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ABSTRACT

Design patterns have proven to be a useful means to make dlegsrof designing, developing, and reusing software
systems more efficient. In the area of information visudlirg researchers have proposed design patterns for etitfer
functional components of the visualization pipeline. ®imeany visualization techniques need to display derived dst
well as raw data, the data transformation stage is very itapbin the pipeline, yet existing design patterns are, megal,

not sufficient to implement these data transformation teghes. In this paper, we propose two design patterns, aperat
centric transformation and data modifier, to facilitate thesign of data transformations for information visualiat
systems. The key idea is to use operators to describe theddatation and introduce data modifiers to represent the
derived data. We also show that many interaction technigaede regarded as operators as defined here, thus these two
design patterns could support a wide range of visualizaggehniques. In addition, we describe a third design pattern
modifier-based visual mapping, that can generate visusdadb®n via linking data modifiers to visual attributes. @eso
present a framework based on these three design pattetrsutiorts coordinated multiple views. Several examples of
multivariate visualizations are discussed to show thatdesign patterns and framework can improve the reusabilitly a
extensibility of information visualization systems. Higawe explain how we have ported an existing visualizatiool
(XmdvTool) from its old data-centric structure to a new stture based on the above design patterns and framework.

Keywords: Design patterns, framework, information visualizatioatadtransformation

1. INTRODUCTION

Over the past 15 years there has been increased attentiba osd of information visualization techniques as a meshani
for understanding and exploring large and complex data st&searchers in the information visualization area have de
veloped many visualization techniques to aid users in aivajydata, which has resulted in a growing number of academic
and commercial software systems.

From the viewpoint of software engineering, a successftilveoe system needs a good design in order to ensure
straightforward implementation and maintenance; thidigausly the case with information visualization softwabse-
signers can expect many common issues among differenta@fsystems, especially within the same domain. For exam-
ple, all information visualization techniques need a maggfom data values to visual attributes, and thus it is wehtle
for information visualization software developers to s borrow ideas from other systems. Researchers in s@&ftwar
engineering proposed a termesign pattern$ to describe general solutions for recurring problems. Emntdesign
pattern can be considered at different granularities, frloenhigh level architecture to the internal structure of alaie.
Many design patterns proposed by software developers presented in an object-oriented style. As stated by Gamma et
al..! software design patterns are “descriptions of commumigaibjects and classes that are customized to solve design
problems within a particular context.”

Some design patterns have been proposed in informationlization. Stolte et al. described several design patterns
for zooming within multi-scale visualizatiofsGiereth and Ertl presented three design patterns for thid paptotyping
of information visualization applicationd These patterns can help create a visualization system coadidpy scripts, in
which users can dynamically change settings of visual nmayspiHeer et al. presented twelve design patfdsased on
an analysis of Prefuse, an information visualization tdolkhese design patterns covered many issues for infoomati
visualization software, including data representati@miveéd data, interaction, and visual encoding. Hong preg@snew
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concept: visualization design pattef$hey are not real design patterns, as software developenstdirectly use them
to design software. Instead “they are used by users of visi@n systems to model, design, and perform visualipatio
tasks.”

However, it is our opinion that currently existing designtpens are not sufficient to support the design of data toansf
mations, which are an important stage in a visualizatioelpig, since many visualization techniques display nog tmé
raw data but also derived data. For example, He@ascaded Tabfesupports a derived table via a subclass (derived data)
inheriting from the base class (the original data). Thidglepattern is clear and easy to use, but we have found it does
not handle complex requirements well and is difficult to exteFirst, we have to change the interface of a cascaded table
when we need more derived information. Second, this paigesnly suitable for a single step data transformation, Whic
is not sufficient in many real applications. Finally, Hegr&tterns focus on the data representation, and do not grovid
much guidance in the design of the data transformation. ®oamme these shortcomings, we propose two design patterns
especially for data transformation. The first one uses aovedtoperators to represent a multi-step data transfoonati
namely theoperator-centric transformatiopattern. The second is tliata modifielpattern, whose key idea is to attach a
vector of modifiers to a data to describe derived data. Intexidiwe propose a third design pattenmpdifier-based visual
mapping to provide a general solution for the generation of viststiaction via linking modifiers to visual attributes.

