
Updating XQuery Views Published over

Relational Data: A Round-trip Case Study

Ling Wang, Mukesh Mulchandani, and Elke A. Rundensteiner

Department of Computer Science
Worcester Polytechnic Institute Worcester, MA 01609

{lingw, mukesh, rundenst}@cs.wpi.edu

Abstract. Managing XML data using relational database systems, in-
cluding query processing over virtual XML views that wrap relational
sources, has been heavily studied in the last few years. Updating such
virtual XML views, however, is not well studied, although it is essen-
tial for building a viable full-featured XML data management systems.
XML view update is a challenging problem because of having to ad-
dress the mismatch between the two rather different data models and
distinct query paradigms. In this paper, we tackle the XQuery view up-
date problem, in particular, we focus on the round-trip XML view update

subproblem. This case, characterized by a pair of loading and extraction
mappings that load XML data into the relational store and extract ap-
propriate XML views, is very common in practice, as many applications
utilize a relational engine for XML document storage. We discuss and
prove the updatability of such views. We also present a decomposition-
based update translation strategy for solving this problem. As evidence
of feasibility, we have implemented the proposed strategies within the
Rainbow XQuery system. Experimental studies are also given to assess
the performance characteristics of our update system in different scenar-
ios.

1 Introduction

Motivation. XML [5] has become the standard for interchanging data between
web applications because of its modeling flexibility. The database community
has focused on combining the strengths of the XML data model with the matu-
rity of relational database technology to provide both reliable persistent storage
as well as flexible query processing and publishing. Examples of such XML man-
agement systems include EXPERANTO [6], SilkRoute [10] and Rainbow [22],
which typically offer support for XML view creation over relational data and for
querying against such XML wrapper views to bridge relational databases with
XML applications. However, in order for such systems to become viable XML
data management systems, they must also support updates, not just queries of
(virtual) XML views.

This view-update problem is a long-standing issue that has been studied in
the context of the relational data model. Much work has been done on defining

2 L. Wang, M. Mulchandani, E. A. Rundensteiner

what a correct translation entails [9] and how to eliminate ambiguity in transla-
tion [7, 2]. However, update operations have not been given too much attention
yet in the XML context. [18] studies the performance of translated updates
executed on the relational store, assuming that the view update is indeed trans-
latable. Updating of virtual XQuery views comes with new challenges beyond
those of relational views since we have to address the mismatch between the two
data models (the flexible hierarchical XML view model and the flat relational
base model) and between the two query languages (XQuery versus SQL queries).

In this paper, we characterize a common sub-case of the XQuery view up-
date problem which we call the Round-trip XML View Update Problem
(RXU). This is an important case since many XML applications use relational
technology to store, query and update XML documents. Such systems require
typically a two-way mapping to first load and then to extract XML out of the re-
lational database. Hence, we refer to this as the “round-trip” case. In this paper,
we show that the view update operations in this case are always translatable.

We present our framework named Rainfall for update translation of this
round-trip problem. Due to there not yet being any standard update language,
we have extended the XQuery grammar to support XML updates similar to [18].
We have implemented the proposed strategies for update decomposition, trans-
lation and propagation within the Rainbow XML data management system [22].
Experiments are also presented to compare update translation with the alterna-
tive, which would be the re-loading of the updated XML into the relational data
store. We also assess various performance characteristics of our update solution.

Contributions. In summary, we make the following contributions in this paper:

– We characterize a subproblem of the general XML view update called round-
trip XML view update problem (RXU), which is a common case in practice.

– We formally describe the view updatability for the RXU case and prove its
correctness.

– We provide a decomposition-based update translation solution called Rain-
fall to translate XQuery updates on XML virtual views into a set of SQL-level
updates.

– We implement our update solution within the Rainbow XML data manage-
ment system to support the view update extension.

– We present a performance study conducted to assess our update translation
strategy.

Outline. This paper is structured as follows. We briefly introduce the XML
data model and XQuery update extension in Section 2. Section 3 characterizes
the Round-trip XML view update problem, and discusses the view updatability
in this case. We describe our decomposition-based update strategy and system
implementation in Section 5 and evaluate these techniques in Section 6. Section
7 reviews related work while Section 8 concludes our work.

