and adjust the interactive brush handles to define a new range. This operator can generate an abstraction of the
original dataset in the form of a multivariate dataset that has the same number of dimensions as the original dataset but with
fewer data items (one per cluster). This abstraction is visualized as shown in figure 12. The detailed abstraction generation
steps are as follows: (1) Retrieve all nodes on the selected level of detail (see (b)). (2) Map each node to a data item with
dimension values being the mean values of data in this cluster. (3) Organize these data items into a new multivariate data
set. (4) Attach a modifier to represent the colors of clusters. Their colors are determined by the order of clusters (see (f))
if they are out of the range defined by the brush handles (see (e)), or are bold red if they are within the range. (5) Add
a modifier to represent the cluster size for each data item, which is denoted by the band width in the final visualization
(Figure 12).

Figure 10. Structure-based brushing tool. (a)
The tree frame; (b) Contour corresponding to
the current level-of-detail; (c) Leaf contour ap-
proximates shape of the tree; (d) Structure-
based brush; (e) Interactive brush handles; (f)
Colormap legend for level-of-detail contour.

Figure 11. An InterRing display to allow users
to select nodes on a dimension cluster tree,
which is generated from a census income
dataset (42 dimensions). Note that the user has
selected 4 dimension clusters, one of which ac-
tually is an original dimension.11

DimTreeOp

Output: A dimension cluster tree. Tree leaves denote the original dimensions. Similar dimensions are put into clusters,
and similar clusters in turn will be put into clusters at a higher level.11 In order to facilitate the design of the next operator,
DimReductViewOp, we attach the original dataset to this dimension hierarchy.

Operation: Organize a dimension cluster tree to represent the similarity among the original dimensions.

DimReductViewOp

Input: A dimension cluster tree.

Output: A new multivariate dataset adapted from the original dataset but with fewer dimensions.

Operation: This operator aims to generate a new dataset in a lower dimensional space, which is useful for exploring a
dataset that has a large number of dimensions. We link this operator to an interface for dimension reduction, namely

InterRing11 as shown in Figure 11, in which users can select nodes in the dimension cluster tree. This operator projects the
original dataset to a lower dimensional space containing only those selected clusters as dimensions. A specific dimension
value in the new dataset can be from a user-selected or randomdimension in the cluster, or the first principal component
after applying Principal Component Analysis (PCA) to all the dimensions in the cluster.11 As an example, in Figure 11,
the user chooses 4 clusters, and this operator generates a new dataset having only 4 dimensions; this is then visualized via
parallel coordinates as shown in Figure 13.

Figure 12. A hierarchical parallel coordinates display of the Iris
dataset. It shows five clusters on the selected level-of-detail (Fig-
ure 10). The bold red color means that the cluster is currently
being selected by the structure-based brush. The line colorde-
notes the cluster order, except the brushed clusters, and the band
widths represent sizes of the clusters.12

Figure 13. This parallel coordinates display shows a multivariate
dataset by projecting the original dataset to a lower dimensional
space. It contains the dimensions selected in Figure 11. Note
that the dimension name “Node15(11)” means that the dimension
“Node15” is a dimension cluster having 11 descendent leaf nodes
corresponding to original dimensions. Axis width conveys the
variability within the dimension clusters.11

When we ported XmdvTool from the old version to the new framework, we defined different modes, each of which
corresponds to a pipeline configuration. Figure 14 shows thedata transformation stage for each mode. We briefly describe
each mode:

Flat Mode: As shown in Figure 14(a), the core of this mode is aFlatBrushOprepresenting a multidimensional brush. This
model also supports sampling usingSamplingOp, sorting viaSortOp, and dimension on/off/reordering byDimOp. Note
that we can have different brush semantics if we exchange theposition ofFlatBrushOpandDimOpas shown in Section
2.5. In the future, we can add more operators to do more complex transformations, such as principal component analysis13

and multidimensional scaling.14 This is the basic mode, suitable for exploring small datasets with a modest number of
dimensions.

Structure-based Brush Mode: This mode is used to explore datasets whose number of records is very large; this is done
by displaying abstractions of the original dataset to reduce visual clutter (Figure 14(b)). It is derived from the flat model by
adding two operators,ClusterOpandClusterLODViewOp. First,ClusterOpis applied to the input dataset to create a cluster
tree; thenClusterLODViewOpprovides users with a structure-based brush to choose a specific level-of-detail and region
of interest. A dataset containing all nodes on the selected level will be generated as the output of operator. Finally this
new dataset will pass through other operators in the flat model and be visualized. This mode is much more powerful than
the hierarchical display in the data-centric structure because we can easily apply multidimensional brush and dimension
on/off/reordering operations to the structure-based brush results.