The main contributions of this paper are as follows:

e We propose two operator-centric design patterns, opecatairic transformation and data modifier, to facilitate th
design of information visualization software, focusingtba data transformation stage. We provide a categorization
of such operators and modifiers.

e We propose a third design pattern, which is a general soldtialo visual mapping via linking modifiers to visual
attributes.

¢ \We present a visualization framework based on the abovgmpsiterns. Since this framework can manage multiple
pipelines, and different pipelines may share input dasamet operators, it can easily support coordinated multiple
views.

e We describe several examples to show that these desigmnsadtied the framework can improve the flexibility and
extensibility of visualization software.

e We explain how we use the proposed design patterns and frarkes we rewrite XmdvTodl,a public-domain
software package for the interactive visual exploratiomaftivariate data sets.

In comparing our work with that of Heer and Agrawdlalthough we propose fewer design patterns and cover fewer
issues, our patterns are interrelated and can be easilnbeskto generate a complete system. Most of design patterns
proposed by Herr and Agrawala are separate from each dtlusratdeveloper must put significant effort to combine them
within one system. For example, they proposed a designrpa@eerator, to describe visual encoding, and other ones for
data representation, but did not discuss how to link data wéual attributes. Our proposed design patterns can omec
this shortcoming and enable developers to more easilyeeeatole system.

2. THREE DESIGN PATTERNS
2.1 Operator-centric Transformation

This design pattern is the core of this paper. Its purpose ielp developers easily construct a module to support multi
step data transformation via a set of operators having aumiinterface. It includes three basic clasSeansformation
Operator, andData (See Figure 1). The main body ®fansformatioris composed of a vector @perators Each operator
represents a single step transformation, such as samptinig and clustering. The input and output of an operai@r a
both instances of thBata class. The functiomoOperation()in Operatoris responsible for the conversion from input

to output. In order to support different types of operatard data, the actual data types and operators instantiate the
subclasses dbata (Figure 1(b)) andOperator (Figure 1(c)). Note that all subclasses of operator shouktrae the
functiondoOperation() in which we can define the specific behavior of data derimat®ased on the above description,
the functiontransformcan be implemented via the pseudocode shown in Algorithm 1.



Algorithm 1 Doing transformation via an operator sequence
1: Data* result— the raw data;

2: for i = 0 to opList.size()-Ido

3. oplList[i].setinput(result) ;

4:  oplist[i].doOperation() ;

5

6

7

result— opList[i].getOutput() ;
: end for
: return result

| Data }1— Operator [— Transformation

-Data* input -Data* input;

-Data* output -Data* output;
- < *> i

+setlnput(Data*) vector<Operator> opLis

+Data* getOutput( +setinput(Data*)

+void doOperation() +Data* getOutput() [ operaors | [ operaorz | . More
+transform() DataTypel || DataType2 | - ™ x;’ges data | +void doOperatlond) | +void doOperauon‘) operators

(a) (b) (c)

Figure 1. The main body of operator-centric transformatlois composed of three classes, transformation, opeaabdata, as shown
in (a). Operatoranddataboth can have multiple subclasses to represent the actaedtops and data types.

Although this design pattern is for data transformatiomlso can be employed for the implementation of many in-
teraction techniques. For exampbrushingis a commonly used interaction technique for selecting aetubf data for
highlighting, masking, deletion, and other tasks. Basedwrdesign patterns, we can implement brushing using ar oper
ator, namelyBrushOp and visual mappingBrushOpcan tag a subset based on the brush definition, and visualingapp
can then be used to highlight the data items in this subset.

Our operators are inspired by the framework proposed by @hRiedl” The operators in Chi and RiedI’s framework
not only exist in data transformations, but also work foueilizations and visual mapping transformations. Theimia
work aims to give a uniform representation for differengss of the visualization pipeline via operators and staféss,
however, have a different goal, which is to provide pattéonshe design of operators especially in the data transfition
stage. Heer and Agrawala also proposed a design pattergly@perator* that has the same name as ours. However,
their operators are used to describe visual encodingsrriiie data transformations.