Updating XQuery Views Published over Relational Data 3

2 Background

XQuery Views of Relational Data. XML (Extensible Markup Language) [5]
is used both for defining document markup and for data exchange. XML Schema
[19] is a standardized syntax used to represent the structure of XML documents.
Figures 1 and 2 respectively show our running example of an XML schema and
document representing a book list from an online book store application.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema>
<xs:elementname="bib">

<xs:complexType>
<xs:sequence>

<xs:elementname="book" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>
<xs:elementname="bookid" type="xs:string" nillable="false"/>
<xs:elementname="title" type="xs:string" nillable="false"/>
<xs:elementname="author">

<xs:complexType>
<xs:sequence>

<xs:elementname="aname" type="xs:string" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:elementname="publisher">

<xs:complexType>
<xs:sequence>

<xs:elementname="pname" type="xs:string"/>
<xs:elementname="location" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:elementname="review" type="xs:string" nillable="true"/>

</xs:sequence>
<xs:attributename="year" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Fig. 1. Example XML schema

<bib>
<book year="1994">

<bookid>98001</bookid>
<title>TCP/IP Illustrated</title>
<author>

<aname>W. Stevens</aname>
</author>
<publisher>

<pname>Addison-Wesley</pname>
<location>San Francisco</location>

</publisher>
<review>

One of the best books on TCP/IP.
</review>

</book>
<book year="1992">

<bookid>98002</bookid>
<title>Programming in Unix</title>
<author>

<aname>Bram Stoker</aname>
</author>
<publisher>

<pname>Addison-Wesley</pname>
<location>Boston</location>

</publisher>
<review>

A clear and detailed discussion of UNIX programming.
</review>

</book>
... ...

</bib>

Fig. 2. Example XML data

Many XML applications use a relational data store by applying loading strat-
egy such as [17, 8]. Figures 3 and 4 show an example relational database gen-
erated from the XML schema and data of our running example using a shared
inlining loading strategy [17]. The basic XML view, called Default XML View,
is a one-to-one mapping to bridge the gap between the two heterogeneous data
models, that is the XML (nested) data model and relational (flat) data model.
Each table in the relational database is represented as one XML element and
each of its tuples as subelements of this table element. Figure 5 depicts the
default XML view of the database (Figure 3).

A default XML view explicitly exposes the tables and their structure to the
end users. However, end users often want to deal with an application specific view
of the data. For this reason, XML data management systems provide a facility
to define user-specific view capabilities on top of this default XML view, called a

4 L. Wang, M. Mulchandani, E. A. Rundensteiner

3.0

2.0

1.0

2.0

1.0

IID

Serge Abiteboul31.0

Peter Buneman31.0

Bram Stoker21.0

Dan Suciu31.0

11.0

PID

W.Stevens

aname

31.0

21.0

11.0

author_IID

3.0

2.0

1.0

IID

0.0

0.0

0.0

PID

1992Programming in Unix98002

2000

1994

year

Data on the Web98003

TCP/IP Illustrated98001

titlebookid

author

book

3.0

2.0

1.0

IID

Morgan Kaufman publishers

Addison-Wesley

Addison-Wesley

pname

Boston

New York

San Francisco

location

publisher

3.0

2.0

1.0

IID

A clear and detailed discussion of
UNIX programming.

2.0

A very good discussion of semi-
structured database systems and XML.

3.0

1.0

PID

One of the best books on TCP/IP.

review

review

Legend:
Primary Key

Unique Key

Non Key

Fig. 3. Relations in database

CREATE TABLE book
(IID VARCHAR2(20),
PID VARCHAR2(20),
bookid VARCHAR2(20),
title VARCHAR2(100),
author_IID VARCHAR2(20),
year INTEGER,
CONSTRAINTS AuthorUK UNIQUE (author_IID),
CONSTRAINTS BookPK PRIMARYKEY (IID))

CREATE TABLE author
(IID VARCHAR2(20),
PID VARCHAR2(20),
aname VARCHAR2(20),
CONSTRAINTS AuthorPK PRIMARYKEY (IID,PID),
FOREIGNKEY (PID) REFERENCES Book (author_IID))

CREATE TABLE publisher
(IID VARCHAR2(20),
pname VARCHAR2(256),
location VARCHAR2(256),
CONSTRAINTS PublisherPK PRIMARYKEY (IID),
FOREIGNKEY (IID) REFERENCES Book (IID))

CREATE TABLE review
(IID VARCHAR2(20),
PID VARCHAR2(20),
review VARCHAR2(2000),
CONSTRAINTS ReviewPK PRIMARYKEY (IID),
FOREIGNKEY (PID) REFERENCES Book (IID))

Fig. 4. Database schema of Figure 3

virtual view. Such a virtual view can be specified by an XQuery expression, then
called a view query. Several recent systems such as XPERANTO [6], SilkRoute
[10] and Rainbow [22] follow this approach of XML-to-Relational mapping via
defining XML views over relational data. An XML query language, such as
XQuery proposed by World Wide Web Consortium (W3C), can be used both to
define such views and also to query them. Figure 6 shows the view query defining
a virtual view identical to the originally loaded XML document in Figure 2.

XQuery Updates. Although W3C is adding update capabilities to the XQuery
standard [20], currently no update language for XML has yet been standardized.
For our work, we thus adopt an extension of the XQuery language syntax with
update operations that follows [18]. XQuery is extended with a FLWU expres-
sion composed of FOR...LET...WHERE...UPDATE clauses (Figure 7). Figure
8 shows an example Insert update, which inserts a new book element into the
(virtual) view defined in Figure 6.

