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ABSTRACT 
In mining graphical data the default Euclidean distance is often 
used as a notion of similarity. However this does not adequately 
capture semantics in our targeted domains, having graphical 
representations depicting results of scientific experiments. It is 
seldom known a-priori what other distance metric best preserves 
semantics. This motivates the need to learn such a metric. A 
technique called LearnMet is proposed here to learn a domain-
specific distance metric for graphical representations. Input to 
LearnMet is a training set of correct clusters of such graphs. 
LearnMet iteratively compares these correct clusters with those 
obtained from an arbitrary but fixed clustering algorithm. In the 
first iteration a guessed metric is used for clustering. This metric 
is then refined using the error between the obtained and correct 
clusters until the error is below a given threshold. LearnMet is 
evaluated rigorously in the Heat Treating domain which 
motivated this research. Clusters obtained using the learned 
metric and clusters obtained using Euclidean distance are both 
compared against the correct clusters over a separate test set. Our 
results show that the learned metric provides better clusters. 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning – Parameter learning.  

General Terms 
Algorithms, Experimentation. 

Keywords 
Distance metric, clustering, semantic graphical mining. 

1. INTRODUCTION 
Experimental results in scientific domains are often represented 
graphically. Such graphs depict the functional behavior of process 
parameters hence incorporating semantics. In this paper, we use 
the term “graph” to mean such a graphical representation. In 
mining graphs with techniques such as clustering [9] the measure 
for comparison is typically Euclidean distance [see e.g. 7] which 

often poses problems. For example, in the domain of Heat 
Treating of Materials which motivated this work, graphs are used 
to plot the heat transfer versus temperature during the rapid 
cooling of a material [see e.g. 3]. Critical regions on these graphs 
represent significant physical phenomena in the domain. Any 
algorithm (based for instance on Euclidean distance) that 
considers two graphs as similar (relative to other graphs) although 
their critical regions differ is considered semantically incorrect 
[3,14]. Likewise in several scientific domains, there could be 
significant features on graphs. Knowledge of these features and 
their relative importance may at best be available in a subjective 
form, but not as a metric. This motivates the development of a 
technique to learn distance metrics that capture the semantics of 
the graphs.  

    Hinneburg et al [6] propose a learning method to find the 
relative importance of dimensions for n-dimensional objects. 
However, their focus is on dimensionality reduction and not on 
domain semantics. In [16] they learn which type of position-based 
distance is applicable for the given data starting from the formula 
of Mahalanobis distance. However they do not deal with 
graphical data and semantics. Keim et al. [8] overview various 
distance types for similarity search over multimedia databases. 
However no single distance measure encompassing several types 
is proposed. Linear regression [1] and neural networks [2] could 
possibly be used for learning a domain-specific distance metric 
for graphs. However these techniques do not achieve accuracy 
acceptable in our targeted domains [14]. Genetic algorithms [5] if 
used for feature selection in graphs also give the problem of 
insufficient accuracy. This is due to lack of domain knowledge 
[14]. Fourier transforms [4] if used to represent the graphs do not 
preserve the critical regions in the domain due to the nature of the 
transform [14]. Hence they are not accurate enough in capturing 
semantics. Accuracy in this context is measured by evaluating the 
effectiveness of a given metric in mining unseen data [14].  

We propose an approach called LearnMet to learn a distance 
metric for graphs incorporating domain semantics. The input to 
LearnMet is a training set with correct (i.e., given by domain 
experts) clusters of graphs over a subset of the experimental data. 
The steps of our approach are: (1) guess initial metric guided by 
domain knowledge; (2) use that metric for clustering with an 
arbitrary but fixed clustering algorithm; (3) evaluate accuracy of  
obtained clusters by comparing them with correct clusters; (4) 
adjust metric based on error between obtained and correct 
clusters, if error is below threshold or if execution times out then 
terminate and go to step (5), else go to step (2); and (5) once 

 



terminated, output the metric giving error below threshold, or 
minimum error so far as the learned metric. LearnMet is evaluated 
using a distinct test set of correct clusters of graphs provided by 
experts. The learned metric is used to cluster the graphs in the test 
set. The obtained clusters are compared with correct clusters in 
the test set. The closer the obtained clusters match the correct 
clusters, the lower the error. The clusters obtained using the 
default notion of Euclidean distance, are also compared with the 
correct clusters. The difference in the error denotes the 
effectiveness of the learned metric. The LearnMet metric 
consistently outperformed the Euclidean metric in our 
experiments. LearnMet is also evaluated by integrating it with the 
AutoDomainMine system designed for computational estimation 
of process parameters in scientific experiments [13]. This is 
explained in Section 4.   