2.2 Data Modifier

Communicating classes in the design patt&ata Modifier, are shown in Figure 2. The purpose of this pattern is to
provide a flexible data structure to represent the derivéal dehe original data is denoted by the cld3ata. In order to
represent the derived information for the original data,imieoduce a clasd)ataModifier, which is the key idea of this
design pattern. Since origata can have more than one type of derived data, we use a ElassModifierManagerto
manage a vector ahodifiers Different types of data modifiers are described by subekesDataModifier The biggest
advantage of this design pattern is its excellent extelitgibivhen we want to add more derived data to extend theiexjist
system, we only need to add a new class inheriting flxataModifier, instead of change the existing data structure.

An example isSamplingModifigrwhich represents the data transformation result of a Sampperator. As we know,
sampling is often used in visualization to pick a subset efdfiginal data to display, as a means for reducing visudteslu
Assume that the original data is a 469, Do, ..., D,, }. The sampling result3amplingModifiercan be represented by
a vector(ay, ag, ...,a). a;(1 < i < n) canonly bed or 1. D; is in the displayed subset if and onlydf = 1. Recall
the operatoBrushOpdiscussed in Section 2.1. The output of this operator alsobearepresented by such a vector
(a1, aq, ...,a,) as a modifier to denote which data items to select.

Another issue is how to design the function members in des to reflect the existence of data modifiers. For
example, the result of a function getData(LineNo), whichves the rendering class by returning a single item in the
displayed subset, is impacted bysamplingModifier To solve this problem, we lddataModifierManagemwork as an
agent to manage data modifiers and provide appropriatesdiiiata to other objects such as visual mapping and rendering
All of the requests to access data in the claasawill be first sent to this agent class, and tH2ataModifierManagewill
seek an appropriate modifier to handle the request.
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Figure 2. Data Modifier: A vector ddataModifieris managed bpataModifierManager EachDataModifierdescribes its own derived
information for the original data.

2.3 The Categorization of Operators and Modifiers and Furthe Discussion

Categorization of Operators We notice that there are two types of operators, namelgifier operatorsandcreation
operators The former only attaches a modifier to the original data, ¢hg sampling operator, while the latter will create

a totally new data set. For example, a hierarchical clusgeoperator can be regarded as a creation operator because it
output, a cluster tree, is a new data type totally differenirf the original data. Note that an operator’s type depends o
how the developer designs the system. For example, we caredetiluster tree as a modifier of the original data, thus the
clustering operator will be a modifier instead of a creatlthaaugh this might make the design and reuse of the software
more difficult.

As shown in Figure 1(a)Qperatorhas a functiordoOperation() This function is responsible for performing data
transformations, which is the main behavior@pberator For different types of operators, theloOperation(functions
will be significantly different from each other. Figure 3 giethe detailed semantics of theodifier operator{Figure
3(a)) andcreation operator(Figure 3(b)). As shown in Figure 3(a), the input of tinedifier operatomprobably has been
attached some modifiers (from modifier-1 to modifier-k in tt@se), thus the output has to contain these existing maglifier
as well as a new modifier. In Figure 3(lDatalandData2 may instantiate from the same or different classes, whith bo
inherit from the base clag3ata. For example, the input and output of an operé&tlusterOpare a multivariate dataset and
a cluster tree, respectively. However, an operator to perfaultidimensional scaling (MDS) can apply an algorithmeon
high-dimensional data set and produce a lower dimensiatalsket. Both input and output can be the instances of a data
type representing multivariate data.

Modifier Operator

Input - )
@ P void doOperation() @
Creation Operator

(a) (b)

Figure 3. Different behaviors for two types of operatorg:rfadifier operator; (b) creation operator.

Categorization of Data Modifiers. Data modifiers can be categorized into two typdaew modifiersandattribute modi-
fiers The first one only provides a view, namely mapping from thginal dataset to the derived data, to the objects using
the data, e.g., rendering. It does not add additional dattaetoriginal dataset. For multivariate data we can iderttify
types of mapping, one on records(rows) and the other on difmes(columns). For instance, sampling modifiers reptesen
mappings on records, and dimension on/off/reordering frewdicorrespond to the mapping on dimensions. Compared to
view modifiers, attribute modifiers contain new data as ttribates of the original data. One example of such a modifier,
namelyHighlightModifier, represents the output of the operaBoushOpvia a vector(ay, as, ..., a,) (See Section 2.2).
Note thatn is the number of data items in the original dataset. #halata item is in the highlighted subset if and only if
a; = 1. Obviously, this modifier is similar to the sampling modifieithe form of representation, but they have different
semantics.