3 Round-Trip XML View Update Problem

3.1 Definition of the Round-Trip XML View Update Problem

The general XQuery view update problem can be characterized as follows. Given a
relational database and an XQuery view definition over it, can the system decide
if an update against the view can be translated into corresponding updates
against the underlying relational database without violating any consistency.
And, if it translatable, then how would this translation be done.

Given the general problem definition as above, we now focus on one im-
portant case which we name the round-trip XML view update problem.
Given an XML schema and a valid XML document, by using a suitable load-
ing algorithm, such as inlining [17], edge or universal [8], accompanied with a
constraint-preserving mapping such as described in [14], assume we built a re-
lational database. We call it a structured database. Further we specify an

Updating XQuery Views Published over Relational Data 5

<DB>
<book>

<row>
<IID>1.0</IID>
<PID>0.0</PID>
<bookid>98001</bookid>
<title>TCP/IP Illustrated</title>
<author_IID>11.0</author_IID>
<year>1994</year>

</row>...
</book>
<author>

<row>
<IID>1.0</IID>
<PID>11.0</PID>
<aname>W. Stevens</aname>

</row>...
</author>
<publisher>

</row>
<IID>1.0</IID>
<pname>Addison-Wesley</pname>
<location> SanFrancisco</location>

<row>...
</publisher>
<review>

<row>
<IID>1.0</IID>
<PID>1.0</PID>
<review>

One of the best books on TCP/IP.
</review>

</row>...
</review>

</DB>

Fig. 5. Default XML view of
database shown in Figure 3

<bib>
FOR $book in document("default.xml")/book/row
RETURN{

<book year=$book/year/text()>
<bookid>$book/bookid/text()</bookid>,
<title>$book/title/text()</title>,
<author>

FOR $aname in document("default.xml")/author/row
WHERE $book/author_IID = $aname/PID
RETURN{

<aname>$aname/aname/text()</aname>}
</author>,
FOR $publisher in document("default.xml")/publisher/row
WHERE $book/IID = $publisher/IID
RETURN{

<publisher>
<pname>$publisher/pname/text()</pname>,
<location>$publisher/location/text()</location>

</publisher>},
FOR $review in document("default.xml")/review/row
WHERE $book/IID = $review/PID
RETURN{

<review>
$review/review/text()

</review>}
</book>

}
</bib>

Fig. 6. Virtual XQuery view
over default XML view shown
in Figure 5 producing the XML
data in Figure 2

XML view query on this structured database using an XQuery expression, which
constructs an XML view with the content identical to the XML document that
had just been supplied as input to the loading mapping. We call this special-
purpose view query an extraction query. We then can extract a view schema by
analyzing the extraction query semantics and the relational database schema.
Thus the view has the same content and schema as the original XML document
which had just been captured by the relational database. We call this special
view a twin-view. The problem of updating the database through this twin-view
is referred to as the round-trip XML view update problem (Figure 9).

3.2 Characterization of the XML Loading

As defined above, RXU is closely related with the loading procedure of the XML
document and schema into the relational database. To address the influence of
the loading strategy on the view updatability, we hence now study the loading
strategy characteristics for the RXU case. Many XML loading strategies have
been presented in the literature [14, 17, 8]. Not only the XML document, but
also the XML schema is typically captured in this procedure, which are called
data and constraint information respectively.

6 L. Wang, M. Mulchandani, E. A. Rundensteiner

FOR $binding1 IN Xpath-expr,...
LET $binding := Xpath-expr, ...
WHERE predicate1, ...
updateOp, ...

Where updateOp is defined in EBNF as :

UPDATE $binding {subOp {, subOp}* } and subOp is:

DELETE $child |
RENAME $child To new_name |
INSERT ($bind [BEFORE | AFTER $child]

| new_attribute(name, value)
| new_ref(name, value)
| content [BEFORE | AFTER $child]) |

REPLACE $child WITH (new_attribute(name, value)
| new_ref(name, value)
| content) |

FOR $sub_binding IN Xpath-subexpr, ...
WHERE predicate1, ... updateOp.

Fig. 7. Update language as exten-
sion of XQuery

FOR $root in document("view.xml")
UPDATE $root {

INSERT
<book year="1995">

<bookid>98004</bookid>,
<title>"Languages and Machines"</title>,
<author>

<aname>"Thomas A. Sudkamp"</aname>
</author>,
<publisher>

<pname>"Addison Wesley Longman, Inc."</pname>,
<location>"Boston"</location>

</publisher>,
<review>

"An Introduction to the theory of Computer Science"
</review>

</book>
}

Fig. 8. Insert update on
XQuery view shown in Figure 6

XML Document & Schema

Loading query

Default XML View

Default Mapping

Relational Database

XML View

Extraction query

Fig. 9. Round-Trip Update
Problem

bib

book

bookid title author

aname

year= " 1994 "publisher

pname location

review

book

"98001"

"TCP/IP Illustrated"

"W. Stevens"

" Addison-Wesley "

" San Francisco "

" One of the best
books on TCP/IP "

......