2. DISTANCE METRICS 
We describe distance metric types relevant to our domains. Let A 
(A1,A2...An) and B (B1,B2...Bn) be two n-dimensional objects. 
     Position-based Distances: They refer to absolute position of 
objects [see e.g. 7]. Examples are: 
Euclidean Distance: As-the-crow-flies distance between objects.     

       ∑
=

−=
n

i
iiEuclidean BABAD

1

2)(),(  

Manhattan Distance: City-block distance between objects.   
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     Statistical Distances: This refers to distances based on 
statistical features [see e.g. 11]. Examples are: 
Mean Distance: Distance between mean values of the objects:  
          =),( BADMean |)()(| BMeanAMean −
Maximum Distance: Distance between maximum values:      
         =),( BADMax |)()(| BMaxAMax −
In addition to these, we introduce the concept of Critical Distance 
for graphs as applicable to our targeted domains [14]. 

Critical Distances: Given graphs A and B, a Critical 
Distance is a distance metric between critical regions of A and B 
where a critical region represents the occurrence of a significant 
physical phenomenon. They are calculated in a domain-specific 
manner. 

 
Figure 1: Critical Distance Examples 

       One example of critical distance as shown in Figure 1 is the 
Leidenfrost distance [3,14] in Heat Treating.  This is for 
Leidenfrost Points [see e.g. 3] which denote the breaking of the 
vapor blanket around a part in heat treatment. It is calculated as 

22 )()(),( hLFhLFTLFTLFLF BABABAD −+−=  where TLF is 

the temperature at Leidenfrost Point and hLF is the heat transfer 
coefficient at that point [20]. Another critical distance is the 
Boiling Point distance  [3,14]. This is the distance 
between points on the graphs corresponding to the Boiling Points 
[see e.g. 3] of the respective cooling media in heat treatment.  

),( BADBP

22 )()(),( hBPhBPTBPTBPBP BABABAD −+−= where TBP is 

temperature and hBP is heat transfer coefficient at Boiling Point.  

3. THE LEARNMET STRATEGY 
To give details of LearnMet, a distance metric is first defined.  

Distance Metric in LearnMet: A LearnMet distance metric D 
is a weighted sum of components, where each component can be a 
position-based, a statistical, or a critical distance metric. The 
weight of each component is a numerical value indicating its 
relative importance in the domain.  
Thus a LearnMet distance metric is of the form 

mm DcwDcwD ++= .....11 where each is a component, 

 is its weight, and m is number of components. As required in 
our application domain, D should be a metric so that clustering 
algorithms requiring the notion of similarity to be a distance 
metric can be used; indexing structures such as B+ trees for 
metrics can be applied; and pruning in similarity search can be 
performed using triangle inequality. Conditions for D to be a 
metric are stated as a theorem below.   
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Theorem 1: If each component  is a distance metric and 

each weight  then  is a distance metric, 

i.e., it satisfies the metric properties.   
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The proof of this theorem is straightforward and can be found in 
[14]. In our targeted domains, conditions in Theorem 1 are 
satisfied. Since our graphs involve interval-scaled variables and 
the fundamental distance types applicable to these are metrics [see 
e.g. 7], this is sufficient to say that each is a metric.  Also, we 
consider only non-negative weights. 

iDc

     The LearnMet steps are discussed in the subsections below. 

3.1 Initial Metric Step 
Domain experts are asked to identify components (i.e., distance 
metrics) applicable to the graphs that will serve as building blocks 
for the learning of a new metric. If the experts know the relative 
importance of the components, this information is used to assign 
initial weights. An Initial Weight Heuristic is proposed. 
      Initial Weight Heuristic: Assign initial weights to the 
components in the LearnMet distance metric based on the relative 
importance of the components on the graphs in the domain. 