With the above categorization, we add more details to the iatdifier design pattern to reflect behaviors for different
types of modifiers (Figure 4). IAttributeModifier the main function members aim to provide an access to thbdgs.



For multivariate data, three functiongetAttr(int rec, int dim) getRecAttr(int reg)andgetDimAttr(int dim) can return
the attribute values for a specified value, record or dinmmsior other types of data, e.g., 3D spatial data, software
designers can develop other functions using the same styteis recalHighlightModifier. In this modifier, the function
getRecAttr(i)can return a boolean value to represent whether the dataritéme record will be highlighted in the final
display. RegardinyiewModifier we define two subclassd?ecViewModifieandDimViewModifier corresponding to the
mapping on records and dimensions. They both provide twoetimms,mapandinvmap The functionmap(i)returns the
position in the view for a specified record or dimension whiagex is: in the original dataset. The other functiamymap
does the inverse mapping. It can find the index for a recordroexsion whose position in a view is known. The inverse
mapping is very useful for those objects that need to accsss Hor example, the visual mapping and rendering clags onl
show the data in the final view, but they need to get the phlydaia to determine attributes, such as the position, length
and size, of visual elements. Thus they need the inversein@fpvmap to create the linkage between views and the
original data.
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Figure 4. The design patterBata Modifier with more de- Figure 5. An example of view modifiers, two of which are ap-
tails. plied to one dataset in a specified order.

Given these two types of modifier, we define the following sute avoid possible conflicts among different modifiers:
(1) In all attribute modifiers, attributes have the same pedethe original data. Thus, if other objects want to access
attribute values and they only know its position in the vidvey need to use view modifier to get the physical position of
the requested attribute value. (2) If one dataset has mareahe view modifier, a fixed order of these modifiers should be
predefined. Any mapping should be applied to the datasetsrother.

To clarify the second rule, we show an example in Figure 5,hictva sampling operator (with sampling rates=50%)
and then a sorting operator are applied to a dataset haviata8tdms. We list the return values of the functiorep(i)and
invmap(i)of these two operators in Table 1. Note tha#p(i}=0 means this data item does not exist in the view. Assuming
we want to know the position of 'G’ in the final view startingofn the original data, we can useap:(map;(5)) =
map2(3) = 4 to get it. In the reverse order, if we start from the final viewd want to get the index of 'E’ in the original
data, we can calculate this usitgymap; (invmap2(3)) = invmap (1) = 1. In general, if we have view modifiers, the
mapping from the original data to the final view should usep,,(map,—1(...map1(¢)...)) and the mapping in the other
direction can be performed viavmap; (invmapa(...invmapy ()...)).

Sampling Modifier Sorting Modifier
t | map1(i) || @ | invmapi (i) || © | map2(i) || i | tnvmaps(i)
1 1 1 1 1 3 1 4
2 0 2 3 2 2 2 2
3 2 3 5 3 4 3 1
4 0 4 7 4 1 4 3
5 3 - - - - - -
6 0 - - - - - -
7 4 - - - - - -
8 0 - - - - - -
Table 1. The return values for the functiomsip(i) andinvmap(i)in two operators shown in Figure 5.

If we explore how operators derive data, we can find an obvéifisiency issue. As shown in Figure 3(a), for a
modifier operatoy its output should include all of the raw data and modifierthim input as well as the new modifier.



Assume that there are operators in the pipeline, the last operator needs to eopyl modifiers. Since some operators
include vectors whose sizes are comparable to the raw dégayill cause a significant time cost if we do the copy item
by item. However, in a traditional framework for informati@isualization, one component is responsible for a type of
data derivation and has its own data structure to represerddrived data, thus such a copy is not necessary. In order to
avoid this possible reduction on performance while usingd®msign patterns, we can make eachdifier operatoronly

copy the reference of raw data and modifiers. This is an dperafith constant time complexity in most of programming
languages. For example, in C++, the reference can be repegseia pointers, thus the copy of the reference is only an
assignment operation.