Fig. 10. Tree representation for XML document
shown in Figure 2

Data Loading Completeness. The XML (nested) data structure is distinct
from the relational (flat) data model. Thus the loading procedure must translate
from one model (structure) to the other. The completeness of data loading is
important in RXU since the twin-view requires exactly the same content as the
original document , independent on whatever we may do to the structure.

Definition 1. Given an XML document Dx, a loading L generates a resulting

relational database instance Dr, denoted by Dx
L

−→ Dr. L is a lossless data

loading iff ∃L′ such that Dr
L′

−→ Dx holds true.

Figure 10 is a tree structured representation of the XML document in Figure
2, while Figure 3 is a structured database resulting from applying the inlining
loading to that XML document. The extraction query in Figure 6 will generate
the twin-view from the structured database of Figure 3. Thus this loading is a
lossless data loading by Definition 1.

A lossless data loading guarantees to capture all leaves in the XML tree-
structured representation (Figure 10). Leaves represent actual data instead of

Updating XQuery Views Published over Relational Data 7

document structure. Hence we will be able to reconstruct the XML document.
While a lossy data loading may not have loaded some of leaves, hence is not
sufficient for reconstruction. Most loading strategies presented in the literature,
such as Inlining [17] and Edge [8], are all lossless data loadings.

Hierarchy from view
query

Cardinality

Duplication

Constraints in
Extracted XML

View Schema

Cardinality
Constrains

Referential Integrity
Constraints (Foreign

Key)

Sequence

Inclusion
Dependency
(ID/IDREF)

Choice

Hierarchy

Nillable Attributes

Optional Element

Key Constraints

Domain of
Element/Attributes

Constraints in
XML Schema/DTD

Global Constraints

Table Definition

Attributes is Null /
Not null

Foreign Key
between Tables

Primary key /
Unique Key of

Table

Domain Constraints
of Attribute in

Relation

Constraints in
Relational

Database schema

Hierarchy

Cardinality

Element/attributes
Null/Not null

Element/Attribute
Domain

Constraints in
Filtered XML View

Schema

?

?

XML View Schema

Fig. 11. Comparison of constraints of XML
schema, relational database schema and XML
view schema

<bib>
FOR $book in document("default.xml")/book/row
RETURN{

<book year=$book/year/text()>
<bookid>$book/bookid/text()</bookid>,
<title>$book/title/text()</title>,

<author>
FOR $aname in document("default.xml")/author/row
WHERE $book/author_IID = $aname/PID
RETURN{

<aname>$aname/aname/text()</aname>}
</author>

</book>
}
</bib>

Fig. 12. XQuery example

Constraint Loading Completeness. Given a relational database schema Sr

and a view query Q, we define the constraints implied by the XML view as
XML View Schema, which can be extracted by a mapping named constraint
extraction mapping denoted by ê. As shown in Figure 11, an XML View Schema
is a combination of a Filtered XML View Schema (FSchema) FSv and an Ex-
tracted XML View Schema (ESchema) ESv , thus denoted as Sv(ESv, FSv). An
FSchema, modeling the constraints extracted from the schema of any relation
referenced by Q, is inferred by analyzing the relational database schema and
filtering this schema using the view definition, hence denoted as FSv = ê(Sr).
These constraints may include domain constraints, cardinality constraints, null
constraints and hierarchical constraints. An ESchema consisting of constraints
that can be inferred from the view query semantics is extracted by analyzing
the view query expression, hence represented as ESv = ê(Q). They include car-
dinality constraints, hierarchical constraints and duplication constraints. The
constraints implied in the view definition may not be consistent with the con-
straints imposed by the relational database schema. Hence the ESchema may
conflict with the FSchema. This mismatch may cause some problem in the later
update translation step. However, in RXU, we assume that the view schema is
exactly the same as the original XML schema. Hence this mismatch problem will
not arise. This assumption relies on the idea of constraint loading completeness
and extraction query.

8 L. Wang, M. Mulchandani, E. A. Rundensteiner

Definition 2. Given an XML schema Sx, a loading L generates a structured

database with schema Sr, denoted by Sx
L

−→ Sr. L is a lossless constraint
loading iff ∃Q be an extraction query generating an XML view with schema
Sv = (ê(Sr), ê(Q)), such that Sv = Sx holds true.

An XML to relational database loading is a lossless loading iff it is both a
lossless data loading as defined by Definition 1 and a lossless constraint loading as
defined by Definition 2. Obviously the loading in RXU must be a lossless loading.
Most loadings proposed in the literature are all lossless data loading strategies,
however few of them are also lossless constraint loading strategies. For example,
Edge [8] is a lossless data loading, while it is not a lossless constraint loading.
In order for such loading strategies to be usable for RXU, it must accompany a
constraint preserving loading such as proposed in [14].