If the components’ relative importance is unknown, random 
weights are assigned. Initial weights are on a scale of  1 to 10. 
1: INITIAL METRIC STEP 

• GIVEN: DOMAIN EXPERT INPUT ON DISTANCE TYPES 

• FOR EACH DISTANCE TYPE ASSIGN A COMPONENT TO “D” 

• IF RELATIVE IMPORTANCE OF COMPONENTS IS AVAILABLE 

          THEN USE “INITIAL WEIGHT HEURISTIC” 

• ELSE ASSIGN RANDOM WEIGHTS TO  COMPONENTS 

3.2 Clustering Step 
Using D as the distance metric, k clusters are constructed using an 
arbitrary but fixed clustering algorithm (e.g., k-means [10]), 
where k is the number of clusters in the training set.  
 2: CLUSTERING STEP

• GIVEN: A TRAINING SET CONSISTING OF A COLLECTION OF 
GRAPHS AND A CORRECT  k-CLUSTERING OF THEM  

• SELECT AN ARBITRARY BUT  FIXED CLUSTERING  
ALGORITHM 

• SET NUMBER OF CLUSTERS  TO  k ( CONSTANT) 

• CLUSTER GRAPHS USING  mm DcwDcwD ++= ...11

3.3 Cluster Evaluation Step 
The clusters obtained from the algorithm, i.e., the “predicted” 
clusters, are evaluated by comparing them with correct clusters in 
the training set, i.e., the “actual” clusters. An example of 
predicted and actual clusters is shown in Figure 2.  
       Ideally, the predicted clusters should match the actual 
clusters. Any difference between predicted and actual clusters is 
considered an error. To compute this error, we consider pairs of 
graphs and introduce the following notation. 
     True/False Positive/Negative Pairs of Graphs: Given a pair of 
graphs I and J, we say that: 

• (I,J) is a True Positive (TP) pair if I and J are in the same 
actual  cluster and in the same predicted cluster. 

•  (I,J) is a True Negative (TN) pair if I and J are in different 
actual clusters and in different predicted clusters.   

•  (I,J) is a False Positive (FP) pair if I and J are in  different 
actual clusters but in the same predicted cluster. 

• (I,J) is a False Negative (FN) pair if I and J are in the same 
actual cluster but in different predicted clusters. 
Figure 2 includes examples of each of these kinds of pairs: 

(g1,g2) is a true positive pair; (g2,g3) is a true negative pair; (g3,g4) 
is a false positive pair; and (g4,g6) is a false negative pair. The 
error measure of interest to us is failure rate which is defined 
below. 

Success and Failure Rates: Let TP, TN, FP and FN denote 
the number of true positive, true negative, false positive and false 
negative pairs respectively. Also let SR denote the Success Rate 
and FR = (1 – SR) denote the Failure Rate, as defined below: 
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    Figure 2: Predicted and Actual Clusters 

In our domain, false positives and false negatives are equally 
undesirable. Hence, our definition of failure rate weighs them 
equally.  

Given a number G of graphs in the training set, the total 
number of pairs of graphs is ))!2(!2(!2 −= GGCG . Thus, for 25 
graphs there are 300 pairs, for 50 graphs, 1225 pairs, etc. We 
define an epoch in LearnMet as one run of all its steps. That is, a 
complete training cycle.  

Overfitting: To avoid overfitting in LearnMet, we use an 
approach analogous to incremental gradient descent [2, 14]. 
Instead of using all pairs of graphs for evaluation, a subset of 
pairs is used called ppe or pairs per epoch. In each epoch, a 
distinct combination of pairs is used for evaluation and weight 
adjustments. Thus there is enough randomization in every epoch. 
If ppe = 25, then we have a total of  distinct 
pairs for learning [11, 14]. Thus in each epoch 25 distinct pairs 
can be used. This still gives a large number of epochs with 
distinct pairs for learning. This incremental approach reduces the 
time complexity of the algorithm and helps avoid overfitting. 
Determining the best ppe value is an optimization problem. Also 
in LearnMet, the random seed is altered in the clustering 
algorithm in different epochs as an additional method to avoid 
overfitting.  