2.4 Modifier-based Visual Mapping

In multivariate visualization, one data item will normablg visualized by one or a set of visual items. For example, in a
scatterplot matrix, one tuple corresponds\é points, whereV is the number of dimensions. In the visual mapping (or
visual abstraction) stage of multivariate visualizatieisual attributes of these visual items can be determinetiragnsion
values or attributes. For instanddighlightModifierrepresenting the result of brushing, can determine thesolovisual
items to denote whether they are highlighted or not. Thus meegse a design pattern for visual mapping as shown in
Figure 6. The key idea is to associate a data modifier withabisttributes. Although this design pattern is for multiate
data, it is easy to extend it to other data types.

The core class of this design pattervisualMap It maintains two mapsjisModiandvisData which associate an arbi-
trary visual attribute with a specific attribute modifier aménsion values, respectively. The developer can useifurst
register(AttributeModifier*, VisAttr*)and register(int dim, VisAttr*) to create both maps. The functidVisualMap()
generates an instance of cladsualMapResultThis result contains a vector of instances of chis#ttrList The size of
this vector is normally the number of displayed data itenectEnstance represents the visual attributes of one dgita it
Since one visual item can have multiple attributes, suclobs,csize and shape, the cladsualAttrListis an aggregation
of classVisualAttr, which represents a single visual attribute. Some visatidin techniques do not fit the above description
very well. For example, we can color each segment in paredietdinates by the value on the corresponding dimension.
It should be easy to implement this based on the above deaitgrpwith only minor changes.

| Data I VisualMap VisualMapResult
+map<AttributeModifier*, VisAttr*> visModi +vector<VisAttrList*> allVisAttr
+map<int, VisualAttr*> visData
e +Data* input T
| DataModifierManager | +VisualMapResult* output
T +register(AttributeModifier*, VisAttr*) VisAttrList
+register(int dim, VisualAttr*) +vector<VisAttr*> itemVisAttr
| DataModifier | +doVisualMap() T

VisAttr

Figure 6. The design pattern for visual mapping based onaterepresented by data modifier.

2.5 Extensibility of Proposed Design Patterns

Compared to other design patterns and frameworks, the $tiggiwvantage of the operator-centric design patterns s tha
they make the visualization system easy to extend. The neaison is a uniform interface of operators. This can be
further explained by our experience in the design of Xmdv.Toothe currently released version of XmdvTool (7.0), we
used a data-centric structure. We added each new featursegmeate component that directly manipulated the existing
data structures. Thus we had to handle potential conflicengndifferent components, which resulted in many bugs
and slower development time. Sometimes it was difficult t&enavo components work together, and we had to disable
one component when users activated the other componenexaarple, the current released version of XmdvTool does
not allow users to hide some of the dimensions while usingsthecture-based brushAnother example is the conflict
between the multidimensional brush and dimension on/offcaBise we introduced dimension on/off after implementing
the brushing feature, we had to rewrite a significant amoficdde to resolve the conflicts between these two components.



The above problems (and others) we faced were the main respaosh us toward the development of operator-centric
design patterns for use in redesigning XmdvTool. The depajterns force all operators to have a uniform interface, so
the impact on one operator from other operators is extrefimeiied. Now, as we redesign XmdvTool using the proposed
design patterns. the multidimensional brush, struct@a®ed brush, dimension on/off, and many other componentdlare
represented by operators. The co-existence of differanpoments can be easily enabled if the semantics are valid.

Raw Raw data with a Final Raw Raw data with a Final
Data highlighted subset Data Data dimension view Data
C(_Jnside_rs all Turns off _ Turns off Considers only
dimensions some dimensions some dimensions  visible dimensions

(a) (b)

Figure 7. Different brush semantics generated by reordéhia operators. (a) All dimensions are considered (as inWimal); (b) Only
visual dimensions are involved in the brush definition (aahleau).