4 On the View Updatability in RXU

Basic Concepts. We first review the relational data model and view definition
framework. The notation used is shown in Table 1. A relational database is a
combination of a set of relations and a set of integrity constraints. A database
state, denoted by s, is an assignment of data values to relations such that the
integrity constraints are satisfied. The database status, denoted by S, is the set
of all possible database states. An data update of a relational database with
status S is a mapping from S into S, denoted as û : S → S. A view V of a given
relational database with status S is defined by a set of relations and a mapping
f that associates with each database state s ∈ S a view state f(s). In our case
the mapping f is the view definition mapping expressed in an XQuery Q. The
set f(S) = {f(s)|s ∈ S} is the view status. The set of view definition mappings
on S is denoted as M(S). A valid view update u on view state is an update that
satisfies all the constraints of view schema.

S database status s current database state
f view definition mapping M(S) a set of view definition mappings on S

f(S) view status f(s) view state associated with database state s

Ur set of all database updates Uv set of all valid view updates

Table 1. Notation table

Translation Criteria. We now discuss what is the criteria of translating an
XML view update. By the Correctness Criteria, only the desired update is
performed on the view, that is, it is consistent and has no view side effects. Given
u ∈ Uv, ∃u′ ∈ Ur such that (a) u(f(s)) = f(u′(s)), (b) ∀s ∈ S , uf(s) = f(s) ⇒
u′(s) = s. In order to permit all possible changes but only in their simplest forms,
the Simplicity Criteria requires that all candidate update translations satisfy

Updating XQuery Views Published over Relational Data 9

the following rules [11]: (a) One step changes. Each database tuple is affected
by at most one step of the translation for any single view update request. (b)
Minimal changes. There is no valid translation that implements the request by
performing only a proper subset of database requests. (c) Replacement cannot be
simplified. That is, we always pick the simplest replace operation, e.g, a database
replacement that does not involve changing the key is simpler than one where the
key changes. (d) No insert-delete pairs. We do not allow candidate translations
to include both deletions and insertions on the same tuple of the same relation.
Instead they must be converted into replacements, which we consider simpler.

Definition 3. Given an update u ∈ U v on view state f(s) ∈ f(S), if ∃u′ ∈ Ur

that satisfies the correctness criteria defined above, u is called translatable for
f(s)(also can be called f-translatable). f(s) is called updatable by u. u′ is named
a correct translation for u. Further, if u′ also satisfies the simplicity criteria
defined above, we say u′ is an optimized translation.

Updatability of RXU views. We now study the updatability of views in the
RXU space. The view complement theory in [2] proposes that if a complemen-
tary view, which includes information not “visible” in the view, is chosen and is
held constant, then there is at most one translation of any given view update.
Although as described in [13], translators based on complements do not neces-
sarily translate all translatable updates. It still provides us with a conservative
computation for the set of translatable updates. This fits our RXU case well,
since here the complement view always corresponds to a constant. We hence use
the view complement theory to prove that any update on a twin-view is always
translatable.

The complementary theory proposed in [2] can be explained as below.

Definition 4. Let f, g ∈ M(S). We say that f is greater than g or that f
determines g, denoted by f ≥ g, iff ∀s ∈ S, ∀s′ ∈ S, f(s) = f(s′) ⇒ g(s) = g(s′).

Definition 5. Let f, g ∈ M(S). We say that f and g are equivalent, denoted by
f ≡ g, iff f ≥ g and g ≥ f .

Definition 6. Let f, g ∈ M(S). The product of f and g, denoted by f × g, is
defined by f × g(s) = (f(s), g(s)), ∀s ∈ S.

Definition 7. Let f ∈ M(S). A view g ∈ M(S) is called a complement of
f , iff f × g ≡ 1. Further, g is the minimal complement of f iff (i) g is a
complement of f , and (ii) if h is a complement of f and h ≤ g, then h ≡ g.

Definition 4 can be interpreted as f ≥ g iff whenever we know the view state
f(s), then we also can compute the view state g(s). Definition 6 implies that
the product f × g “adds” to f the information in g. We denote the identity
mapping on S as 1 and a constant mapping on S as 0. In our case, the mapping
query used to define the default XML view is mapping 1. And a XQuery such as
< bib >< /bib > is a constant mapping. According to Definition 7, if f × g ≡ 1,

10 L. Wang, M. Mulchandani, E. A. Rundensteiner

then f, g contain sufficient information for computing the database, and the
complementary view g contains the information not “visible” within the view f .
For example, assuming the query in Figure 6 define a mapping f , the query in
Figure 12 defines a mapping g, then f ≥ g and g× f ≡ 1. f is complement of g.