36
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Ideally, the error i.e., failure rate in an epoch should be zero. 
However, in practice a domain-specific error threshold “t” is 
used.         
       Error Threshold: A domain-specific error threshold “t” is the 
extent of error allowed per epoch in the domain, where error is 
measured by failure rate. 
        Distance between a Pair of Graphs: The distance D(ga,gb) 
between a pair of graphs ga and gb is the weighted sum of 
components in the graphs using metric D.  
Thus, ),(....),(),( 11 bammbaba ggDcwggDcwggD ++=   

Given this, consider FN pairs, e.g., (g4,g5) and (g4,g6).  These 
pairs are in the same actual cluster. However they are predicted to 
be in different clusters. Since predicted clusters are obtained with 
the metric D, the (average) distance D(ga,gb) for these pairs is 
greater than it should be. Conversely, for FP pairs in different 
actual, same predicted clusters, e.g., (g3,g4), the (average) distance 
D(ga,gb) is smaller than it should be. 



    Average FN and FP Distances D_FN and D_FP:  
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3: CLUSTER EVALUATION STEP  

• SET “ppe” TO THE DESIRED NUMBER OF PAIRS OF GRAPHS 
FROM THE TRAINING DATASET TO BE 
CONSIDERED IN AN  EPOCH 

• RANDOMLY SELECT ppe PAIRS OF GRAPHS  

• SET THE ERROR THRESHOLD “t” 

• IDENTIFY THE “TP”, “TN”, “FP”, “ FN”  FROM “ ppe”  PAIRS  

• CALCULATE FAILURE RATE “FR” 

• IF (FR < t) THEN RETURN “CLUSTERING IS ACCURATE” 

• ELSE CALCULATE D_FN,, D_FP  

3.4 Weight Adjustment Step 
If the result of the evaluation does not indicate that the clustering 
is accurate, then the distances D_FN and D_FP are used to make 
weight adjustments to reduce the error in clustering. Consider the 
error in FN pairs. To reduce the average error D_FN, the weights 
of one or more components in the metric used to calculate the 
distance in the present epoch is decreased. For this we propose the 
FN Heuristic.  
       FN Heuristic: Decrease the weights of the components in the 
metric D in proportion to their contributions to the distance 
D_FN. That is, for each component:  
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      Conversely, consider FP pairs. To reduce their error, we 
increase D_FP. This is done by increasing the weights of one or 
more components in the metric using the FP Heuristic. 
       FP Heuristic: Increase the weights of the components in the 
metric D in proportion to their contributions to the distance 
D_FP. That is, for each component:  
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       Combining these two adjustments: 
     Weight Adjustment Heuristic:
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Thus  
mm DcwDcwD '''......'''''' 11 ++=

The new metric D’’’ obtained after weight adjustments is likely to 
minimize the error due to the FN and FP type pairs. If the weight 
of a component becomes negative, it is converted to zero as we 
consider only non-negative weights. Clustering is done with this 
new metric. If the resulting error is below the threshold, then a 
confirmatory test using the same metric to cluster for 2 more 
epochs is performed, and then this step is complete.   

4: WEIGHT ADJUSTMENT STEP

• IF CLUSTERING IS ACCURATE OR MAX  EPOCHS REACHED  

             THEN GO TO “5: FINAL METRIC STEP” 

• ELSE APPLY WEIGHT ADJUSTMENT HEURISTIC TO GET D’’’  

• GO TO “2: CLUSTERING STEP” 

3.5 Final Metric Step 
If the weight adjustment terminates because the error is below the 
threshold then the metric in the last epoch is considered accurate 
and it is returned as output. However if termination occurs 
because the maximum number of epochs is reached, then the most 
reasonable metric to be output is the one corresponding to the 
epoch with the minimum error among all epochs.                                                   
 5: FINAL METRIC STEP

• IF (FR < t) THEN RETURN METRIC D  

• ELSE  FIND EPOCH WITH MINIMUM  Failure Rate 

                     RETURN CORRESPONDING METRIC D 

Convergence: LearnMet is not guaranteed to converge or to yield 
an optimal distance metric. However, thorough experimental 
evaluation in our application domain has shown consistent 
convergence to errors below the required threshold.  