We show another example to explain how our proposed desitiarpa help us to easily obtain new features via
changing the combination and sequence of operators. Thigégards to the multidimensional brush in XmdvTool and
Tableaw? both of which use dimension ranges as the parameters in biefgtition. Only those data items falling into
dimension ranges are highlighted. Because users ofteroffisome dimensions to focus on those attributes of interest
one problem is whether we need to consider all dimensionslgrthose visible dimensions when we judge whether one
data item should be highlighted. XmdvTool, in its curreanfrework, always considers all dimensions, while Tabledy on
uses visible dimensions to perform this task. In our newigaréoon to be released), we use an operator to do brushing
(BrushOp and another to do dimension on/off/reorderidgniOp). If we put BrushOpbeforeDimOp, we are doing the
same thing as the current XmdvTool (Figure 7(a)). If we regahe sequence, the behavior of the system is the same as
Tableau (Figure 7(b)).

3. THE FRAMEWORK

Based on the design patterns described in Section 2, we ggapframework for information visualization as shown in
Figure 8. This framework can contain multiple pipelinescltpipeline is composed of three stages: data transformatio
visual mapping, and rendering. Different pipelines carrshmperators. For the convenience of design, we provide an
operator pool that contains operator instances used in tlodveystem. When each pipeline is created, operator icestan

in the operator pool are requested and added into the pgdhor most interaction techniques, arguments in operators
the visual mapping stage need to be changed to reflect usergdsts. Thus we link interactions to the operators or Visua
mapping stage in the pipeline. For example, when a user esahg dimension ranges in a multidimensional brush, we
only need to change the brush parameters irBtheshOpand then send the raw data to the pipeline again and repaint th
canvas, resulting in a view with the new brush.

Since this framework uses the operator-centric desige et visualization software systems based on it will eixhib
enhanced reusability and extensibility. Moreover, thasrfework can support the design and implementation of coateld
multiple views (CMV). Our approach to implementing CMV is faiows. We create multiple pipelines, each of which
corresponds to one of the linked views. These pipelinesesbmme operators and/or visual mappings. A typical style of
sharing is a fan out solution, as shown in Figure 9. When a psdorms interactions within one view, changes in the
parameters of shared operators are distributed amongedihtted pipelines and the views are updated.

4. USING THE DESIGN PATTERNS AND FRAMEWORK IN XMDVTOOL

In this section, we briefly explain how we use the presents@ydgatterns while redesigning XmdvTool, a public domain
multivariate data visualization package developed at VBBme of the operators we have introduced into XmdvTool are
listed in Table 2. The descriptions of these operators afellasvs. Note that if we do not list the input of one operatbr,
means the input is a multivariate dataset by default.

FlatBrushOp
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Figure 8. The framework based on the design patterns prdpogkis paper. It can contain multiple pipelines that stegrerators from
an operator pool. Interaction is associated with operatogsvisual mappings.
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Figure 9. A fan out solution for the design of coordinated tiplé views based on our proposed framework.

Output A modifier that contains a bit array to denote which data geme highlighted in the final display.
Operation Select a subset whose datapoints fall into specified dimemanges.

SamplingOp

Output A modifier to map from the original data to a sampled subset.

Operation Apply a uniform sampling to the original dataset. Other png methods are easily added.
DimOp

Output A modifier to map from the original dimension order to a neveon

Operation Reorder the dimensions or disable/hide a subset of thesdhas either user interactions or a heuristic algo-
rithm that reorders dimensions to reduce visual cldfter.

SortOp

Output A modifier to map from the original dataset to a new one wittores ordered based on the values in a specified
dimension.

Operation Sort datapoints in terms of values on a specified dimension.
ClusterOp

Modifier Operator | FlatBrushOp, SamplingOp, DimOp, SortOp
Creation Operator | ClusterOp, ClusterLODViewOp, DimTreeOp, DimReductVievQ
Table 2. Some important operators introduced into Xmdvioglort from a data-centric structure to the current operegmtric frame-
work.




Output A hierarchical cluster tree. Each leaf is a data item in thigimal dataset. Similar data items compose a cluster,
and in turn similar clusters form a higher level cluster,itthe entire dataset is represented by a single cldster.

Operation Perform hierarchical clustering on the input.

ClusterLODViewOp

Input A hierarchical cluster tree.

Output A new multivariate dataset which is an abstraction of thiginal dataset.