Lemma 1. Given a complement g of f and a view update u ∈ U v, u is g-
translatable iff ∀s ∈ S, ∃s′ ∈ S so that f(s′) = uf(s) and g(s′) = g(s).

This lemma is the complement theory, which implies that given a complement
g of the view f and a view update u ∈ U v, the translation of u that leaves g
invariant is the desired translation satisfying our correctness criteria defined
above. This is first presented in [9] as the “absence of side effects” feature. For
the proof of this lemma, please refer to [2]. We now use this theory to prove that
any update on the view of RXU is always translatable, as described below.

Observation 1 Within the RXU case, given an XQuery view definition f de-
fined over the relational state s, ∀u ∈ U v, u is translatable by Definition 3.

Proof. (i) Since the mapping query defining the default XML view is 1, according
to Definition 5, in RXU, ∀f , f ≡ 1. This is because we can always compute the
default XML view from the view state f(s) by using the loading mapping, that
is f ≥ 1, while 1 ≥ f always holds true. (ii) Since 0 is the complement of 1,
while f ≡ 1, then 0 is the complement view of f . (iii) ∀u ∈ U v, let f(s′) = uf(s),
then 0(s′) = 0(s). Thus, by Lemma 1, u is always translatable.

5 Rainfall — Our Approach for XQuery View Update

Updating through an XML view can be broken into three separate but consec-
utive processes:

– Information Preparation. This process analyzes the XQuery view definition
to provide us with a prior knowledge about the relationship of the view with
the relational database, that is, extracting the view schema. It also performs
pre-checking of updates issued on the view to reject invalid updates using
the view schema.

– Update Decomposition. This is the key process of the XML update translation
to bridge the XQuery model and the relational query model. The given XML
update request is decomposed into a set of valid database operations, with
each being applied to a single relation.

– Global Integrity Maintenance. Because of the structural model of the rela-
tional database with its integrity constraints, the database operations re-
sulting from the decomposition process may need to be propagated globally
throughout the base relations to assure the consistency of the relational
database.

We hence call our strategy a decomposition-based update strategy. Our up-
date strategy will generate an optimized update translation which follows the
simplicity criteria defined in Section 4. For details on our update translation
strategy, please refer to [21].

Updating XQuery Views Published over Relational Data 11

5.1 System Framework

Figure 13 depicts the architecture of our Rainfall update system, which is an
extension of the base XML query engine Rainbow [22]. Rainbow is an XML data
management system designed to support XQuery processing and optimization
based on an XML algebra with the underlying data store being relational.

XAT Rewriter

View Composer

DB2

View Query

Parsed Tree

Multiple SQL
updates

SQL Generator

User Query

SQL

XAT Executor

XAT

XAT

XAT Generator

XQuery Parser

View
Query

Oracle

XQuery View
Manager

SQL-ServerSybase

RDBMS

XAT XAT

Information
Collecter

View
Analyzer

Valid Update
Checker

Update
Decomposer

Update
Translator

Update
Propagator

Meta -Data

XAT

XATView Query XAT

Materialized
data

Process Step

Process Flow

Data Flow

RDBMS

Legend

Rainfall

Rainbow
Query
Engine

Result XML

Fig. 13. Architecture of Rainbow query engine with update extension

An XML view or update query is first passed to the XQuery parser for
syntax checking. We have extended the Kweelt XQuery parser [16] to support
the update grammar (Figure 7). The XAT generator and View composer of the
Rainbow query engine generates an algebraic representation of XQuery called
XML algebra tree (XAT). For a description of XQuery processing in Rainbow
refer to [23].

The Rainfall update system takes the above XAT from the Rainbow query
engine. An Infomation Collector first identifies all the relations related to the
view and their relationships. It then collects their schemas and integrity con-
straints. This information is stored in a metadata structure, which will serve as
view schema as defined in Section 3. After that, a View Analyzer studies the key
features of the XQuery view definition to prepare a translation policy. The Valid
Update Checker examines if the user update query is valid or not. Invalid updates
are rejected, while valid updates will be prepared for further processing. Then,
the Update Decomposer will decompose the translatable update query into sev-
eral smaller-granularity update queries, each defined on a single relational table.
The Update Propagator then analyzes what type of propagated update should be
generated to keep the integrity constraints of the relational database satisfied.
It also records the propagated updates into a metadata structure for the next
translation step. Finally, the Update Translator translates the update informa-
tion in the metadata structure into SQL update statements. These statements
will be submitted to the relational database engine for execution.