4. EXPERIMENTAL EVALUATION 
4.1 Evaluation of LearnMet       .  
      Experimental Parameters: A training set of 300 pairs of 
graphs in Heat Treating is obtained from correct clusters of 25 
graphs given by experts. A distinct test set of 300 pairs of graphs 
is derived from 25 graphs given by experts. We select “ppe = 25” 
which yields  total distinct combinations of 
pairs. Thus 25 distinct pairs are used in each epoch. Experts give 
an error threshold of 10%, i.e., 0.1 for estimation. We use the 
same threshold for clustering. Initial components in the metric are 
given by experts. Two distinct assignments of initial weights are 
given by two different experts [14]. The corresponding two 
metrics are denoted by DE1 and DE2 respectively. A third initial 
metric EQU is obtained by assigning equal weights to all 
components. Several experiments are run by assigning random 
weights to components in the initial metric [14]. We present two 
experiments with randomly generated metrics called RND1 and 
RND2. See Table 1.  
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Table 1: Initial Metrics in LearnMet Experiments 

 
      

Table 2: Learned Metrics and Number Epochs to Learn 

 



     Observations during Training: Table 2 shows the metric 
learned in each experiment with number of epochs. Figures 3 to 7 
depict the behavior of LearnMet during training. Experiments 
EQU, RND1 and RND2 take longer to converge than DE1 and 
DE2. However they all converge to approximately the same D.  
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Figure 3: Experiment DE1  

 
Error over Training Set

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 3 5 7 9 11 13 15 17 19

Epochs

Fa
ilu

re
 R

at
e

Failure Rate

 
Figure 4: Experiment DE2  

 
Error over Training Set

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

Epochs

Fa
ilu

re
 R

at
e

Failure Rate

 
Figure 5: Experiment EQU 
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Figure 6: Experiment RND1 
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Figure 7: Experiment RND2 

      Observations during Testing: The learned metric in each 
experiment is used to cluster graphs in the test set. These clusters 
are compared with correct clusters over the test set. Euclidean 
distance (ED) is also used to cluster the graphs and the clusters 
are compared with the correct clusters. The observations for all 
the experiments are shown in Figure 8. This figure depicts the 
accuracy (success rate) for each metric over the test set. 
Clustering accuracies of the learned metrics are higher. 
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Figure 8: Test Set Observations 

4.2 Evaluation with System Integration 
     Purpose of Integration: LearnMet has been developed mainly 
for the AutoDomainMine system, which performs computational 
estimation of process parameters [13]. AutoDomainMine 
estimates the graphical result of a scientific experiment given its 
input conditions, using existing data to predict future trends. This 
technique clusters graphs from existing experiments and sends 
clustering output to a decision tree classifier e.g., ID3/J4.8 [12,15] 
to learn the clustering criteria. For each graph, the input 
conditions of its corresponding experiment and the cluster in 
which it was placed are used to construct the decision tree. The 
tree identifies the combination of input conditions that 
characterize each cluster. A representative graph is also selected 
per cluster. When input conditions of a new experiment are 
submitted, the tree is traversed to predict the cluster. The 
representative graph of that cluster is the estimated graph for that 
experiment.  

 
Figure 9a: Evaluation with AutoDomainMine Step 1 

 



 
Figure 9b: Evaluation with AutoDomainMine Step 2 

      Evaluating LearnMet with AutoDomainMine: LearnMet is 
evaluated by measuring the accuracy of the AutoDomainMine 
estimation with and without the learned metrics. This process is 
illustrated in Figures 9a and 9b.   The estimation obtained from 
clustering using the learned metrics is compared with that from 
clustering using Euclidean distance. Another criterion for 
comparison is  which is called the 
AutoDomainMine metric denoted as ADM  [13,14]. 

BPLFEuclidean DDDD ++=

     Observations with AutoDomainMine: The average estimation 
accuracy over 10 experiments, each using 10-fold cross 
validation, is shown in Figure 10. Accuracy with each metric 
output from LearnMet is higher than that with Euclidean distance. 
Accuracies with the learned metrics are also higher than the 
accuracy with the AutoDomainMine metric.  
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Figure 10: Evaluation Results with AutoDomainMine 

5.  CONCLUSIONS  
A technique called LearnMet is proposed to learn a domain-
specific distance metric for mining graphs. LearnMet compares 
clusters of graphs obtained from a state-of-the-art clustering 
algorithm with correct clusters given by experts. An initial metric 
is guessed and refined with every round of clustering to give a 
final metric with error below a threshold. LearnMet is evaluated 
rigorously in the Heat Treating domain that inspired its 
development. Additional evaluations will be conducted in related 
domains.  Ongoing research includes determining a good number 
of pairs per epoch; using normalized weights; considering scaling 
factors in weight adjustments; refining thresholds; and assigning 
suitable components to the initial metric without expert input.  
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