Operation Select a subset of the data hierarchy to view. This operstmssociated with an interaction interface, namely
the structure-based brush, as shown in Figurg TBe tree shape is approximated by its leaf contour (seeThp colored
bold contour (see (b)) represents the current selectetidfrdetail. The interactive brush handles (see (e)) aeiee a
range based on a pre-defined attribute value. The user cgrttdracolored bold contour (see (b)) to change the LOD
parameters, and adjust the interactive brush handles tedefiew range. This operator can generate an abstractioa of t
original dataset in the form of a multivariate dataset tlzst the same number of dimensions as the original dataseitbut w
fewer data items (one per cluster). This abstraction isalized as shown in figure 12. The detailed abstraction génara
steps are as follows: (1) Retrieve all nodes on the seleeted of detail (see (b)). (2) Map each node to a data item with
dimension values being the mean values of data in this clu&gOrganize these data items into a new multivariate data
set. (4) Attach a modifier to represent the colors of clustéreir colors are determined by the order of clusters (9¢e (f
if they are out of the range defined by the brush handles (9geofeare bold red if they are within the range. (5) Add
a modifier to represent the cluster size for each data itenighaib denoted by the band width in the final visualization
(Figure 12).

Figure 11. An InterRing display to allow users
to select nodes on a dimension cluster tree,
which is generated from a census income
dataset (42 dimensions). Note that the user has
selected 4 dimension clusters, one of which ac-
tually is an original dimensioft.

Figure 10. Structure-based brushing tool. (a)
The tree frame; (b) Contour corresponding to
the current level-of-detail; (c) Leaf contour ap-
proximates shape of the tree; (d) Structure-
based brush; (e) Interactive brush handles; (f)
Colormap legend for level-of-detail contour.

DimTreeOp

Output A dimension cluster tree. Tree leaves denote the origimaédsions. Similar dimensions are put into clusters,
and similar clusters in turn will be put into clusters at aht@glevel! In order to facilitate the design of the next operator,
DimReductViewOpwe attach the original dataset to this dimension hierarchy

Operation Organize a dimension cluster tree to represent the sitgi@mong the original dimensions.
DimReductViewOp

Input A dimension cluster tree.

Output A new multivariate dataset adapted from the original dettbat with fewer dimensions.

Operation This operator aims to generate a new dataset in a lower diora space, which is useful for exploring a
dataset that has a large number of dimensions. We link thesabqr to an interface for dimension reduction, namely



InterRing'* as shown in Figure 11, in which users can select nodes in thergiion cluster tree. This operator projects the
original dataset to a lower dimensional space containirg thiose selected clusters as dimensions. A specific dirgnsi
value in the new dataset can be from a user-selected or radoemsion in the cluster, or the first principal component
after applying Principal Component Analysis (PCA) to ak timensions in the clustét. As an example, in Figure 11,
the user chooses 4 clusters, and this operator generatesdataset having only 4 dimensions; this is then visualized v
parallel coordinates as shown in Figure 13.

Node15(11] Node39(2) marital_s Node33(15)
sepal_length sepal_width petal_length petal_width d.00 1.00 i7.30 i1.00
.08 4.52 .20 2.62

.00 0.00 0.70 .00

Figure 13. This parallel coordinates display shows a madiate

dataset by projecting the original dataset to a lower dinogrrs
pace. It contains the dimensions selected in Figure 11.e Not
at the dimension name “Node15(11)" means that the dirnansi

“Nodel5” is a dimension cluster having 11 descendent ledéso

corresponding to original dimensions. Axis width convelie t

variability within the dimension clusters.

412 1.88 0.70 -0.02

Figure 12. A hierarchical parallel coordinates displaytdf Iris
dataset. It shows five clusters on the selected level-afild&tig-
ure 10). The bold red color means that the cluster is cugren
being selected by the structure-based brush. The line dalor
notes the cluster order, except the brushed clusters, anbiid
widths represent sizes of the clustéts.