12 L. Wang, M. Mulchandani, E. A. Rundensteiner

6 Experiments

We conducted several experiments on our Rainfall update system to assess the
performance of our update translation strategy in RXU case. We first show
the update translation over XML re-loading to claim that update translation
is indeed viable in practice. We then show our update translation strategy is
pretty stable and efficient in different update scenarios. In the last experiment,
we describe the performance of each translation step. If not stated otherwise, all
experiments use the XML schema from our running example in Figure 1. The
XML data is randomly being generated. The test system is Intel(R) Celeron(TM)
733MHz processor, 384M memory, running Windows2000.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

200 400 600 800 1000 1200
File Size

(elements/file)

Time(ms)

Inline Loading Delete

Fig. 14. Performance comparison of
re-loading and update translation,
shared inlining loading, delete update.

0

5000

10000

15000

20000

25000

30000

35000

200 400 600 800 1000 1200 File Size
(elements/file)

Time(ms)

Delete Insert Replace

Fig. 15. Performance comparison for
different update types, file-size = 800
elements/file.

(1) Experiment on Updating vs. Loading. We evaluate the cost of the
translation of an XML update specified against an XML virtual view (Figure 6)
into a relational update that then is executed against the relational database.
We compare it against re-loading the XML data into relational data store after
directly being applied the update on the original XML document (Figure 14).
We use a delete update on the view defined in Figure 6. The loading strategy
used is shared inlining [17]. We observe that as the XML file size increases in
the number of elements in the XML document, the re-loading time increases
linearly in the size of the file. The update translation remains fairly steady.
Thus the update translation is an efficient mechanism and indeed appears to be
viable in practice.

(2) Experiment on Translation for Different Update Types. The
performance of different update types is compared in Figure 15. The underlying
relational database and view query are the same as in experiment 1. Update
operations considered are delete, insert and replace on the view. We find that all

Updating XQuery Views Published over Relational Data 13

0

2500

5000

7500

10000

12500

15000

17500

20000

Delete Insert Replace Update Type

Time(ms)

ViewQuery

UserQuery

XAT Optimization

View Analysis

Update Decompososition

Update Translation & Propagation

Execution

Fig. 16. Comparison of translation steps for different update types

three types of update costs are fairly stable even for increasing file sizes. Delete
is the cheapest operation. While replace is the most expensive, it is still cheaper
than performing a combination of a delete followed by an insert. This is the
reason for the forth simplicity criteria described in Section 4. Given that only
the last step of execution actually touches the relational data, the database size
does not have much impact on the overall performance.

(3) Experiment on Translation Steps for Different Update Types.
For the same experimental setup as in experiment 2, we now break down the
costs for the different steps of update translation for the three update types.
The result is shown in Figure 16. The result shows that the XAT optimization
takes more time compared to XAT generation and update translation. We merge
the user XAT and mapping XAT query trees, and optimize the merged XAT
before we start the other update translation steps. The reason for this step is
to simplify the XAT. Another costly step is the view analysis which analyzes
the view structure, finds the related relations and their relationships and thus
prepares for update translation.

7 Related Work

The view update problem has been studied in depth for relational databases. [9]
is one of the first works dealing with view updates for relational databases. It
stipulated a notion of correct translation, and described several conditions for
the existence of such translation in the case of a clean source, that is updating
a clean source will not generate any view side-effect. An abstract formulation of
the update translation problem is given by the view complementary theorem in
[7, 2] which uses the complement of a view to resolve the ambiguity in mapping
between old and new database states. Finally, [11, 12, 1] study the view update
problem for SPJ queries on relations that are in Boyce-Codd Normal Form.
Our work follows [7] to prove the correct translatability. However, it is more
complex than the pure relational view update problem, since not only do all the

14 L. Wang, M. Mulchandani, E. A. Rundensteiner

problems in the relational context still exist in the XML semantics context, but
in addition we have to address the mismatch coming from the two distinct data
models. Our constraint mapping in Figure 11 takes this mismatch into account,
thus addressing some of the key issues in the XML context.

Closely related to the work of [9], in [3], view update translation algorithms
of [11] have been further extended for object-based views. However, an XML
model has features in its schema and query language distinct from those in the
OO model. The algebraic framework and the update decomposition strategy
used in our system bridges the nested XQuery with SQL model gap. They thus
provide us with a clear solution for view update translation.

The XML view update problem has not yet been much addressed by the
database community. [15] introduces the XML view update in SQL-Server2000,
based on a specific annotated schema and update language called updategrams.
Different with their work, our update system explores in general the XML view
update problem instead of a system-specific solution, though we have also imple-
mented our ideas to check their feasibility. One of the recent work [18] presents
an XQuery update grammar, and studies the performance of updates assum-
ing that the view is indeed translatable and has in fact already been translated
using a fixed shredding technique, that is inlining [17]. Instead of assuming up-
date always translatable, our work addresses how the updatability infected by
XML nested structure. The proposed solution is not limited in specific loading
strategy. The most recent work [4] studies the updatability of XML view using
nested relational algebra. By assuming the algebra representation of view do
not include unnest operator, while nest operator occur last, and won’t affect the
view udpatability. However, by using XQuery to define the view, the unnested
operator is unavoidable. Also, since the order of nest operator will decide the
hierarchy of XML view, it will affect the view updatability. Compared to their
work, updating XQuery view problem tackled in our paper is more complex.