Dimension Reduction Mode: In this mode (Figure 14(c)), operatorsDimTreeOpandDimReductViewOpsupport the in-
teractions needed for dimension reduction. The operatorDimTreeOpcan generate a dimension hierarchy, and then users

can use the InterRing display associated withDimReductViewOpto select dimension clusters for exploration.DimRe-
ductViewOpcan project the original dataset to a lower dimensional space containing those selected dimension clusters.
The projection result will go to those operators contained in the flat model and be displayed via multivariate visualiza-
tions. Similar to structure-based brush mode, this mode enables us to easily do multidimensional brushing and dimension
on/off/reordering on the dimension reduction result, which would have been difficult to implement in the old data-centric
structure, because of conflicts among different components.

In addition to the above list, some other modes will be implemented in our future work, such as a combination of
structure-based brush mode and dimension reduction mode, which will enable us to further explore datasets having both
large numbers of records and dimensions. Because of the extensibility of our design patterns, this will be easy to design
and develop.

SortOp FlatBrushOp DimOpSamplingOp

(a)

SortOp FlatBrushOp DimOpClusterOp ClusterLODViewOp

(b)

SortOp FlatBrushOp DimOpDimTreeOp DimReductViewOp

(c)

Figure 14. Three modes in XmdvTool: (a) Flat mode; (b) Structure-based brush mode; (c) Dimension reduction mode.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented operator-centric design patterns for developing information visualization software. Thekey
idea is to use an operator class to represent a single step data transformation; a complex multi-step data transformation
can then be performed using a vector of such operators. We distinguished two types of operators, creation operators and
modifier operators. The former generates totally new data, while the latter adds a data modifier to the original data. A
data modifier can describe a view or an attribute applied to the original data. The third design pattern, modifier-based
visual mapping, can generate visual abstractions via linking modifiers to visual attributes. Based on these three patterns,
we proposed a framework to enable the creation of multiple pipelines within a system. We also showed that the proposed
design patterns can significantly improve the reusability and extensibility of visualization software. Because thesepipelines
may share operators, this framework can easily support coordinated multiple views. We developed these design patterns
and framework based on the assumption that the raw data consists of multivariate tables. However, we believe the patterns
and framework could be readily adapted to other data types. Some potential future work includes:

• A More General Definition for Operators: An operator proposed in this paper has only one input and one output.
However, more than one input is possible, e.g., doing join operations on two datasets. Thus it could be useful if we
extended the current design patterns to enable operators tohandle multiple input and output.

• Dynamic Configuration of Data Transformations: A visualization system could be more powerful and flexible if
users were allowed to dynamically configure operator sequences, such as adding or removing operators and changing
operator order interactively. A possible solution is to further investigate the semantics of operators and add limitations
to the linkage among operators. This could help identify invalid sequences and accept only those with consistent
semantics.

ACKNOWLEDGMENTS

This work is supported under NSF grants CCF-0811510 and IIS-0812027.

REFERENCES

[1] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. M., [Design Patterns: Elements of Reusable Object-Oriented
Software], Addison-Wesley, Bloomington, MN, USA (1994).

[2] Stolte, C., Tang, D., and Hanrahan, P., “Multiscale visualization using data cubes,” in [Proc. IEEE Symposium on
Information Visualization], 1–8 (2002).

[3] Giereth, M. and Ertl, T., “Design patterns for rapid visualization prototyping,” in [International Conference on Infor-
mation Visualisation], 569–574 (2008).

[4] Heer, J. and Agrawala, M., “Software design patterns forinformation visualization,”IEEE Trans. Visualization and
Computer Graphics12(5), 853–860 (2006).

[5] Chen, H., “Towards design patterns for dynamic analytical data visualization,” in [Visualization and Data Analysis,
Part of IS&T/SPIE Symposium on Electronic Imaging], 75–86 (2004).

[6] “Xmdvtool home page.” http://davis.wpi.edu/˜xmdv/.
[7] Chi, E. and Riedl, J., “An operator interaction framework for visualization systems,” in [Proc. IEEE Symposium on

Information Visualization], 63–70 (1998).
[8] Fua, Y., Ward, M., and Rundensteiner, E., “Structure-based brushes: A mechanism for navigating hierarchically

organized data and information spaces,”IEEE Trans. Visualization and Computer Graphics6(2), 150–159 (2000).
[9] “Tableau software — visual analysis and data visualization.” http://www.tableausoftware.com/.

[10] Peng, W., Ward, M., and Rundensteiner, E., “Clutter reduction in multi-dimensional data visualization using dimen-
sion reordering,” in [Proc. IEEE Symposium on Information Visualization], 89–96 (2004).

[11] Yang, J., Ward, M., Rundensteiner, E., and Huang, S., “Visual hierarchical dimension reduction for exploration of
high dimensional datasets,” in [Joint Eurographics/IEEE TCVG Symposium on Visualization], 19–28 (2003).

[12] Fua, Y., Ward, M., and Rundensteiner, E., “Hierarchical parallel coordinates for exploration of large datasets.,” in
[Proc. IEEE Visualization], 43–50 (1999).

[13] Jolliffe, J., [Principal Component Analysis], Springer Verlag (1986).
[14] Kruskal, J. and Wish, M., [Multidimensional Scaling], Sage Publications (1978).