When we ported XmdvTool from the old version to the new frameuywe defined different modes, each of which
corresponds to a pipeline configuration. Figure 14 showsddte transformation stage for each mode. We briefly describe
each mode:

Flat Mode: As shown in Figure 14(a), the core of this mode HatBrushOprepresenting a multidimensional brush. This
model also supports sampling usiB@mplingOpsorting viaSortOp and dimension on/off/reordering limOp. Note
that we can have different brush semantics if we exchangpdhbition of FlatBrushOpandDimOp as shown in Section
2.5. In the future, we can add more operators to do more cortqalesformations, such as principal component andfsis
and multidimensional scalinlf. This is the basic mode, suitable for exploring small datasgéth a modest number of
dimensions.

Structure-based Brush Mode This mode is used to explore datasets whose number of eovery large; this is done
by displaying abstractions of the original dataset to redusual clutter (Figure 14(b)). Itis derived from the flatdebby
adding two operator§lusterOpandClusterLODViewOpFirst, ClusterOpis applied to the input dataset to create a cluster
tree; thenClusterLODViewOpprovides users with a structure-based brush to choose #ispexel-of-detail and region

of interest. A dataset containing all nodes on the sele@ee Wwill be generated as the output of operator. Finallg thi
new dataset will pass through other operators in the flat traottkbe visualized. This mode is much more powerful than
the hierarchical display in the data-centric structurealnse we can easily apply multidimensional brush and diransi
on/off/reordering operations to the structure-basedtbresults.

Dimension Reduction Mode In this mode (Figure 14(c)), operatddémTreeOpandDimReductViewOpupport the in-
teractions needed for dimension reduction. The opefiwiTreeOpcan generate a dimension hierarchy, and then users



can use the InterRing display associated vilimReductViewOpo select dimension clusters for exploratioDimRe-
ductViewOpcan project the original dataset to a lower dimensional sgantaining those selected dimension clusters.
The projection result will go to those operators contairrethie flat model and be displayed via multivariate visualiza-
tions. Similar to structure-based brush mode, this modblesas to easily do multidimensional brushing and dimensio
on/off/reordering on the dimension reduction result, wahiould have been difficult to implement in the old data-centr
structure, because of conflicts among different components

In addition to the above list, some other modes will be impdatad in our future work, such as a combination of
structure-based brush mode and dimension reduction mddehwill enable us to further explore datasets having both
large numbers of records and dimensions. Because of thesiviléy of our design patterns, this will be easy to design
and develop.

—'| SamplingOp H SortOp H FIatBrushOp|—'| DimOp |—>
(@)

—>| ClusterOp H CIusterLODViewOpI—->| SortOp |—>| FIatBrushOpH DimOp |—>

(b)

—>| DimTreeOpH DimReductViewOp I——>| SortOp I—'| FIatBrushOpH DimOp |—>

(©

Figure 14. Three modes in XmdvTool: (a) Flat mode; (b) Stesbased brush mode; (c) Dimension reduction mode.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented operator-centric design patfer developing information visualization software. They
idea is to use an operator class to represent a single stegrdasformation; a complex multi-step data transfornmatio
can then be performed using a vector of such operators. Waglisshed two types of operators, creation operators and
modifier operators. The former generates totally new datalevthe latter adds a data modifier to the original data. A
data modifier can describe a view or an attribute applied ¢oattiginal data. The third design pattern, modifier-based
visual mapping, can generate visual abstractions viarigpknodifiers to visual attributes. Based on these threerpatte
we proposed a framework to enable the creation of multigelpies within a system. We also showed that the proposed
design patterns can significantly improve the reusabitity@xtensibility of visualization software. Because thgipelines
may share operators, this framework can easily supportaeated multiple views. We developed these design patterns
and framework based on the assumption that the raw datest®n$imultivariate tables. However, we believe the pastern
and framework could be readily adapted to other data typmse$otential future work includes:

e A More General Definition for Operators: An operator proposed in this paper has only one input and otpaib
However, more than one input is possible, e.g., doing jorations on two datasets. Thus it could be useful if we
extended the current design patterns to enable operatbasitiie multiple input and output.

e Dynamic Configuration of Data Transformations: A visualization system could be more powerful and flexible if
users were allowed to dynamically configure operator secpgesuch as adding or removing operators and changing
operator order interactively. A possible solution is taffier investigate the semantics of operators and add liitst
to the linkage among operators. This could help identifialitvsequences and accept only those with consistent
semantics.
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