8 Conclusions

In this paper, we have characterized the round-trip based XQuery view update
problem in the context of XML views being published over relational databases.
We prove that the updates issued on the view within this problem space are
always translatable. A decomposition-based update translation approach is de-
scribed for generating optimized update plans. A system framework for imple-
menting this approach is also presented. Its performance is studied in various
scenarios. Although we base our discussion and have implemented the update
strategy in the context of the Rainbow XML management system, both the con-
cepts and the algorithms can easily be applied to other systems.

References

1. A. M. Keller. The Role of Semantics in Translating View Updates. IEEE Trans-

actions on Computers, 19(1):63–73, 1986.

Updating XQuery Views Published over Relational Data 15

2. F. Bancilhon and N. Spyratos. Update Semantics of Relational Views. In ACM

Transactions on Database Systems, pages 557–575, Dec 1981.
3. T. Barsalou, N. Siambela, A. M. Keller, and G. Wiederhold. Updating Relational

Databases through Object-Based Views. In 10th ACM SIGACT-SIGMOD, pages
248–257, 1991.

4. V. P. Braganholo, S. B. Davidson, and C. A. Heuser. On the Updatability of XML
Views over Relational Databases. In WEBDB, 2003.

5. E. T. Bray, J. Paoli, and C. Sperberg-McQueen. Extensible Markup Language
(XML), 1997. http://www.w3.org/TR/PR-xml-971208.

6. M. J. Carey, J. Kiernan, J. Shanmugasundaram, E. J. Shekita, and S. N. Subrama-
nian. XPERANTO: Middleware for Publishing Object-Relational Data as XML
Documents. In The VLDB Journal, pages 646–648, 2000.

7. S. S. Cosmadakis and C. H. Papadimitriou. Updates of Relational Views. Journal

of the Association for Computing Machinery, pages 742–760, Oct 1984.
8. F. Daniela and K. Donald. Storing and Querying XML Data Using an RDBMS.

IEEE Data Engineering Bulletin, 22(3):27–34, 1999.
9. U. Dayal and P. A. Bernstein. On the Correct Translation of Update Operations

on Relational Views. In ACM Transactions on Database Systems, volume 3(3),
pages 381–416, Sept 1982.

10. M. F. Fernandez, A. Morishima, D. Suciu, and W. C. Tan. Publishing Relational
Data in XML: the SilkRoute Approach. IEEE Data Engineering Bulletin, 24(2):12–
19, 2001.

11. A. M. Keller. Algorithms for Translating View Updates to Database Updates
for View Involving Selections, Projections and Joins. In Fourth ACM SIGACT-

SIGMOD Symposium on Principles of Database Systems, pages 154–163, 1985.
12. A. M. Keller. Choosing a View Update Translator by Dialog at View Definition

Time. In VLDB, pages 467–474, 1986.
13. A. M. Keller. Comments on Bancilhon and Spyratos’ ”update semantics and rela-

tional views”. ACM Transactions on Database Systems, 12(3):521–523, 1987.
14. D. Lee and W. W. Chu. Constraints-Preserving Transformation from XML Doc-

ument Type Definition to Relational Schema. In ER, pages 323–338, Oct 2000.
15. M. Rys. Bringing the Internet to Your Database: Using SQL Server 2000 and XML

to Build Loosely-Coupled Systems. In VLDB, pages 465–472, 2001.
16. A. Sahuguet and L. Dupont. Querying xml in the new millennium, 2002.
17. J. Shanmugasundaram, G. He, K. Tufte, C. Zhang, D. DeWitt, and J. Naughton.

Relational Databases for Querying XML Documents: Limitations and Opportuni-
ties. In VLDB, pages 302–314, September 1999.

18. I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Updating XML. In
Proceedings of the ACM SIGMOD International Conference, pages 413–424, May
2001.

19. W3C. XML Schema. http://www.w3.org/XML/Schema.
20. W3C. XQuery: A Query Language for XML. http://www.w3.org/TR/xquery/,

February 2001.
21. L. Wang, M. Mulchandani, and E. A. Rundensteiner. Updating XQuery Views

Published over Relational Data. Technical Report WPI-CS-TR-03-23, Computer
Science Department, WPI, 2003.

22. X. Zhang, K. Dimitrova, L. Wang, M. EL-Sayed, B. Murphy, L. Ding, and E. A.
Rundensteiner. RainbowII: Multi-XQuery Optimization Using Materialized XML
Views. In Demo Session Proceedings of SIGMOD, 2003.

23. X. Zhang and E. Rundensteiner. XAT: XML Algebra for Rainbow System. Tech-
nical Report WPI-CS-TR-02-24, Computer Science Department, WPI, July 2002.

